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Hybrid semiconductor-superconductor systems are interesting melting pots where various fundamental effects

in condensed-matter physics coexist. For example, when a quantum dot is coupled to a superconducting electrode

two very distinct phenomena, superconductivity and the Kondo effect, compete. As a result of this competition,

the system undergoes a quantum phase transition when the superconducting gap � is of the order of the

Kondo temperature TK . The underlying physics behind such transition ultimately relies on the physics of the

Anderson model where the standard metallic host is replaced by a superconducting one, namely the physics

of a (quantum) magnetic impurity in a superconductor. A characteristic feature of this hybrid system is the

emergence of subgap bound states, the so-called Yu-Shiba-Rusinov (YSR) states, which cross zero energy across

the quantum phase transition, signaling a switching of the fermion parity and spin (doublet or singlet) of the

ground state. Interestingly, similar hybrid devices based on semiconducting nanowires with spin-orbit coupling

may host exotic zero-energy bound states with Majorana character. Both parity crossings and Majorana bound

states (MBSs) are experimentally marked by zero-bias anomalies in transport, which are detected by coupling

the hybrid device with an extra normal contact. We here demonstrate theoretically that this extra contact, usually

considered as a nonperturbing tunneling weak probe, leads to nontrivial effects. This conclusion is supported

by numerical renormalization-group calculations of the phase diagram of an Anderson impurity coupled to both

superconducting and normal-state leads. We obtain this phase diagram for an arbitrary ratio �

TK
, which allows

us to analyze relevant experimental scenarios, such as parity crossings as well as Kondo features induced by the

normal lead, as this ratio changes. Spectral functions at finite temperatures and magnetic fields, which can be

directly linked to experimental tunneling transport characteristics, show zero-energy anomalies irrespective of

whether the system is in the doublet or singlet regime. We also derive the analytical condition for the occurrence

of Zeeman-induced fermion-parity switches in the presence of interactions which bears unexpected similarities

with the condition for emergent MBSs in nanowires.
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I. MOTIVATION AND INTRODUCTION

The Kondo effect has been fundamental in furthering
our understanding of strong correlations in condensed-matter
physics. First observed some 80 years ago [1], the anomalous
behavior of the low-temperature resistivity of dilute magnetic
alloys can be understood as the many-body screening of
magnetic moments in a metal. This screening occurs via
quasiparticle spin exchange well below the Kondo temperature
TK [2,3]. During the last decades the interest in the Kondo
effect has revived following its discovery in quantum dots
based on semiconductors [4], carbon nanotubes [5], and
nanowires [6]. Quantum dots behave as magnetic impurities
but, in contrast to real ones, are fully tunable such that Kondo
physics can be controlled in precise detail.

Interestingly, hybrid devices based on quantum dots cou-
pled to superconductors can also be fabricated and the physics
of magnetic impurities in a superconductor can be studied
in an unprecedented manner [7]. A characteristic feature
of these systems is the presence of subgap excitations, the
so-called Yu-Shiba-Rusinov (YSR) bound states or simply
Shiba states [8,9], that appear owing to the pair-breaking
effects that magnetic moments have on superconductivity.

Their physical meaning can be understood already at the level
of a classical spin S exchange-coupled to the superconductor
by a coupling J . This interaction gives rise to an effective
magnetic field JS which lowers the energy for quasiparticle
excitations by an amount

Eb = �
1 − (πJSρ0)2

1 + (πJSρ0)2
, (1)

where ρ0 is the normal-state density of states at the Fermi
energy and � is the superconducting gap. For weak exchange,
JS ≪ 1/πρ0, the ground state is a standard BCS wave func-
tion, with all single-particle states forming Cooper pairs, plus
an unscreened impurity spin. Single-quasiparticle excitations
on top of this ground state, as described by Eq. (1), occur at
energies close to the gap. For large enough J , however, Eb

can cross zero energy such that the state with one unpaired
quasiparticle, which is a non-BCS state, becomes the new
ground state. Zero energy crossings of the YSR state thus
signal a quantum phase transition (QPT) where the fermionic

parity of the ground state changes [10].
Quantum fluctuations lead to a very complex scenario since

exchange is mediated by Kondo processes. In a superconductor
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FIG. 1. (Color online) (a) Lowest energy many-particle eigenstates of an Anderson impurity coupled to a superconductor with the typical

BCS density of states ∼[(ω/�)2 − 1]−1/2 for large on-site interaction U ≫ �. The magnetic impurity ground state develops singlet correlations

with the quasiparticles in the superconducting leads and forms a Yu-Shiba-Rusinov-like (YSR) singlet eigenstate. This excited state gives rise

to subgap spectral peaks at energies Eb and −Eb. When these subgap excitations cross zero energy, the system undergoes a parity-changing

quantum phase transition and the YSR singlet becomes the new ground state. At higher energies there are BCS-like excited singlet states

resulting from the hybridization between the empty and doubly occupied states of the quantum impurity. These singlets occur at subgap

energies in the opposite limit U ≪ � (not shown). (b) Top: Schematics of a normal–quantum dot–superconducting hybrid system with all

the relevant energies involved in the problem. In odd-occupancy Coulomb blockade valleys (charging energy U ), the unpaired spin (green)

mimics the physics of a magnetic impurity coupled to a superconductor (coupling ŴSC) with a BCS density of states (purple) with gap �. This

physics can be considerably modified by the weak coupling (ŴN ) to a normal probe (orange-yellow), as we discuss in this work. Bottom: this

hybrid system can be realized with, e.g., nanowires deposited on top of normal and superconducting electrodes. (c) Standard Kondo singlets

that occur as quasiparticles in the normal metal (red) screen the magnetic doublet. (d) Typical spectral density of the hybridized quantum dot

in the magnetic doublet ground-state regime showing the coexistence of YSR singlet subgap excitations and a Kondo resonance. The subgap

excitations remove spectral weight from the BCS density of states.

no quasiparticles are available below the gap �, hence Kondo
screening is incomplete. To analyze all possible ground states,
let us consider a single, spin-degenerate quantum impurity
level coupled to a superconductor. In general, two spin states
are possible: a spin doublet (spin 1/2) |D〉 = ↑,↓ and a
spin singlet (spin zero) |S〉. The latter can be of two types
(apart from the standard Cooper pairs of the BCS ground
state): Kondo-like superpositions between the spin doublet
and Bogoliubov quasiparticles in the superconductor and
BCS-like superpositions of zero and doubly occupied states
of the impurity level [Fig. 1(a)]. In the weak Kondo coupling
regime (TK ≪ �), the ground state is the doublet while
Kondo-like singlet excitations give rise to YSR bound states
[assuming large on-site interaction U ≫ �, such that the
BCS-like singlets are higher in energy than the Kondo ones,
Fig. 1(a)]. The position in energy of these YSR excitations
smoothly evolves from Eb ≃ � towards positions close to the

Fermi level when TK ∼ �. At larger TK , the YSR cross zero
energy and the system undergoes a parity-changing QPT where
the new ground state is now the Kondo singlet [11].

Experimentally, these complicated correlations can be
determined by the transport spectroscopy of a quantum dot
(QD) coupled to both a superconductor and a weak normal lead
[Fig. 1(b)]. Subgap features in the differential conductance
of this setup can be directly ascribed to YSRs [12–25].
Zero bias anomalies (ZBAs), in particular, mark QPT parity
crossings [16,25,26].

More recently, subgap states have attracted a great deal
of attention in the context of topological superconductors
containing Majorana bound states (MBSs). These MBSs are
far more elusive than standard YSRs and were predicted
to appear as zero-energy bound states in effective spinless
p-wave nanostructures, such as the ones resulting from the
combined action of spin-orbit coupling and Zeeman splitting
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in nanowires proximized with s-wave superconductors [27].
These nanowire devices, very similar to the ones where the
YSR parity crossings have been reported, see, e.g., Refs. [21]
or [25], are expected to become topological superconductors
when the following criterion is satisfied [28,29]:

E2
Z = �2

∗ + μ2, (2)

where EZ = gμBB/2 is the Zeeman energy (g is the g factor
and μB is the Bohr magneton), �∗ is the proximity-induced su-
perconducting pairing, and μ is the chemical potential. Indeed,
recent experiments have reported ZBAs in transport through
proximized nanowires that can be interpreted as signatures of
Majorana states [30–34]. Alternative explanations involving
Kondo physics and the associated YSR states were dismissed
based on the expected shifts with increasing magnetic field B.

As we will discuss in this work, however, the interplay
of strong Coulomb interaction, Zeeman splitting, as well as
the hybridization to the normal-state tunneling probe, leads to
unanticipated manifestations of Kondo physics, similar to the
signatures of Majorana states. For YSRs and MBSs alike,
the zero-bias anomalies can be induced by the magnetic field
and split into two peaks under certain circumstances. For
MBSs, the field plays the crucial role of rendering the system
effectively spinless [28,29], while the subsequent splitting
could be due to finite-size effects [35]. For YSRs, the field
can induce parity crossings in two ways: through the Kondo
effect [by reducing the gap so that �(B) � TK [19]] or via
Zeeman splitting of YSRs [25]. The analysis is additionally
complicated by the presence of the tunneling probe which not
only trivially broadens the subgap bound states into resonances
of finite width, but also leads to further Kondo screening.

Interestingly, it has been shown [36] that Zeeman-induced
crossings in very short quantum-dot-like noninteracting
nanowires smoothly evolve towards the true MBS as the
wire becomes longer. Along similar lines, recent proposals
have discussed the possibility of obtaining MBSs in chains
of magnetic atoms deposited on top of superconducting
surfaces [37]. In such proposals, the YSR bound states on each
impurity overlap considerably and form a Shiba band along the
chain. Remarkably, this Shiba band can support a topological
phase with end MBSs, which is yet another example where
YSR bound states smoothly evolve towards MBSs. The recent
experimental observations reported in Ref. [38] using spatially
resolved scanning tunneling spectroscopy reveal the existence
of nearly zero-energy quasibound energy states that, however,
are too localized to be reconciled with the Shiba band picture of
Majorana end states. A recent theoretical work [39] considers
a linear chain of Anderson impurities on a superconductor as
the minimal model that might explain the strong localization.
While the above works suggest an interesting connection
between the physics of magnetic impurities in superconductors
and MBSs, they neglect quantum fluctuations (and hence
Kondo physics), which are essential for a proper understanding
of the YSR bound states.

This state of affairs motivates a detailed study of the
minimal Anderson model incorporating both superconducting
lead and normal-state tunneling probe, and fully taking
into account quantum fluctuations for an arbitrary ratio of
the gap to the Kondo temperature. While many theoretical
papers have already studied transport in a normal-quantum
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FIG. 2. (Color online) Phase diagram for fixed U = 0.01 and

typical spectra for doublet (D), singlet (S), and doublet-singlet

crossover (DS) regimes. Shading indicates the estimated width of

the crossover region.

dot–superconductor system [40–44], the precise role that the
coupling ŴN to the normal lead has on the phase diagram
(beyond trivial broadening effects) remains largely unknown.
The presence of the tunneling probe not only trivially broadens
the subgap bound states into resonances of finite width, but also
leads to further Kondo screening that generates an additional
spectral peak pinned to zero frequency.

To address the investigation of the YSR subgap states
in this minimal hybrid normal-superconductor Anderson
model, we employ a sophisticated and almost exact theoret-
ical technique: the numerical renormalization group (NRG)
[45–48]. The only NRG calculations of the system studied
here were performed in the � → ∞ limit [49,50], which is
unsuitable for understanding realistic experimental situations
(arbitrary ratios �/TK ) since they exclude all effects of
the quasiparticles in the superconductor. We discuss the
equilibrium properties of hybrid QD systems such as the local
density of states of the quantum dot that provides useful
information for the interpretation of experimental findings
for the nonlinear conductance [31–34]. Some of our main
results are summarized in Fig. 2. Weak coupling to the
normal lead, usually considered to be just a nonperturbing
tunneling probe that may be ignored in the calculations,
changes the phase diagram considerably by replacing the sharp
doublet-singlet quantum phase transition line with a very broad
crossover region with properties intermediate between those
in the respective limits. The spectral functions exhibit a rich
phenomenology with zero-bias anomalies of different origins.
In the doublet (D) regime, where the impurity would remain
unscreened for ŴN = 0 down to zero temperature, there is
a needlelike resonance due to a Kondo effect with very low
Kondo temperature T N

K ≪ TK , which may already have been
observed [21]. Here T N

K is the Kondo temperature associated
with the screening from the weakly coupled normal-state
lead, while TK is the standard Kondo temperature associated
with the screening from the strongly coupled superconducting
lead. During the doublet-singlet (DS) crossover the Shiba
resonances merge with the needle Kondo peak to produce an

045441-3
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enhanced ZBA of large amplitude. In the singlet (S) regime,
this resonance splits into two Shiba states and there is no
needlelike feature. In this regime, the magnetic field induces
further ZBA through Zeeman splitting of the doublet YSR
state; see Fig. 8. We derive the analytical condition for the
occurrence of these Zeeman-induced fermion-parity switches
in the presence of interactions. Interestingly, the equation
describing these fermion-parity switches, Eq. (23), bears
unexpected similarities to the inequality for MBS formation
in nanowires (2).

This work is structured as follows. In Sec. II we describe the
model and provide some details about the numerical technique.
In Sec. III we present the results for the modifications of the
phase diagram induced by the normal-state lead. In Sec. IV
we discuss the effect of finite temperatures and in Sec. V those
of the external magnetic field. Apart from NRG numerical
results, this section also contains an analytical derivation of the
condition for Zeeman-induced parity crossings in the presence
of interactions. Some additional technical details are provided
in the Appendices. They include a detailed discussion about
the definition of the crossover lines in the phase diagram
(Appendix A) and a Schrieffer-Wolff transformation including
both normal and superconducting leads (Appendix B).

II. MODEL AND METHOD

The physical system under consideration is a nanodevice
(such as a segment of a nanowire) where charge can be trapped
under the effect of electric potentials. If the number of confined
electrons is small, such that the separation between the energy
levels is non-negligible, the device can be considered as a
quantum dot. In the simplest case, there will be a single orbital.
This orbital hybridizes with a superconducting substrate as
well as with a tunneling probe, and it is exposed to an external
magnetic field. We thus consider the following Anderson
impurity model [see the schematic representation in Fig. 1(b)]:

H = ξ (nd − 1) +
U

2
(nd − 1)2 + gμBBSz +

∑

k,σ,α

ǫkα
c
†
kασ ckασ

+
∑

k,σ,α

(

Vαd†
σ ckασ + H.c.

)

+
∑

k

(

�c
†
kSC↑c

†
kSC↓ + H.c.

)

.

(3)

c† creates an electron in the normal or superconducting lead
(α = {N,SC} is the channel index) and d† at the impurity level.
The impurity occupation is nd = nd↑ + nd↓ with nσ = d†

σdσ ,

while its spin is Sz = (n↑ − n↓)/2. The parameter ξ ≡ ǫ + U
2

,
where ǫ is the impurity level and U the on-site repulsion,
measures deviations from the particle-hole symmetry when
the occupancy is fixed exactly at 1. Here, for simplicity, we
shall focus on electron-hole symmetric configurations ξ = 0,
unless stated otherwise. The coupling between the impurity
and the leads is described by the amplitudes Vα which define
two tunneling rates: Ŵα = π |Vα|2ρα , where ρα is the density
of states of the lead. The energy unit is half the bandwidth. The
Hamiltonian does not include any spin-orbit coupling which
is known not to qualitatively affect Kondo physics because it
does not break the Kramers degeneracy [51–54].

Since we are aiming at an accurate nonperturbative study
of the problem, we adopt the NRG method [45–48]. The
NRG is essentially an exact diagonalization procedure where
the only approximations are the discretization of the con-
tinuum of states in the leads, and the truncation of the
almost decoupled high-energy excitations at each iteration
step; both are controlled and, in principle, accuracies below
1% can be achieved. The calculations become numerically
demanding as the number of “channels” (i.e., leads, here
one normal and one superconducting) increases and as the
symmetry is reduced (here the only remaining symmetry
in the presence of the magnetic field is the conservation
of the spin projection Sz). The present problem is at the
very border of the currently feasible NRG computations. We
employ an iterative diagonalization scheme which consists
of including a single site from the Wilson chains in each
NRG step, alternatively from the superconducting and from
the normal-state lead; we have verified that the difference
compared to the conventional approach where two sites are
included at once is inconsequential (differences of a few
percent). Here this approach works very well because the two
channels have very asymmetric coupling and are different in
nature, thus the alternating site adding does not lead to the
breaking of the energy-scale separation that is necessary in the
NRG approach. The discretization parameter was � = 4 and
we typically kept up to 6000 multiplets per NRG iteration. We
made use of the spin symmetry: SU(2) in the absence of field,
U(1) in its presence. The spectral function is calculated using
the full-density matrix algorithm which is the most reliable
approach at finite temperatures [55].

All relevant physical quantities can be extracted from the
QD Green’s functions in the Nambu space defined as

Ĝ(t,t ′) = −i〈�(t)�†(t ′)〉, (4)

where � = (d↑ d
†
↓)T . The spectral function A(ω) is defined as

A(ω) = −
1

π
ImGr

dd (ω), (5)

where Gr
dd (ω) is the Fourier transform of the QD retarded

Green’s function, namely

Gr
dd (ω) = −i

∫ ∞

0

dt eiωt 〈{dσ (t),d†
σ (0)}〉. (6)

The doublet-singlet transition can be characterized by the
changes in the anomalous spectral function

B(ω) = −
1

π
ImF r

dd (ω) (7)

of the anomalous component of the propagator

F r
dd (ω) = −i

∫ ∞

0

dt eiωt 〈{d↑(t),d↓(0)}〉. (8)

For computing spectral functions we performed averaging
over Nz = 8 interleaved discretization grids. Since the im-
purity is coupled to both normal-state and superconducting
channels, we performed the broadening using a standard
log-Gaussian scheme with b = 0.6.
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III. PHASE DIAGRAM

For ŴN = 0, large U favors a doublet ground state: in the
analytically solvable � → ∞ limit, the doublet phase occurs
for ŴSC below the line

U = 2

√

ξ 2 + Ŵ2
SC . (9)

For finite �, the DS transition needs to be computed
numerically (black line with circles in Fig. 2). Large �

favors a superconducting singlet state, while for smaller
� Kondo correlations mediated by quasiparticles above the
superconducting gap are also possible and the singlet becomes
predominantly of Kondo character as ŴSC increases. In this
section we discuss how this picture is modified by the presence
of the normal-state lead. We describe different criteria for
identifying the doublet-singlet crossover region, the origin
of the additional zero-bias anomalies, and provide numerical
results for the ŴN dependence.

A. Phase transition vs crossover behavior

For ŴN �= 0, Kondo screening leads to a singlet ground
state for all parameter values. We emphasize that this is a
statement about the true zero-temperature ground state and that
the characteristic temperature scale for reaching such a ground
state can be exponentially low, thus experimentally irrelevant.
In such circumstances, it is more important to understand the
properties at intermediate experimentally relevant temperature
scales. We find that the sharp DS quantum phase transition
for ŴN → 0 is replaced at ŴN �= 0 by a smooth crossover
between the “singlet” and “doublet regimes” which can be
empirically distinguished by analogy with the ŴN = 0 case in
several ways:

(a) sign of the local pairing term 〈d↑d↓〉;
(b) merging and splitting of Shiba resonances in the regular

spectral function A(ω);
(c) peak weights in the anomalous spectral function B(ω).
These criteria are fully equivalent for ŴN = 0 when the DS

transition marks a true discontinuity in all physical properties,
but they define three different lines for finite ŴN because the
crossover is smooth and extended. The line with squares in
Fig. 2 corresponds to criterion (a). The width of the crossover
region, indicated by the shading in Fig. 2, roughly indicates
the range where the YSR resonances are merged [criterion
(b), which is experimentally the most relevant]. Due to the
significant width of the crossover region even for small ŴN , the
normal-state electrode cannot be considered as a nonperturbing
probe.

Further details about the conceptual and technical issues
related to defining the position of the crossover lines are given
in Appendix A.

B. Origin of the zero bias anomalies

Spectra exhibit features characteristic for the different
regimes and ZBAs of different origins emerge as the gap �

decreases; see Fig. 3(a). In the doublet regime, an extremely
narrow needlelike Kondo resonance at ω = 0 coexists with
Shiba resonances at ω �= 0. The needle is due to the Kondo
screening of the magnetic doublet and has a very low Kondo
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FIG. 3. (Color online) (a) Spectra for � ranging from 0.5 (bot-

tom) to 0 (top). Offsets are added for clarity. (b) Anomalous spectral

function B(ω) for � = 0.004 (doublet), � = 0.002 (doublet-singlet

crossover, dashed line), and � = 0.001 (singlet). Inset: B(ω) for

ω > 0 on the logarithmic frequency scale. The arrow indicates the

peak with negative weight in the doublet regime, which is associated

with the Kondo effect and the ultimate spin-singlet ground state.

temperature T N
K due to small ŴN . In the DS crossover region,

the Shiba resonances merge with this needle Kondo resonance
to produce an enhanced ZBA (� = 0.002, dashed line) with
large height and spectral weight. The maximum weight of this
peak corresponds quite accurately to the value of � where
〈d↑d↓〉 changes sign [criterion (a)]. Decreasing � further, the
peak first reduces in amplitude and then splits, signalling the
end of the crossover into the singlet phase, characterized by two
Shiba resonances at finite energy. Surprisingly, the splitting
happens precisely at the DS transition line of the ŴN = 0 case.

In Fig. 3(b), we plot the anomalous spectral function B(ω)
which provides information about the induced pairing in the
quantum dot. For ŴN = 0, inside the gap there would only be
δ peaks corresponding to the YSR states with positive weight
for ω > 0 in the doublet phase, and negative sign in the singlet
phase. For finite ŴN , the YSR δ peaks are broadened into
resonances and the DS crossover corresponds to a transition
case featuring both positive and negative spectral weight in
B(ω) for ω > 0. Deeper in the doublet phase (� = 0.0004
case), we observe an important detail: although the anomalous
spectral function has predominately positive weight for ω > 0,
corresponding to an overall doublet character, there is a neg-
ative low-weight peak at low frequencies which corresponds
to the needlelike ZBA (inset, indicated by an arrow). This
small peak allows us to rigorously ascribe the needle ZBA
to a Kondo singlet ground state. The anomalous spectrum
changes sign at the DS point (� = 0.002, dashed). This sign
change can be identified as the point where the integrated

weights �± ≡
∫ �

0
dωB±(ω), with B±(ω) being the positive

and negative parts of B(ω), are equal [criterion (c)]. Beyond
this point (� = 0.001 in the figure), B(ω) < 0 for ω > 0, as
expected for a singlet.
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fixed rather than U . For this reason, the behavior near the origin is

different. In this figure, the origin corresponds to the noninteracting

U → 0 limit, while in Fig. 2 the origin corresponds to the large-gap

� → ∞ limit.

C. ŴN dependence

To better understand the role of ŴN , we summarize the
results of comprehensive calculations in Fig. 4 where we
distinguish the two regimes when both ŴSC and U are tuned
at fixed � = 0.01. Even weak coupling to the normal lead has
a considerable effect on the phase diagram, the main effect
being the significant downward shift (as a function of ŴSC) of
the boundary between the singlet and doublet regimes as ŴN

increases from zero at a fixed value of U . Alternatively, one
may study changes in the phase diagram as both ŴN and � vary
for fixed U and ŴSC . These results are shown in Fig. 5. Again,
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(c) anomalous spectrum as we increase ŴN along the direction of

the arrow in panel (a) (� = 0.0002 and ŴSC = 0.004).

small values of ŴN (the ranges shown on the vertical axis are
always smaller than ŴSC) can change the phase diagram and
induce DS transitions.

The effect of ŴN on the width of spectral features—
and consequently on the extent of the crossover region—is
presented also in Fig. 6 through the ŴSC dependence of the
spectral function computed for a range of couplings to the
normal-state lead ŴN . The plots very graphically demonstrate
the broadening effect of finite ŴN . While in the ŴN → 0 limit,
the crossing of the doublet and singlet states at ω = 0 is a
discrete event that occurs at a well-defined value of ŴSC , for
nonzero ŴN we see that there is an extended range of ŴSC for
which an observable resonance is pinned at the Fermi level.
This range corresponds to the extent of the DS crossover,
indicated in Fig. 2 by shading.

D. Strong Coulomb interaction regime

In the strong Coulomb interaction regime with large U/�

ratio, one can reduce the gap to very small values before
crossing over to the singlet ground state. The phase diagram
in this regime, shown in Fig. 5 for two fixed values of ŴSC ,
demonstrates the role of ŴN : an increasing ŴN can drive a DS
crossover [see also panels (b) and (c)] which, for the chosen
parameter set, occurs at ŴN ≈ 2 × 10−4 = 5 × 10−2ŴSC . For
large U , the spectra are quite different from the ones shown
in Fig. 2. Starting from a typical configuration with a needle
[Fig. 7(a), bottom curves], the spectral function evolves for
decreasing gap into a characteristic shape which, apart from
the needle Kondo peak, has two large Coulomb blockade
peaks, two BCS gap-edge singularities, and two emerging
Shiba satellites (top curve). Despite the significant changes
in the overall shape for varying �, these spectra all belong to
the doublet regime.

IV. ROLE OF FINITE TEMPERATURES

The role of finite T is most pronounced in the doublet
regime. The Kondo temperature of the needle peak, T N

K ,
depends exponentially on ŴN , but not in the standard way since
U is renormalized by the screening from the superconducting
lead (see Appendix C). Importantly, T N

K grows as � decreases,
as indicated by the numerical results in Fig. 7(b) and by
the Schrieffer-Wolff transformation which shows an enhanced
Kondo exchange coupling as � is reduced, as demonstrated
in Appendix B. In the large-U regime, this temperature scale
may be of the order or larger than the splitting of YSR states
after the DS transition. This results in large ZBAs as the gap
closes; see Fig. 7(c). Similar features in the spectrum could
be attributed to emergent MBSs [31–33]. Therefore, a word of
caution about this interpretation is in order.

V. ROLE OF MAGNETIC FIELDS

A. Field-induced zero-bias anomaly

Magnetic field is used to induce topologically nontrivial
phases with Majorana states in nanowires, hence it is interest-
ing to see whether ZBAs can be generated by the field also
in the quantum dot system. The spectra for a range of fields
are presented in Fig. 8. In the doublet regime [panel (a)], we
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FIG. 6. (Color online) Impurity spectral function A(ω) vs coupling to the superconducting lead ŴSC . Calculations are performed at fixed

U = 0.01 and U/� = 5, and plotted for a range of increasing coupling to the normal-state lead ŴN : (a) ŴN = 0.0001, (b) ŴN = 0.0002,

(c) ŴN = 0.0003, and (d) ŴN = 0.0004. Note the progressively wide range of ŴSC where a zero-bias resonance exists as ŴN increases.

observe outward shift of the Shiba states induced by enlarged
DS excitation energy as B is increased, as well as the Zeeman
splitting of the needle ZBA leading to a pronounced dip
structure at moderate B. In the DS crossover regime [panel (b)]
where the Kondo peak is already merged with Shiba states, we
see the splitting of this collective ZBA. The most interesting
case is the S regime [panel (c)], where parity crossings occur
as one of the Zeeman split doublet states becomes the new
ground state at some finite B: at this point a sizeable ZBA is
formed, in agreement with the experiments of Ref. [25]. We
note that the combined action of the above phenomenology
with the previously discussed DS transitions as one reduces
the gap would lead to ZBAs that split and reform, similar to
the observations in, e.g., Ref. [33].

In Fig. 9 we plot the dependence of the spectral function
on the external magnetic field for a range of hybridization
strengths to the normal-state lead ŴN . For small ŴN , the
crossing of the lower doublet state with the single YSR state
is characterized by a very pronounced zero-bias anomaly
occurring at a well defined value of the magnetic field. As

ŴN increases, the spectral features become more diffuse, thus
there is an extended range of magnetic fields with enhanced
spectral densities near the Fermi level. This is similar to the
behavior observed in some experiments aiming at the detection
of Majorana bound states.

B. Linear B vs ŴSC dependence

The Zeeman-induced ZBA in the singlet regime is continu-
ously connected with the DS crossing at B = 0 for a different
value of ŴSC . In fact, our numerical results show that the
position in the B field of this ZBA depends linearly on ŴSC for
any value of � [Fig. 8(d)]. This is highly surprising, since the
singlet-doublet splitting is nonlinear in ŴSC , and the Zeeman
splitting is nonlinear in both ŴSC and B; nevertheless, the
intersection happens along a straight line in the (B,ŴSC) plane
as long as the system is particle-hole symmetric.

This linear dependence can be obtained analytically in the
small ŴN limit by studying the conditions for the occurrence of
the subgap states exactly at the Fermi level at ω = 0. We will
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ŽITKO, LIM, LÓPEZ, AND AGUADO PHYSICAL REVIEW B 91, 045441 (2015)
A

(ω
)

Δ=0.001

Δ=0.000316

Δ=0.0001

Δ

(a)

(c)

T KN

0.0001

0 0.01

0.020-0.02
0

300

100

100

100

-0.0005 0.00050

0

(b)

ω ω

D

S

DS

FIG. 7. (Color online) Large U case, U = 0.05. (a) Spectral

densities for decreasing � (curves offset) from � = 0.05 (bottom)

to � = 0.001 (top). Other parameters: ŴSC = 0.004, ŴN = 0.0004.
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a typical charging energy of U ∼ 1 meV, the temperature used in

the calculations would correspond to T ∼ 2 μeV ∼ 23 mK). The

corresponding zero-temperature results are shown as thin lines.

thus focus on the |ω| ≪ � limit, noting that this is not at all
the same as the � → ∞ limit. We assume that the magnetic
field is applied along the z axis.
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FIG. 8. (Color online) Effect of the magnetic field on the spectral

functions. We plot the spin-averaged spectral function for a range of

magnetic fields B in (a) doublet (ŴSC = 0.001), (b) DS crossover

(ŴSC = 0.002 25), and (c) singlet (ŴSC = 0.003) regimes (curves

vertically offset for clarity). Other parameters are U = 0.01, ŴN =
0.0002, � = 0.003. (d) Position of the parity crossing in magnetic

field vs ŴSC .

The interaction effects are fully described by the self-energy
matrix, introduced through the Dyson equation

Ĝ(z)−1 = Ĝ(0)(z)−1 − �̂(z), (10)

where the noninteracting Green’s-function matrix is

Ĝ(0)(z)−1 = z − ǫτ3 − EZσ3 − V 2τ3

1

N

∑

k

gk(z)τ3. (11)

Here z is the complex frequency argument (taken to be z =
ω + iδ at the end of the calculation to obtain the retarded
Green’s functions), EZ = gμBB/2 is the Zeeman energy, V

is the coupling to the superconducting lead (the normal lead
is not considered in this section), N is the number of k states
in the lead, gk(z) is the Green’s function for an electron in
the superconducting lead and, finally, τi are Pauli matrices in
the Nambu (particle-hole) space, while σi are Pauli matrices
in the spin space. For magnetic field applied along the z axis,
it is possible to work either with the 2 × 2 Nambu structure

with � = (d↑d
†
↓)T , or with the 4 × 4 Nambu structure with

� = (d↑d↓d
†
↓d

†
↑)T . In the latter case, the 2 × 2 submatrices

are actually diagonal. In the former case, the σ3 matrix in
Eq. (11) needs to be replaced by the identity.

Since

gk(z)−1 = z − ǫkτ3 + �τ1σ3, (12)

one finds

gk(z) =
z + ǫkτ3 − �τ1σ3

z2 −
(

ǫ2
k + �2

) . (13)

Summing over k in Eq. (11), one obtains

G(0)(z)−1 = z − ǫτ3 − EZσ3 + ŴSC

(z + �τ1σ3)

E(z)
, (14)

where the last term is the self-energy originating from the
coupling with the superconducting lead. E(z) can be analyt-

ically continued to E(ω) =
√

�2 − ω2. In the ω → 0 limit,
E(0) = � and the coupling self-energy reduces to ŴSCτ1σ3.
Note that in this limit the gap � disappears from the problem
such that ŴSC plays the role of an effective pairing term.

The Shiba states are identified as the poles of the Green’s
function inside the gap:

det[G−1(z)] = 0, (15)

where z needs to be on the real axis for a true bound state,
while resonances correspond to true solutions with a small
imaginary component (this would be the case for ŴN �= 0). In
the absence of interactions, the condition for a subgap state
takes the following form:

z2 − ǫ2 − EZz + E2
Z −Ŵ2

SC

�2 − z2

E(z)2
+

2z(z − EZ)ŴSC

E(z)
= 0.

(16)

Taking the |z| ≪ � limit, this yields

E2
Z = Ŵ2

SC + ǫ2. (17)

Interestingly, this condition for a Zeeman-induced zero-energy
YSR state in a noninteracting quantum dot is the same as the
one in Eq. (2) for obtaining the MBS in a nanowire (as we
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FIG. 9. (Color online) Impurity spectral function A(ω) as a function of the magnetic field B. The calculations are performed at fixed

U = 0.01, ŴSC = 0.003, �/U = 0.3, and plotted for a range of increasing coupling to the normal-state lead ŴN : (a) ŴN = 0.0001,

(b) ŴN = 0.0002, (c) ŴN = 0.0003 and (d) ŴN = 0.0004. Note that ŴN ≪ ŴSC for all cases considered.

mentioned, in the z → 0 limit ŴSC plays the role of an effective
pairing term �∗, while ǫ plays the role of a chemical potential
in the quantum dot).

Equation (17) can be easily generalized to the interacting
case. The structure of the self-energy matrix is

�̂(z) =

⎛

⎜

⎝

�↑(z) 0 �a(z) 0
0 �↓(z) 0 −�a(−z)

�a(z) 0 −�↓(−z) 0
0 −�a(−z) 0 −�↑(−z)

⎞

⎟

⎠
,

(18)

where �σ (z) are the regular self-energy components, while
�a(z) is the anomalous component. To study the positions of
the subgap peaks, a low-order expansion can be performed:

�̂(z) = �̂(0) + �̂′(0)z = �̂(0) + (1 − Ẑ−1)z, (19)

where Ẑ is the (matrix-valued) quasiparticle renormalization
factor Ẑ−1 = 1 − �̂′(0) whose deviation from the identity
matrix quantifies the strength of the interaction effects. In fact,
for our consideration of the zero crossing, we truncate the

expansion at the first term. This is an important observation
which holds in general: the condition for the zero-energy

Shiba state does not depend explicitly on the quasiparticle

renormalization factor (i.e., on the Kondo temperature). We
are thus only interested in the zero-frequency values, �̂(0).
These are purely real, since the self-energy has zero imaginary
part inside the superconducting gap. We insert the self-energy
matrix in Eq. (11), evaluate the determinant in the |ω| ≪ �

limit, and after some lengthy algebra obtain the following
expression:

(EZ + �B)2 = (ŴSC − �a)2 + (ǫ + �0)2, (20)

where we have introduced the spin-averaged normal self-
energy �0 ≡ 1

2
[�↑(0) + �↓(0)] and the spin component

�B ≡ 1
2
[�↑(0) − �↓(0)], with �σ (0) = Unσ̄ . This equation

maintains the structure of Eq. (17); the only new effects are
the interaction-induced shifts. In the particle-hole symmetric
case, one has �0 = U/2 and ǫ = −U/2, thus the last term
drops out. Then

EZ + �B = ŴSC − �a. (21)
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FIG. 10. (Color online) (a) Slope of the real part of �B (B)

self-energy function. This quantity can be interpreted as the renormal-

ization of the effective g factor due to interactions. (b) Zero-frequency

value of the real part of the anomalous self-energy, Re�a(ω = 0) in

the singlet regime, Ŵ > ŴDS .

This equation turns out to describe a linear relation between EZ

(i.e., field B) and ŴSC despite the nontrivial ŴSC dependence
of the self-energies �B and �a , since �B is proportional to
B to a very good approximation, �B = c(ŴSC)B, and there
appears to be a connection between the Fermi-level derivative
of the spin-dependent self-energy c(ŴSC) = d�B/dB|ω=0 and
the anomalous self-energy �a(ŴSC); see Figs. 10(a) and 10(b).
Plotting [Ŵ − �a(Ŵ)]/[1 + d�B/dB] as a function of Ŵ, one
obtains a straight line with a slope close to 2.

We also note that for zero field, the DS crossover is defined
through

ŴSC = �a(ŴSC). (22)

We conclude that the ZBA occurs for

Ẽ2
Z = Ŵ̃2

SC + ǫ̃2. (23)

Here, tilde quantities represent parameters renormalized by
interactions X → X̃ ≡ X + Re�(ω = 0). At the particle-hole
symmetric point the last term drops out so that

±ẼZ = Ŵ̃SC . (24)
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FIG. 11. (Color online) (a) Phase diagram in the (B,�) plane for

ŴN = 0. At �c ∼ 0.0012, the ground state of the system at B =
0 changes from singlet to doublet. (b),(c) Zero-frequency spectral

function A(ω = 0) plotted as a function of the gap � and the external

magnetic field B, revealing the behavior of the zero-bias anomaly

in the (�,B) plane. The coupling to the normal-state lead is (b)

ŴN = 0.0002, and (c) ŴN = 0.0004. In (b) we also plot (in blue) two

possible lines for the evolution of the gap for increasing magnetic

fields. We use the function �(B) ∼ �[1 − 0.32B − 0.1B2], based

on a fitting of the experimental data from Ref. [25]. Both curves

correspond to gap values � = 0.0011 and 0.0013, respectively, which

are located on either side of the ŴN = 0 transition around �c. The

rest of the parameters are ŴSC = 0.002 and U = 0.01.

We stress again that this linear relation for arbitrary U

and � is remarkable since the corresponding self-energies
renormalizing the bare parameters, like, for instance, the
renormalized g-factor that can be extracted from ẼZ , are
themselves nonlinear functions of ŴSC .

Interestingly, Eq. (23) still has the same structure as
Eq. (17). Therefore, the general condition for Zeeman-induced
parity crossings of YSR bound states, fully taking into account
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interactions, and the condition for reaching a topological phase
in a noninteracting nanowire [Eq. (2)] are still analogous.

C. Zero-bias anomalies studied in the (�,B) plane

In experiments performed on nanowires exposed to external
magnetic field, the role of the field is twofold: (a) it leads
to Zeeman splitting of the doublet YSR states, and (b) it
suppresses the BCS pairing parameter �. Up to now, we
have presented results computed for varying B at fixed �.
For completeness, we now provide some results computed as
a function of both B and �: the actual experimental situation
corresponds to some � = �(B) curve in this plane.

In Fig. 11(a) we present the phase diagram in the ŴN → 0
limit. For small �, the ground state at zero field is a singlet. As
B increases, one of the Zeeman-split doublet levels is brought
down in energy and eventually becomes the new ground state.
In this part of the diagram, we observe linear dependence
between � and B at the doublet-singlet transition. Note that
this is yet another unexpected linearity, different (but related)
to the one in the (ŴSC,B) plane discussed above.

The effect of the coupling to the normal-state leads is
demonstrated in Figs. 11(b) and 11(c), where we plot the
dependence of the spectral function at zero frequency, A(0),
on � and B. The spectra are strongly enhanced (i.e., feature
a zero-bias anomaly) in two regions: (i) for small � < �c ≈
0.0012 for magnetic fields where the singlet and doublet states
cross at ω = 0, and (ii) for large � > �c near zero field,
due to the needlelike Kondo resonance induced directly by the
normal-state tunneling probe. We note that in this case nonzero
ŴN strongly suppresses the linearity of the ZBA in region (i).

The precise �(B) function form depends on the experimen-
tal details. To indicate the possible behavior, we overlayed
two curves on Fig. 11(b). Both curves, based on realistic
�(B) dependence for the particular experiment described
in Ref. [25], indicate that persisting ZBAs can be found in
this parameter plane. Both curves correspond to gap values,
at B = 0, around �c. The lighter curve corresponds to the
case where upon increasing B, the ZBA appears and persists
practically until the gap closure. The darker curve corresponds
to the case where the ZBA first appears and then splits again
before the gap is ultimately closed.

VI. CONCLUSION

We have calculated the phase diagram of an Anderson
impurity in contact with superconducting and normal-state
leads by means of the numerical renormalization group, and
established that even a very weak coupling to the normal lead
perturbs the system. Our results, valid for an arbitrary ratio �

TK
,

are analyzed in the context of experimental scenarios such as
zero-bias anomalies induced by parity crossing transitions of
Yu-Shiba-Rusinov bound states and Kondo features induced
by the normal lead. In particular, we have discussed how spec-
tral functions at finite temperatures and magnetic fields, which
can be directly linked to experimental tunneling transport
characteristics, can show zero-energy anomalies irrespective
of whether the system is in the doublet or singlet regime.
These results indicate that due caution is needed in interpreting
experiments aiming to detect Majorana bound states since

in hybrid systems Kondo physics and parity crossings may
manifest in unanticipated ways.

We have also derived the analytical condition for the
occurrence of Zeeman-induced fermion-parity switches in the
presence of interactions, Eq. (23), which bears unexpected
similarities with the condition for emergent Majorana bound
states in nanowires, Eq. (2). This result suggests that the
physics of Zeeman-induced parity crossings in the minimal
Anderson model in contact with a superconductor is connected
with the condition for emergent Majorana bound states.
This similarity thus leads to an interesting question: Is this
equivalence between Eqs. (2) and (23) general? While we do
not have a final answer for this, we note that the analogy
persists for finite spin-orbit coupling in the noninteracting
regime: it has been shown [36] that Zeeman-induced parity
crossings in short noninteracting nanowires (with finite spin-
orbit coupling) smoothly evolve towards true topological
transitions as the wire becomes longer. Whether our interacting
results are also smoothly connected with MBS physics in the
finite spin-orbit case and beyond the single quantum impurity
limit remains an open question worthwhile to be investigated.
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APPENDIX A: DOUBLET-SINGLET TRANSITION

INDUCED BY THE NORMAL-STATE LEAD

To better illustrate how the doublet-singlet (DS) transition
occurs, we consider a situation in which the superconducting
coupling ŴSC increases while the normal-lead coupling is fixed
to a very small value ŴN = 10−5 (effectively zero). Due to
the smallness of ŴN , this situation can be identified with an
effective SC-QD setup. We plot in Fig. 12(a) the impurity
spectral function when U = 0.05, at a fixed superconductig
gap value �/U = 0.01. In order to clearly identify the doublet
regions, we include small but finite temperature and magnetic
field. Finite B field leads to a sizeable nonzero magnetization
sufficiently deep in the doublet phase because the magnetic
moment remains unscreened; the magnetization starts to
increase at the DS transition. Also, because T is finite, one
may indeed characterize the small-ŴSC phase as the doublet
phase (in the zero-temperature limit, the ground state is strictly
speaking a singlet for any nonzero ŴN ). The impurity spectral
function shows the DS transition when ŴSC ≈ 5.3 × 10−3,
which, as expected, corresponds to TK ≈ 0.3�.

More rigorously, one may locate the DS transition point
by employing several criteria based on the behavior of
(i) the pairing term 〈d↑d↓〉, (ii) the hopping functions hα =
∑

σ 〈d†
σf0σα + H.c.〉, where f0σα is the combination of the

conduction-band orbitals to which the impurity couples,
(iii) charge fluctuations 〈n2〉 (with n =

∑

σ d†
σdσ as the total

impurity occupation), and finally (iv) Sz = 1/2(n↑ − n↓) (the
z component of the impurity spin, i.e., the magnetization).
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FIG. 12. (Color online) Left panel: Impurity spectral functions

for a range of hybridization strengths to the superconducting lead
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TK is Wilson’s Kondo temperature. Right panel: Expectation values

as a function of ŴSC . All the criteria show a DS transition at ŴSC ≈
5.3 × 10−3 (arrows).

All these quantities are displayed in Fig. 12(b) and show
a transition at ŴSC ≈ 5.3 × 10−3 (arrows), where all these
quantities are discontinuous. In particular, 〈d↑d↓〉 changes
sign, while 〈Sz〉 becomes large in the doublet phase (being
essentially zero in the single phase) due to the weak but
nonzero external magnetic field.

Now that we have established clear criteria for the DS
transition, we study how the above quantities vary as we
increase ŴN for a fixed ŴSC = 0.004 (Fig. 13). As argued
above, different criteria define different values of ŴN at which
the system crosses over from doublet to singlet regime. Here,
for instance, the pairing term (top panel) changes sign at
ŴN = 1.25 × 10−3 while the magnetization (bottom panel) is
nonzero already at ŴN = 10−3. These different values of ŴN

according to the different criteria define a sizable crossover
region in the phase diagram.

One can also monitor the DS crossover via the anomalous
spectral function, as the peak position changes from positive
to negative side, indicating the occurrence of the crossover.
In Fig. 14(a) we have plotted the anomalous spectral function
B(ω) when ŴN is varied for a fixed value of ŴSC = 0.004,
and U = 0.05 with � = 2 × 10−4. For completeness we also
provide in Fig. 14(b) the regular spectral function that has
a pronounced ω = 0 peak precisely when the anomalous
spectral function reverses sign. We note especially the case for
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FIG. 13. (Color online) Expectation values as a function of ŴN

for a fixed ŴSC = 0.004 (the rest of parameters are the same as in

Fig. 12). The pairing term (top panel) changes sign at ŴN ≈ 1.25 ×
10−3 whereas the magnetization (bottom panel) is non-zero for a

slightly smaller value ŴN = 10−3.

ŴN = 2 × 10−4 [orange curve in Fig. 14(a)]. The anomalous
spectral function B(ω) has a complex behavior: there is one
positive peak at ω > 0, just like in the doublet regime, but also
one negative peak for ω > 0 (close to ω = 0), just like in the
singlet regime, so this is truly where the crossover between
the doublet and singlet regimes can be located. Note, however,
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by the anomalous spectral function B(ω) for a range of ŴN .

(b) Spectral function A(ω). The model parameters are U = 0.05,

ŴSC = 0.004, � = 0.0002.
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B(ω)], and positive and negative peak positions of B(ω).

that there are numerous possible ways to define the “crossover
value” of ŴN : zero-frequency spectral weight A(0), crossing
point of the integrated weights of the anomalous spectral
function W+ and W−, or through peaks positions in B(ω). The
alternative crossover values for ŴN attending to the previous
criteria are illustrated in Fig. 15: the curves do not define a
unique special ŴN point.

We note that for ŴN = 0, the DS transition curve is
determined by the well-known TK = 0.3� rule, where TK

is the Kondo temperature according to Wilson’s definition,
calculated for the SC lead when the superconductivity is
suppressed (� → 0) limit. A relevant question is whether
this rule still holds for ŴN �= 0 with TK computed for Ŵeff =
ŴN + ŴSC . We find that this produces the shift of the crossover
line in the correct direction (toward smaller ŴSC ; see Figs. 2
and 4), although quantitatively we find that the effect of finite
ŴN is more complex.

APPENDIX B: SCHRIEFFER-WOLFF TRANSFORMATION

FOR A NS-IMPURITY SYSTEM

We perform here the Schrieffer-Wolff transformation [56]
for the NS-impurity system. By doing this we obtain the
exchange couplings for the impurity spin-flip processes from
which a functional form for the Kondo temperature can be
inferred. Our starting point is a hybrid normal-superconductor

Anderson Hamiltonian,

H = HN + HS + HD + HT = H0 + HT , (B1)

where

HN =
∑

k,σ

ǫkN
c
†
kNσ ckNσ , (B2a)

HS =
∑

k,σ

ǫkSC
c
†
kSCσ ckSCσ +

∑

k

(

�c
†
kSC↑c

†

k̄SC↓ + H.c.
)

, (B2b)

HD =
∑

σ

ǫdσd†
σdσ + Und↑nd↓, (B2c)

HT =
∑

α,k,σ

(

Vαc
†
kασdσ + H.c.

)

. (B2d)

The operator ckασ (c
†
kασ ) annihilates (creates) an electron with

wave vector k (k̄ = −k), energy ǫkα
, and spin σ = {↑,↓} in the

normal or superconducting lead (α = {N,SC}). Similarly, dσ

(d†
σ ) destroys (creates) an electron with spin σ and energy ǫdσ

at the impurity level. ndσ = d†
σdσ is the impurity occupation

and U denotes the on-site Coulomb interaction. Tunneling
amplitudes for normal-impurity and superconducting-impurity
processes are indicated by VN , and VS , respectively. Here, �

denotes the superconducting gap considered to be real.
It is convenient to introduce the Bogoliubov-Valatin trans-

formation [57–59]
(

ckSC↑
c
†

k̄SC↓

)

=
(

uk −vk

vk uk

)(

ak

b
†

k̄

)

. (B3)

The superconducting coherence factors satisfy the relations

u2
k =

1

2

(

1 +
ǫkSC

Ek

)

, v2
k =

1

2

(

1 −
ǫkSC

Ek

)

(B4)

with Ek =
√

ǫ2
kSC

+ �2. uk = uk̄ , vk = vk̄ , and Ek = Ek̄ are

obeyed. Using the transformation, HS becomes

HS =
∑

k

Ek(a
†
kak + b

†
kbk), (B5)

while HT is expressed in the form

HT =
∑

k

{VS[(uka
†
k − vkbk̄)d↑ + (vkak + ukb

†

k̄
)d↓]

+VS[d
†
↑(ukak − vkb

†

k̄
) + d

†
↓(vka

†
k + ukbk̄)]}

+
∑

k,σ

VN (c
†
kNσdσ + d†

σ ckN σ ). (B6)

We make a unitary transformation to get an effective
Hamiltonian

Heff = eSHe−S =
∞

∑

n=0

1

n!
[S,H]n

≈ H0 +HT + [S,H0] + [S,HT ] +
1

2!
[S,[S,H0]], (B7)

where [S,H]0 = H and [S,H]n = [S,[S,[ . . . ,[S,H]] . . . ]].
Our purpose is to find an S which satisfies

HT + [S,H0] = 0. (B8)
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The effective Hamiltonian then becomes

Heff = H0 + [S,HT ] +
1

2!
[S, −HT ] = H0 +

1

2
[S,HT ]. (B9)

For our setup, the generator S = S0 − S
†
0 reads [60]

S0 =
∑

k

VS

{[

nd↓

Ek − ǫd↑ − U
+

1 − nd↓

Ek − ǫd↑

]

uka
†
kd↑ +

[

nd↓

Ek̄ + ǫd↑ + U
+

1 − nd↓

Ek̄ + ǫd↑

]

vkbk̄d↑ −
[

nd↑

Ek̄ + ǫd↓ + U

+
1 − nd↑

Ek̄ + ǫd↓

]

vkak̄d↓ +
[

nd↑

Ek − ǫd↓ − U
+

1 − nd↑

Ek − ǫd↓

]

ukb
†
kd↓

}

+
∑

k,σ

VN

[

ndσ̄

ǫkN
− ǫdσ − U

+
1 − ndσ̄

ǫkN
− ǫdσ

]

c
†
kN σdσ , (B10)

where σ̄ = ↓/↑ for σ = ↑/↓. It is easy to check that the generator S satisfies Eq. (B8).
The transformed Hamiltonian can be arranged in a concise form,

Heff = H′
0 + HPS + HSF + HQSF . (B11)

Here, H′
0 corresponds to H0 with renormalized parameters and HPS denotes the potential scattering of electrons off the impurity.

The impurity-electron spin-flip processes are described by

HSF = −
1

2

∑

k,p

∑

σ

JN,N,k,pc
†
kNσ cpN σ̄d

†
σ̄dσ −

1

2

∑

k,p

∑

σ

JN,S,k,pc
†
kNσ cpSC σ̄d

†
σ̄dσ −

1

2

∑

k,p

∑

σ

JS,N,k,pc
†
kSCσ cpN σ̄d

†
σ̄dσ

−
1

2

∑

k,p

∑

σ

JS,S,k,pc
†
kSCσ cpSC σ̄d

†
σ̄ dσ +

1

2

∑

α

∑

k,p

∑

σ

sgn(σ )
(

TS,α,k,pcpα σ̄ ck̄SC σ̄d
†
σ̄dσ + H.c.

)

, (B12)

where

JN,N,k,p = V 2
N

[

1

ǫkN
− ǫd − U

−
1

ǫkN
− ǫd

+
1

ǫpN
− ǫd − U

−
1

ǫpN
− ǫd

]

, (B13)

JN,S,k,p = JS,N,p,k = VNVS

[

1

ǫkN
− ǫd − U

−
1

ǫkN
− ǫd

]

+ VSVN

[

u2
p

Ep − ǫd − U
−

u2
p

Ep − ǫd

−
v2

p

Ep̄ + ǫd + U
+

v2
p

Ep̄ + ǫd

]

,

(B14)

JS,S,k,p = V 2
S

[

u2
k

Ek − ǫd − U
−

u2
k

Ek − ǫd

−
v2

k

Ek̄ + ǫd + U
+

v2
k

Ek̄ + ǫd

+
u2

p

Ep − ǫd − U
−

u2
p

Ep − ǫd

−
v2

p

Ep̄ + ǫd + U
+

v2
p

Ep̄ + ǫd

]

,

(B15)

TS,α,k,p = VSVαukvk

[

1

Ek − ǫd − U
−

1

Ek − ǫd

+
1

Ek̄ + ǫd + U
−

1

Ek̄ + ǫd

]

. (B16)

The final term shows the charge-transfer interaction given by

HQSF = −
1

2

∑

α

∑

k,p

∑

σ

(

KN,α,k,pc
†
kN σ c

†
pα σ̄dσ̄dσ + H.c.

)

−
1

2

∑

α

∑

k,p

∑

σ

(

KS,α,k,pc
†
kSCσ c

†
pα σ̄dσ̄ dσ + H.c.

)

+
1

2

∑

α

∑

k,p

∑

σ

sgn(σ )
(

LS,α,k,pc
†
pα σ̄ ck̄SC σ̄dσ̄ dσ + H.c.

)

, (B17)

where

KN,α,k,p = VNVα

[

1

ǫkN
− ǫd − U

−
1

ǫkN
− ǫd

]

, (B18a)

KS,α,k,p = VSVα

[

u2
k

Ek − ǫd − U
−

u2
k

Ek − ǫd

−
v2

k

Ek̄ + ǫd + U
+

v2
k

Ek̄ + ǫd

]

, (B18b)

LS,α,k,p = VSVαukvk

[

1

Ek − ǫd − U
−

1

Ek − ǫd

+
1

Ek̄ + ǫd + U
−

1

Ek̄ + ǫd

]

. (B18c)

Since double occupation of the impurity site is suppressed for U > 0, usually HQSF is neglected [56,60].
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We focus on the spin-flip exchange interactions responsible for the occurrence of the Kondo effect. First, for the normal
spin-flip exchange constant JN,N,k,p it can be approximated as

JN,N,k,p ≈ 2V 2
N

U

(ǫd + U )ǫd

. (B19)

Second, by inserting Eqs. (B4) into (B15) the exchange constant JS,S,k,p mediated by the superconducting lead reads

JS,S,k,p =
V 2

S

2

[

U

(Ek − ǫd − U )(Ek − ǫd )
+

U

(Ek + ǫd + U )(Ek + ǫd )

]

+
V 2

S

2

ǫkSC

Ek

[

U

(Ek − ǫd − U )(Ek − ǫd )
−

U

(Ek + ǫd + U )(Ek + ǫd )

]

+ (k ↔ p). (B20)

Notice that for � → 0 we recover the exchange constant
equivalent to the normal lead,

JS,S,k,p ≈ 2V 2
S

U

(ǫd + U )ǫd

. (B21)

In addition, it is worthwhile to realize that at the particle-hole
symmetric point (U = −2εd ) JS,S,k,p can be simplified to

JS,S,k,p = V 2
S

[

U

E2
k − U 2/4

]

+ (k ↔ p). (B22)

Thus, if � ≪ U we also recover the normal lead limit, i.e.,
JS,S,k,p ≈ −8V 2

S /U . On the other hand, in the limit of � ≫ U ,
JS,S,k,p can be neglected. The exchange couplings mediated
by both the superconducting and normal leads are described
by JN,S,k,p and JS,N,k,p. Similar to JS,S,k,p, at the particle-hole
symmetric point it reduces to

JN,S,k,p = JS,N,p,k ≈ −
4VNVS

U
+ VSVN

[

U

E2
p − U 2/4

]

.

(B23)

We notice that the second term can be neglected in the limit
of � ≫ U . Together with vanishing of JS,S,k,p, this partially
explains why we observe the needle Kondo peak in the doublet
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FIG. 16. (Color online) NRG results for the Kondo temperature

T N
K of the needle resonance as a function of the exchange coupling

to the superconducting lead, ŴSC , for several values of the BCS gap

�, both in the small � and large � limits.

regime. Finally, the constant TS,α,k,p manifests itself only when
the superconducting lead is present since it is proportional to
ukvk ∝ �. Also, observe that TS,α,k,p vanishes at the particle-
hole symmetric point.

We may contrast these results with the work based on
the continuous unitary transformation (CUT) [44], which
is essentially a continuous version of the Schrieffer-Wolff
transformation. That work was done in the � → ∞ limit,
resulting in the effective Kondo exchange coupling constant
J = −4U |VN |2/(U 2 + 4�2

d ), where �d is the proximity-
induced on-dot pairing �d = ŴSC/2. This implies that with
increasing coupling to the SC lead the exchange coupling
grows weaker. That results is not general, however: it holds
only in the limit of � → ∞. At the Fermi level, we find more
generally (for ǫd = −U/2):

JNN = −
8V 2

N

U
, JSS =

2V 2
S U

�2 − U 2/4
, (B24)

JNS = JSN = −VNVS

(

4

U
+

U

U 2/4 − �2

)

.

For VS ≪ VN , the leading effect is that of the mixed term JNS ,
since JSS is subleading in VS . For small �, the expression
between the parentheses is positive, thus finite VS leads to an

-14 -12 -10 -8 -6 -4 -2 0

-(8Γ
N

/π U)
-1

-5

-4

-3

-2

-1

0

1

lo
g

1
0
(T

K

N
/Δ

)

slope=0.35

U=0.01
Δ/U=0.3

Γ
SC

/U=0.1

FIG. 17. (Color online) NRG results for the Kondo temperature

T N
K of the needle resonance as a function of the exchange coupling

to the normal lead, ŴN .
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enhancement of the exchange coupling. This is also explicitly
confirmed by our numerical NRG results in the � < U limit
even for VS ∼ VN ; see Fig. 16. In fact, the numerical results
indicate an enhancement of TK even for large � approaching
the half bandwidth D = 1.

APPENDIX C: ŴN DEPENDENCE OF T
N

K

The ŴN dependence of the Kondo temperature T N
K is shown

in Fig. 17. The behavior for small ŴN is exponential, but with

a nonstandard factor in the exponent:

T N
K ∝ exp

(

− c
πU

8ŴN

)

, (C1)

where c is a constant of order 1 which depends on �/U and
ŴSC/U ratios; for parameters in the plot, we find c = 0.35. For
the standard single-impurity Anderson model with normal lead
only, c = 1. The deviation from c = 1 (towards smaller values)
indicates a renormalization of the charge fluctuation scale
U by the coupling to the superconducting lead. c decreases
(U renormalizes more significantly) with increasing ŴSC and
decreasing �.
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Rodero, A. K. Hüttel, and C. Strunk, Temperature dependence of

Andreev spectra in a superconducting carbon nanotube quantum

dot, Phys. Rev. B 89, 075428 (2014).

[24] J. Schindele, A. Baumgartner, R. Maurand, M. Weiss, and C.

Schönenberger, Nonlocal spectroscopy of Andreev bound states,

Phys. Rev. B 89, 045422 (2014).

[25] E. J. H. Lee, X. Jiang, M. Houzet, R. Aguado, C. M.

Lieber, and S. De Franceschi, Spin-resolved Andreev levels

and parity crossings in hybrid superconductor-semiconductor

nanostructures, Nature Nanotech. 9, 79 (2014).

[26] K. J. Franke, G. Schulze, and J. I. Pascual, Competition

of superconducting phenomena and Kondo screening at the

nanoscale, Science 332, 940 (2011).

[27] For reviews, see J. Alicea, New directions in the pursuit of

Majorana fermions in solid state systems, Rep. Prog. Phys. 75,

076501 (2012); C. Beenakker, Search for Majorana fermions

in superconductors, Annu. Rev. Condens. Matter Phys. 4,

113 (2013); T. Stanescu and S. Tewari, Majorana fermions

in semiconductor nanowires: Fundamentals, modeling, and

experiment, J. Phys.: Condens. Matter 25, 233201 (2013).

[28] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Majorana

fermions and a topological phase transition in semiconductor-

superconductor heterostructures, Phys. Rev. Lett. 105, 077001

(2010).

[29] Y. Oreg, G. Refael, and F. von Oppen, Helical liquids and

Majorana bound states in quantum wires, Phys. Rev. Lett. 105,

177002 (2010).

[30] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A.

M. Bakkers, and L. P. Kouwenhoven, Signatures of Majorana

fermions in hybrid superconductor-semiconductor nanowire

devices, Science 336, 1003 (2012).

[31] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H.

Shtrikman, Zero-bias peaks and splitting in an Al-InAs nanowire

topological superconductor as a signature of Majorana fermions,

Nat. Phys. 8, 887 (2012).

[32] M. T. Deng, C. L. Yu, G. Y. Huang,. M. Larsson, P. Caroff, and

H. Q. Xu, Anomalous zero-bias conductance peak in a Nb-InSb

nanowire-Nb hybrid device, Nano Lett. 12, 6414 (2012).

[33] A. D. K. Finck, D. J. Van Harlingen, P. K. Mohseni, K. Jung, and

X. Li, Anomalous Modulation of a zero-bias peak in a hybrid

nanowire-superconductor device, Phys. Rev. Lett. 110, 126406

(2013).

[34] H. O. H. Churchill, V. Fatemi, K. Grove-Rasmussen, M. T.

Deng, P. Caroff, H. Q. Xu, and C. M. Marcus, Superconductor-

nanowire devices from tunneling to the multichannel regime:

Zero-bias oscillations and magnetoconductance crossover, Phys.

Rev. B 87, 241401 (2013).

[35] In particular, single Zeeman crossings evolve into multiple

crossing showing oscillatory behavior versus magnetic field; see
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ŽITKO, LIM, LÓPEZ, AND AGUADO PHYSICAL REVIEW B 91, 045441 (2015)

[45] K. G. Wilson, The renormalization group: Critical phenom-

ena and the Kondo problem, Rev. Mod. Phys. 47, 773

(1975).

[46] H. R. Krishna-murthy, J. W. Wilkins, and K. G. Wilson,

Renormalization-group approach to the Anderson model of

dilute magnetic alloys. I. Static properties for the symmetric

case, Phys. Rev. B 21, 1003 (1980); ,Renormalization-group

approach to the Anderson model of dilute magnetic alloys. II.

Static properties for the asymmetric case, ibid. 21, 1044 (1980).

[47] W. Hofstetter, Generalized numerical renormalization group for

dynamical quantities, Phys. Rev. Lett. 85, 1508 (2000).

[48] R. Bulla, T. A. Costi, and T. Pruschke, Numerical renormaliza-

tion group method for quantum impurity systems, Rev. Mod.

Phys. 80, 395 (2008).

[49] Y. Tanaka, N. Kawakami, and A. Oguri, Numerical renormal-

ization group approach to a quantum dot coupled to normal

and superconducting leads, J. Phys. Soc. Jpn. 76, 074701

(2007).

[50] A. Oguri, Y. Tanaka, and J. Bauer, Interplay between Kondo

and Andreev-Josephson effects in a quantum dot coupled to one

normal and two superconducting leads, Phys. Rev. B 87, 075432

(2013).

[51] Y. Meir and N. S. Wingreen, Spin-orbit scattering and the Kondo

effect, Phys. Rev. B 50, 4947 (1994).
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