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Abstract—It is commonly accepted that Pareto-based evolu-
tionary multiobjective optimization (EMO) algorithms encounter
difficulties in dealing with many-objective problems. In these
algorithms, the ineffectiveness of the Pareto dominance relation
for a high-dimensional space leads diversity maintenance mech-
anisms to play the leading role during the evolutionary process,
while the preference of diversity maintenance mechanisms for
individuals in sparse regions results in the final solutions dis-
tributed widely over the objective space but distant from the
desired Pareto front. Intuitively, there are two ways to address
this problem: 1) modifying the Pareto dominance relation and 2)
modifying the diversity maintenance mechanism in the algorithm.
In this paper, we focus on the latter and propose a shift-based
density estimation (SDE) strategy. The aim of our study is to
develop a general modification of density estimation in order
to make Pareto-based algorithms suitable for many-objective
optimization. In contrast to traditional density estimation which
only involves the distribution of individuals in the population,
SDE covers both the distribution and convergence information
of individuals. The application of SDE in three popular Pareto-
based algorithms demonstrates its usefulness in handling many-
objective problems. Moreover, an extensive comparison with five
state-of-the-art EMO algorithms reveals its competitiveness in
balancing convergence and diversity of solutions. These findings
not only show that SDE is a good alternative to tackle many-
objective problems, but also present a general extension of Pareto-
based algorithms in many-objective optimization.

Index Terms—Evolutionary multiobjective optimization, many-
objective optimization, shift-based density estimation, conver-
gence, diversity.

I. INTRODUCTION

O
VER the past few decades, evolutionary algorithms

(EAs) have attracted great attention in solving a class

of real-world problems that have several competing crite-

ria or objectives. The involved EAs are called evolutionary

multiobjective optimization (EMO) algorithms. One of the

important reasons for the success of EMO algorithms is due

to their ability of achieving a Pareto approximation set of

multiobjective optimization problems (MOPs) in a single run.

In general, an EMO algorithm, in the absence of any further

information provided by the decision maker, pursues two

ultimate goals with respect to its solution set—minimizing the

distance to the Pareto front (i.e., convergence) and maximizing

the distribution over the Pareto front (i.e., diversity) [15].

Most EMO algorithms are designed with regard to the above

two common goals, but different algorithms are implemented
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to achieve them in distinct ways. So far, EMO algorithms,

based on their selection mechanisms, can be generally classi-

fied into three groups—Pareto-based algorithms, aggregation-

based algorithms, and indicator-based algorithms [10], [71].

Since the optimal outcome of an MOP is a set of Pareto

optimal solutions, the Pareto dominance relation naturally

becomes a criterion to distinguish solutions during the evo-

lutionary process of an algorithm. Behind such Pareto-based

algorithms, the basic idea is to compare solutions according to

their dominance relation and density. The former is considered

as the primary selection and favors nondominated solutions

over dominated ones, and the latter is used to maintain diver-

sity and is activated when solutions are incomparable using

the primary selection. Most of the existing EMO algorithms

belong to this group, and among them, several representative

algorithms, such as the nondominated sorting genetic algo-

rithm II (NSGA-II) [13], strength Pareto EA 2 (SPEA2) [81],

and Pareto envelope-based selection algorithm II (PESA-II)

[11], are being widely applied to various problem domains

[69], [73], [80].

In aggregation-based algorithms, the objectives of an MOP

are aggregated by a scalarizing function such that a single

scalar value is generated. The diversity of a population is main-

tained by specifying a set of well-distributed reference points

(or directions) to guide its individuals to search simultaneously

towards different directions [64]. As the earliest multiobjective

optimization approach that can be traced back to the middle

of the last century [51], this group has become popular again

in recent years. One of the important reasons is due to the

appearance of an efficient algorithm, the decomposition-based

multiobjective EA (MOEA/D) [79].

The idea of indicator-based EMO algorithms, which was

first introduced by Zitzler and Künzli [84], is to utilize a

performance indicator to guide the search during the evolu-

tionary process. An interesting characteristic is that, in contrast

to Pareto-based algorithms that compare individuals using

two criteria (i.e., dominance relation and density), indicator-

based algorithms adopt a single indicator to optimize a desired

property of the evolutionary population. The indicator-based

EA (IBEA) [84] is a pioneer in this group. Recently, the

indicator hypervolume [82] has been found to be promising

in balancing convergence and diversity, leading to the popu-

larity of several hypervolume-based algorithms, such as the

S metric selection EMO algorithm (SMS-EMOA) [5] and

multiobjective covariance matrix adaptation evolution strategy

(MO-CMA-ES) [34]. Whereas a large computation cost is

required in the calculation of the hypervolume indicator, some

efforts to address this issue are being made [7], [74].
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Many-objective optimization refers to the simultaneous op-

timization of more than three objectives. In the last decade,

many-objective optimization has gained growing attention in

the EMO community [12], [24], [39], [57]. One of the impor-

tant reasons is due to the rapid increase of difficulties with

the number of objectives in multiobjective optimization [8],

[68], [70]. Most current EMO algorithms, which work well on

problems with two or three objectives, noticeably deteriorate

their search ability when more objectives are involved [46],

[48], [65]. This greatly motivates researchers to design new

algorithms specially for many-objective problems. Recently,

some reports have shown that algorithms based on the design

idea of group 2 or group 3 (i.e., aggregation-based or indicator-

based algorithms) are very competitive in many-objective

optimization [33], [38], [71]. In this regard, Hughes’s multiple

single objective Pareto sampling (MSOPS) [32] and Bader and

Zitzler’s hypervolume estimation algorithm (HypE) [4] are two

representatives.

Despite being the most popular approaches in the EMO

community, Pareto-based algorithms encounter difficulties in

their scalability to many-objective optimization. Most classical

Pareto-based algorithms, such as NSGA-II and SPEA2, cannot

provide sufficient selection pressure towards the Pareto front

for most many-objective optimization problems1. A major

reason is that the proportion of nondominated solutions in a

population tends to become large as the number of objectives

increases. This makes the Pareto dominance relation-based

primary selection criterion fail to distinguish solutions and the

density-based second selection criterion play a leading role in

both the mating and environmental selection of an algorithm.

This phenomenon is termed active diversity promotion in Pur-

shouse and Fleming’s study [65]. Some empirical observations

[39], [71] indicate that the active diversity promotion has a

detrimental impact on the algorithm’s convergence due to its

preference for dominance resistant solutions [35] (i.e., the

solutions with an extremely poor value in at least one of

the objectives, but with near optimal values in some others).

Consequently, the solutions, at the end of the optimization

process, may have “good” diversity over the objective space,

but can be far away from the desired Pareto front.

Intuitively, there are two ways to deal with the issue that

Pareto-based algorithms face in many-objective optimization.

One is related to the primary selection criterion (i.e., modi-

fying the Pareto dominance relation to make more solutions

comparable), and the other is concerned with the second

selection criterion (i.e., modifying the diversity maintenance

mechanism to weaken or avoid the active diversity promotion

phenomenon).

Much of the current work is on the primary selection crite-

rion, introducing a variety of new dominance concepts to solve

many-objective problems, e.g., dominance area control [67],

k-optimality [23], preference order ranking [21], subspace

dominance comparison [2], [44], and grid dominance [77].

These enhanced dominance relations can significantly increase

1Pareto-based EMO algorithms can work well on some many-objective
problems where the Pareto front is on a low-dimensional subspace of the
high-dimensional objective space [68], or the objectives are highly correlated
and/or dependent [36], [41].

the selection pressure among solutions, thereby guiding the

search towards the desired direction [12], [43]. In addition,

several classical concepts which are not particularly designed

for many-objective problems, such as ϵ-dominance [54] and

fuzzy Pareto dominance [49], have also been shown to provide

competitive results [19], [28], [50].

In sharp contrast to the above, the work on the second

selection criterion has received little attention so far. To the

best of the authors’ knowledge, there are only two approaches

that concern improving the diversity maintenance mechanism.

Adra and Fleming [1] employed a diversity management

operator (DMO) to adjust the diversity requirement in the mat-

ing and environmental selection. By comparing the boundary

values between the current population and the Pareto front, the

diversity maintenance mechanism is controlled (i.e., activated

or inactivated) during the evolutionary process. Wagner et

al. [71] demonstrated that assigning the crowding distance

of boundary solutions a zero value in NSGA-II can clearly

improve the performance in terms of convergence, despite the

risk of losing diversity among solutions [38].

This paper focuses on the second selection criterion for

Pareto-based algorithms. The aim of our study is to develop a

general modification of the second selection criterion in order

to make Pareto-based algorithms suitable for many-objective

optimization. To this end, a shift-based density estimation

(SDE) strategy is proposed. In contrast to traditional density

estimation which only involves the distribution of individuals

in the population, SDE covers both the distribution and conver-

gence information of individuals. When estimating the density

of the surrounding area of an individual in the population,

SDE shifts the position of other individuals according to

their convergence comparison in order to reflect the relative

proximity of the individual to the Pareto front.

The basic idea of SDE is simple—given the preference

of density estimators for individuals in sparse regions, SDE

tries to “put” individuals with poor convergence into crowded

regions. This way, these poorly-converged individuals will be

assigned a high density value, thus being eliminated easily

during the evolutionary process. In addition, the implementa-

tion of SDE is also simple, with negligible computational cost,

and it can be applied to any specific density estimator without

the need of additional parameters.

The rest of this paper is organized as follows. Sect. II

is devoted to the analysis of traditional density estimation

in many-objective optimization, the description of the pro-

posed method, and the application of SDE to three popular

Pareto-based algorithms, i.e., NSGA-II, SPEA2, and PESA-

II. Sect. III experimentally validates the proposed SDE based

on its implementation into the three aforementioned Pareto-

based algorithms, resulting in three new EMO algorithms,

denoted NSGA-II+SDE, SPEA2+SDE, and PESA-II+SDE,

respectively. In Sect. IV, a further test is carried out to

compare one of the three obtained EMO algorithms with

five state-of-the-art algorithms in many-objective optimization.

Some discussions regarding the proposed method are given in

Sect. V. Finally, Sect. VI draws the conclusions of this paper.
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II. THE PROPOSED METHOD

A. Density Estimation in EMO Algorithms

In a population, the density of an individual represents

the degree of crowding of the area where the individual is

located. Due to the close relation with diversity maintenance,

density estimation is very important in EAs and is widely

applied in various optimization scenarios, such as multimodal

optimization [62], dynamic optimization [76], and robustness

optimization [45].

In multiobjective optimization, usually there is no single

optimal solution but rather a set of Pareto optimal solutions.

Naturally, density estimation plays a fundamental role in the

evolutionary process of multiobjective optimization for an

algorithm to obtain a representative and diverse subset of the

Pareto front [6], [53].

There are a wide range of density estimation techniques

that have been developed in the EMO community. They act

on different neighbors of an individual, involve different neigh-

borhoods, and consider different measures [47]. For example,

the niched Pareto genetic algorithm (NPGA) considers the

niche of an individual and measures the degree of crowding

in the niche [30]. The strength Pareto EA (SPEA) uses a

clustering technique to estimate the crowding degree of an

individual [82]. NSGA-II defines a new measure, “crowding

distance”, to reflect the density of an individual, only acting

on the two closest neighbors located in either side for each

objective. Most grid-based EMO approaches, such as PESA-II

and the dynamic multiobjective EA (DMOEA) [78], estimate

the density of an individual by counting the individuals in

the hyperbox where it is located [56]; yet some recent grid-

based approaches consider the crowding degree of a region

constructed by a set of hyperboxes whose range varies with

the number of objectives [59], [60]. SPEA2 considers the k-

th nearest neighbor of an individual in the population [81].

Instead of using the Euclidean distance in SPEA2, Horoba and

Neumann used the Tchebycheff distance to determine the k-th

nearest neighbor [31]. In [58], a Euclidean minimum spanning

tree (EMST) of individuals in a population is generated, and

the density of an individual is estimated by its edges in the

EMST. Farhang-Mehr and Azarm calculated the entropy in

the population, estimating the density of an individual by

considering the influences coming from all other individuals

in the population [22].

Despite the variety of density estimation techniques, they

all measure the similarity degree among individuals in the

population, i.e., they estimate the density of an individual

by considering the mutual position relation between it and

other individuals in the population. Formally, the density of an

individual p in the population P can be expressed as follows:

D(p, P ) = D(dist(p, q1), dist(p, q2), ..., dist(p, qN−1)) (1)

where qi ∈ P and qi ̸= p, N is the size of P and dist(p, q)
is the similarity degree between individuals p and q, usually

measured by their distance, e.g., Euclidean distance. D() is

the function of the similarity degree between the interested

individual and other individuals in the population. The specific
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Fig. 1. Evolutionary trajectories of the convergence metric (CM) for a
run of the original NSGA-II and the modified NSGA-II without the density
estimation procedure on the 10-objective DTLZ2.

implementation of D(), as stated above, depends on the

density estimator used in an EMO algorithm.

In Pareto-based EMO algorithms, in general, when two

individuals are nondominated individuals in a population, the

one with the lower density is preferable. This rule is very

effective for an MOP with 2 or 3 objectives since it can provide

a good balance between convergence and diversity. However,

in many-objective optimization, this rule may fail to guide the

population to search towards the optimal direction.

As mentioned before, the proportion of nondominated indi-

viduals in the population becomes considerably large when

a large number of objectives are involved. Extremely, all

individuals in the population may become nondominated with

each other. In this case, the density of individuals will play

a leading or even unique role in distinguishing them in the

selection process of algorithms. As a result, individuals that

are distributed in sparse regions (i.e., individuals that have a

low similarity degree to other individuals) will be preferred as

long as they are nondominated in the population. However, it

is likely that such individuals are located far away from the

optimal front (e.g., they are slightly better than or comparable

with other individuals in some objectives but are significantly

worse in at least one objective). For example, considering a

population of four nondominated individuals A, B, C, and D

with their objective value (0, 1, 1, 100), (1, 0, 2, 1), (2, 1, 0, 1),
and (1, 2, 1, 0), individual A performs the worst regarding

convergence but is preferable in Pareto-based algorithms.

This density-leading criterion severely deteriorates the

search performance of algorithms, which is reflected in both

the mating and environmental selection. In the mating se-

lection, there will be a higher probability that those poorly-

converged nondominated individuals (such as individual A in

the above example) are selected to recombine and produce

low performance offspring. In the environmental selection, the

long-term existence of those poorly-converged individuals will

lead to the elimination of some well-converged ones due to the

restriction of the population size. Consequently, the solutions,

at the end of the optimization process, may be distributed

widely over the objective space, but far away from the desired

Pareto front. Figure 1 plots the evolutionary trajectories of the
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convergence results2 of the original NSGA-II and its modified

version where the density estimation procedure is removed for

the 10-objective DTLZ2 [20]. Evidently, with the evolution

process, the original NSGA-II gradually draws the population

away from the Pareto front, while the removal of the crowding

distance-based selection (used to distinguish individuals that

are nondominated to each other) from NSGA-II noticeably

improves the convergence performance of the algorithm.

The above observations indicate that the failure of Pareto-

based EMO algorithms in many-objective optimization is due

to their dislike for individuals in crowded regions. Then, can

we “put” those poorly-converged individuals into crowded

regions? In this case, any density estimator can identify these

poorly-converged individuals as long as it can correctly reflect

the crowding degree of individuals. Keeping this in mind,

we present a new general density estimation methodology—

shift-based density estimation (SDE); to facilitate contrast, we

abbreviate the traditional density estimation as TDE.

B. Shift-based Density Estimation (SDE)

As stated previously, the density estimation of an individual

in the population is based on the relative positions of other in-

dividuals with regard to the individual. In SDE, we adjust these

positions, trying to reflect the convergence of the individual

in the population.

When estimating the density of an individual p, SDE shifts

the positions of other individuals in the population according

to the convergence comparison between these individuals

and p on each objective. More specifically, if an individual

performs better3 than p for an objective, it will be shifted to

the same position of p on this objective; otherwise, it remains

unchanged. Formally, without lose of generality, assuming that

we consider a minimization MOP, the new density D′(p, P ) of

individual p in the population P can be expressed as follows:

D′(p, P ) = D(dist(p, q′1), dist(p, q
′
2), ..., dist(p, q

′
N−1))

(2)

where N denotes the size of P , dist(p, q′i) is the similarity

degree between individuals p and q′i, and q′i is the shifted

version of individual qi (qi ∈ P and qi ̸= p), which is defined

as follows:

q′i(j) =

{

p(j), if qi(j) < pi(j)
qi(j), otherwise

, j ∈ (1, 2, ...,m) (3)

where p(j), qi(j), and q′
i(j) denote the j-th objective value

of individuals p, qi, and q′i, respectively, and m denotes the

number of objectives.

Figure 2 shows a bi-objective example to illustrate this shift-

based density estimation operation. To estimate the density of

individual A in a population composed of four nondominated

individuals A(10, 17), B(1, 18), C(11, 6), and D(18, 2), B is

shifted to B′(10, 18) since B1 = 1 < A1 = 10, and C and

2The results are evaluated by the convergence measure (CM) metric [18].
CM assesses the convergence of a solution set by calculating the average
normalized Euclidean distance from the set to the Pareto front.

3For minimization MOPs, performing better means having a lower value;
for maximization MOPs, it means having a higher value.

Fig. 2. An illustration of shift-based density estimation in a bi-objective
minimization scenario. To estimate the density of individual A, individuals B,
C, and D are shifted to B′, C′, and D′, respectively.

(a) Good convergence and diversity (b) Poor convergence, good diversity

(c) Good convergence, poor diversity (d) Poor convergence and diversity

Fig. 3. Shift-based density estimation for four situations of an individual
(A) in the population for a minimization MOP.

D are shifted to C′(11, 17) and D′(18, 17), respectively, since

C2 = 6 < A2 = 17 and D2 = 2 < A2 = 17.

Clearly, individual A, which has a low similarity degree

with other individuals in the original population, has two

close neighbors in its new density estimation, and thus will

be assigned a high density value. This occurs because there

are two individuals B and C performing significantly better

than A in terms of convergence (i.e., being slightly inferior

to A in one or some objectives but greatly superior to A

in the others). These individuals contribute large similarity

degrees to A in its density estimation since the value on their

advantageous objective(s) becomes equal to that of A. This

means that the individuals which have no clear advantage over

other individuals in the population will have a high density

value in SDE.

In order to further understand SDE, we next consider four

typical situations of the distribution of an individual in the

population for a minimum MOP (i.e., performing well in

convergence and diversity, performing well in diversity but

poorly in convergence, performing well in convergence but

poorly in diversity, and performing poorly in both convergence

and diversity) in Fig. 3.

As can be seen from Fig. 3, only the individual with both
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(a) Crowding Distance (b) k-th Nearest Neighbor (c) Grid Crowding Degree

Fig. 4. An illustration of the three density estimators in traditional and shift-based density estimation, where individual A is to be estimated in the population.

good convergence and good diversity has a low crowding

degree in SDE. The individual with either poor convergence

or poor diversity has some close neighbors, and the individual

with both poor convergence and poor diversity has the highest

crowding degree in the four situations. In addition, note that

the individuals with poor diversity (e.g., see Fig. 3(c) and

Fig. 3(d)) are always located in crowded regions no matter

how well they perform in terms of convergence, which means

that SDE can maintain the distribution characteristic of in-

dividuals in the population while reflecting the convergence

difference between individuals.

C. Integrating SDE into NSGA-II, SPEA2, and PESA-II

In this section, we apply SDE to three classical Pareto-based

EMO algorithms: NSGA-II [13], SPEA2 [81], and PESA-II

[11]. NSGA-II is known for its nondominated sorting and

crowding distance-based fitness assignment strategies. SPEA2

defines a strength value for each individual, and combines it

with the k-th nearest neighbor method to distinguish individ-

uals in the population. The main characteristic of PESA-II is

its grid-based diversity maintenance mechanism, which is used

in both the mating and environmental selection schemes. The

density estimators (i.e., the crowding distance, k-th nearest

neighbor, and grid crowding degree) in the three algorithms

are representative and are briefly described below.

To estimate the density of an individual in the population,

NSGA-II considers its two closest points on either side along

each objective. The crowding distance is defined as the average

distance between the two points on each objective. The nearest

neighbor technique used in SPEA2 takes the distance of an

individual to its k-th nearest neighbor into account to estimate

the density in its neighborhood. This density estimator is

used in both the fitness assignment and archive truncation

procedures to maintain diversity. PESA-II uses an adaptive

grid technique to define the neighborhood of individuals. The

density around an individual is estimated by the number of

individuals in its hyperbox in the grid. Figure 4 illustrates the

three density estimators used in TDE and SDE.

It is necessary to point out that since the crowding distance

mechanism in NSGA-II separately estimates an individual’s

crowding degree on each objective, individuals may be over-

lapping on a single axis of the objective space in SDE. For

example, when estimating the shift-based crowding degree

of A on the f1 axis in Fig. 4(a), individuals A, B, and

C are overlapping. Here, we keep the original order before

individuals are shifted. That is, on the f1 axis, individual C

is still viewed as the left neighbor of A, and individual D

is viewed as its right neighbor in the shift-based crowding

distance calculation of A. In this case, the crowding distance

of A in TDE (shown with a dashed line) is changed to the

average distance between A and the shifted C and D in SDE

(shown with a solid line).

In Fig. 4(b), C and B are the two nearest neighbors of

A in the original population (shown with a dashed arrow),

but, to estimate the density of A in SDE, the two nearest

individuals, the shifted D and C, are considered (shown with

a solid arrow). Concerning Fig. 4(c), there is no individual in

the neighborhood of A in TDE, but in SDE, the shifted D is

the neighbor of A, thereby contributing to its grid crowding

degree.

Overall, although the implementation of the three density

estimators is totally different, the individuals (like individual

D in Fig. 4) which do not perform significantly worse than

the considered individual will contribute a lot to its density

estimation in SDE.

In the next two sections, we will empirically investigate the

proposed method, trying to answer the following questions—

Can SDE improve the performance of all the three Pareto-

based algorithms? Among these three density estimators,

which one is the most suitable for SDE in many-objective

optimization? How would the Pareto-based algorithms, when

integrated with SDE, compare with other state-of-the-art algo-

rithms designed specially for many-objective problems?

III. PERFORMANCE VERIFICATION OF SDE

In this section, we validate SDE by integrating it to

the aforementioned three Pareto-based algorithms, which re-

sults in three new EMO algorithms, denoted NSGA-II+SDE,

SPEA2+SDE, and PESA-II+SDE, respectively. We first sep-

arately compare the three new algorithms with their corre-

sponding original version. Thereafter, we put them together

to further compare them and investigate the reason for their

behavior in many-objective optimization.

Two well-defined test problem suites, the DTLZ [20] and

the multiobjective travelling salesman problem (TSP) [12], are

selected in this study. DTLZ is a continuous problem suite

that can be scaled to any number of objectives and decision

variables, commonly used in many-objective optimization.
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TABLE I
PROPERTIES OF TEST PROBLEMS AND PARAMETER SETTING IN PESA-II, PESA-II+SDE, AND ϵ-MOEA. THE SETTINGS OF div AND ϵ CORRESPOND TO

THE DIFFERENT NUMBERS OF OBJECTIVES OF A PROBLEM. M AND N DENOTE THE NUMBER OF OBJECTIVES AND DECISION VARIABLES, RESPECTIVELY

Problem M N Properties div in PESA-II div in PESA-II+SDE ϵ in ϵ-MOEA

DTLZ1 4, 6, 10 M+4 Linear, Multimodal 5, 40, 20 15, 12, 7 0.04, 0.054, 0.052

DTLZ2 4, 6, 10 M+9 Concave 5, 6, 7 11, 6, 4 0.105, 0.2, 0.275

DTLZ3 4, 6, 10 M+9 Concave, Multimodal 40, 40, 40 18, 16, 6 0.105, 0.2, 0.8

DTLZ4 4, 6, 10 M+9 Concave, Biased 6, 7, 10 13, 5, 4 0.105, 0.2, 0.275

DTLZ5 4, 6, 10 M+9 Concave, Degenerate 11, 7, 5 30, 20, 10 0.032, 0.11, 0.14

DTLZ6 4, 6, 10 M+9 Concave, Degenerate, Biased 9, 6, 6 23, 11, 5 0.095, 0.732, 1.48

DTLZ7 4, 6, 10 M+19 Mixed, Disconnected, Multimodal 7, 5, 3 13, 11, 5 0.09, 0.26, 0.73

TSP(–0.2) 4, 6, 10 30 Convex, Negative correlation 9, 6, 4 17, 9, 5 0.9, 1.9, 4.3

TSP(0) 4, 6, 10 30 Convex, Zero correlation 9, 5, 7 18, 10, 5 0.65, 1.3, 3.15

TSP(0.2) 4, 6, 10 30 Convex, Positive correlation 8, 5, 3 19, 10, 5 0.42, 0.85, 2.26

Consisting of problems with various characteristics (such as

having linear, concave, nonconcave, multimodal, disconnected,

biased, and degenerate Pareto fronts), the DTLZ suite is used

to challenge different abilities of an algorithm. A detailed

description of the DTLZ suite can be found in [20]

The multiobjective TSP is a typical combinatorial optimiza-

tion problem and can be stated as follows [12]: given a network

L = (V,C), where V = {v1, v2, ..., vN} is a set of N nodes

and C = {ck : k ∈ {1, 2, ...,M}} is a set of M cost matrices

between nodes (ck : V ×V ), we need to determine the Pareto

optimal set of Hamiltonian cycles that minimize each of the

M cost objectives. The M matrices, according to [12], can be

constructed as follows.

The matrix c1 is first generated by assigning each distinct

pair of nodes with a random number between 0 and 1. Then

the matrix ck+1 is generated according to the matrix ck:

ck+1(i, j) = TSPcp× ck(i, j) + (1− TSPcp)× rand (4)

where ck(i, j) denotes the cost from node i to node j in matrix

ck, rand is a function to generate a uniform random number

in [0, 1], and TSPcp ∈ (−1, 1) is a simple TSP “correlation

parameter”. When TSPcp < 0, TSPcp = 0, or TSPcp > 0,

it introduces negative, zero, or positive inter-objective correla-

tions, respectively. In our study, TSPcp is assigned to −0.2,

0, and 0.2 to represent different characteristics of the problem.

The characteristics of all the tested problems are summarized

in Table I.

To compare the performance of the tested algorithms,

the inverted generational distance (IGD) metric [6], [79] is

selected since it can provide a combined information about

convergence and diversity of a solution set. IGD measures the

average distance from the points in the Pareto front to their

closest solution in the obtained set. Mathematically, let P ∗

be a reference set representing the Pareto front, and the IGD

value from P ∗ to the obtained solution set P is defined as:

IGD(P ) =
∑

z∈P∗

d(z, P )

/

|P ∗| (5)

where |P ∗| denotes the size of P ∗ (i.e., the number of points

in P ∗) and d(z, P ) is the minimum Euclidean distance from z
to P . A low IGD value is preferable, which indicates that the

obtained solution set is close to the Pareto front as well as has

a good distribution. In the calculation of IGD, the knowledge

of the Pareto front of a test problem is required. Here,

IGD is used to evaluate algorithms on the DTLZ problems

since their optimal fronts are known. For the problem whose

Pareto front is unknown (i.e., the multiobjective TSP), another

comprehensive performance metric, hypervolume (HV) [82],

is considered.

The HV metric is a very popular quality metric due to its

good properties. HV calculates the volume of the objective

space between the obtained solution set and a reference point,

and a larger value is preferable. In the calculation of HV, a

crucial issue is the choice of the reference point. Choosing

a reference point that is slightly larger than the worst value

of each objective on the Pareto front has been found to be

suitable since the effects of convergence and diversity of the

set can be well balanced [3], [42]. Since the range of the

Pareto front is unknown in TSP, we regard the point with 22

for each objective (i.e., r = 22M ) as the reference point, given

that it is slightly larger than the worst value of the mixed

nondominated solution set constructed by all the obtained

solution sets. In addition, since the exact calculation of the

HV metric is infeasible for a solution set with 10 objectives,

we approximately estimate the HV result of a solution set

by the Monte Carlo sampling method used in [4]. Here, 107

sampling points are used to ensure accuracy [4].

The algorithm PESA-II requires a grid division parameter

(div). Due to the integration of SDE, the optimal setting for

div in PESA-II+SDE is different from that in PESA-II. The

settings of div in Table I can enable the two algorithms sep-

arately to achieve the best performance on the test instances.

All the results presented in this paper are obtained by

executing 30 independent runs of each algorithm on each

problem with the termination criterion of 100,000 evaluations.

Following the practice in [42], the population size was set

to 200 for the tested algorithms, and the archive was also

maintained with the same size if required. A crossover proba-

bility pc = 1.0 and a mutation probability pm = 1/N (where

N denotes the number of decision variables) were used. For

the continuous problem DTLZ, the simulated binary crossover

(SBX) and polynomial mutation with both distribution indexes

20 [16] were used as crossover and mutation operators. For

the combinatorial TSP, the order crossover (OX) and inversion

mutation were used according to [63].

A. NSGA-II vs NSGA-II+SDE

Table II shows the results of the two algorithms on the

DTLZ and TSP problems regarding the mean and standard
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TABLE II
PERFORMANCE COMPARISON BETWEEN NSGA-II AND NSGA-II+SDE REGARDING THE MEAN AND STANDARD DEVIATION (SD) VALUES ON THE

DTLZ AND TSP TEST SUITES, WHERE IGD WAS USED FOR DTLZ AND HV FOR TSP. THE BETTER RESULT REGARDING THE MEAN FOR EACH PROBLEM

INSTANCE IS HIGHLIGHTED IN BOLDFACE

Problem
4-objective 6-objective 10-objective

NSGA-II NSGA-II+SDE NSGA-II NSGA-II+SDE NSGA-II NSGA-II+SDE

DTLZ1 8.894E–2 (6.6E–2) 5.294E–2 (6.9E–3)† 2.141E+1 (1.9E+1) 1.512E+1 (7.8E+0) 4.471E+1 (3.3E+1) 4.801E+1 (2.2E+1)

DTLZ2 1.199E–1 (5.0E–3) 1.168E–1 (4.2E–3)† 1.104E+0 (1.7E–1) 6.160E–1 (8.0E–2)† 2.112E+0 (1.5E–1) 1.907E+0 (1.8E–1)†

DTLZ3 5.099E+0 (2.8E+0) 4.234E+0 (2.2E+0) 2.668E+2 (9.1E+1) 1.593E+2 (3.9E+1)† 5.928E+2 (1.9E+2) 3.802E+2 (1.4E+2)†

DTLZ4 1.096E–1 (3.6E–3) 1.098E–1 (3.1E–3) 7.038E–1 (1.8E–1) 3.388E–1 (3.9E–2)† 2.357E+0 (1.8E–1) 2.275E+0 (2.9E–2)†

DTLZ5 2.964E–2 (5.1E–3) 3.650E–2 (1.0E–2)† 1.030E–1 (3.6E–2) 1.503E–1 (3.4E–2)† 1.887E–1 (1.0E–1) 3.880E–1 (1.7E–1)†

DTLZ6 3.367E+0 (1.9E–1) 2.867E+0 (2.4E–1)† 8.346E+0 (3.7E–1) 7.772E+0 (4.5E–1)† 9.407E+0 (3.0E–1) 9.701E+0 (2.8E–1)†

DTLZ7 1.626E–1 (6.1E–3) 1.493E–1 (4.7E–3)† 5.676E–1 (1.7E–2) 5.227E–1 (1.9E–2)† 2.288E+0 (6.1E–1) 2.160E+0 (5.6E–1)

TSP(–0.2) 4.786E+4 (2.2E+3) 6.377E+4 (4.4E+3)† 2.861E+6 (4.7E+5) 4.274E+6 (5.2E+5)† 1.040E+10 (1.8E+09) 1.582E+10 (2.3E+09)†

TSP(0) 5.488E+4 (3.4E+3) 6.866E+4 (3.9E+3)† 4.041E+6 (4.4E+5) 5.669E+6 (6.0E+5)† 1.801E+10 (2.6E+09) 2.496E+10 (6.4E+09)†

TSP(0.2) 6.162E+4 (3.1E+3) 6.917E+4 (2.4E+3)† 5.379E+6 (7.0E+5) 7.580E+6 (8.0E+5)† 2.545E+10 (4.5E+09) 3.622E+10 (8.5E+09)†

“†” indicates that the two results are significantly different at a 0.05 level by the Wilcoxon’s rank sum test.
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Fig. 5. Result comparison between NSGA-II and NSGA-II+SDE on the 10-
objective DTLZ2. The final solutions of the algorithms are shown regarding
the two-dimensional objective space f1 and f2.

deviation (SD) values, where IGD and HV were used for the

DTLZ and TSP problems, respectively. The better result re-

garding the mean for each problem is highlighted in boldface.

Moreover, in order to have statistically sound conclusions, the

Wilcoxon’s rank sum test [83] at a 0.05 significance level

was adopted to test the significance of the differences between

assessment results obtained by two competing algorithms.

As can be seen from Table II, the performance of NSGA-II

has a clear improvement when SDE is applied to the algorithm,

achieving a better value in 24 out of all 30 test instances.

Also, for most of the problems on which NSGA-II+SDE

outperforms NSGA-II, the results have statistical significance

(21 out of the 24 problems). Especially, for the TSP problem

suite, NSGA-II+SDE shows a significant advantage over its

competitor, with statistical significance for all 9 test instances.

Despite a clear improvement obtained, NSGA-II+SDE actu-

ally struggles to cope with many-objective optimization prob-

lems. Figure 5 plots the final solutions of the two algorithms

in a single run regarding the two-dimensional objective space

f1 and f2 of the 10-objective DTLZ2. Similar plots can be

obtained for other objectives of the problem. This particular

run is associated with the result which is the closest to the

mean IGD value. Clearly, although NSGA-II+SDE tends to

perform slightly better than NSGA-II in terms of diversity,

both algorithms fail to approach the Pareto front of the

4 8 12 16 20 24
4

8

12

16

20

24

 

 

 SPEA2
 SPEA2+SDE

f2

f1

Fig. 6. Result comparison between SPEA2 and SPEA2+SDE on the 10-
objective TSP with TSPcp = 0. The final solutions of the algorithms are
shown regarding the two-dimensional objective space f1 and f2.

problem, given that the range of the optimal front is (0, 1)
for each objective. A detailed explanation of the failure of

NSGA-II+SDE will be given in Sect. III-D.

B. SPEA2 vs SPEA2+SDE

Table III shows the comparative results of the two algo-

rithms on the DTLZ and TSP test problems. In contrast to

the slight difference between NSGA-II+SDE and NSGA-II,

SPEA2+SDE significantly outperforms the original SPEA2.

SPEA2+SDE achieves a better value for all the 30 test

instances except the 4-objective DTLZ2, and with statistical

significance on 28 instances. Moreover, the advantage of

SPEA2+SDE becomes clearer as the number of objectives

increases—more than an order of magnitude advantage of

IGD is obtained for most of the 10-objective instances (i.e.,

DTLZ1, DTLZ3, DTLZ5, DTLZ6, and three TSP problems

with different conflict degrees among the objectives). Figure 6

shows the final solutions of a single run of SPEA2 and

SPEA2+SDE regarding the objective space f1 and f2 of the

10-objective TSP with TSPcp = 0. It is clear from the figure

that the convergence performance of SPEA2 is significantly

improved when SDE is applied to the algorithm.
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TABLE III
PERFORMANCE COMPARISON BETWEEN SPEA2 AND SPEA2+SDE REGARDING THE MEAN AND STANDARD DEVIATION (SD) VALUES ON THE DTLZ

AND TSP TEST SUITES, WHERE IGD WAS USED FOR DTLZ AND HV FOR TSP. THE BETTER RESULT REGARDING THE MEAN FOR EACH PROBLEM

INSTANCE IS HIGHLIGHTED IN BOLDFACE

Problem
4-objective 6-objective 10-objective

SPEA2 SPEA2 +SDE SPEA2 SPEA2 +SDE SPEA2 SPEA2 +SDE

DTLZ1 7.567E–2 (6.0E–2) 3.258E–2 (3.3E–4)† 8.026E+1 (2.1E+1) 6.223E–2 (5.0E–4)† 1.916E+2 (3.2E+1) 9.861E–2 (1.3E–3)†

DTLZ2 1.074E–1 (4.3E–3) 1.121E–1 (2.1E–3)† 1.150E+0 (8.5E–2) 2.703E–1 (4.0E–3)† 2.457E+0 (1.7E–1) 4.906E–1 (4.8E–3)†

DTLZ3 7.200E+0 (6.1E+0) 1.133E–1 (2.8E–3)† 5.955E+2 (1.1E+2) 2.703E–1 (3.3E–3)† 1.526E+3 (1.5E+2) 4.947E–1 (8.1E–3)†

DTLZ4 1.242E–1 (1.2E–1) 1.129E–1 (2.3E–3)† 5.163E–1 (1.1E–1) 2.722E–1 (2.9E–2)† 2.485E+0 (2.6E–2) 4.701E–1 (6.0E–3)†

DTLZ5 8.516E–2 (1.3E–2) 2.431E–2 (2.2E–3)† 9.917E–1 (2.1E–1) 8.052E–2 (1.3E–2)† 2.261E+0 (3.4E–1) 1.375E–1 (3.0E–2)†

DTLZ6 2.444E+0 (1.8E–1) 7.879E–2 (1.8E–2)† 9.781E+0 (4.4E–2) 1.470E–1 (1.9E–2)† 9.993E+0 (1.5E–2) 2.784E–1 (2.2E–2)†

DTLZ7 1.336E–1 (2.7E–3) 1.326E–1 (5.0E–3) 7.059E–1 (2.9E–2) 4.217E–1 (8.5E–3)† 1.618E+0 (9.2E–2) 8.868E–1 (4.7E–3)†

TSP(–0.2) 6.973E+4 (2.4E+3) 9.667E+4 (1.7E+3)† 4.946E+6 (4.2E+5) 1.825E+7 (5.1E+5)† 1.493E+10 (2.2E+09) 3.669E+11 (1.6E+10)†

TSP(0) 6.735E+4 (2.4E+3) 8.357E+4 (1.7E+3)† 5.803E+6 (3.3E+5) 1.550E+7 (3.5E+5)† 1.683E+10 (2.3E+09) 2.984E+11 (9.8E+09)†

TSP(0.2) 6.741E+4 (2.1E+3) 7.493E+4 (1.7E+3)† 7.102E+6 (4.0E+5) 1.357E+7 (3.1E+5)† 2.423E+10 (4.0E+09) 2.481E+11 (9.1E+09)†

“†” indicates that the two results are significantly different at a 0.05 level by the Wilcoxon’s rank sum test.

TABLE IV
PERFORMANCE COMPARISON BETWEEN PESA-II AND PESA-II+SDE REGARDING THE MEAN AND STANDARD DEVIATION (SD) VALUES ON THE DTLZ

AND TSP TEST SUITES, WHERE IGD WAS USED FOR DTLZ AND HV FOR TSP. THE BETTER RESULT REGARDING THE MEAN FOR EACH PROBLEM

INSTANCE IS HIGHLIGHTED IN BOLDFACE

Problem
4-objective 6-objective 10-objective

PESA-II PESA-II+SDE PESA-II PESA-II+SDE PESA-II PESA-II+SDE

DTLZ1 5.740E–1 (4.5E–1) 3.729E–2 (3.4E–3)† 1.341E+1 (5.5E+0) 8.920E–2 (1.1E–2)† 2.802E+1 (8.7E+0) 1.552E–1 (4.4E–2)†

DTLZ2 1.227E–1 (6.9E–3) 1.113E–1 (5.3E–3)† 2.857E–1 (1.1E–2) 2.249E–1 (3.5E–3)† 5.671E–1 (3.1E–2) 3.756E–1 (3.2E–3)†

DTLZ3 7.593E+0 (4.4E+0) 2.365E–1 (2.5E–1)† 1.303E+2 (3.8E+1) 4.464E–1 (2.9E–1)† 3.037E+2 (5.3E+1) 1.222E+0 (1.4E+0)†

DTLZ4 1.192E–1 (7.8E–3) 2.752E–1 (2.8E–1) 2.969E–1 (6.2E–3) 2.579E–1 (6.4E–2)† 6.929E–1 (4.3E–2) 3.955E–1 (1.8E–2)†

DTLZ5 1.008E–1 (1.5E–2) 4.805E–2 (6.5E–3)† 3.599E–1 (6.3E–2) 3.283E–1 (7.4E–2) 5.202E–1 (1.1E–1) 4.087E–1 (7.0E–2)†

DTLZ6 1.797E+0 (1.1E–1) 1.510E–1 (2.7E–2)† 6.689E+0 (2.4E–1) 5.516E–1 (3.2E–2)† 8.690E+0 (3.7E–1) 8.679E–1 (1.2E–1)†

DTLZ7 1.415E–1 (6.5E–3) 1.352E–1 (4.8E–3)† 6.164E–1 (6.5E–2) 4.147E–1 (6.9E–2)† 7.522E+0 (1.7E+0) 1.259E+0 (3.6E–1)†

TSP(–0.2) 7.406E+4 (4.1E+3) 8.984E+4 (2.3E+3)† 4.026E+6 (3.9E+5) 1.533E+7 (6.4E+5)† 8.564E+09 (8.8E+08) 1.855E+11 (2.6E+10)†

TSP(0) 7.177E+4 (2.3E+3) 7.883E+4 (1.8E+3)† 5.782E+6 (5.0E+5) 1.354E+7 (5.5E+5)† 9.186E+09 (1.1E+09) 2.022E+11 (1.5E+10)†

TSP(0.2) 6.867E+4 (2.0E+3) 7.160E+4 (1.3E+3)† 9.115E+6 (8.1E+5) 1.249E+7 (3.8E+5)† 1.286E+10 (2.1E+09) 1.897E+11 (7.8E+09)†

“†” indicates that the two results are significantly different at a 0.05 level by the Wilcoxon’s rank sum test.

C. PESA-II vs PESA-II+SDE

Using a grid technique to maintain diversity, PESA-II has

been found to outperform NSGA-II and SPEA2 in many-

objective optimization [46]. In spite of this, SDE can signif-

icantly enhance the performance of PESA-II. Table IV gives

the comparative results of PESA-II and PESA-II+SDE on the

DTLZ and TSP test problems. PESA-II+SDE achieves a better

assessment result than the original PESA-II on all the 30

instances except the 4-objective DTLZ4, and with statistical

significance for 28 instances. Especially, on some MOPs where

big obstacles exist for an algorithm to converge into the Pareto

front, such as DTLZ1, DTLZ3, and DTLZ6, more than an

order of magnitude advantage is achieved for all the 4, 6, and

10-objective instances. Figure 7 plots the final solutions of a

single run of the two algorithms regarding the objective space

f1 and f2 of the 10-objective DTLZ6. A clear difference in

terms of convergence between the two solution sets can be

observed in the figure.

D. Comparison among NSGA-II+SDE, SPEA2+SDE, and

PESA-II+SDE

Previous studies presented different behaviors of the three

Pareto-based algorithms when SDE is integrated to them in

many-objective optimization. This section compares the three

new algorithms and tries to investigate: 1) why they behave

differently, and 2) which density estimator is more suitable
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Fig. 7. Result comparison between PESA-II and PESA-II+SDE on the 10-
objective DTLZ6. The final solutions of the algorithms are shown regarding
the two-dimensional objective space f1 and f2.

for SDE. Table V gives the comparative results of the three

algorithms on the DTLZ and TSP test problems.

As can be seen from Table V, SPEA2+SDE and

PESA-II+SDE significantly outperforms NSGA-II+SDE.

SPEA2+SDE outperforms NSGA-II+SDE for all test

instances except for the 4-objective DTLZ4, and PESA-II

outperforms NSGA-II+SDE in 26 out of all 30 instances.

Especially, for the 6- and 10-objective DTLZ1 and DTLZ3

problems, the advantage of the first two algorithms over

NSGA-II+SDE is more than two orders of magnitude. On
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TABLE V
PERFORMANCE COMPARISON (MEAN AND SD) OF NSGA-II+SDE,
SPEA2+SDE, AND PESA-II+SDE ON THE DTLZ AND TSP TEST

SUITES, WHERE IGD WAS USED FOR DTLZ AND HV FOR TSP. THE BEST

RESULT REGARDING THE MEAN VALUE AMONG THE THREE ALGORITHMS

FOR EACH PROBLEM INSTANCE IS HIGHLIGHTED IN BOLDFACE

Problem Obj. NSGA-II+SDE SPEA2+SDE PESA-II+SDE

DTLZ1

4 5.294E–2 (6.9E–2)† 3.258E–2 (3.3E–4)† 3.729E–2 (3.4E–3)†

6 1.512E+1 (7.8E+0)† 6.223E–2 (5.0E–4)† 8.920E–2 (1.1E–2)†

10 4.801E+1 (2.2E+1)† 9.861E–2 (1.3E–3)† 1.552E–1 (4.4E–2)†

DTLZ2

4 1.168E–1 (4.2E–3)† 1.121E–1 (2.1E–3) 1.113E–1 (5.3E–3)†

6 6.160E–1 (8.0E–2)† 2.703E–1 (4.0E–3)† 2.249E–1 (3.5E–3)†

10 1.907E+0 (1.8E–1)† 4.906E–1 (4.8E–3)† 3.756E–1 (3.2E–3)†

DTLZ3

4 4.234E+0 (2.2E+0)† 1.133E–1 (2.8E–3)† 2.365E–1 (2.5E–1)†

6 1.593E+2 (3.9E+1)† 2.703E–1 (3.3E–3)† 4.464E–1 (2.9E–1)†

10 3.802E+2 (1.4E+2)† 4.947E–1 (8.1E–3)† 1.222E+0 (1.4E+0)†

DTLZ4

4 1.098E–1 (3.1E–3)† 1.129E–1 (2.3E–3)† 2.752E–1 (2.8E–1)

6 3.388E–1 (3.9E–2)† 2.722E–1 (2.9E–2)† 2.579E–1 (6.4E–2)†

10 2.275E+0 (2.9E–2)† 4.701E–1 (6.0E–3)† 3.955E–1 (1.8E–2)†

DTLZ5

4 3.650E–2 (1.0E–2)† 2.431E–2 (2.2E–3)† 4.805E–2 (6.5E–3)†

6 1.503E–1 (3.4E–2)† 8.052E–2 (1.3E–2)† 3.283E–1 (7.4E–2)†

10 3.880E–1 (1.7E–1)† 1.375E–1 (3.0E–2)† 4.087E–1 (7.0E–2)

DTLZ6

4 2.867E+0 (2.4E–1)† 7.879E–2 (1.8E–2)† 1.510E–1 (2.7E–2)†

6 7.772E+0 (4.5E–1)† 1.470E–1 (1.9E–2)† 5.516E–1 (3.2E–2)†

10 9.701E+0 (2.8E–1)† 2.784E–1 (2.2E–2)† 8.679E–1 (1.2E–1)†

DTLZ7

4 1.493E–1 (4.7E–3)† 1.326E–1 (5.0E–3) 1.352E–1 (4.8E–3)†

6 5.227E–1 (1.9E–2)† 4.217E–1 (8.5E–3)† 4.147E–1 (6.9E–2)†

10 2.160E+0 (5.6E–1)† 8.868E–1 (4.7E–3)† 1.259E+0 (3.6E–1)†

TSP(–0.2)

4 6.377E+4 (4.4E+3)† 9.667E+4 (1.7E+3)† 8.984E+4 (2.3E+3)†

6 4.274E+6 (5.2E+5)† 1.825E+7 (5.1E+5)† 1.533E+7 (6.4E+5)†

10 1.582E+10 (2.3E+09)†3.669E+11 (1.6E+10)†1.855E+11 (2.6E+10)†

TSP(0)

4 6.866E+4 (3.9E+3)† 8.357E+4 (1.7E+3)† 7.883E+4 (1.8E+3)†

6 5.669E+6 (6.0E+5)† 1.550E+7 (3.5E+5)† 1.354E+7 (5.5E+5)†

10 2.496E+10 (6.4E+09)†2.984E+11 (9.8E+09)†2.022E+11 (1.5E+10)†

TSP(0.2)

4 6.917E+4 (2.4E+3)† 7.493E+4 (1.7E+3)† 7.160E+4 (1.3E+3)†

6 7.580E+6 (8.0E+5)† 1.357E+7 (3.1E+5)† 1.249E+7 (3.8E+5)†

10 3.622E+10 (8.5E+09)†2.481E+11 (9.1E+09)†1.897E+11 (7.8E+09)†

“†” indicates that the result of the considered algorithm is significantly different from

that of its right algorithm (i.e., NSGA-II+SDE vs SPEA2+SDE, SPEA2+SDE vs PESA-

II+SDE, and PESA-II+SDE vs NSGA-II+SDE) at a 0.05 level by the Wilcoxon’s rank

sum test.

the other hand, considering the results between SPEA2+SDE

and PESA-II+SDE, the performance difference is also clear.

The former has an advantage over the latter in 24 out of the

30 instances. More specifically, SPEA2+SDE achieves better

results on all the DTLZ1, DTLZ3, DTLZ5, DTLZ6, and

TSP instances as well as on most of the DTLZ7 instances,

while PESA-II+SDE performs better on the three instances of

DTLZ2, 6- and 10-objective DTLZ4, and 6-objective DTLZ7.

In addition, the difference among three algorithms has

statistical significance on most of all the 30 test instances: 30

for NSGA-II+SDE versus SPEA2+SDE, 28 for SPEA2+SDE

versus PESA-II+SDE, and 28 for PESA-II+SDE versus

NSGA-II+SDE.

Figure 8 shows the final solutions of the three algorithms

on the 10-objective DTLZ3 by parallel coordinates based on

the single run where the result is the closest to the mean

IGD value. The DTLZ3 test problem, by introducing a vast

number of local optima (310−1), poses a stiff challenge for an

algorithm to search towards the global optimal front, especially

when the number of objectives becomes large. The global

optimal front of the problem is a spherical front satisfying

f2
1 + f2

2 + ... + f2
M = 1 in the range f1, f2, ..., fM ∈ [0, 1].

For this problem, NSGA-II+SDE fails to approach the Pareto

front, with the upper boundary of its solutions exceeding 1600

on each objective, as shown in Fig. 8. Most of the solutions of

PESA-II+SDE can converge into the Pareto front, but fail to

cover the whole optimal range. Only SPEA2+SDE can achieve

a good balance between convergence and diversity, having a

spread of solutions over fi ∈ [0, 1] for all the 10 objectives.

Due to the ineffectiveness of the Pareto dominance re-

lation in distinguishing individuals for many-objective opti-

mization, the performance differences among NSGA-II+SDE,

SPEA2+SDE, and PESA-II+SDE can be attributed to the dif-

ferent behaviors of their density estimators (i.e., the crowding

distance, k-th nearest neighbor, and grid crowding degree) in

SDE. In the following, we will investigate them in detail.

Recall that to estimate the density of an individual, the

crowding distance estimator considers its two closest points

on either side along each objective. Due to this separate

consideration of the neighbors on each objective, an incorrect

estimation of an individual’s density may be obtained when

the number of objectives is larger than two4. This phenomenon

has been reported in Kukkonen and Deb’s study [52]. In this

case, an individual which is far from other individuals in the

population may be assigned a low (poor) crowding distance,

leading to an incorrect estimation in SDE.

Consider a tri-objective scenario where a population is com-

posed of four nondominated individuals A(1, 1, 1), B(0, 10, 2),
C(2, 0, 10), and D(10, 2, 0), as shown in Fig. 9 by parallel

coordinates. Clearly, individual A has a low similar degree

with the other three individuals and performs significantly

better than them in terms of convergence. However, A is

assigned a poor crowding distance in both TDE and SDE.

In TDE, A has two close neighbors on each objective (i.e.,

B and C on f1, C and D on f2, and D and B on f3). In

SDE, the upper neighbor of A on each objective remains

unchanged, while the lower neighbor moves to the position

of A. Thus, the crowding distance of A in SDE is CD(A) =
((Af1 − Cf1) + (Af2 − Df2) + (Af3 − Bf3))/3 = 1, which is

clearly worse than CD(B) = CD(C) = CD(D) = 3.

Unlike the crowding distance, the k-th nearest neighbor

and grid crowding degree estimators consider an individual as

a whole, thus avoiding the above misjudgment. The inferior

performance of PESA-II+SDE against SPEA2+SDE may be

due to the coarseness of the grid-based density estimator. As

pointed out in [29], the judgement of density of an individual

in grid depends partly on the size of a hyperbox and the

position of the hyperbox where the individual is located.

As an explanation for the problem of the grid crowding de-

gree, Fig. 10 shows a bi-objective nondominated set consisting

of individuals A, B, C, D, and E. Individual D performs worse

than C and E in terms of convergence, thus having two very

close neighbors G and H in SDE. However, since they are

distributed in different hyperboxes, the grid crowding degree

of D is still equal to one. In contrast, individual C, which has

a relatively distant neighbor F in its hyperbox, is assigned a

higher grid crowding degree (2). Concerning the k-th nearest

neighbor in SPEA2+SDE, it is clear that D has a higher density

4For a bi-objective problem, the crowding distance can correctly estimate
the density of an individual in the nondominated set since the property of
the Pareto dominance relation (which implies a monotonic relation between
individuals in the objective space) causes individuals to come close together
along both the objectives.
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Fig. 8. The final solution set of the three algorithms on the ten-objective DTLZ3, shown by parallel coordinates.
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Fig. 9. An illustration of the failure of the crowding distance in TDE
and SDE on a tri-objective scenario, showed by parallel coordinates. In
a nondominated set consisting of A(1, 1, 1), B(0, 10, 2), C(2, 0, 10), and
D(10, 2, 0), individual A performs well in terms of convergence and diversity.
But A will be assigned a poor density value in both TDE and SDE since the
crowding distance separately considers its neighbors on each objective.

Fig. 10. An illustration of the inaccuracy of the grid crowding degree. D
has two very close neighbors G and H in SDE, but its grid crowding degree
is smaller than that of C which has a relatively distant neighbor F.

value than C since the Euclidean distance between D and its

nearest neighbor G is smaller than that between C and its

nearest neighbor F.

Overall, the performance difference among the algorithms is

due to the difference in the degree of accuracy of their density

estimators. A density estimator will be well suitable in SDE as

long as it can accurately estimate the density of individuals.

In the next section, we will test the competitiveness of the

proposed method to existing state-of-the-art methods in many-

objective optimization by comparing SPEA2+SDE with five

representative algorithms taken from different branches of

solving many-objective problems.

IV. COMPARISON WITH STATE-OF-THE-ART ALGORITHMS

We consider the following five EMO algorithms to verify

the proposed method.

• MOEA/D [79]. As a representative algorithm developed

recently, MOEA/D is an aggregation-based algorithm.

The high search ability of MOEA/D on both multi- and

many-objective problems has already been demonstrated

in the literature [37], [55]. Two aggregation functions,

Tchebycheff and penalty-based boundary intersection

(PBI), can be used in the algorithm, and each of them

works well on different classes of problems. Here, the

PBI function is selected since MOEA/D with PBI has

been found to be more competitive when solving prob-

lems with a high-dimensional objective space [16], [17].

• MSOPS [32]. MSOPS, based on converting a multiobjec-

tive problem into a number of single-objective problems

by a predefined set of well-distributed weight vectors,

also belongs to the class of aggregation-based approaches.

Unlike MOEA/D where an individual corresponds to only

one weight vector, MSOPS specifies an individual with a

number of weight vectors. MSOPS is a popular algorithm

to solve many-objective problems since it can achieve a

good balance between convergence and diversity [71].

• HypE [4]. HypE is an indicator-based algorithm which

uses the hypervolume metric to guide the search for

many-objective optimization. HypE adopts a Monte Carlo

simulation to approximate the exact hypervolume value,

significantly reducing the time cost of the HV calculation

and enabling hypervolume-based search to be easily

applied on many-objective optimization, even when the

number of objectives reaches 50 [4].

• ϵ-MOEA [19]. ϵ-MOEA is a steady-state algorithm using

ϵ-dominance to strengthen the selection pressure towards

the Pareto front. Dividing the objective space into many

hyperboxes, ϵ-MOEA assigns each hyperbox at most a

single solution based on ϵ-dominance and the distance

from solutions to the utopia point in the hyperbox.

Although not specifically designed for many-objective

optimization, ϵ-MOEA has been found to perform well

on many-objective problems [28], [71].

• DMO [1]. Like SDE, DMO modifies the diversity main-

tenance mechanism of Pareto-based algorithms to im-

prove their performance for many-objective problems.
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TABLE VI
IGD RESULTS (MEAN AND SD) OF THE SIX ALGORITHMS ON THE DTLZ PROBLEMS. THE BEST RESULT REGARDING THE MEAN IGD VALUE AMONG THE

ALGORITHMS FOR EACH PROBLEM INSTANCE IS HIGHLIGHTED IN BOLDFACE

Problem Obj. SPEA2+SDE MOEA/D MSOPS HypE ϵ-MOEA DMO

DTLZ1
4 3.258E–2 (3.3E–4) 3.218E–2 (1.0E–4)† 4.442E–2 (2.7E–3)† 8.728E–2 (9.6E–3)† 3.508E–2 (1.6E–3)† 4.249E–2 (1.8E–3)†

6 6.223E–2 (5.0E–4) 6.489E–2 (3.7E–4)† 3.263E–1 (3.8E–1)† 3.267E–1 (2.4E–1)† 9.504E–2 (1.1E–1)† 4.336E–1 (2.8E–1)†

10 9.861E–2 (1.3E–3) 1.017E–1 (1.6E–3)† 2.095E+0 (1.3E+0)† 4.000E–1 (1.7E–1)† 3.098E–1 (3.0E–1)† 2.709E+0 (3.8E+0)†

DTLZ2
4 1.121E–1 (2.1E–3) 8.739E–2 (5.1E–6)† 1.116E–1 (2.5E–3) 1.873E–1 (2.6E–2)† 1.051E–1 (1.7E–3)† 1.415E–1 (1.7E–2)†

6 2.703E–1 (4.0E–3) 2.566E–1 (2.0E–5)† 3.228E–1 (9.2E–3)† 3.857E–1 (4.5E–2)† 2.429E–1 (3.7E–3)† 2.756E–1 (1.4E–2)

10 4.906E–1 (4.8E–3) 4.921E–1 (6.9E–5) 6.852E–1 (4.9E–2)† 6.294E–1 (9.4E–2)† 4.048E–1 (4.9E–3)† 5.280E–1 (1.8E–2)†

DTLZ3
4 1.133E–1 (2.8E–3) 9.172E–2 (3.2E–3)† 2.101E+1 (1.1E+1)† 3.515E–1 (1.2E–1)† 1.172E–1 (5.5E–3)† 1.662E+0 (1.5E+0)†

6 2.703E–1 (3.3E–3) 2.616E–1 (8.6E–3)† 5.702E+1 (1.4E+1)† 1.783E+0 (1.2E+0)† 3.365E–1 (1.1E–1)† 5.076E+1 (1.5E+1)†

10 4.947E–1 (8.1E–3) 4.950E–1 (5.0E–3) 8.303E+1 (1.7E+1)† 2.242E+0 (1.3E+0)† 1.273E+1 (2.0E+1)† 2.368E+2 (8.2E+1)†

DTLZ4
4 1.129E–1 (2.3E–3) 3.537E–1 (2.9E–1)† 1.116E–1 (3.2E–3) 2.130E–1 (1.3E–1)† 1.531E–1 (1.3E–1) 1.285E–1 (1.1E–2)†

6 2.722E–1 (2.9E–2) 5.231E–1 (1.2E–1)† 3.212E–1 (9.3E–3)† 4.887E–1 (5.5E–2)† 3.150E–1 (1.0E–1) 3.600E–1 (2.1E–2)†

10 4.701E–1 (6.0E–3) 6.778E–1 (7.0E–2)† 6.755E–1 (2.4E–2)† 8.358E–1 (7.6E–2)† 4.725E–1 (5.8E–2) 6.822E–1 (3.8E–2)†

DTLZ5
4 2.431E–2 (2.2E–3) 1.607E–2 (1.8E–5)† 1.557E–2 (1.4E–3)† 9.803E–2 (1.8E–2)† 3.622E–2 (2.4E–3)† 3.062E–1 (5.5E–2)†

6 8.052E–2 (1.3E–2) 2.361E–2 (1.4E–4)† 1.476E–2 (1.8E–3)† 8.630E–2 (2.1E–2) 1.214E–1 (1.5E–2)† 4.510E–1 (1.0E–1)†

10 1.375E–1 (3.0E–2) 6.495E–2 (2.2E–6)† 1.769E–2 (2.0E–3)† 1.472E–1 (3.2E–2) 1.714E–1 (1.7E–2)† 4.656E–1 (1.1E–1)†

DTLZ6
4 7.879E–2 (1.8E–2) 8.636E–2 (3.0E–2) 2.495E+0 (5.8E–1)† 3.473E+0 (5.0E–1)† 6.318E–1 (4.5E–2)† 7.198E+0 (2.2E–1)†

6 1.470E–1 (1.9E–2) 1.205E–1 (3.6E–2)† 7.788E+0 (3.0E–1)† 5.991E+0 (5.8E–1)† 2.904E+0 (2.4E–1)† 6.129E+0 (3.6E–1)†

10 2.784E–1 (2.2E–2) 1.532E–1 (4.0E–2)† 7.738E+0 (2.8E–1)† 5.573E+0 (4.4E–1)† 3.175E+0 (1.9E+0)† 7.769E+0 (4.2E–1)†

DTLZ7
4 1.326E–1 (5.0E–3) 4.898E–1 (1.0E–1)† 4.873E–1 (1.2E–1)† 2.923E–1 (8.0E–3)† 2.189E–1 (9.9E–2)† 1.430E–1 (5.6E–3)†

6 4.217E–1 (8.5E–3) 3.923E+0 (9.2E–1)† 9.989E+0 (1.5E+0)† 6.246E–1 (9.7E–2)† 6.815E–1 (1.3E–1)† 5.505E–1 (2.5E–2)†

10 8.868E–1 (4.7E–3) 4.193E+0 (1.2E+0)† 2.208E+1 (3.0E+0)† 1.010E+0 (3.3E–2)† 1.879E+0 (1.8E–1)† 6.561E+0 (2.5E+0)†

“†” indicates that the results of the peer algorithm is significantly different from that of SPEA2+SDE at a 0.05 level by the Wilcoxon’s rank sum test.

By comparing the boundary values between the current

population and the Pareto front, DMO adaptively adjusts

the diversity requirement in the mating and environmental

selection schemes. If the range of the current population

is smaller than that of the Pareto front of the problem by

the Maximum Spread test [82], the diversity promotion

mechanism is activated; otherwise, it is deactivated.

Overall, the above peer algorithms are representative algo-

rithms to address many-objective problems, and their perfor-

mance has been well verified in many-objective optimization

[26], [28], [57], [71], [72].

Parameters need to be set in some of the peer algorithms.

According to their original papers, the neighborhood size

and the penalty parameter in MOEA/D were set to 10% of

the population size and 5, respectively, and the number of

sampling points in HypE was set to 10,000. Since increasing

the number of weight vectors with the number of objectives

benefits the performance of MSOPS, 200 weight vectors were

selected in MSOPS according to the experimental results in

[71]. In ϵ-MOEA, the size of the archive set is determined by

the ϵ value. In order to guarantee a fair comparison, we set ϵ
so that the archive of ϵ-MOEA is approximately of the same

size (200) as that of the other algorithms (given in Table I). In

addition, in MOEA/D the population size cannot be arbitrarily

specified since it is equal to the number of weight vectors. As

suggested in [42], we used the closest number to 200 among

the possible values as the population size (i.e., 220, 252, and

220 for 4-, 6-, and 10-objective problems, respectively).

A. Comparison on the DTLZ Test Problems

Table VI shows the comparative results of the six algo-

rithms on the DTLZ problem suite. First, we consider the

DTLZ1 problem which has an easy, linear Pareto front but

having a huge number of local optima (115 − 1). For this

problem, SPEA2+SDE and MOEA/D perform clearly better

than the other four algorithms. More precisely, MOEA/D

slightly outperforms SPEA2+SDE on the 4-objective instance,

while SPEA2+SDE achieves a lower IGD value when a larger

number of objectives are involved.

Although having the same optimal front, the problems

DTLZ2, DTLZ3, and DTLZ4 are designed to challenge dif-

ferent capabilities of an algorithm. DTLZ2 is a relatively easy

function with a spherical Pareto front. Based on DTLZ2, a vast

number of local optima are introduced in DTLZ3, creating

a big challenge for algorithms to search towards the global

optimal front, and a non-uniform density of solutions are in-

troduced in DTLZ4, creating a big challenge for algorithms to

maintain diversity in the objective space. As can be seen from

Table VI, for the DTLZ2 problem, generally, ϵ-MOEA per-

forms the best, followed by MOEA/D and SPEA2+SDE. On

DTLZ3, MOEA/D and SPEA2+SDE are significantly superior

to the other algorithms. The former reaches the best result on

the two low-dimensional instances, and the latter outperforms

the other algorithms when the number of objectives reaches

10. On DTLZ4, SPEA2+SDE is very competitive. Although

MSOPS performs slightly better than SPEA2+SDE on the 4-

objective instance, SPEA2+SDE has a clear advantage over

the other algorithms for the remaining instances. In addition,

note that MOEA/D, which works very well on the first three

problems (DTLZ1, DTLZ2, and DTLZ3), tends to struggle on

DTLZ4, obtaining the worst IGD value on 4- and 6-objective

test instances. Similar observations have been reported in [16].

The Pareto front of DTLZ5 and DTLZ6 is a degenerate

curve in order to test the ability of an algorithm to find a

lower-dimensional optimal front while working with a higher-

dimensional objective space. The difference between the two

problems is that DTLZ6 is much harder than DTLZ5 by intro-

ducing bias in the g function [20]. For such problems, MSOPS

and MOEA/D work very well. The former performs the best
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Fig. 11. The final solution set of the six algorithms on the ten-objective DTLZ7, shown by parallel coordinates.

TABLE VII
HV RESULTS (MEAN AND SD) OF THE SIX ALGORITHMS ON THE TSP PROBLEMS. THE BEST RESULT REGARDING THE MEAN HV VALUE AMONG THE

ALGORITHMS FOR EACH PROBLEM INSTANCE IS HIGHLIGHTED IN BOLDFACE

Problem Obj. SPEA2+SDE MOEA/D MSOPS HypE ϵ-MOEA DMO

TSP(–0.2)
4 9.667E+4 (1.7E+3) 9.394E+4 (1.7E+3)† 7.574E+4 (2.8E+3)† 3.817E+4 (4.5E+3)† 9.044E+4 (1.7E+3)† 5.224E+4 (3.1E+3)†

6 1.825E+7 (5.1E+5) 1.725E+7 (4.0E+5)† 1.061E+7 (6.5E+5)† 2.500E+6 (7.4E+5)† 1.428E+7 (6.6E+5)† 2.893E+6 (4.9E+5)†

10 3.669E+11 (1.6E+10) 2.572E+11 (1.2E+10)† 1.980E+11 (1.7E+10)† 1.033E+10 (1.2E+09)† 1.337E+11 (1.2E+10)† 8.084E+09 (1.6E+09)†

TSP(0)
4 8.357E+4 (1.7E+3) 8.358E+4 (1.4E+3) 6.779E+4 (2.0E+3)† 3.973E+4 (2.5E+3)† 7.935E+4 (2.1E+3)† 5.380E+4 (2.9E+3)†

6 1.550E+7 (3.5E+5) 1.458E+7 (3.3E+5)† 1.065E+7 (6.9E+5)† 3.930E+6 (4.8E+5)† 1.331E+7 (5.0E+5)† 3.965E+6 (4.9E+5)†

10 2.984E+11 (9.8E+09) 1.969E+11 (1.3E+10)† 1.898E+11 (1.1E+10)† 1.613E+10 (9.8E+08)† 1.440E+11 (9.3E+09)† 1.691E+10 (3.2E+09)†

TSP(0.2)
4 7.493E+4 (1.7E+3) 7.427E+4 (1.7+3) 6.210E+4 (1.6E+3)† 4.639E+4 (3.7E+3)† 7.230E+4 (1.9E+3)† 6.203E+4 (3.2E+3)†

6 1.357E+7 (3.1E+5) 1.264E+7 (3.1E+5)† 1.068E+7 (5.2E+5)† 5.468E+6 (5.3E+5)† 1.240E+7 (4.2E+5)† 5.355E+6 (7.6E+5)†

10 2.481E+11 (9.1E+09) 1.580E+11 (1.0E+10)† 1.662E+11 (9.2E+09)† 4.136E+10 (7.2E+09)† 1.530E+11 (1.3E+10)† 2.504E+10 (5.2E+09)†

“†” indicates that the results of the peer algorithm is significantly different from that of SPEA2+SDE at a 0.05 level by the Wilcoxon’s rank sum test.

on DTLZ5, and the latter outperforms the other algorithms

on most of the DTLZ6 instances. Nevertheless, SPEA2+SDE

show advantages in the low-dimensional DTLZ6, and for

the high-dimensional instances, it performs significantly bet-

ter than the peer algorithms except MOEA/D. On DTLZ5,

SPEA2+SDE is always in the third place, better than HypE,

ϵ-MOEA, and DMO.

With a number of disconnected Pareto optimal regions,

DTLZ7 tests an algorithm’s ability to maintain sub-populations

in disconnected portions of the objective space. For this

problem, SPEA2+SDE has a clear advantage over the other

five algorithms, obtaining the best IGD value for all the

three instances. In contrast, two aggregation-based algorithms,

MOEA/D and MSOPS, have great difficulty with this problem.

The former performs the worst on the 4-objective instance,

and the latter obtains the worst IGD result for the 6- and 10-

objective instances. Figure 11 plots the final solutions of the

six algorithms in a single run on the 10-objective DTLZ7 by

parallel coordinates. This particular run is associated with the

result which is the closest to the mean IGD value. It is clear

from Table VI that the solutions of MSOPS, HypE, and DMO

fail to converge into the optimal front (the upper bound of the

last objective in the Pareto front of DTLZ7 is equal to 2×M ,

i.e., f10 ≤ 20 for the 10-objective instance). MOEA/D and

ϵ-MOEA struggle to maintain diversity, with their solutions

converging into a portion of the disconnected Pareto front.

Only SPEA2+SDE achieves a good approximation and cover-

age of the Pareto front.

Overall, SPEA2+SDE is very competitive on the DTLZ

problem suite. It obtains the best IGD value in 9 out of

the 21 test instances, followed by MOEA/D, MSOPS, and

ϵ-MOEA, with the best value in 6, 4, and 2, respectively.

Moreover, unlike MOEA/D and MSOPS, whose search ability

has sharp contrasts on different problems, SPEA2+SDE has

stable performance, ranking well for all the test instances.

B. Comparison on the TSP Test Problems

EMO algorithms ususally show different behavior on com-

binatorial optimization problems than on continuous ones.

One important property of the multiobjective TSP problem is

that the conflict degree among the objectives can be adjusted

according to the parameter TSPcp, where a lower value

means a greater degree of conflict. From the HV results

shown in Table VII, the advantage of SPEA2+SDE over the
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Fig. 12. Result comparison between SPEA2+SDE and the other algorithms on the 10-objective TSP with TSPcp = −0.2. The final solutions of the
algorithms are shown regarding the two-dimensional objective space f1 and f2.

other algorithms on the TSP seems to be greater than that on

the DTLZ problems. SPEA2+SDE significantly outperforms

the five peer algorithms for all the instances except the 4-

objective TSP with TSPcp = 0, where MOEA/D performs

slightly better than SPEA2+SDE. Moreover, the performance

difference can be better observed with the increase of the

number of objectives.

To facilitate visual comparison, Fig. 12 shows the final

solutions of a single run of the six algorithms regarding

the two-dimensional objective space f1 and f2 of the 10-

objective TSP with TSPcp = −0.2. Clearly, the solutions

of SPEA2+SDE have a good balance between convergence

and diversity. In contrast, the solutions of MSOPS, ϵ-MOEA,

and DMO are worse than those of SPEA2+SDE in terms of

convergence. MOEA/D struggles to maintain diversity, making

its solutions concentrated in a small region. Although there are

several solutions distributed widely, most of the solutions of

HypE have a poor convergence, thus leading to its low HV

value.

Finally, it is worth mentioning that the difference between

SPEA2+SDE and the peer algorithms on most of all the 30

DTLZ and TSP problems has statistical significance. Specifi-

cally, the proportion of the test instances where SPEA2+SDE

outperforms MOEA/D, MSOPS, HypE, ϵ-MOEA, and DMO

with statistical significance is 15/19, 25/25, 28/30, 24/27, and

29/30, respectively.

C. Comparison on the Pareto-Box Test Problem

When the dimension of solutions is more than three, it

is impossible to have visual and intuitive quality assessment

using the Cartesian system. This causes great difficulty in

the algorithm design, performance comparison, and decision

making [16]. To ease this difficulty, Köppen and Yoshida

[50] developed a simple and interesting many-objective test

function, called the Pareto-Box problem. There are two im-

portant characteristics in the Pareto-Box problem. One is

that its Pareto optimal set in the decision space corresponds

to a (or several) two-dimensional closure(s). The other is

that the crowding in its decision space is closely related to

the crowding in its objective space. This means that when

testing an algorithm on this problem, not only do we clearly

view the distribution of solutions in the decision space but

also we can infer the ability of the algorithm to maintain

diversity in the objective space [50]. Recently, Ishibuchi et

al. extended the Pareto-Box problem, making it to be easily

used in the performance comparison of EMO algorithms for

many-objective optimization [42].

In this study, we consider a 10-objective Pareto-Box prob-

lem whose Pareto optimal region in the decision space is

the inside of a decagon. Figure 13 shows its Pareto optimal

region as well as the final solution set of a typical run

of the six algorithms in the decision space. In addition,

MOEA/D with several other aggregation functions, such as

Tchebycheff (denoted as MOEA/D+TCH) and PBI with the

penalty parameter value 0.1 (denoted as MOEA/D+PBI(0.1))

has been found to work well on the Pareto-Box problem [40],

[42]. Here, we introduce these two versions of MOEA/D to

further verify the proposed algorithm (the version used in the

previous comparative study denoted as MOEA/D+PBI(5.0)).

The parameter ϵ in ϵ-MOEA was set to 6.085 in order to

make the archive size approximate 200. All other parameters

were kept unchanged.

As can be seen from Fig. 13, the eight algorithms show

different behavior although most of their solutions can con-

verge into the Pareto optimal region. The solutions obtained by
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Fig. 13. The final solution set of the six algorithms in the decision space on the 10-objective Pareto-Box problem. The number in the bracket associated
with MOEA/D+PBI is the penalty parameter value.

MOEA/D+PBI(5.0) gather around the center of the decagon,

while the solutions of HypE concentrate in some small regions

although they reach each angle of the decagon. MSOPS

and DMO struggle to maintain uniformity of their solutions.

Although ϵ-MOEA, MOEA/D+TCH, and MOEA/D+PBI(0.1)

perform significantly better than the previous four algorithms,

they also have their own shortcomings. ϵ-MOEA fails to

keep the boundary solutions. Some solutions in the set of

MOEA/D+TCH and MOEA/D+PBI(0.1) are almost overlap-

ping, which leads to vacancy in many regions of the decagon.

However, SPEA2+SDE has been found to be very com-

petitive on this problem, with its solutions almost covering

the whole decagon. Moreover, unlike the other algorithms,

some of whose solutions are located quite densely (or even

overlapping), there are few such solutions in the proposed

algorithm. This occurrence can be attributed to the fact that

the density estimator based on SDE can effectively eliminate

the crowded solutions in the population.

V. DISCUSSIONS

The impressive results of SPEA2+SDE motivate us to

deeply explore the density estimation mechanism (i.e., the k-

th nearest neighbor) in SPEA2. SPEA2 employs Euclidean

distance to measure the similarity degree between individuals.

The calculation of Euclidean distance can be viewed as

an aggregation of each dimension’s difference. In SDE, the

dimensions in the aggregation are switched on (or off) when

the interested individual performs better (or worse) than its

opponent. This means that an individual which has no clear

advantage over its opponents will have a high similarity degree

with them, thus being assigned a high density value in the

population.

In addition, the parameter k in the k-th nearest neigh-

bor approach has no clear influence on the performance of

SPEA2+SDE in many-objective optimization. In SPEA2, k is

used in the fitness assignment procedure, which serves the

purpose of sorting individuals for archiving when the number

of nondominated individuals is smaller than the archive size.

However, in many-objective optimization, most individuals

are nondominated to each other, and usually the number of

nondominated individuals is far larger than the archive size.

In this case, the archive truncation procedure, which does not

need to specify the parameter k, plays a decisive role in the

algorithm’s performance.

One disadvantage of SPEA2+SDE is that the scaling of

objective functions becomes very important. Since the density

estimator of SPEA2 does not consider the scaling problem,

the dimensions with different scales will have different contri-

butions to the estimation result. In SDE, this is likely to cause

an inaccurate estimation of individuals’ performance for badly

scaled problems. Especially, when embarking on the archive

truncation, it is hard to select the worst-performing individual

for removal, given that the density estimation cannot determine

which dimensions are actually being compared between vari-

ous candidate individuals. However, fortunately, this problem

can be addressed by normalizing each dimension of individuals

(according to the minimum and maximum values in the current

population) before estimating individuals’ density.

In addition, it is also worth mentioning that the behavior

of the proposed SDE is related to the shape of the Pareto

front of a given multiobjective problem since the proximity

of points located in different positions of the Pareto front

is different. When the shape of the Pareto front is convex,

the search tends to more concentrate on the center of the

Pareto front; when the shape of the Pareto front is concave,

the search is likely to more concentrate on the edges of the

Pareto front. Nevertheless, SDE can work well on most MOPs

with Pareto fronts of different shapes, given the fact that the

proposed technique is competitive on the tested problems with

convex Pareto fronts (such as the multiobjective TSP) and on
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the problems with concave Pareto fronts (such as DTLZ2–

DTLZ6).

The shift-based (or transformation-based) technique is not

a new concept in the EMO area. Many existing studies use

various transformation-based approaches to deal with multi-

or many-objective optimization problems. For example, using

the principal component analysis technique, Deb and Saxena

[14] converted the high-dimensional objective space into the

low-dimensional objective space according to the information

of correlation among objectives. Brockhoff and Zitzler [9]

investigated how adding and omitting an objective affects

problem characteristics, and introduced a quantification for

measuring the change in the dominance structure of the

problem for dimensionality reduction. Purshouse and Fleming

[66] considered a divide-and-conquer strategy that converts

a multiobjective problem into several sub-problems, each of

which has an “independent” set of objectives. In addition,

some co-evolution and island model based approaches used

the idea of parallel search to divide an MOP into several sub-

problems regarding the objective space [75] or the decision

space [61]. However, an interesting difference between SDE

and the above approaches lies in that the transformation of all

the above approaches tries to make a given problem easier,

while the transformation of SDE tries to make Pareto-based

algorithms suitable for a type of harder problems—many-

objective optimization problems.

Finally, note that using density estimators that reflect both

convergence and density information will reduce the degree

of accuracy of density estimation to some extent. This is

somewhat like the classical fitness sharing and penalty based

approaches [25], [27], which change the original fitness value

(with respect to convergence) of individuals to reflect their

distribution information. Similarly, SDE changes the original

density value of individuals to reflect their convergence infor-

mation in the case of the Pareto dominance relation losing its

effectiveness.

VI. CONCLUSIONS

Many-objective optimization presents great challenges for

traditional Pareto-based EMO algorithms. The imbalance of

the role between the Pareto dominance relation and diversity

maintenance suggests the need for new methodologies in the

EMO community. This paper proposes a shift-based density

estimation (SDE) strategy to develop a general modification

of traditional density estimation in Pareto-based algorithms

for dealing with many-objective problems. By shifting indi-

viduals’ positions according to their relative proximity to the

Pareto front, SDE considers both convergence and diversity

for each individual in the population. The implementation of

SDE is simple and it can be applied to any specific density

estimator without the need of additional parameters.

Systematic experiments have been carried out by providing

an extensive comparison on several groups of well-defined

continuous and combinatorial test problems. SDE has sepa-

rately been applied to three popular Pareto-based algorithms,

NSGA-II, SPEA2, and PESA-II. From the comparative results,

it can be observed that all the three algorithms after the im-

plementation of SDE achieve an improvement of performance

with varying degrees. A further comparative study among

NSGA-II+SDE, SPEA2+SDE, and PESA-II+SDE reveals that

SDE is well suited for the density estimator which can

accurately reflect the density of individuals in the population.

Moreover, five state-of-the-art EMO algorithms (MOEA/D,

MSOPS, HypE, ϵ-MOEA, and DMO) for solving many-

objective problems from different angles have been used as

peer algorithms to validate the proposed SDE strategy. The

experimental results show that SPEA2+SDE is very competi-

tive against the peer algorithms in terms of providing a good

balance between convergence and diversity. This leads to the

two key contributions of this paper.

• Pareto-based algorithms, with a general modification, can

be appropriate for many-objective optimization, which

refutes the common belief that the Pareto-based algorithm

framework performs worse than the aggregation-based

or indicator-based algorithm frameworks in dealing with

many-objective problems.

• When designing a Pareto-based EMO algorithm, re-

searchers only need to focus on tackling low-dimensional

(i.e., 2-objective and 3-objective) optimization problems;

when addressing an MOP with many objectives, SDE

may be easily and effectively adopted, as long as the

algorithm’s density estimator can accurately reflect the

density of individuals.

REFERENCES

[1] S. F. Adra and P. J. Fleming, “Diversity management in evolutionary
many-objective optimization,” IEEE Trans. Evol. Comput., vol. 15, no. 2,
pp. 183–195, Apr. 2011.

[2] H. Aguirre and K. Tanaka, “Space partitioning with adaptive ϵ-ranking
and substitute distance assignments: A comparative study on many-
objective MNK-landscapes,” in Proc. 11th Ann. Conf. Genetic Evol.

Comput., 2009, pp. 547–554.
[3] A. Auger, J. Bader, D. Brockhoff, and E. Zitzler, “Theory of the

hypervolume indicator: Optimal µ-distributions and the choice of the
reference point,” in Proc. 10th ACM SIGEVO Workshop on Foundations

of Genetic Algorithms, 2009, pp. 87–102.
[4] J. Bader and E. Zitzler, “HypE: An algorithm for fast hypervolume-

based many-objective optimization,” Evol. Comput., vol. 19, no. 1, pp.
45–76, Spring 2011.

[5] N. Beume, B. Naujoks, and M. Emmerich, “SMS-EMOA: Multiobjective
selection based on dominated hypervolume,” Eur. J. Oper. Res., vol. 181,
no. 3, pp. 1653–1669, Sep. 2007.

[6] P. A. N. Bosman and D. Thierens, “The balance between proximity and
diversity in multiobjective evolutionary algorithms,” IEEE Trans. Evol.

Comput., vol. 7, no. 2, pp. 174–188, Apr. 2003.
[7] K. Bringmann and T. Friedrich, “An efficient algorithm for computing

hypervolume contributions,” Evol. Comput., vol. 18, no. 3, pp. 383–402,
Fall 2010.

[8] D. Brockhoff, T. Friedrich, N. Hebbinghaus, C. Klein, F. Neumann, and
E. Zitzler, “On the effects of adding objectives to plateau functions,”
IEEE Trans. Evol. Comput., vol. 13, no. 3, pp. 591–603, Jun. 2009.

[9] D. Brockhoff and E. Zitzler, “Objective reduction in evolutionary
multiobjective optimization: Theory and applications,” Evol. Comput.,
vol. 17, no. 2, pp. 135–166, Summer 2009.

[10] C. A. C. Coello, “Evolutionary multi-objective optimization,” Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
vol. 1, no. 5, pp. 444–447, 2011.

[11] D. W. Corne, N. R. Jerram, J. D. Knowles, and M. J. Oates, “PESA-II:
Region-based selection in evolutionary multiobjective optimization,” in
Proc. Genetic Evol. Comput. Conf., 2001, pp. 283–290.

[12] D. W. Corne and J. D. Knowles, “Techniques for highly multiobjective
optimisation: some nondominated points are better than others,” in Proc.

9th Annual Conf. Genetic Evol. Comput., 2007, pp. 773–780.
[13] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist

multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.



16

[14] K. Deb and D. K. Saxena, “Searching for Pareto-optimal solutions
through dimensionality reduction for certain large-dimensional multi-
objective optimization problems,” in Proc. IEEE Congr. Evol. Comput.,
2006, pp. 3353–3360.

[15] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms.
New York: John Wiley, 2001.

[16] K. Deb and H. Jain, “An improved NSGA-II procedure for many-
objective optimization part I: solving problems with box constraints,”
KanGAL Tech. Rep. 2012009, Indian Inst. Technol. Kanpul, Kanpul,
India, 2012.

[17] K. Deb and H. Jain, “An improved NSGA-II procedure for many-
objective optimization part II: handling constraints and extending to an
adaptive approach,” KanGAL Tech. Rep. 2012010, Indian Inst. Tech-
nol. Kanpul, Kanpul, India, 2012.

[18] K. Deb and S. Jain, “Running performance metrics for evolutionary
multi-objective optimization,” KanGAL Tech. Rep. 2002004, Indian
Inst. Technol. Kanpul, Kanpul, India, 2002.

[19] K. Deb, M. Mohan, and S. Mishra, “Evaluating the ϵ-domination
based multi-objective evolutionary algorithm for a quick computation
of Pareto-optimal solutions,” Evol. Comput., vol. 13, no. 4, pp. 501–
525, Winter 2005.

[20] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable test prob-
lems for evolutionary multiobjective optimization,” in Evolutionary

Multiobjective Optimization. Theoretical Advances and Applications,
A. Abraham, L. Jain, and R. Goldberg, Eds. Springer, 2005, pp. 105–
145.

[21] F. di Pierro, S.-T. Khu, and D. A. Savić, “An investigation on preference
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