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Abstract − Over the past decade several applications for 
fabrics with electromagnetic properties have emerged, most of 
them relating to garments, including jackets with built-in 
antennas and workwear with increased radar visibility. Beside 
these have surfaced two protective applications, namely to 
protect transports of confidential equipment from discovery 
and identification; and to protect sensitive apparatus from 
damage by high power electromagnetic irradiation e.g. in field 
operations. In this paper results are presented from 
measurement of shielding effectiveness before and after high 
power radiation for two types of fabrics under consideration 
for the latter applications. Shielding effectiveness 
measurements have been conducted between 1 and 18 GHz 
while the high power irradiation was given with 28 kV/m at 
1300 MHz. 

1 INTRODUCTION 

Conductive fabrics have a wide range of 
applications. The fabric may have reflecting 
properties and thus act as a reflector of signals, or it 
may have absorbing properties and thus attenuate the 
signal passing through the material [1]. 
Electromagnetic interference (EMI) shields [2], [3], 
antennas [4], and wearable monitoring devices [5] are 
some examples of products that can be found on the 
market.  

By integrating a reflective fabric in garments the 
radar cross section (RCS) increases and hence the 
radar visibility [6]. Areas where an increased RCS is 
desired are professional clothing for road workers 
and fishermen and rescue suits for people working in 
the off-shore industry. A study of microwave 
properties of two kinds of fabric, in the shipborne 
radar frequency range, 2-18 GHz, has been conducted 
in [1].  

When transporting confidential goods a common 
problem is the rugged heavy duty packaging required 
preventing the goods from identification and damage. 
Civilian as well as military radars exhibit high 
electromagnetic field strengths while scanning. 
Another rising issue is High Power Microwave 
(HPM) radiators, a kind of electromagnetic radiation 
weapon designed to disrupt or destroy electronic 
equipment. Here a significant improvement can be 
achieved by replacing metal containers with light-
weight, easy-to-use fabric-based packaging materials 
that maintains the shielding while facilitating 
handling.  

Another application is to protect medical equipment 
from electromagnetic radiation, especially when 
using this type of equipment in the field; e.g. military 
field hospitals in base camps where high power 
transmitters are abundant. This protection may be 
achieved preparing equipment specific covers of EMI 
shielding fabric or as specially sewn tent sections 
lined with the same EMI shielding fabric. As a side 
effect this lining will help avoiding compromising 
emanations from equipment localized inside the 
compartment. 

To be eligible, it is essential that these fabrics are 
robust, inexpensive, light-weight, easy to handle, and 
last but not least important; these materials must 
withstand HPM irradiation without structural 
breakdown, something that has been observed e.g. in 
coated window glass [7]. 

Little is known about what happens when 
conductive fabrics are exposed to strong 
electromagnetic fields. This is examined in the 
present work by comparing shielding effectiveness 
(SE) measurement results for two types of fabric, 
both in two different qualities. A comparison of SE 
before and after subjecting the samples to HPM 
irradiation is presented. 

2 METHODS 

Two different methods to determine the shielding 
properties of the fabrics were employed. The first 
method was a traditional comparative measurement 
with a plane wave under normal incidence in a semi-
anechoic chamber (SAC). In the second method a 
nested reverberation chamber (RC) was used to 
measure the isotropic transmission cross section of 
the test object with a mode stirred incident field [7], 
[8] thus achieving a result representing all incident 
angles. 

The samples were tested in the SAC with a plane 
wave at normal incidence to get a qualifying 
reference for the subsequent tests using the RC.  

2.1 Semi-anechoic Chamber 

The plane wave shielding effectiveness is 
determined from a traditional comparative 
measurement, “hatch on/hatch off”, measured at 
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polypyrrole (Ppy) fibers. The woven fabrics have in 
an earlier measurement shown highly reflective 
properties [1] while the non-woven showed mainly 
absorbing characteristics. 

When comparing the SAC measurements in Fig. 3 
with the results from the RC measurements in Fig. 4 
it is clear that the RC measurement replicates the 
SAC measurement very well. The main exception is 
that the normal incidence in the SAC shows high 
frequency dependent variations that are “averaged” 
out in the RC which shows a much smother behavior. 

Another observation is that the reflective fabrics 
have a substantially higher (20-40 dB) SE than the 
absorbing fabrics independent of fabric thickness. 
From these two measurements we can conclude that 
mode stirred camber measurements are reliable in the 
characterization of SE. 

 When studying Fig. 5 and Fig. 6 it is apparent that 
HPM-irradiation does not negatively affect the 
fabrics; neither the woven, reflective, nor the non-
woven, absorbing type. 

 4 CONCLUSIONS 

Four fabrics were tested, two from Kings Metal and 
two from EEONYX, both in one thick and one thin 
quality. 

The fabrics from Kings Metal are woven with steel 
weft and polyethylene warp in the proportions 40/60 
and 30/70 respectively. These fabrics have earlier 
proven to reflect the signal well [1]. 

The fabrics from EEONYX of non-woven design 
with fibers of Ppy have in the same previous 
measurements shown absorbing characteristics.  

Both materials proved to be unaffected by HPM 
irradiation which is a prerequisite to function in the 
proposed applications to replace heavy-weight sheet 
metal containers or to protect sensitive electronic 
equipment in field applications. 
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Fig. 6. Thin King's Metal fabric. There is no 
noticeable change in shielding effectiveness before 
and after the HPM irradiation. 
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