
Shepard Convolutional Neural Networks

Jimmy SJ. Ren∗

SenseTime Group Limited
rensijie@sensetime.com

Li Xu
SenseTime Group Limited
xuli@sensetime.com

Qiong Yan
SenseTime Group Limited

yanqiong@sensetime.com

Wenxiu Sun
SenseTime Group Limited

sunwenxiu@sensetime.com

Abstract

Deep learning has recently been introduced to the field of low-level computer
vision and image processing. Promising results have been obtained in a num-
ber of tasks including super-resolution, inpainting, deconvolution, filtering, etc.
However, previously adopted neural network approaches such as convolutional
neural networks and sparse auto-encoders are inherently with translation invariant
operators. We found this property prevents the deep learning approaches from
outperforming the state-of-the-art if the task itself requires translation variant in-
terpolation (TVI). In this paper, we draw on Shepard interpolation and design
Shepard Convolutional Neural Networks (ShCNN) which efficiently realizes end-
to-end trainable TVI operators in the network. We show that by adding only a few
feature maps in the new Shepard layers, the network is able to achieve stronger
results than a much deeper architecture. Superior performance on both image in-
painting and super-resolution is obtained where our system outperforms previous
ones while keeping the running time competitive.

1 Introduction

In the past a few years, deep learning has been very successful in addressing many aspects of visual
perception problems such as image classification, object detection, face recognition [1, 2, 3], to name
a few. Inspired by the breakthrough in high-level computer vision, several attempts have been made
very recently to apply deep learning methods in low-level vision as well as image processing tasks.
Encouraging results has been obtained in a number of tasks including image super-resolution [4],
inpainting [5], denosing [6], image deconvolution [7], dirt removal [8], edge-aware filtering [9] etc.
Powerful models with multiple layers of nonlinearity such as convolutional neural networks (CNN),
sparse auto-encoders, etc. were used in the previous studies. Notwithstanding the rapid progress and
promising performance, we notice that the building blocks of these models are inherently translation
invariant when applying to images. The property makes the network architecture less efficient in
handling translation variant operators, exemplified by the image interpolation operation.

Figure 1 illustrates the problem of image inpainting, a typical translation variant interpolation (TVI)
task. The black region in figure 1(a) indicates the missing region where the four selected patches
with missing parts are visualized in figure 1(b). The interpolation process for the central pixel in
each patch is done by four different weighting functions shown in the bottom of figure 1(b). This
process cannot be simply modeled by a single kernel due to the inherent spatially varying property.

In fact, the TVI operations are common in many vision applications. Image super-resolution, which
aims to interpolate a high resolution image with a low resolution observation also suffers from the

∗Project page: http://www.deeplearning.cc/shepardcnn

1

(a)

! ! ! !

! ! ! !

! ! ! "

! ! " " #

! $ $ " #

"

"

! $ % " "

$ # " $

$! ! !

! ! ! ! !

! ! ! ! !

$

$

$! $ $ $

! ! $ $

! ! ! !

$ $ $ $ $

$ $ $ " "

$

$

$$ " " !

" $! !

" $! !

" $! ! !

" $! !

!

!

!

(b)

Figure 1: Illustration of translation variant interpolation. (a) The application of inpainting. The black regions
indicate the missing part. (b) Four selected patches. The bottom row shows the kernels for interpolating the
central pixel of each patch.

same problem: different local patches have different pattern of anchor points. We will show that it
is thus less optimal to use the traditional convolutional neural network to do the translation variant
operations for super-resolution task.

In this paper, we draw on Shepard method [10] and devise a novel CNN architecture named Shep-
ard Convolutional Neural Networks (ShCNN) which efficiently equips conventional CNN with the
ability to learn translation variant operations for irregularly spaced data. By adding only a few
feature maps in the new Shepard layer and optimizing a more powerful TVI procedure in the end-
to-end fashion, the network is able to achieve stronger results than a much deeper architecture. We
demonstrate that the resulting system is general enough to benefit a number of applications with TVI
operations.

2 Related Work

Deep learning methods have recently been introduced to the area of low-level computer vision and
image processing. Burger et al. [6] used a simple multi-layer neural network to directly learn a
mapping between noisy and clear image patches. Xie et al. [5] adopted a sparse auto-encoder and
demonstrated its ability to do blind image inpainting. A three-layer CNN was used in [8] to tackle
of problem of rain drop and dirt. It demonstrated the ability of CNN to blindly handle translation
variant problem in real world challenges.

Xu et al. [7] advocated the use of generative approaches to guide the design of the CNN for decon-
volution tasks. In [9], edge-aware filters can be well approximated using CNN. While it is feasible
to use the translation invariant operators, such as convolution, to obtain the translation variant results
in a deep neural network architecture, it is less effective in achieving high quality results for inter-
polation operations. The first attempt using CNN to perform image super-resolution [4] connected
the CNN approach to the sparse coding ones. But it failed to beat the state-of-the-art super resolu-
tion system [11]. In this paper, we focus on the design of deep neural network layer that better fits
the translation variant interpolation tasks. We note that TVI is the essential step for a wide range of

2

low-level vision applications including inpainting, dirt removal, noise suppression, super-resolution,
to name a few.

3 Analysis

Deep learning approaches without explicit TVI mechanism generated reasonable results in a few
tasks requiring translation variant property. To some extent, deep architecture with multiple layers of
nonlinearity is expressive to approximate certain TVI operations given sufficient amount of training
data. It is, however, non-trivial to beat non-CNN based approaches while ensuring the high efficiency
and simplicity.

To see this, we experimented with the CNN architecture in [4] and [8] and trained a CNN with three
convolutional layers by using 1 million synthetic corrupted/clear image pairs. Network and training
details as well as the concrete statistics of the data will be covered in the experiment section. Typical
test images are shown in the left column of figure 2 whereas the results of this model are displayed
in the mid-left column of the same figure. We found that visually very similar results as in [5] are
obtained, namely obvious residues of the text are still left in the images. We also experimented with
a much deeper network by adding more convolutional layers, virtually replicating the network in
[8] by 2,3, and 4 times. Although slight visual differences are found in the results, no fundamental
improvement in the missing regions is observed, namely residue still remains.

A sensible next step is to explicitly inform the network about where the missing pixels are so that
the network has the opportunity to figure out more plausible solutions for TVI operations. For many
applications, the underlying mask indicating the processed regions can be detected or be known
in advance. Sample applications include image completion/inpainting, image matting, dirt/impulse
noise removal, etc. Other applications such as sparse point propagation and super resolution by
nature have the masks for unknown regions.

One way to incorporate the mask into the network is to treat it as an additional channel of the input.
We tested this idea with the same set of network and experimental settings as the previous trial.
The results showed that such additional piece of information did bring about improvement but still
considerably far from satisfactory in removing the residues. Results are visualized in the mid-right
column of figure 2. To learn a tractable TVI model, we devise in the next session a novel architecture
with an effective mechanism to exploit the information contained in the mask.

4 Shepard Convolutional Neural Networks

We initiate the attempt to leverage the traditional interpolation framework to guide the design of
neural network architecture for TVI. We turn to the Shepard framework [10] which weighs known
pixels differently according to their spatial distances to the processed pixel. Specifically, Shepard
method can be re-written in a convolution form

Jp =

{

(K ∗ I)p / (K ∗M)p if Mp = 0
Ip if Mp = 1

(1)

where I and J are the input and output images, respectively. p indexes the image coordinates. M is
the binary indicator. Mp = 0 indicates the pixel values are unknown. ∗ is the convolution operation.
K is the kernel function with its weights inversely proportional to the distance between a pixel
with Mp = 1 and the pixel to process. The element-wise division between the convolved image
and the convolved mask naturally controls the way how pixel information is propagated across the
regions. It thus enables the capability to handle interpolation for irregularly-spaced data and make
it possible translation variant. The key element in Shepard method affecting the interpolation result
is the definition of the convolution kernel. We thus propose a new convolutional layer in the light of
Shepard method but allow for a more flexible, data-driven kernel design. The layer is referred to as
the Shepard interpolation layer.

3

Figure 2: Comparison between ShCNN and CNN in image inpainting. Input images (Left). Results from a
regular CNN (Mid-left). Results from a regular CNN trained with masks (Mid-right). Our results (Right).

4.1 The Shepard Interpolation Layer

The feed-forward pass of the trainable interpolation layer can be mathematically described as the
following equation,

F
n
i (F

n−1,Mn) = σ(
∑

j

K
n
ij ∗ F

n−1

j

Kn
ij ∗M

n
j

+ bn), n = 1, 2, 3, ... (2)

where n is the index of layers. The subscript i in Fn
i is the index of feature maps in layer n. j

in F
n−1

j index the feature maps in layer n − 1. Fn−1 and M
n are the input and the mask of the

current layer respectively. Fn−1 represents all the feature maps in layer n− 1. Kij are the trainable
kernels which are shared in both numerator and denominator in computing the fraction. Concretely,
same Kij is to be convolved with both the activations of the last layer in the numerator and the

mask of the current layer Mn in the denominator. Fn−1 could be the output feature maps of regular
layers in a CNN such as a convolutional layer or a pooling layer. It could also be a previous Shepard
interpolation layer which is a function of both Fn−2 and M

n−1. Thus Shepard interpolation layers
can actually be stacked together to form a highly nonlinear interpolation operator. b is the bias
term and σ is the nonlinearity imposed to the network. F is a smooth and differentiable function,
therefore standard back-propagation can be used to train the parameters.

Figure 3 illustrates our neural network architecture with Shepard interpolation layers. The inputs of
the Shepard interpolation layer are images/feature maps as well as masks indicating where interpo-
lation should occur. Note that the interpolation layer can be applied repeatedly to construct more
complex interpolation functions with multiple layers of nonlinearity. The mask is a binary map of
value one for the known area, zero for the missing area. Same kernel is applied to the image and
the mask. We note that the mask for layer n + 1 can be automatically generated by the result of
previous convolved mask K

n ∗ M
n, by zeroing out insignificant values and thresholding it. It is

important for tasks with relative large missing areas such as inpainting where sophisticated ways of
propagation may be learned from data by multi-stage Shepard interpolation layer with nonlinearity.
This is also a flexible way to balance the kernel size and the depth of the network. We refer to

4

Figure 3: Illustration of ShCNN architecture for multiple layers of interpolation.

a convolutional neural network with Shepard interpolation layers as Shepard convolutional neural
network (ShCNN).

4.2 Discussion

Although standard back-propagation can be used, because F is a function of both Ks in the frac-
tion, matrix form of the quotient rule for derivatives need to be used in deriving the back-propagation
equations of the interpolation layer. To make the implementation efficient, we unroll the two con-
volution operations K ∗ F and K ∗M into two matrix multiplications denoted W · I and W · M

where I and M are the unrolled versions of F and M. W is the rearrangement of the kernels where
each kernel is listed in a single row. E is the error function to compute the distance between the
network output and the ground truth. L2 norm is used to compute this distance. We also denote

Zn = K
n

∗F
n−1

Kn∗Mn
. The derivative of the error function E with respect to Zn, δn = ∂E

∂Zn
, can be

computed the same way as in previous CNN papers [12, 1]. Once this value is computed, we show
that the derivative of E with respect to the kernels W connecting jth node in (n− 1)th layer to ith

node in nth layer can be computed by,

∂E

∂Wn
ij

=
∑

m

(Wn
ij ·Mjm) · Ijm − (Wn

ij · Ijm) ·Mjm

(Wn
ij ·Mjm)2

· δim, (3)

where m is the column index in I , M and δ.

The denominator of each element in the outer summation in Eq. 3 is different. Therefore, the
numerator of each summation element has to be computed separately. While this operation can still
be efficiently parallelized by vectorization, it requires significantly more memory and computations
than the regular CNNs. Though it brings extra workload in training, the new interpolation layer only
adds a fraction of more computation during the test time. We can discern this from Eq. 2, the only
added operations are the convolution of the mask with the K and the point-wise division. Because
the two convolutions shares the same kernel, it can be efficiently implemented by convolving with
samples with the batch size of 2. It thus keeps the computation of Shepard interpolation layer
competitive compare to the traditional convolution layer.

We note that it is also natural to integrate the interpolation layer to any previous CNN architecture.
This is because the new layer only adds a mask input to the convolutional layer, keeping all other
interfaces the same. This layer can also degenerate to a fully connected layer because the unrolled
version of Eq. 2 merely contains matrix multiplication in the fraction. Therefore, as long as the TVI
operators are necessary in the task, no matter where it is needed in the architecture and the type of
layer before or after it, the interpolation layer can be seamlessly plugged in.

5

Last but not least, the interpolation kernels in the layer is learned from data rather than hand-crafted,
therefore it is more flexible and could be more powerful than pre-designed kernels. On the other
hand, it is end-to-end trainable so that the learned interpolation operators are embedded in the overall
optimization objective of the model.

5 Experiments

We conducted experiments on two applications involving TVI: the inpainting and the super-
resolution. The training data was generated by randomly sampling 1 million patches from 1000
natural images scraped from Flickr. Grayscale patches of size 48x48 were used for both tasks to
facilitate the comparison with previous studies. All PSNR comparison in the experiment is based on
grayscale results. Our model can be directly extended to process color images.

5.1 Inpainting

The natural images are contaminated by masks containing text of different sizes and fonts as shown
in figure 2. We assume the binary masks indicating missing regions are known in advance. The
ShCNN for inpainting is consists of five layers, two of which are Shepard interpolation layers. We
use ReLU function [1] to impose nonlinearity in all our experiments. 4x4 filters were used in the
first Shepard layer to generate 8 feature maps, followed by another Shepard interpolation layer with
4x4 filters. The rest of the ShCNN is conventional CNN architecture. The filters for the third layer is
with size 9x9x8, which are use to generate 128 feature maps. 1x1x128 filters are used in the fourth
layer. 8x8 filters are used to carry out the reconstruction of image details. Visual results are shown
in the last column in figure 2. The results of the comparisons are generated using the architecture in
[8]. More examples are provided in the project webpage.

(a) Ground Truth / PSNR (b) Bicubic / 22.10dB (c) KSVD / 23.57dB (d) NE+LLE / 23.38dB

(e) ANR / 23.52dB (f) A+ / 24.42dB (g) SRCNN / 25.07dB (h) ShCNN / 25.63dB

Figure 4: Visual comparison. Factor 4 upscaling of the butterfly image in Set5 [14].

5.2 Super Resolution

The quantitative evaluation of super resolution is conducted using synthetic data where the high
resolution images are first downscaled by a factor to generate low resolution patches. To perform
super resolution, we upscale the low resolution patches and zero out the pixels in the upscaled
images, leaving one copy of pixels from low resolution images. In this regard, super resolution can
be seemed as a special form of inpainting with repeated patterns of missing area.

6

Set14 (x2) Bicubic K-SVD NE+NNLS NE+LLE ANR A+ SRCNN ShCNN
baboon 24.86dB 25.47dB 25.40dB 25.52dB 25.54dB 25.65dB 25.62dB 25.79dB
barbara 28.00dB 28.70dB 28.56dB 28.63dB 28.59dB 28.70dB 28.59dB 28.59dB

bridge 26.58dB 27.55dB 27.38dB 27.51dB 27.54dB 27.78dB 27.70dB 27.92dB
coastguard 29.12dB 30.41dB 30.23dB 30.38dB 30.44dB 30.57dB 30.49dB 30.82dB

comic 26.46dB 27.89 dB 27.61dB 27.72dB 27.80dB 28.65dB 28.27dB 28.70dB
face 34.83dB 35.57 dB 35.46dB 35.61dB 35.63dB 35.74dB 35.61dB 35.75dB

flowers 30.37dB 32.28 dB 31.93dB 32.19dB 32.29dB 33.02dB 33.03dB 33.53dB
foreman 34.14dB 36.18 dB 35.93dB 36.41dB 36.40dB 36.94dB 36.20dB 36.14dB

lenna 34.70dB 36.21 dB 36.00dB 36.30dB 36.32dB 36.60dB 36.50dB 36.71dB
man 29.25dB 30.44 dB 30.29dB 30.43dB 30.47dB 30.87dB 30.82dB 31.06dB

monarch 32.94dB 35.75 dB 35.26dB 35.58dB 35.71dB 37.01dB 37.18dB 38.09dB
pepper 34.97dB 36.59 dB 36.18dB 36.36dB 36.39dB 37.02dB 36.75dB 37.03dB
ppt3 26.87dB 29.30 dB 28.98dB 28.97dB 28.97dB 30.09dB 30.40dB 31.07dB

zebra 30.63dB 33.21dB 32.59dB 33.00dB 33.07dB 33.59dB 33.29dB 33.51dB

Avg PSNR 30.23dB 31.81dB 31.55dB 31.76dB 31.80dB 32.28dB 32.18dB 32.48dB

Set14 (x3) Bicubic K-SVD NE+NNLS NE+LLE ANR A+ SRCNN ShCNN
baboon 23.21dB 23.52dB 23.49dB 23.55dB 23.56dB 23.62dB 23.60dB 23.69dB
barbara 26.25dB 26.76dB 26.67dB 26.74dB 26.69dB 26.47dB 26.66dB 26.54dB

bridge 24.40dB 25.02dB 24.86dB 24.98dB 25.01dB 25.17dB 25.07dB 25.28dB
coastguard 26.55dB 27.15dB 27.00dB 27.07dB 27.08dB 27.27dB 27.20dB 27.43dB

comic 23.12dB 23.96dB 23.83dB 23.98dB 24.04dB 24.38dB 24.39dB 24.70dB
face 32.82dB 33.53dB 33.45dB 33.56dB 33.62dB 33.76dB 33.58dB 33.71dB

flowers 27.23dB 28.43dB 28.21dB 28.38dB 28.49dB 29.05dB 28.97dB 29.42dB
foreman 31.18dB 33.19dB 32.87dB 33.21dB 33.23dB 34.30dB 33.35dB 34.45dB

lenna 31.68dB 33.00dB 32.82dB 33.01dB 33.08dB 33.52dB 33.39dB 33.68dB
man 27.01dB 27.90dB 27.72dB 27.87dB 27.92dB 28.28dB 28.18dB 28.41dB

monarch 29.43dB 31.10dB 30.76dB 30.95dB 31.09dB 32.14dB 32.39dB 33.37dB
pepper 32.39dB 34.07dB 33.56dB 33.80dB 33.82dB 34.74dB 34.35dB 34.77dB
ppt3 23.71dB 25.23dB 24.81dB 24.94dB 25.03dB 26.09dB 26.02dB 26.89dB
zebra 26.63dB 28.49dB 28.12dB 28.31dB 28.43dB 28.98dB 28.87dB 29.10dB

Avg PSNR 27.54dB 28.67dB 28.44dB 28.60dB 28.65dB 29.13dB 29.00dB 29.39dB

Set14 (x4) Bicubic K-SVD NE+NNLS NE+LLE ANR A+ SRCNN ShCNN
baboon 22.44dB 22.66dB 22.63dB 22.67dB 22.69dB 22.74dB 22.70dB 22.75dB
barbara 25.15dB 25.58dB 25.53dB 25.58dB 25.60dB 25.74dB 25.70dB 25.80dB
bridge 23.15dB 23.65dB 23.54dB 23.60dB 23.63dB 23.77dB 23.66dB 23.83dB

coastguard 25.48dB 25.81dB 25.82dB 25.81dB 25.80dB 25.98dB 25.93dB 26.13dB
comic 21.69dB 22.31dB 22.19dB 22.26dB 22.33dB 22.59dB 22.53dB 22.74dB

face 31.55dB 32.18dB 32.09dB 32.19dB 32.23dB 32.44dB 32.12dB 32.35dB

flowers 25.52dB 26.44dB 26.28dB 26.38dB 26.47dB 26.90dB 26.84dB 27.18dB
foreman 29.41dB 31.01dB 30.90dB 30.90dB 30.83dB 32.24dB 31.47dB 32.30dB

lenna 29.84dB 30.92dB 30.82dB 30.93dB 30.99dB 31.41dB 31.20dB 31.45dB
man 25.70dB 26.46dB 26.30dB 26.38dB 26.43dB 26.78dB 26.65dB 26.82dB

monarch 27.46dB 28.72dB 28.48dB 28.58dB 28.70dB 29.39dB 29.89dB 30.30dB
pepper 30.60dB 32.13dB 31.78dB 31.87dB 31.93dB 32.87dB 32.34dB 32.82dB

ppt3 21.98dB 23.05dB 22.61dB 22.77dB 22.85dB 23.64dB 23.84dB 24.49dB
zebra 24.08dB 25.47dB 25.17dB 25.36dB 25.47dB 25.94dB 25.97dB 26.21dB

Avg PSNR 26.00dB 26.88dB 26.72dB 26.81dB 26.85dB 27.32dB 27.20dB 27.51dB

Table 1: PSNR comparison on the Set14 [13] image set for upscaling of factor 2, 3 and 4. Methods compared:
Bicubic, K-SVD [13], NE+NNLS [14], NE+LLE [15], ANR [16], A+ [11], SRCNN [4], Our ShCNN

We use one Shepard interpolation layer at the top with kernel size of 8x8 and feature map number
16. Other configuration of the network is the same as that in our new network for inpainting. During
training, weights were randomly initialized by drawing from a Gaussian distribution with zero mean
and standard deviation of 0.03. AdaGrad [17] was used in all experiments with learning rate of
0.001 and fudge factor of 1e-6. Table 1 show the quantitative results of our ShCNN in a widely
used super-resolution data set [13] for upscaling images 2 times, 3 times and 4 times respectively.
We compared our method with 7 methods including the two current state-of-the-art systems [11, 4].
Clear improvement over the state-of-the-art systems can be observed. Visual comparison between
our method and the previous methods is illustrated in figure 4 and figure 5.

6 Conclusions

In this paper, we disclosed the limitation of previous CNN architectures in image processing tasks
in need of translation variant interpolation. New architecture based on Shepard interpolation was
proposed and successfully applied to image inpainting and super-resolution. The effectiveness of

7

(a) Ground Truth / PSNR (b) Bicubic / 36.81dB (c) KSVD / 39.93dB (d) NE+LLE / 40.00dB

(e) ANR / 40.04dB (f) A+ / 41.12dB (g) SRCNN / 40.64dB (h) ShCNN / 41.30dB

Figure 5: Visual comparison. Factor 2 upscaling of the bird image in Set5 [14].

the ShCNN with Shepard interpolation layers have been demonstrated by the state-of-the-art perfor-
mance.

References

[1] Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. In: NIPS. (2012) 1106–1114

[2] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,
Rabinovich, A.: Going deeper with convolutions. In: CVPR. (2015)

[3] Sun, Y., Liang, D., Wang, X., Tang, X.: Deepid3: Face recognition with very deep neural
networks. In: arXiv:1502.00873. (2015)

[4] Dong, C., Loy, C.C., He, K., , Tang, X.: Learning a deep convolutional network for image
super-resolution. In: ECCV. (2014)

[5] Xie, J., Xu, L., Chen, E.: Image denoising and inpainting with deep neural networks. In:
NIPS. (2012)

[6] Burger, H.C., Schuler, C.J., Harmeling, S.: Image denoising: Can plain neural networks
compete with bm3d? In: CVPR. (2012)

[7] Xu, L., Ren, J.S., Liu, C., Jia, J.: Deep convolutional neural network for image deconvolution.
In: NIPS. (2014)

[8] Eigen, D., Krishnan, D., Fergus, R.: Restoring an image taken through a window covered with
dirt or rain. In: ICCV. (2013)

[9] Xu, L., Ren, J.S., Yan, Q., Liao, R., Jia, J.: Deep edge-aware filters. In: ICML. (2015)

[10] Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: 23rd
ACM national conference. (1968)

[11] Timofte, R., Smet, V.D., Gool, L.V.: A+: Adjusted anchored neighborhood regression for fast
super-resolution. In: ACCV. (2014)

[12] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. In: Proceedings of IEEE. (1998)

[13] Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations.
Curves and Surfaces 6920 (2012) 711–730

8

[14] Bevilacqua, M., Roumy, A., Guillemot, C., Morel, M.L.A.: Low-complexity single-image
super-resolution based on nonnegative neighbor embedding. In: BMVC. (2012)

[15] Chang, H., Yeung, D.Y., Xiong, Y.: Super-resolution through neighbor embedding. In: CVPR.
(2004)

[16] Timofte, R., Smet, V.D., Gool, L.V.: Anchored neighborhood regression for fast example-
based super-resolution. In: ICCV. (2013)

[17] Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and s-
tochastic optimization. Journal of Machine Learning Research 12 (2011) 2121–2159

9

