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Shepard's Method of "Metric Interpolation"

to Bivariate and Multivariate Interpolation

By William J. Gordon and James A. Wixom

Abstract.   Shepard developed a scheme for interpolation to arbitrarily spaced discrete

bivariate data.   This scheme provides an explicit global representation for an interpo-

lant which satisfies a maximum principle and which reproduces constant functions.

The interpolation method is basically an inverse distance formula which is general-

ized to any Euclidean metric.   These techniques extend to include interpolation to

partial derivative data at the interpolation points.

1. Introduction.  In 1968, D. Shepard [4] developed a technique for interpolat-

ing irregularly spaced discrete bivariate data and applied this scheme in the context of

geographic and demographic data fitting.  The techniques developed by Shepard form

the basis of a generally applicable class of univariate and multivariate interpolation

schemes which we have termed metric interpolation.   The canonical metric interpola-

tion method is essentially an inverse distance formula, and thus has certain of the prop-

erties (e.g., a Maximum Principle) possessed by the harmonic functions of classical po-

tential theory.

In spite of our failure to uncover any references other than [4], the basic sim-

plicity and applicability of these metric interpolation schemes leads one to suspect

more antique origins.  Be that as it may, this class of methods certainly is not "well

known," and does have many interesting mathematical properties and potential appli-

cations to practical problems of multivariate data fitting.

The purpose of this paper is to further develop some of the notions introduced

by Shepard and to establish certain results relating to the characterization of metric

interpolation techniques.   In addition, graphical examples are provided which illustrate

some of these properties.

2. Shepard's Interpolation Scheme.   Since the bivariate case illustrates most of

the basic properties of Shepard's interpolation scheme, it will be discussed in detail in

this section.   Extensions to functions of more than two independent variables can be

readily inferred from the bivariate setting.   It should also be noted that these same

schemes are applicable to univariate functions.

Let F\P) be a function of the point P = 0, y) defined for all P in the real plane

R2, and let {P¡}^LX be any finite collection of distinct points in R .  Denote the

value of F at P¡ by F¡, and let r¡ = \P - P¡\ be the Euclidean distance between P¡ and

the generic point P in R2 :

_ n=[ix-Xi)2 +(y-yi)2]1'2.
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254 WILLIAM J. GORDON AND JAMES A. WIXOM

A slight variation of the following result was established by Shepard [4] :

Theorem 2.1.   The function UiP) given by

(2.1) <*"• [f/<(H -')]/[! n v
is continuous and interpolates F at the N points {P¡}, i.e.,

(2.2) U(Pk) = Fki      k=l,2,...,N.

Proof.  The continuity of £/ follows directly from the fact that each r¡ is contin-

uous and the denominator of (2.1) never vanishes.  The evaluation of (2.1) at the point

Pk yields:

W-[''Ä'']/[&*]" Ft.

since all other terms are zero.

The function U of (2.1) can be written in the equivalent form:

which is similar to the formulation by Shepard in [4].

The distribution of the points of interpolation P. is totally arbitrary.  This is in

sharp contrast to familiar bivariate tensor product interpolation methods which require

that the data points P¡ be located at the mesh points (x¡, y¡) of a Cartesian product

partitioning of a rectangle.  This lack of necessary data structure may at first seem to

violate the well-known negative result due to Haar [1], which states that there cannot

exist a set of N functions <p¿P) such that the interpolation problem (2.2) is soluble as

a linear combination of the <pf for every distribution of N distinct points Px, P2,...,

PN.  This apparent dilemma is resolved, however, if we use (2.1) to rewrite U(P) in the

form

(2.4) U(P) = £ F^(P; PX,P2,..., PN),
i=i

where

(2.5) o¿P;Px,P2,...,PN)=I\ rf
i*i      I

N

z n
k=l   j+k

and we note that the functions <p¡ depend upon the distribution of the point collection

{P¡\—a possibility not covered by the Haar hypothesis.  In other words, for a fixed

distribution of points {P¡}, one is able to define an /V-dimensional linear function space

í> as being the space spanned by the N basis functions ipA^P; Px, P2, . . . , PN); and, as

Theorem 2.1 shows, the interpolation problem is uniquely soluble in this particular lin-

ear space.  The Haar Theorem says that it is not possible to a priori select the linear

space and then choose the point set {P¡}— the topology of the point set must deter-

mine the linear space.

The functions ip¡ defined by (2.5) have the following cardinality property:
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(2.6) ffP] PX,P2,..., PN)\P=Pk = 8ik    for i, * - 1, 2,.... N,

where S(k is the Kronecker delta. To be more explicit in designating the linear space

spanned by the [p., we shall sometimes use the notation &(PX, P2, . . . , PN).

The cardinal basis functions ^t{P; Px, P2, . . . , PN) are rational bivariate splines

in the sense that they are analytic (infinitely differentiable) in any region which does

not include a point of interpolation, but they are merely continuous (i.e., not even

once differentiable) at the points P¡.  Thus, one can envision each of the basis func-

tions \p¡ as being a smooth two-dimensional transition surface between the points {P{}

but with cusps at each of the P¡.  From (2.6) we note that the value of the {p¡ at each

of these cusps is either zero or one.  It is, therefore, obvious that any linear combina-

tion of the <p¡—in particular, the function U(P)—will also be analytic except at the

points P¡.

For functions of a single independent variable, the r, in the above formula are

just \x - Xj\ so that (2.1) becomes

(2.1')        u(x) = z Fi(u i* - xj\ V£ n i* - x,\,
i=l      \/#i //   i=l   /Vi

which is readily seen to be a rational spline of degree N - 1, i.e., both the numerator

and denominator of (2.T) are splines of degree N - 1.

An important property of formula (2.1) is the fact that, for all P, the values of

UiP) axe bounded above by max,-./7,, and below by min¡F{. In greater detail, we have

the following Maximum Principle:

Theorem 2.2.  Let M = xnaxiFi and m = min,^, then

(2.7) m < UiP) < M   for all P in R2.

Proof   Let C = max(|Af|, \m\); then

Since M > F¡ for all i, we have

F- + C
(2.9) < 1    for all i = 1,2,... ,N,

M+C

from which it follows that

or equivalently,

(2.11) U(P)<M.

By replacing M by m in (2.8) and using a similar argument, one can readily deduce that

(2.12) m < U(P)    for all P in R2.

The Maximum Principle described by Theorem 2.2 is, of course, reminiscent of
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the same familiar property of harmonic functions (e.g., elastic membranes) and, indeed,

the surfaces generated by formula (2.1) look much like a thin elastic membrane sup-

ported by point loads of altitude F¡ at the interpolation points P¡.  This property and

others discussed in this section are geometrically illustrated by the examples in the fol-

lowing section.

Examination of formula (2.3) reveals that it is basically an inverse distance for-

mula.  That is, for a fixed point P in R2, the denominator in (2.3) can be considered

to be a normalization constant so that the magnitude of U(P) is directly proportional

to the value F¡ and inversely proportional to the distance from P to P¡.  In this sense,

the formula is analogous to a "l/r gravitational law".   In part, this explains the similar-

ity between the surfaces obtained from this formula and the class of harmonic func-

tions which are rooted in classical potential theory.

In light of Theorem 2.2, we can further characterize the behavior of the func-

tions ip¡ given by (2.5). Specifically, since i¿>(- itself satisfies the cardinal interpolation

conditions of (2.6), we have:

Corollary 2.1.

(2.13) 0 < ¥?,•(/>; Px, P2, . . . , PN) < 1    for all P in R2.

A desirable property for any interpolation scheme is that it approximate constant

functions exactly.   Formula (2.1) has this property since, from (2.5), the basis func-

tions ¡p¡ can be readily seen to satisfy the relation

N

(2.14) £ vfP;Pl.P2,...,PN)= 1    for all P in/?2.
i=i

The interpolation of the primitive function F by U as in (2.1) can be viewed as

a projection of F onto the finite-dimensional linear space <HPX, P2, . . . , PN).  Let P

be the projection operator (projector) so defined, i.e.,

(2.15) P[F] = U.

It is easy to check that P actually is a projector; that is, it has the properties of linear-

ity and idempotency

(2.16a) P[aF + ßG] = aP[F] + ßP[G],

(2.16b) V[?[F]] = V2[F] = ?[F\,

where F and G are any two continuous bivariate functions and a and ¡3 are scalars.

Moreover, from Theorem 2.1, it is easy to verify the following theorem; namely, that

P is a positive operator—an uncommon property for an interpolation scheme.

Theorem 2.3.   If F¡> 0 for all i = 1,2, ... , N, then UiP) > 0 for all P in R2.

If all of the N points P¡ axe contained within a closed finite subdomain D of the

plane, it is interesting to inquire into the asymptotic behavior of the ip¡ as P recedes

indefinitely outward from D.  This query is answered by the following.

Theorem 2.4.   Let P¡ E D C R2 for all i = 1,2, ... ,N; and let d be the short-

est distance from P to the boundary of D.   Then,

(2.17) »m <p¿P;Pl,P2,...,PN) = UN.
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Proof.   The proof of this theorem is a special case of Theorem 3.2 of Section 3.

From Theorem 2.4, it follows immediately that as P recedes indefinitely from

the cluster of interpolation points P¡, UiP) approaches the average of the values of F¡;

i.e.,

(2.18) Hm UiP) = (l/N)   £ Ff.
min,.|/>-P,.|-*°o ,.= ,

3.  Generalized Metric Interpolation.  The term metric interpolation derives from

the fact that the Euclidean distance functions r¡ in Eq. (2.1) can be generalized to any

metric on the real plane without destroying the interpolatory properties of the func-

tion U(P).  In fact, if {p¡(P, Q), i = 1, . . . , N] is any set of metrics on m-dimensional

real space Rm, then the function UiP) defined by

(3.1) UiP) zFt n p,(Pj,p)\/Tz n pfPppy\
i=i     j*i J/  L/=i i+t J

interpolates to the given F¡ at the points />, in Rm.  The corresponding set of cardinal

basis functions <¿>(. are of the form

(3.2)    <p¿p;p., p2,...,pN)=n p,{Pj, p) I z n p,{Pj, py
j*i I    k=\   ji=k

The set of <¿>,- defined by Eq. (3.2) satisfies many of the properties of their counterpart

in Eq. (2.5).  Specifically,

(3.3) 0^,.<1,

and

(3.4) 2>,= 1.
i=i

As a result, the metric interpolant in Eq. (3.1) defines a positive projector.  Further-

more, U(P) reproduces constant functions and satisfies the Maximum Principle of Theo-

rem 2.2:

(3.5) m < U(P) < M,

where m = min¡Fi and M = max,/7,-.

Although the function U(P) in Eq. (3.1) is bounded, the asymptotic behavior as

given by Eq. (2.18) of the previous section may fail to hold depending upon the par-

ticular choice of the metric functions p¡.  If we select each p- in (3.1) to be a positive

power a- of the Euclidean distance r,, then the interpolant is of the form

(3.6) U(P)= £ Ft   fi ra¡(P,P¡)/JL    II raKPPj),
<=1 f*i I    1=1    f*i

where

(3.7) <P,P¡)= [(x-x,)2 +(y-y,)2]112-

When all the a,- = 1, we have the interpolant of Eq. (2.1).  As indicated in Section 2,

this interpolant has cusps at each of the interpolation points P¡.  The behavior of U(P)

at the P¡ for the more general case in Eq. (3.6) is characterized by the following theo-

rem.   For simplicity we will discuss only the bivariate case, but the results remain
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equally valid for any number of independent variables.

Theorem 3.1.   The interpolant U(P) in Eq. (3.6) has the following properties:

(i) Ifa¡> I, then

..       bU      ..       W    nhm   — =   hm   -— = 0,
p--Pi   ox     p-+p.   oy

(ii) // 0 < a,- < 1, then, in general, the first partial derivatives fail to exist at P¡.

Proof.   For af > 1,

o[r(P,P¡)]ai

-£-= ai[r(P,Pl)]^ \x-xt),

hence

(3 8)                                            u         a^f-)1a'      n
(3.8) lim-= o.

p-*p. ox

Define

then

and

Therefore,

Bk(p) = n KP, Pjp,
j*k

Bk(Pi) = 0    ifk*i,

bBk br(P, Pm) m       ^

UA        m*k OA /#m;'*k

dBk
(3.9) Um    -r—= 0    if**/.

p-+p.     dx
i

From (3.6) we have

(3.10)

-[i/"s"(p)]Ll^]l/[l,H5-
Combining (3.8) and (3.9) with (3.10), we have

»if     T dBi I 95/ I        1   /
lim    j^=\ BÁP¡)Fi — - F .BAP,) -r- / BÁP¡?
-+p.    dx ,v ,J ' ox \P=P¡       '   '   '   ox \p=p.j/     A l'

p-+pk

= 0.

A similar argument establishes

hm   —= 0,
i>-¿\.   3y

which completes the proof of part (i).
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If 0 < a,- < 1, then the limits in (3.8) and (3.9) fail to exist; thus, in general,

from (3.10), the first partial derivatives do not exist at P¡.

Figures 1—3 illustrate Theorem 3.1.  In these figures we have taken F(P) to be a

univariate function which is interpolated at five equally spaced points. The exponents

are all taken to be equal:  a, = aj = • • • = as = a in each example.  In Figure 1,

a = 1 so that (3.6) reduces to formula (2.1).  The various properties established in the

previous section are very much in evidence in this figure.  Figures 2 and 3 illustrate

the vanishing partial derivatives predicted by Theorem 3.1 for values of a > 1.  In Fig-

ure 2 we have taken a = 2; and a = 10 in Figure 3. Note that as a —► °°, the func-

tion U(P) behaves like a step function.   Figure 4 is another graphical representation of

the metric interpolant of Eq. (3.6) using five interpolation points. The values of the a-

were selected to be

cxx = 2,   a2 = 1,   a3 = 1/2,   a4 = 15,   as = 2.

Cusps are produced at the points P2 and P3 as a result of a2 and a3 being 1 or less.

The vanishing of the first derivative of U(x) at the remaining three points is as pre-

dicted by Theorem 3.1. The "flatness" of the curve in the neighborhood of P4 is a

result of the large exponent a4 = 15. The maximum of U(x) occurs at both Px and

P5 and the minimum at the point P3.

Figure 1 Figure 2

Figure 3 Figure 4

Simple illustrations of the behavior of bivariate metric interpolants for various

values of the a- are presented in Figures 5—7. The values of a;- used in these figures

are given in the following table.
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Figure # ax a2 a3 a4 as

5 2 2 2 2 2

6 10 1 5 2 3

7 20 20 20 20 20

The above-mentioned properties of metric interpolants are apparent from the figures.

Note particularly that for large exponents a-, the graph of the function U(P) is nearly

flat in a large neighborhood of the point P-, so that as a,- —► °° for all ; = 1,2,...,

N, U(P) approaches a piecewise constant function.

Figure 6

This last observation suggests an interesting and novel application of metric inter-

polation in such fields as demography, ecology and market analysis.  To explain:   For

large values of a = a, = a2 = ■ ■ ■ = aN one may conclude that the ith basis function

ip¡(P; Px, P2, . . . , PN) is essentially nonzero (i.e., ip¡ > e for any e > 0) only in the

"region of influence" of the point Pf.  Thus, if the P¡ represent the geographic locations

of N competing forces of equal strength, then the region over which the ith one of
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these will be expected to dominate is the subdomain over which <p¡ is essentially equal

to unity (i.e., ip,- > 1 - e) since this implies that S.-^ip.- < e.  From Figure 7 we can

see that, within the convex hull of the points P¡, the regions of influence of the points

are clearly bounded by straight Une segments.

It is interesting to note from Theorem 3.2 below that with a = a, = a2 = ■ ■ • =

a^, the limiting value of </;,• as P recedes from the cluster of points {P¡} is 1//V for all

values of /'.  This means that all competitors are equally influential when the minimum

distance from P to any of the P is much larger than the maximum distance between

competitors.

A model such as this may be useful, for instance, in determining the approximate

territorial boundaries which would be established by competing individuals of certain

animal species or by merchants competing within the same geographic vicinity.

As discussed in Section 2 for the interpolant U(P) in Eq. (2.1), as P recedes in-

definitely from the cluster of interpolation points, U(P) approaches the average of the

interpolated values F¡, cf. (2.18).  For the interpolant in Eq. (3.6), a somewhat differ-

ent, but analogous result also holds.   Let D be a bounded region which contains the

interpolation points P¡ and assume that the points are indexed such that in Eq. (3.6),

(3.12) a, =a2 = --- = aM<aM+1,

and

(3.13) aM+x <aM+2 <•••<«#,

i.e., the first M exponents are equal and minimal. The behavior of the cardinal basis

functions is determined in the following theorem.

Theorem 3.2.   If d = min¡r(P; P¡), then the cardinal basis functions

(3-14>       ^(P; P1,P2,.--,PN)=U r(P PjP / Z    II AP PfP
¡±i I    k=\  j*k

satisfy

(3.15) lim  v¿P; P,, . . . ,PN)= l/M   ifi<M, and

(3.16) lim   ^(P; Px,...,PN)=0        if i > M,
d—*°°

where the a- satisfy (3.12) and (3.13) above.

Proof.   If we define

N

p = max r(P¡, P)    and    ß = £   a,,
''./ /= i

then

(3.17) /_a'' < IT r(P, Pp <(d+ pf'a',      i=l,...,M.
j*i

Using (3.17), we obtain the following bounds for each \p¡ in (3.14)
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/-"/

(3.18)

Mid+prai+^=M+1id+Prak

<ipA[P;Px,...,PN)<
(d+P)>ß-*t

M<f~ai+zZNk=M+xd
ß-ak

Equations (3.15) and (3.16) follow directly from (3.18) by computing the appropriate

limits. From Theorem 3.2, the behavior of the interpolant Í/(P) in Eq. (3.6) is readily

seen to be

(3.19)
M

lim  UiP)=[UM] £ F,..

The surface represented by Figure 8 is generated from the interpolation scheme

(3.6) with the a;- as follows:

P,      (0,0)      (1,1)      (1.2,0.2)      (0,0.5)      (1,0.5)

F-        4 0 3_1 1

2.5 2.5 4

The Maximum Principle (2.7) and the asymptotic properties of Theorem 3.2 are more

clearly illustrated in this example since we have plotted the surface over the rectangle

[-2, 3] x [-2, 3].

Figure 8
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For the special case of all a,- = 2, Shepard [4] has proposed a technique for in-

terpolating to given first partial derivatives utilizing a formula of the form

(3.20)   UiP) = f g  [F,. + Fx(x - xt) + Fy.(y - y,.)] /rf]  /1 J¡  l/r2l

where

F^FiPi),     Fx =
bF
bx \p=p;

and

F„.=
bF

by p=p¡

Equation (3.20) does indeed interpolate to F, Fx, and F  at each of the points P¡.

Extensions to higher order derivative interpolation can easily be made, but we will not

explore such schemes further in this paper.  However, as a practical matter, if only

function values F¡ axe known, then some ad hoc technique must be employed to esti-

mate such partial derivatives.

One such ad hoc method for estimating the requisite first partial derivatives in

(3.20) is to employ local least squares approximation to data in the vicinity of the

point P¡ and to extract derivative information from this approximation.  This has been

tested on several examples using local planar approximations:  a + bx + cy; and the

results have been satisfactory for the engineering applications to which the method has

been applied.  In [4], Shepard has proposed another ad hoc method for determining

slopes, but we have not tested his technique.

Figure 9 Figure 10
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To illustrate the effect of imposing nonzero partial derivatives estimated from

local least squares approximation by planes, consider Figures 9 and 10.  The first of

these shows the graph of the function U obtained from metric interpolation to data

at the five points Px, . . . ,PS with aj = a2 = • • • = as = 2 in (3.6).  The flat spots

caused by vanishing first partial derivatives are quite evident.  Figure 10 shows the re-

sult of estimating partial derivatives via a least squares planar approximation to P¡ and

its three nearest neighbors (four for Ps).  It is apparent from the figure that this tech-

nique does serve to reduce the extraneous undulations inherent in the interpolant of

Figure 9 and therefore would probably be preferred for most practical applications.
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