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Abstract

We consider skew-products with an arbitrary compact Lie group, when the base map is a one-sided
shift of finite type endowed with an equilibrium state of a Hölder continuous function. First we show
that the weak-mixing property of the skew-product implies exactness and exponential mixing. Then we
address the problem of classification under measure-theoretic isomorphisms. We show that for a generic set
of equilibrium states the isomorphism class of the skew-products corresponds essentially to the cohomology
classes of the defining skewing function and the isomorphism is essentially a homeomorphism.

Introduction

For many problems associated with endomorphisms in Ergodic Theory it is appropri-

ate to consider natural extensions and then to invoke, or prove, results for automorphisms.

This is valid, for example, when considering certain ergodic or mixing properties or when

considering certain entropy problems. However, this is not the case for, say, exactness, nor

for classification theory. Endomorphism problems are not always reducible (extendable)

to automorphism problems.

In this paper we restrict our attention to certain endomorphisms and consider their

skew-products with compact Lie groups. Specifically, our endomorphisms will be one-sided

aperiodic shifts of finite type equipped with an equilibrium state given by a Hölder contin-

uous function. Such shifts are known to be exponentially mixing (i.e. there is exponential

decay of correlations for appropriate functions) and exact [8]. Moreover, generically, these

shifts can be classified by a countable number of invariants (multivariate characteristic

functions) and two such shifts are measure-theoretically isomorphic if and only if the iso-

morphism (which is unique) is essentially a homeomorphism [3].

We consider these properties for skew-products of one-sided shifts with compact Lie

groups and show that weak-mixing implies exponential mixing and exactness (see Siboni [7]

for a special case). We then take up the problem of classification. We restrict our attention

to shifts with a generic equilibrium state and associated (ergodic) skew-products with the

same compact Lie group and clarify the problem of finding isomorphisms when they exist.

Our main result is that, again, such isomorphisms are essentially homeomorphisms and are

given as skew-products. This is a kind of rigidity result and is based on the ‘super rigidity’

of the shifts we consider and on the ‘smoothing’ of the solution to a Livsic type problem
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for certain functions appearing in a cocycle equation. This Livsic result will appear in a

separate paper by the second author and M. Pollicott [5].

1. Preliminaries

Let A be an aperiodic k × k 0-1 matrix and define

X =
{

x ∈
∞
∏

n=0

{1, · · · , k}: A(xn , xn+1) = 1, for all n = 0, 1, · · ·
}

.

With respect to the Tychonov product topology, X is a zero dimensional, compact, metris-

able space. The shift transformation σ given by (σx)n = xn+1, for all n = 0, 1, · · · is a

continuous surjective map of X onto itself, and is called a (one-sided) shift of finite type.

If w:X → Cd is continuous and varnw/θn is a bounded sequence (for a fixed 0 < θ < 1)

we define |w|θ to be the least such bound. Here varnw = sup{|w(x) − w(y)|: xi = yi ,

i ≤ n}, where | · | denotes Euclidean norm. We denote by Fθ = Fθ(C
d) the space of

continuous functions w with |w|θ < ∞ and equip Fθ with the norm ||w||θ = |w|θ + |w|∞
(| · |∞ is the supremum norm) making Fθ into a Banach space.

If g ∈ Fθ(IR) satisfies
∑

σy=x eg(y) = 1 for all x ∈ X, we say that g is normalised .

For such g we define the Ruelle operator L:Fθ(C
d) → Fθ(C

d) given by (Lw)(x) =
∑

σy=x eg(y)w(y). The dependence of L on g is suppressed since g will usually be fixed in

the discussion. For a normalised g ∈ Fθ(IR) there is a unique σ-invariant probability m

such that

0 = h(m) +

∫

g dm ≥ h(µ) +

∫

g dµ

for all other σ-invariant probabilities µ. (Here, h denotes entropy.) Such a measure m is

called the equilibrium state defined by g and we refer to m as an Fθ equilibrium state.

If G ⊆ U(d) is a compact Lie group and f :X → G is continuous we define varnf =

sup{|f(x) − f(y)|: xi = yi , i ≤ n}, (where | · | denotes the Euclidean operator norm) and

write f ∈ Fθ(G) if varnf/θn is a bounded sequence (for a fixed 0 < θ < 1). For a given

normalised g ∈ Fθ(IR) and f ∈ Fθ(G) we define the operator Lf :Fθ(C
d) → Fθ(C

d) by

Lfw = L(fw).

Let σ be a one-sided shift of finite type endowed with an Fθ equilibrium state m and

let f ∈ Fθ(G). The skew-product transformation σf of X × G onto itself is defined as

σf (x, y) = (σx, f(x)y). We note that σf preserves the measure m× mG, where mG is the

(normalised) Haar measure on G.

2. Exponential decay of correlations

Throughout we shall be concerned with an aperiodic shift of finite type σ:X → X,

a function f ∈ Fθ(G) and an Fθ equilibrium state m. Since the equilibrium state will

be fixed, the corresponding Ruelle operator on Fθ(C
d) will be understood, as will the

operators LR(f):Fθ(C
d) → Fθ(C

d), for d dimensional unitary representations R.
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Proposition 1. If G is a compact Lie group and f ∈ Fθ(G) is such that σf (x, y) =

(σx, f(x)y) is weak-mixing on X × G then the spectral radius of LR(f) is strictly smaller

than 1 for each non-trivial irreducible representation R.

Proof. One can show that the essential spectral radius of LR(f) is θ. (Cf. [4] for

the main argument which generalises to our situation.) This means that the spectrum

outside a disc of radius θ′ > θ is associated with a finite number of eigenvalues and the

corresponding eigenspaces have finite dimension. Hence if the spectral radius of LR(f) is 1

(it cannot be larger) there must be an eigenvalue of modulus 1, i.e.

LR(f)w = αw , |α| = 1 .

Using the unitary character of R and the convexity properties of L this equation can be

rewritten as

w◦σ = αR(f)w .

If we define F (x, y) = R(y−1)w(x) we see that

F ◦σf (x, y) = R(y−1)R(f(x))−1w(σx) = αR(y−1)w(x)

= αF (x, y) .

Since R is non-trivial this equation contradicts the weak-mixing hypothesis. Thus we see

that the spectral radius of LR(f) is strictly less than 1. �

From this we are able to deduce

Proposition 2. The autocorrelations of functions of the form R(y−1)w(x), for w ∈

Fθ(C
d) and R an irreducible representation on Cd, converge to zero exponentially fast.

Proof. We have to prove that

∫

〈F ◦σn
f , F 〉dm×mG −→ 0

exponentially fast as n → ∞, where F (x, y) = R(y−1)w(x). This integral equals

∫

〈R(fn(x))−1w,w〉dm ,

where fn(x) = f(σn−1x) · · · f(σx)f(x), and this in turn equals

∫

〈w,Ln
R(f)w〉dm .

Since the spectral radius of LR(f) is strictly less than 1, the result follows. �

3



Remark. When G is abelian the result shows that autocorrelations of functions of

the form w(x)χ(y) for w ∈ Fθ(C) and χ a character in G, converge to zero exponentially

fast.

3. Exactness

Two sided aperiodic shifts of finite type are known to be Bernoulli with respect to any

Fθ equilibrium state [1]. Combining this with a general result of Rudolph’s [6], it follows

that weak-mixing compact group extensions of such shifts are also Bernoulli. However,

this does not imply (a priori) that the same is true for one-sided shifts. Nevertheless we

are able to prove

Theorem 3. Let G be a compact Lie group and f ∈ Fθ(G). If σf is weak-mixing with

respect to m ×mG where m is an Fθ equilibrium state on X, then σf is exact.

Proof. Let B = B(X) × B(G) and let B∞ = ∩n σ−n
f B. Then we have to prove that

B∞ consists of sets of measure zero or one. We consider the action of G on X × G given

by g: (x, y) → (x, y)g = (x, yg) which commutes with σf . The induced actions of G and

of σf on L2(B) commute and this implies that G acts on each of σn
f L2(B) = L2(σ−n

f B)

and hence on L2(B). Since G is compact the Hilbert space L2(B) decomposes into a direct

sum of finite dimensional subspaces VR, each preserved by the action of G. Here R is an

irreducible representation and for an orthonormal basis w1, · · · , wd of VR we have

w(x, yg) = R(g−1)w(x, y) ,

where w is the column vector col. (w1, · · · , wd). Let V denote the inner product space of

all Cd valued square integrable functions w defined on X × G which are B∞ measurable

and satisfying the above equation. Note that for w, v ∈ V we have (with respect to

the Euclidean inner product) 〈w, v〉 is G-invariant and therefore it is measurable with

respect to B∞ ∩ (B(X) × N ) where N is the trivial σ-algebra of G. This intersection

σ-algebra is easily shown to be ∩nσ−nB(X) × N , which is trivial since, as we have said,

σ is exact. Thus the function 〈w, v〉 is constant a.e. and equals
∫

〈w, v〉dm×mG = 〈〈w, v〉〉,

the inner product of w, v in V . If we choose n vectors v1, · · · , vn in V we therefore have

〈〈vi, vj〉〉 = 〈vi(x0, y0), vj(x0, y0)〉 i, j = 1, · · · , n where x0, y0 are suitably chosen. Hence

there is an isometry of the span of v1, · · · , vn into Cd. Hence n ≤ d showing that V is at

most d dimensional.

Returning to our original w = col. (w1, · · · , wd) we note that w,w◦σf , w◦σ2
f , · · · ∈ V , a

finite dimensional space. Since σf is weak-mixing this implies that w is constant a.e. and

d = 1. Thus VR contains only the constant functions and the same is true of L2(B∞),

i.e. B∞ consists only of sets of measure zero or one. �
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4. Classification

In this section we are concerned with the measure-theoretic classification of skew-

products σf where σ is a one-sided aperiodic shift of finite type and f ∈ Fθ(G), G a

compact Lie group. The underlying probability measure, preserved by σf , will be taken

to be m×mG where m is the equilibrium state of a normalised g ∈ Fθ(IR) and mG is the

normalised Haar measure of G.

As usual, we say that two such transformations σf , σ′

f ′ are (measure-theoretically)

isomorphic if there is an invertible measure-preserving map ϕ between their respective

spaces X ×G, X ′ × G such that the diagram

X × G
σf

−→ X × G

ϕ


y



yϕ

X ′ × G
σ′

f′

−→ X ′ × G

commutes a.e.

Our aim is to clarify this diagram, under the circumstances when the functions g ∈ Fθ,

g′ ∈ Fθ satisfy the condition that they each separate points. We say that g separates points

if, when x, y ∈ X and x 6= y, there exists n ∈ IN such that g(σnx) 6= g(σny). This condition,

though simplifying, is generic in the relative Fθ topology for normalised functions [3]. In

fact such functions form an open dense set. Our first step is the following

Proposition 4 [3]. Let σ, σ′ be two one-sided aperiodic shifts of finite type with

equilibrium states m,m′ corresponding, respectively, to the normalised Fθ functions g, g′.

If g, g′ separate points and if ϕ is a (measure-theoretic) isomorphism between σ and σ′ then

there exists a measure-preserving homeomorphism ϕ′ such that ϕ = ϕ′ (a.e.). Moreover,

ϕ′ is unique.

The proof of this result is based on the fact that the information functions for σ, σ′

are related by

I
(

B(X)|σ−1B(X)
)

= I
(

B(X ′)|σ−1B(X ′)
)

◦ϕ a.e.

which simplifies to

g(x) = g′(ϕ(x))

and therefore

g(σn(x)) = g′((σ′)n(ϕ(x))) , n = 0, 1, · · ·

It is at this point that the separation condition is invoked to produce a unique homeomor-

phism ϕ′ = ϕ (a.e.).

If ϕ is an isomorphism between σf and σ′

f ′ then exactly the same conclusion is reached,

namely

g(σn
f (x, y)) = g′((σ′

f ′ )n(ϕ(x, y))) n = 0, 1, · · ·

where we interpret g(x, y) = g(x) and g′(x, y) = g′(x). Thus g(σnx) = g′((σ′)nϕ1(x, y))

where ϕ(x, y) = (ϕ1(x, y), ϕ2(x, y)). We conclude from this that ϕ1 is independent of the

second variable, i.e. ϕ1(x, y) = ϕ1(x). In short we have
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Proposition 5. Let σ, σ′ have equilibrium states m,m′ corresponding to normalised

Fθ functions g, g′ which separate points, and let ϕ be a (measure-theoretic) isomorphism

between σf and σ′

f ′ . Then ϕ has the form

ϕ(x, y) = (ϕ1(x), ϕ2(x, y)) ,

where ϕ1 is a measure-preserving homeomorphism.

We shall use this proposition in combination with the following to prove our main

result.

Proposition 6 [5]. Let σ have an equilibrium state m corresponding to a normalised

Fθ function and suppose f, f ′ ∈ Fθ(G). If there exists a measurable h:X → G such that

f = (h◦σ)−1.f ′.h a.e.

then there exists h′ ∈ Fθ(G) such that h = h′ a.e. and

f(x) = h′(σx)−1 .f ′(x).h′(x)

everywhere.

Proposition 7. If ϕ:X × G → G is measurable and

ϕ(σx, f(x)y) = f ′(x)ϕ(x, y) a.e.

where f, f ′ ∈ Fθ(G). Then ϕ has the form

ϕ(x, y) = h(x)α(y)

where h:X → G is measurable and α is an automorphism of G.

Proof. For each g ∈ G we have

ϕ(σx, f(x)yg) = f ′(x)ϕ(x, y) a.e.

Inverting this equation and multiplying the original we get

(ϕ−1
g · ϕ)◦σf = (ϕ−1

g · ϕ) a.e.

where ϕg(x, y) = ϕ(x, yg). Since σf is ergodic this means that (ϕ−1
g · ϕ) is a constant

depending on g, i.e.

ϕ(x, yg) = ϕ(x, y)α(g) a.e.

and it is clear that α is an automorphism of G. This equation holds for all g ∈ G and

almost all (x, y) ∈ X × G. Hence there exists y0 ∈ G such that ϕ(x, y0g) = ϕ(x, y0)α(g)

for all g ∈ G and almost all x ∈ X and writing y = y0g we have

ϕ(x, y) = ϕ(x, y0)α(y−1
0 )α(y) .

Hence we define h(x) = ϕ(x, y0)α(y−1
0 ). �

We now proceed to our main result:
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Theorem 8. Let σ, σ′ have equilibrium states m,m′ corresponding to normalised Fθ

functions g, g′ which separate points, and suppose ϕ is an isomorphism between σf and σ′

f ′ ,

where f, f ′ ∈ Fθ(G). Then ϕ = ϕ′ a.e. where ϕ′ is a measure-preserving homeomorphism

between X × G and X ′ × G of the form

ϕ′(x, y) = (ϕ1(x), h(x)α(y))

and where ϕ1 is a homeomorphism, h ∈ Fθ(G) and α is an automorphism of G.

Proof. We use Proposition 5 to simplify the statement. In other words we com-

pose ϕ with the homeomorphism (x, y) 7→ (ϕ−1
1 (x), y) where ϕ1 is the measure-preserving

homeomorphism between σ and σ′. In this situation we have an isomorphism ϕ(x, y) =

(x, ϕ2(x, y)) between two skew-products σf , σf ′ with the same base transformation σ (pre-

serving m). We need to prove that ϕ2 takes the form ϕ2(x, y) = h(x)α(y) where h ∈ Fθ(G)

and α is an automorphism. The isomorphism gives a commutative diagram

(x, y) −→ (σx, f(x)y)


y



y

(x, ϕ2(x, y)) −→ (σx, ϕ2(σf (x, y))) .

In other words

ϕ2(σx, f(x)y) = f ′(x)ϕ2(x, y) .

Here we use Proposition 7 to see that ϕ2(x, y) = h(x)α(y) where h:X → G is measurable

and α is an automorphism of G. Thus

h(σx)α(f(x))α(y) = f ′(x)h(x)α(y) ,

or equivalently

α(f(x)) = h(σx)−1f ′(x)h(x) .

By Proposition 6 we conclude that h = h′ a.e. where h′ ∈ Fθ(G), and the theorem is

proved. �

5. Two examples

As an illustration of what can happen when the equilibrium state m corresponds to

a normalised g ∈ Fθ where g does not separate points (an exceptional case), we take the

most extreme example.

Let σ be the full two shift (i.e. X =
∏

∞

n=0(0, 1)) equipped with the Bernoulli (1/2, 1/2)

measure m, which is the equilibrium state of the normalised function g(x) = − log(2).

Clearly g does not separate points since it is constant.

Now let G = Zn = Z/nZ = {0, 1, · · · , n − 1} with addition modulo n, and define

f(x) = f(x0) where f(0) = 0 and f(1) = 1. Then we have
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Theorem 9. The skew-product σf is measure-theoretically isomorphic to σ itself.

Proof. Let B = B(X) × B(Zn), then it suffices to produce a two set partition α of

X × Zn with the properties

(i) B = α ∨ σ−1
f B

(ii) α is independent of σ−1
f B and

(iii) α is a strong-generator for σf .

If we have such an α then the map ϕ(x, y) = (z0, z1, · · ·) where α = (A0, A1) and

σk
f (x, y) ∈ Azk

for all k, will be an isomorphism between σf and σ.

Let [i] denote the cylinder corresponding to the points of X with initial coordinate

x0 = i. Define

A0 =
(

[0] × {0}
)

∪
(

[1] × {0, 1, · · · , n − 2}
)

,

A1 =
(

[1] × {n − 1}
)

∪
(

[0] × {1, 2, · · · , n − 1}
)

.

This is illustrated in the case n = 5 by

A1

A0

[ 0 ] [ 1 ]

where the bold lines represent A0 and the rest A1.

It is a simple matter to check that α satisfies (i) and (ii), from which it follows that

α, σ−1
f α, · · · are independent. To conclude the proof we have to show (iii), that α is a

strong-generator. To do this it suffices to show there is a set N ⊆ X ×Zn of measure zero

such that if (x, y), (x′ , y′) 6∈ N and

σk
f (x, y), σk

f (x′, y′) ∈ Azk
, k = 0, 1, · · ·

then (x, y) = (x′, y′). We shall also consider the 2n set partition β = (B0, B1, · · · , B2n−1)

where each Bi consists of points (x, y) all of which having the same y coordinate and the

same x0 coordinate.
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B9

B8

B7

B6

B5B0

B4

B3

B2

B1

[ 0 ] [ 1 ]

It is clear that β ≥ α. For ease of presentation we shall refer to a set of the form

σ−k
f Ek ∩ σ

−(k+1)
f Ek+1 ∩ · · · ∩ σ−`

f E`

as a word (Ek, Ek+1, · · · , E`). Notice that if (x, y) begins with the word (A0, A0, · · · , A0, A1)

(with n A0’s) then we know that (x, y) ∈ B0 i.e. x0 = 0, y = 0. And notice also that

α ∨ σ−1
f β ≥ β. Therefore

α ∨ σ−1
f α ∨ σ−2

f β ≥ α ∨ σ−1
f β ≥ β ,

which implies

α ∨ σ−1
f α ∨ σ−2

f β ≥ β ∨ σ−1
f β .

Iterating this inequality we get

α ∨ σ−1
f α ∨ · · · ∨ σ−k

f α ∨ σ
−(k+1)
f β ≥ β ∨ σ−1

f β ∨ · · · ∨ σ−k
f β .

This means that if a point (x, y) has the word (Az0
, · · · , Azk

, B) then its β word (Bt0 , Bt1 ,

· · · , Btk
) (in the same position) is known. (Here B ∈ β.)

Let (x, y) be such that the word (A0, A0, · · · , A0, A1) (with n A0’s) occurs infinitely

often in its α itinerary. Then, as we have said, B0 occurs in the same position and knowing

(Az0
, · · · , AzN

, A0, A0, · · · , A0, A1) to be the initial α word for (x, y) implies that the initial

β word for (x, y) of length N +2 is (Bt0 , · · · , BtN
, B0). Hence for such (x, y) the α itinerary

for (x, y) determines the β itinerary for (x, y), i.e. (x, y) is determined. Let N be the null

set of (x, y) for which (A0 , · · · , A0, A1) occurs only finitely often. If (x, y) 6∈ N then the α

sequence of (x, y) determines the β sequence of (x, y) and the theorem is proved. �

Remark. We note that the assertion in Theorem 9 cannot hold if m corresponds to a

normalised g ∈ Fθ which separates points. The reason being that the property of separation

of points is invariant under measure-theoretic isomorphism between the corresponding

equilibrium states.
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Corollary 10. For every n ≥ 1 there is a cyclic group Zn of invertible measure-

preserving transformations commuting with the full one-sided two shift endowed with the

Bernoulli (1/2, 1/2) measure.

This is because Zn commutes with σf and σf ' σ.

Corollary 11. If f(0) = 0 and f(1) = ` (where gcd(`, n) = 1) then σf ' σ.

It is easy to show all such σf are mutually isomorphic using an isomorphism of the

form (x, y) 7→ (x, `y). (Here we note that the condition gcd(`, n) = 1 implies that y 7→ `y

is an automorphism of Zn.)

We show next that Theorem 8 does not hold without the assumption of separation

of points. Let σf be the skew-product in Theorem 9 and take f ′(x) = f ′(x0, x1) where

f ′(0, 0) = f ′(0, 1) = f ′(1, 0) = 0 and f ′(1, 1) = 1. Then σf ′ is weak-mixing and it is not

topologically conjugate to σf . The latter is because, for instance, the number of periodic

points of period 2 for these maps are different. However, we have the following result:

Theorem 12. The skew-product σf ′ is measure-theoretically isomorphic to σf .

(Therefore it is also measure-theoretically isomorphic to σ itself.)

Proof. The strategy here is the same as in the proof of Theorem 9, i.e. we produce a two

set partition α of X ×Zn enjoying the properties (i), (ii), (iii) and then the corresponding

map ϕ will be an isomorphism between σf ′ and σ. Hence by Theorem 9 we obtain σf ′ ' σf .

Let [ij] denote the cylinder corresponding to the points of X with initial coordinates

(x0, x1) = (i, j). Define the elements of α by

A0 =
(

[00] × {0}
)

∪
(

[01]× {1, 2, · · · , n − 1}
)

∪
(

[10]× {0}
)

∪
(

[11]× {0, 1, 2, · · · , n − 2}
)

,

A1 =
(

[00] × {1, 2, · · · , n − 2}
)

∪
(

[01] × {0}
)

∪
(

[10]× {1, 2, · · · , n − 2}
)

∪
(

[11] × {n − 1}
)

.

We illustrate this partition in the case n = 5 by

A1

A0

[ 00 ] [ 10 ][ 01 ] [ 11 ]
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where the bold lines represent A0 and the rest A1. Here again it is not difficult to check

that (i) and (ii) are satisfied, and then it suffices to prove (iii).

We consider the 4n set partition β = {Bij: i = 0, 1, j = 0, 1, · · · , 2n − 1} where each

Bij consists of points (x, y) with the same y coordinate and the same (x0 , x1) coordinate.

B19

B18

B17

B16

B15B00

B04

B03

B02

B01

[ 00 ] [ 10 ][ 01 ] [ 11 ]

B10

B14

B13

B12

B11

B09

B08

B07

B06

B05

Then clearly β ≥ α and it is not difficult to see that α ∨ σ−1
f ′ β ≥ β. From this it follows

that

α ∨ σ−1
f ′ α ∨ · · · ∨ σ−k

f ′ α ∨ σ
−(k+1)
f ′ β ≥ β ∨ σ−1

f ′ β ∨ · · · ∨ σ−k
f ′ β .

Now we note that if (x, y) has initial α word given by w = (A0, A0, · · · , A0, A1) (with n+1

A0’s) then necessarily (x, y) ∈ B00. Therefore taking the set of (x, y) such that w appears

infinitely often on its α itinerary, we conclude that the β itinerary is uniquely determined.

Hence α is a strong-generator for σf ′ . �

Problems

1. If σ is the full (one-sided) k shift with the Bernoulli (1/k, · · · , 1/k) measure and

f : {1, 2, · · · , k} → Zn, is it true that σf ' σ if σf is weak-mixing?

2. Can such results be achieved for f : {1, 2, · · · , k} → [0, 1) (addition mod 1)? Even for

k = 2 and f(0) = 0, f(1) = ε, ε being an irrational? This should be provable, in which

case it would follow that there is a circle action commuting with σ.

3. What can be said about the centraliser of σ, i.e. the group of invertible measure-

preserving transformations of the full 2-shift? What Lie groups does it contain? Which

finite groups? (Compare Hedlund [2], for a discussion of homeomorphisms which commute

with the two-sided full shift. There are only the obvious two.)
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Postscript

After writing this paper we realised that our illustrations are subsumed by a much

more general result of Adler, Goodwyn & Weiss (Israel Journal of Maths 27, 49-63, 1977),

who prove that any aperiodic shift of finite type with a constant number d of edges exiting

each state is isomorphic to the full d shift (with respect to measures of maximal entropy).

Although they are primarily interested in two-sided shifts, their result has the consequence

that if each state has the same number d of entrances then the one-sided shift is isomorphic

to the one-sided full d shift.

This leads immediately to:

Proposition. If σf is a topologically mixing skew-product of the one-sided full d shift

σ with a finite group, where f is a continuous function, then with respect to measures of

maximal entropy σf is isomorphic to σ.

This result only affects our illustrations and not the main body of our paper. It also

solves problem 1 in the affirmative.
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