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Shielding Effectiveness of Multiple-Shield Cables with Arbitrary
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Abstract—In this paper we report on a transmission-line model for calculating the shielding
effectiveness of multiple-shield cables with arbitrary terminations. Since the shields are not perfect
conductors and apertures in the shields permit external magnetic and electric fields to penetrate into
the interior regions of the cable, we use this model to estimate the effects of the outer shield current and
voltage (associated with the external excitation and boundary conditions associated with the external
conductor) on the inner conductor current and voltage. It is commonly believed that increasing the
number of shields of a cable will improve the shielding performance. However, this is not always the
case, and a cable with multiple shields may perform similar to or in some cases worse than a cable with
a single shield. We want to shed more light on these situations, which represent the main focus of this
paper.

1. INTRODUCTION

Protecting a device from coupling of an external electromagnetic environment through a cable shield
is at times a formidable task. Early work on solid shields can be found in Schelkunoff’s paper [1],
and valuable information on cables and shielding can be found in various textbooks [2–5]. Shielding
effectiveness is a common quantity that represents the shielding performance, measured as the reduction
of the electromagnetic field at a given point in space (e.g., at a point in the inner conductor in the case
of a cable) caused by placing a shield between the source and that point. Early works on shielding
effectiveness of cables can be found in [6–8]. It is generally thought that increasing the number of
shields of a cable will improve the shielding performance [9, 10]. However, there are situations in which
a cable with multiple shields may perform similar to or worse than a cable with a single shield, and this
has been seldom discussed in literature.

To address the question of shielding effectiveness in multiple-shield cables, we rigorously formulate
a transmission-line model for determining the shielding effectiveness of such cables in the presence of
arbitrary terminations. We assume the presence of an external excitation that produces the outer shield
current and voltage which, in turn, induces the internal currents and voltages on the inner shield(s)
and conductor. This non-zero transfer function results because the shields are not perfect conductors
and apertures in the shields permit external magnetic and electric fields to penetrate into the interior
region of the cable. We will analyze various cable configurations with varying numbers of shields and
termination loads, whose shielding effectiveness will be compared. This cable survey will highlight the
fact that cables with multiple shields may at times not exhibit much improvement relative to single-
shield cables (and in certain frequency regions perform worse than single-shield cables), possibly not
providing the extra protection desired.
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2. TRANSMISSION-LINE MODEL OF MULTIPLE-SHIELD CABLES WITH
ARBITRARY TERMINATIONS

2.1. Case of a Single Shield

In order to model a shielded cable, we consider an element of transmission line of differential length
dz that contains a distributed voltage source Ez(z) = ZT I0(z), where I0(z) is the current on the
outer shield, as well as a distributed current source Jz(z) = −YT V0(z), where V0(z) is the external
voltage on the outer shield. For reference, the external and internal electrical quantities for a shielded
cable are labeled in Fig. 1(a). The shield properties (related to the braid weave characteristics and
material) are accounted for in the per-unit length transfer impedance ZT and transfer admittance YT .
More specifically, these terms capture the magnetic and electric field coupling mechanisms from the
exterior of the cable to the inner conductor. For the purposes of this paper, it is assumed that these
quantities are known (and determined from the particular braid characteristics [11–13]) and can be
directly incorporated into the transmission-line model.

(a) (b)

Figure 1. (a) Voltages and currents associated with shielded cable analysis. (b) Approximate per-
unit-length transmission line circuits for the double-shield cable case.

The differential equations for the voltage and current on the inner conductor of the braided cable
(Vc and Ic) are given by

dVc

dz
+ ZcIc = ZT I0(z)

dIc

dz
+ YcVc = −YTV0(z). (1)

In addition to the transfer parameters associated with the external cable characteristics, Eq. (1)
also contains the per-unit length (series) self-impedance Zc and (shunt) self-admittance Yc, which are
formed by the inner conductor and the shield. As with the transfer impedance and transfer admittance,
it will be assumed in this paper that the self-parameters characterizing the shielded cable geometry are
known. From Eq. (1), it is clear that the sources for the transmission line are defined by the transfer
parameters of the shielded cable and that these sources drive the coupled voltage and current on the
inner conductor of the cable. At this point, we rewrite the second differential equation in Eq. (1) in a
generalized form that allows for cases when the braided cable is located within an arbitrary structure
such as a metallic cavity of arbitrary shape. In other words, we recognize that there may be situations
where the exterior voltage V0(z) is not easily defined. Relating the transfer admittance YT to the transfer
capacitance CT , we can write

dIc

dz
+ YcVc = −jωCT V0(z) = −jωCT

q0(z)
C0

, (2)



Progress In Electromagnetics Research C, Vol. 65, 2016 95

where q0(z) and C0 represent the charge and capacitance per-unit length of the outer shield, respectively.
Since the transfer capacitance is proportional to the outer capacitance C0, Eq. (2) can also be expressed
as

dIc

dz
+ YcVc = −jωC̃T q0(z), (3)

where C̃T is the transfer capacitance normalized by C0. Using the current continuity equation
∇ ·�j = −jωρ0 or equivalently dI0

dz = −jωq0(z), Eq. (3) becomes

dIc

dz
+ YcVc = C̃T

dI0(z)
dz

. (4)

Note that with the first differential equation in Eq. (1) and Eq. (4), the interior voltage and
current can be found directly from the exterior cable current I0(z) (and its derivative) and the transfer
parameters characterizing the braided shield.

To solve the interior system of Eqs. (1) and (4), we will consider one source at a time and then
apply a superposition of results for the final value of the inner conductor current [2]. Thus, assuming
Jz(z) = C̃T

dI0(z)
dz = 0 and using Eq. (1), the second-order differential equation for the inner conductor

current becomes (
d2

dz2
− γ2

c

)
Ic = −YcEz(z) = −YcZT I0(z), (5)

where γ2
c = ZcYc. The solution of Eq. (5) is given by

Ic,e(z) = [K1,e + Pe(z)] e−γcz + [K2,e + Qe(z)] eγcz

Vc,e(z) =
√

Zc

Yc

{
[K1,e + Pe(z)] e−γcz − [K2,e + Qe(z)] eγcz

}
,

(6)

with Pe(z) = 1
2

√
Yc
Zc

z∫
z−

eγczEz(z)dz and Qe(z) = 1
2

√
Yc
Zc

z+∫
z

e−γczEz(z)dz, with Ez(z) = ZT I0(z). The

constants in Eq. (6) are determined from the terminating impedances Z−
L,c and Z+

L,c to the interior
transmission line (at locations z− and z+, respectively, where z− < z < z+). More specifically,

K1,e = ρ−eγcz− ρ+Pe (z+) e−γcz+ − Qe (z−) eγcz+

eγc(z+−z−) − ρ−ρ+e−γc(z+−z−)

K2,e = ρ+e−γcz+
ρ−Qe (z−) eγcz− − Pe (z+) e−γcz−

eγc(z+−z−) − ρ−ρ+e−γc(z+−z−)
,

(7)

where the reflection coefficients at positions z− and z+ are ρ− =
Z−

L,c−
√

Zc
Yc

Z−
L,c+

√
Zc
Yc

and ρ+ =
Z+

L,c−
√

Zc
Yc

Z+
L,c+

√
Zc
Yc

.

With Eq. (6) accounting for the interior current driven by magnetic coupling and diffusion of the
exterior field into the inner conductor, we now move on to accounting for the current contribution
associated with the electric coupling of the exterior field. For this case, we assume Ez(z) = 0 so that
we obtain (where we have used the second differential equation in Eq. (12) with Y0 = jωC0)(

d2

dz2
− γ2

c

)
Vc = −ZcC̃T

dI0(z)
dz

, (8)

and thus
Vc,j(z) = [K1,j + Pj(z)] e−γcz + [K2,j + Qj(z)] eγcz

Ic,j(z) =
√

Yc

Zc

{
[K1,j + Pj(z)] e−γcz − [K2,j + Qj(z)] eγcz

}
,

(9)
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with Pj(z) = 1
2

√
Zc
Yc

z∫
z−

eγczJz(z)dz and Qj(z) = 1
2

√
Zc
Yc

z+∫
z

e−γczJz(z)dz, with Jz(z) = −YTV0(z), and

K1,j = ρ−eγcz− Qj (z−) eγcz+ + ρ+Pj (z+) e−γcz+

eγc(z+−z−) − ρ−ρ+e−γc(z+−z−)

K2,j = ρ+e−γcz+
Pj (z+) e−γcz− + ρ−Qj (z−) eγcz−

eγc(z+−z−) − ρ−ρ+e−γc(z+−z−)
.

(10)

Thus, to obtain the total current and voltage induced on the inner conductor we sum the two
individual contributions:

Ic(z) = Ic,e(z) + Ic,j(z)
Vc(z) = Vc,e(z) + Vc,j(z).

(11)

2.2. Case of Multiple Shields

Cables with more than one shield can be analyzed by applying the transmission-line model shown in
Sec. 2.1 to each shield to obtain the current in the next shield until all shields have been accounted
for. Assuming N shields, the outer to inner shields to be indexed as 0, 1, 2, . . ., N − 1, the differential
equations for the voltage and current on the 0th shield (outermost shield) are given by

dV0

dz
+ Z0I0 = ZT,0I1,

dI0

dz
+ Y0V0 = −YT,0V1. (12)

In what follows, we neglect the interaction from the cable to the driving circuit using the weak
coupling assumption, i.e., ZT,0I1 = 0 and YT,0V1 = 0. If the weak coupling assumption is not valid, the
solution of the differential equations can be obtained although it is more complex. Thus, we assume
that the current distribution on the outermost shield I0(z) is known.

The internal problem is now set by looking at the ith internal shield, with i = 1, 2, . . . , N − 1, as

dVi

dz
+ ZiIi = ZT,(i−1)I(i−1) + ZT,iI(i+1)

dIi

dz
+ YiVi = C̃T,(i−1)

dI(i−1)

dz
+ C̃T,i

dI(i+1)

dz

(13)

Again, we will neglect the interaction from the cable to the driving circuit, i.e., ZT,iI(i+1) = 0 and

C̃T,i
dI(i+1)

dz = 0. From Eq. (13), it is clear that the sources for the ith transmission line are defined by the
transfer parameters of the (i − 1)th shield and that these sources drive the coupled voltage and current
on the interior shield. We highlight this fact in Fig. 1(b) where we report approximate per-unit-length
transmission line circuits for the double-shield cable case.

We will again consider one source at a time and then apply a superposition of results for the final
value of the interior current. Eq. (6) can be used to compute Ii,e(z) and Vi,e(z) as a result of the interior
current driven by magnetic coupling and diffusion of the exterior field into the inner conductor, but now
using the ith shield parameters and Ez(z) = ZT,(i−1)I(i−1). In a similar way, the required constants in
Eq. (7) are now determined from the terminating impedances Z−

L,i and Z+
L,i to the interior transmission

line (at locations z− and z+, respectively, where z− < z < z+) using the ith shield parameters.
In a similar manner, Eq. (9) can be used to compute Ii,j(z) and Vi,j(z) as a result of the

current contribution associated with the electric coupling of the exterior field, but now using the ith

shield parameters and Jz(z) = −YT,(i−1)V(i−1). Similarly, the required constants in Eq. (10) are now
determined from the terminating impedances Z−

L,i and Z+
L,i to the interior transmission line using the

ith shield parameters. Thus, to obtain the total current and voltage induced on the ith internal shield
we sum the two individual contributions as done in Eq. (11).
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Finally, the differential equations for the voltage and current on the inner conductor of the braided
cable (Vc and Ic) are given by

dVc

dz
+ ZcIc = ZT,(N−1)I(N−1)

dIc

dz
+ YcVc = C̃T,(N−1)

dI(N−1)

dz
.

(14)

From Eq. (14), it is clear that the sources for the innermost transmission line formed by the
(N − 1)th shield and the inner conductor are defined by the transfer parameters of the (N − 1)th shield
and that these sources drive the coupled voltage and current on the inner conductor of the cable. See
Fig. 1(b) where this is reported for the double-shield cable case.

We will again consider one source at a time and then apply a superposition of results for the final
value of the inner conductor current. Eq. (6) can be used to compute Ic,j(z) and Vc,j(z) as a result of
magnetic coupling and diffusion of the exterior field into the inner conductor, but now using the inner
conductor parameters and Ez(z) = ZT,(N−1)I(N−1). In a similar way, the required constants in Eq. (7)
are now determined from the terminating impedances Z−

L,c and Z+
L,c to the interior transmission line (at

locations z− and z+, respectively, where z− < z < z+) using the inner conductor parameters.
In a similar manner, Eq. (9) can be used to compute Ic,j(z) and Vc,j(z) as a result of the current

contribution associated with the electric coupling of the exterior field, but now using the inner conductor
parameters and Jz(z) = −YT,(N−1)V(N−1). Similarly, the required constants in Eq. (10) are now
determined from the terminating impedances Z−

L,c and Z+
L,c to the interior transmission line using

the inner conductor parameters. Thus, to obtain the total current and voltage induced on the inner
conductor we sum the two individual contributions as done in Eq. (11).

3. NUMERICAL EXAMPLES

In this section, we will impose the distribution of the (outermost shield) disturbing current to be known
and equal to I0(z) = I0e

−γ0z. We will then estimate the shielding effectiveness as

SE(z) = 20 log10
Ic(z)
I0(z)

. (15)

We would like to stress that the definition in Eq. (15) also complies with the definition of ratio of
current in the core with and without the shield. In our particular drive condition we are not looking
to the response to an incident wave, but to a forced current source. Therefore, if the shield is removed,
our drive condition would inject a current on the core conductor of known value I0(z); then, if we put
the shield on, our drive condition would impose a known current on the shield and we would find the
current on the core conductor Ic(z). Then, we define shielding effectiveness as the ratio of the current
in the center conductor in the second case (with shield) to the one in the first case (no shield). This is
exactly the definition of shielding effectiveness as the ratio of current in the core with and without the
shield.

We will also adopt the complete semi-empirical model assembled by Kley [11] based on
measurements of typical commercial cables. More accurate models could be adopted, e.g.,
multipoles [12, 13], but they are not necessary for the effects we are interested in in this paper. Unless
otherwise stated, we will assume a PEC inner conductor and braid for the description of Zc and the
propagation impedances; this assumption is not applied to the transfer parameters.

3.1. Single Shield Cable Analysis and Experimental Verification

Let’s first consider the case of three 22-inch-long, commercial single shield cables, which differ for the
level of optical coverage (from low to high): REMEE (59%), Belden 9201 (78%), and Belden 8240
(95%) [14]. The origin of the reference system is located at the center of the cable, so that z = −11
inch and z = +11 inch represent the two cable terminations. This will be valid also for the results in
Sec. 3.2. We take the simulation parameters to be ZT = ZR + jωLT + ZS , where ZR = Rgs

γdR
sin(γdR)
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Figure 2. Shielding effectiveness for a 22-inch-
long REMEE, Belden 9201, and Belden 8240 cable
computed at z = −11 inch (the left termination
end of the cable) assuming a load of 0.5 Ω at the
inner conductor transmission line.

Figure 3. Comparison of measured and
theoretical shielding effectiveness for a 22-inch-
long Belden 8240 cable computed at the load side
(at z = −11 inch).

Table 1. Simulation parameters for the load to model the experiment.

Frequency (MHz) 10 60 86 160 200 300
RL (Ω) 0.50 0.60 0.70 1.00 1.25 2.80
LL (nH) 25.7 25.7 25.7 27.0 28.0 32.0

accounts for the shield diffusion effect, with γ = 1−j
δ = (1.21 − j1.21)×103

√
ω/ω0 inch−1, δ =

√
2

ωμ0σ =

8.2× 10−4
√

ω0/ω inch the skin depth, Rgs = {34.28, 18.34, 13.34}mΩ/m, and dR = {3.68, 3.47, 3.5} ×
10−3 inch for {REMEE, Belden 9201,Belden 8240}, ZS = (1 + j)ωLS is the internal transfer impedance
assumed to be a forty five degree quantity, with LS = {821, −217.6, −462.6}√ω0/ω pH/m for
{REMEE, Belden 9201,Belden 8240}, YT = jωCT , with LT = {5614.6, −134.6, −754.9} pH/m and
CT = {863.07, 177.9, 7.3} fF/m for {REMEE, Belden 9201,Belden 8240}. We plot in Fig. 2 the shielding
effectiveness computed at z = −11 inch (a termination end) assuming a load of 0.5 Ω at both ends of
the inner conductor transmission line for the three cables.

We observe a resonating behavior at around 175 MHz. A comparison of the three cables leads to
the conclusion that the REMEE cable provides the lowest level of shielding, whereas the two Belden
cables have comparable shielding effectiveness (with the Belden 9201 having slightly better performance
at these frequencies). This result appears to be counterintuitive since the 8240 cable has a higher optical
coverage leading one to believe that it should have better shielding performance. However, the shield
topology of the Belden 9201 features near cancellation of the porpoising and hole effects [15], leading
to better shielding effectiveness.

In order to provide confidence in our transmission-line model, we measure and report in Fig. 3
and Fig. 4 the shielding effectiveness of two 22-inch long Belden 8240 and Belden 9201 cables. In the
experiment, we measure the current on the load as well as the current on the shield, with which we are
able to determine the shielding effectiveness. To use the model described in Sec. 2, we should understand
the experimental conditions. The current probes at the ends of the cable tester represent ZL → 0.5Ω
loads at low frequencies. Near the resonance of the tester it was found that the loads exhibit increasing
losses as well as reactive effects. Thus, to get a better understanding of these load values, several
experiments were performed [16]. The load ZL = RL + jωLL has been approximated in simulation as a
linear interpolation function with the parameters in Table 1. The presence of such reactive components
leads to an overall frequency downshift with respect to the results shown in Fig. 2. We also included
proper resistive components for the description of Zc to account for cable attenuation [14], and Rc has
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Figure 4. Comparison of measured and
theoretical shielding effectiveness for a 22-inch-
long Belden 9201 cable computed at the load side
(at z = −11 inch).

Figure 5. Shielding effectiveness for a 22-inch-
long single and double-shield cable (referred to as
SS and DS in the legend, respectively) computed
at z = −11 inch assuming a load of 0.5 Ω at
the inner conductor transmission line. The inner
shield transmission line is considered to be shorted
or matched.

Table 2. Simulation parameters for the cable attenuation to model the experiment.

Frequency (MHz) 1 10 50 100 200 400
Rc(

√
ω/ω0Ω/m) Belden 8240 0.367 0.428 0.435 0.469 0.488 0.516

Rc(
√

ω/ω0Ω/m) Belden 9201 0.496 0.471 0.509 0.523 0.527 0.564

been approximated in simulation as a linear interpolation function with the parameters in Table 2. For
both cables analyzed, we find good agreement between experiments and theory, in both the level of the
shielding effectiveness as well as the resonance frequency location.

It is our goal now to investigate if the use of multiple shields helps improve shielding effectiveness,
and under what conditions. This is done in the next subsections in more detail.

3.2. Termination Effect and Losses Effect in Multiple-Shield Cables

Let’s focus our attention on the 22-inch-long commercial Belden 8240 cable analyzed in Fig. 2. We now
analyze a double-shield cable, where we introduce a second shield with the same parameters as the shield
of the Belden 8240 cable. The braid outer and inner diameters are 0.134 and 0.116 inches, respectively,
and the wire diameter is 0.005 inches. We compute the shielding effectiveness at z = −11 inch assuming
a load of 0.5 Ω at the inner conductor transmission line. Moreover, the inner shield transmission line is
considered to be either shorted or matched. As shown in Fig. 5, when the inner shield transmission line
is matched, the shielding effectiveness of such a double-shield cable is better than the single-shield cable
in the entire frequency range analyzed. However, when it is shorted, an additional resonance around
260 MHz appears, where the cable behaves much worse than the single-shield cable. We believe that this
resonance arises from the fact that the inter-shield region is a shorted transmission line of finite length,
and the resonance is dictated by the permittivity of the dielectric between shields and the parameters
of the shields. This is an important result to be taken into account for proper shielding engineering.

The cable attenuation is important to include at the resonances. We will include the cable
attenuation by inserting center conductor losses Rc = 0.43

√
ω/ω0 in Zc [14], with ω0 = 2π × 107 rad/s.

We thus repeat the investigation of Fig. 5 including center conductor losses, and report the result in
Fig. 6. It can be observed that the inclusion of Rc reduces the level of shielding effectiveness at 175 MHz
only a few dBs, but leaves it unchanged in the remaining frequency range.
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Figure 6. The shorted DS case in Fig. 5, but
now considering center conductor losses Rc =
0.43

√
ω/ω0.

Figure 7. The shorted DS case in Fig. 5, but now
considering the shield loss resistance.

Let’s now take into account that the shields may have a non-negligible resistive component. We
include the shield loss resistance and show the result in Fig. 7. We observe that now, in contrast to the
center conductor losses, only the extra resonance at 260 MHz is affected by shield loss. This resistive
component dampens the resonance at 260 MHz, limiting its quality factor. Even in this case, however,
the double-shield cable has worse shielding effectiveness around 260 MHz than the single-shield version
shown in Fig. 5. Note that without the shield losses (in this approximate model) the level of the 260 MHz
resonance is not finite.

3.3. Sizing Effect in Double-Shield Cables

Here we show that the geometry of the shields can greatly affect the shielding effectiveness of double-
shield cables. In particular, we modify the inner b1 and outer b0 radii of the braid (and necessarily change
the distance between the shield conductors, and thereby their inductive and capacitive coupling) and
plot the shielding effectiveness in Fig. 8 compared to the single-shield case. When the two shields are
very close to each other, i.e., b0/b1

∼= 1, one can see that the cable behaves the same (the region below

Figure 8. Shielding effectiveness for a 22-inch-
long single- and double-shield cable computed at
z = −11 inch assuming a load of 0.5 Ω at the inner
conductor transmission line. The inner shield
transmission line is considered to be shorted.
Shield radii dimensions are modified as detailed
in the legend, which shows the ratio b0/b1.

Figure 9. As in Fig. 8, but the permittivity
between shields is modified from 1 to 1.67.
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150 MHz) or worse than the single-shield one (the resonance region). Thus, little or no improvement
is obtained by adding a second shield. Proper design and modeling is thus necessary to understand
the proper effectiveness of shields, especially for applications where shielding is of vital importance.
Increasing the distance between the shields leads to an overall improvement of the shielding effectiveness
by more than 20 dB. Also in this case, however, the double-shield cable behaves worse than a single-shield
one at 260 MHz.

We then modify the dielectric permittivity between the two shields to a value of 1.67, and replot
in Fig. 9 the result observed in Fig. 8. As expected, this affects mostly the extra resonance at 260 MHz
(due to the short circuit at the inner-shield transmission line) which is now moved to 210 MHz upon
increase in dielectric contrast between the two shields.

4. CONCLUSION

In this paper we formulated a transmission-line model for calculating the shielding effectiveness of
multiple-shield cables with arbitrary terminations. We have shown, with multiple examples, that
increasing the number of shields of a cable may not improve the shielding performance. In particular, we
observed that the shielding terminations are one of the main parameters to account for when designing
shields.
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