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ABSTRACT

Coherent speckle noise is modeled as a multiplicative noise process that has a

negative exponential probability density function. Using a homomorphic transfor

mation, this speckle noise is converted to a signal-independent, additive process.

The speckled images are randomly jittered from frame-to-frame against a uniform

background to simulate image motion and/or platform jitter.

Multiple images are logarithmically transformed and ensemble averaged in the

bispectral domain. The bispectrum ignores this image motion so no blurring results

from the ensemble averaging. Object Fourier magnitude and phase information

are also retained in the bispectrum so that the resultant image can be uniquely

reconstructed. This value is then exponentiated to complete the image reconstruc

tion process.

Since speckle masks the resolution of details in the noisy image and effectively

destroys the object structure within the image, it is seen that image reconstruction

using bispectrum estimation results in images that regain their object structure.

Both one-dimensional and two-dimensional images were tested using separate

bispectral signal reconstruction algorithms for each.
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1.0 INTRODUCTION

When an object is illuminated by a coherent source of electromagnetic radiation,

and this object has a surface structure that is rough on the order of a wavelength of

the incident radiation, a speckle pattern results. A fully developed speckle pattern

will appear chaotic and disorganized. Even when the speckled object is imaged, the

presence of speckle noise is seen as a collection of spots superimposed on the

actual image. Thus, speckle is considered as noise that degrades an image whereby

information present in the image is masked. This noise can be present in either the

pupil plane (farfield) or the image plane.

Studies related to the occurrence of speckle phenomenon are not new. Dainty

(1984) relates a brief history of observations of speckle patterns, beginning with

Newton s attempt to explain star twinkling. Exner, in the late 19th century.

sketched a speckle pattern created by a candle seen through fogged glass. Dehaas.

in the early 20th century, actually photographed such a pattern. In the early 1960"s.

with the advent of the laser, the investigation of this phenomenon accelerated.

Coherent speckle phenomenon can occur is such diverse imagery as synthetic aper

ture radar (SARj. acoustic imagery, ultrasound, x-ray scattering, electron scatter

ing, microwaves, and obviously laser illumination.

What really is important is how speckle degrades an image. Speckle increases the

size of the minimum resolution patch obtained with a given aperture as compared

to the same size aperture using incoherent illumination (Kozma and Christensen.

1976). The resolution of the image is reduced making certain feature identification

difficult. The Maximum Likelihood Estimate (MLE) of a speckle image is obtained



from ensemble averaging. This technique is a highly effective way of removing

speckle noise (Sadjadi, 1990; Jain and Christensen, 1980; Lim and Nawab, 1981).

Multiple images are necessary to perform this procedure. Perfect registration of

each image with the other is required so that the resultant, averaged image is not

blurred. This concern often precludes using ensemble averaging due to the diffi

culty in registering images exactly. This is especially true when the image is chang

ing its position from frame-to-frame.

A signal processing technique called bispectrum estimation can perform ensemble

averaging on multiple, shifted, speckled images. The bispectrum is defined in this

paper to be the Fourier transform of the triple correlation of an image. Image

reconstruction with the bispectrum has the following beneficial properties:

1. The bispectrum is insensitive to linear phase shifts;

2. The bispectrum retains both Fourier magnitude and phase information:

3. The bispectrum is insensitive to certain additive noise processes.

This technique is a spectral domain technique as opposed to a spatial domain

technique, where much of the current digital speckle reduction techniques operate.

This thesis will review the statistics of speckle, speckle as noise, and how this noise

affects the image. A thorough examination of speckle computer modeling will be

conducted and several methods of generating speckled objects digitally will be re

viewed in detail with examples of speckle imagery given. I will also review the

bispectrum and how its use with homomorphic processing will aid in image reeon-



struction of speckle-degraded images. Two separate bispectral reconstruction algo

rithms are used for one-dimensional and two-dimensional images.



2.0 BACKGROUND

The technique I will use to reconstruct the image of a speckled object will be a

wholly digital technique. By this I mean that each speckled image will be in a

digitized format and will be operated on totally using a computer on a pixel-by-

pixel basis. I state this at the beginning so as to differentiate this technique from

physical methods of reducing speckle. For example, McKechnie (1984) lists sev

eral methods one can do to reduce speckle before it is imaged, such as:

1. Illuminating the object with a temporally partially coherent source;

2. Illuminating the object with a spatially partially coherent source;

3. Observing the speckled object through a moving aperture that performs time-

averaging as it moves across the pattern:

4. Observing the pattern through a finite aperture that acts as a low-pass filter.

Guenther. et a!. (1978) ha? one of the earliest papers listing several different digi

tal filters that could be applied to reduce speckle. They describe the basic ensem

ble averaeinc technique (where several images are averaged together to reconstruct

the image) as well as the spatial processing technique using an averaging window

(which moves across the image spatially). Two simple, digital, non-linear filter-

(square-root and squaring) are also described. Jain and Christensen (1980; review

similar techniques as well as a homomorphic Wiener filter for digital speckle re

moval. Lim and Nawab (1981) compare other digital techniques for speckle reduc

tion such as low-pas- filtering in the frequency (Fourier) and density (logarithmic)



domains as well as a method they call the "short space spectral subtraction image

restoration
technique."

They discuss briefly the homomorphic approach to image

restoration using a filter built specifically for this method but do not describe this

filter in any detail, though they do discuss the benefits of using the homomorphic

approach. Sadjadi (1990) reviewed the before-mentioned averaging techniques, a

median filter, local statistical filters, an adaptive filter, and a sigma filter and

compared these with the homomorphic approach to speckle reduction. The

homomorphic approach allows additive-noise reduction techniques to be applied to

multiplicative noise conditions. A better description of a local statistics filter used

in homomorphic processing is given by Arsenault and Levesque (1984). A general

description of signal-dependent noise is presented in this article, also.

A comparison of phase-retrieval algorithms was performed by Fienup (1982) and

some aspects of these algorithms are used to restore speckled images (Idell, et al.

1987). Cederquist, et al. (198S) used a phase retrieval algorithm for farfield. com

puter-generated speckle. These algorithms are useful because phase information is

lost when spectral processing a recorded image using the power spectral density

(PSD). Recovering the phase helps one reconstruct the image uniquely. Bispectral

processing retains the phase of an object and it is this idea that makes it a possible

technique to perform image reconstruction.

Kuan, et al. (198~). derived an adaptive restoration filter for speckled images. This

article also brings up some important points. One key point is the difference be

tween a noisv object and a noisy imaging system. A noisy object occurs when an

incident coherent wavefront is scattered by the object such that random interfer-



ences occur among the dephased, but still coherent, reflected waves. This is the

speckle case I am investigating. The noisy imaging system results from a randomly

variable transmitting medium, such as the atmosphere, and this is the case for

stellar speckle. Instead of being object-related, it is medium-related, i.e., a point is

individually speckled throughout the image due to system effects. Crimmins (1985)

used a geometric filter on speckled images and then compared his results with a

3X3 median filter used on the same images. Safa and Flouzat (1988) used mor

phological techniques on remotely-sensed speckled SAR images.

All of these previous noise-reduction methods operate on the speckled image in

the spatial domain (except for the homomorphic Wiener filter). Recently.

Marathay, et al. (1989) used computer-simulated speckle patterns and applied

third and fourth order intensity correlations to restore the image. The speckle pat

terns generated were not imaged but rather found in the pupil plane. Newman and

Van Vracken (1989) combine the bispectrum with photon-bias correction tech

niques (see Northcott. et al, 1988) to recover multiple, shifted objects in a uniform

background of photon noise (e.g., Poisson). The signal-to-noise ratio (SNR) of

these objects and background noise was less than one! Freeman, et al. (1985;. used

the bispectrum on one-dimensional (1-D). infrared, astronomical speckle data to

recover the phase of a stellar object. Avers, et al. (1988) compare the triple corre

lation with the Knox-Thompson phase retrieval technique for astronomical speckle

and their results indicate that the triple correlation is more robust for recovering

phase than the Knox-Thompson. Again, as a reminder, astronomical speckle is

different than the speckle considered in this thesis. Astronomical speckle can also

-6-



be termed "incoherent speckle" while the speckle modeled in this thesis is coher

ent. Mavroidis, et al, (1990) found that the bispectrum could not be used for recov

ering coherently imaged objects through atmospheric turburlence. This was based

on the theory of phase closure and its relation to the bispectrum. What they did not

do was perform the homomorphic transformation before they attempted image

recovery. As will be shown later, this is a key parameter to successfully reconstruct

an image.

The goal of this thesis is to use recently developed algorithms for bispectrum esti

mation to reconstruct multiple, shifted images degraded by speckle noise. This is a

conceptual study to determine if the bispectrum is robust enough to handle the

image degradation resulting from speckle. The aim is to implement solutions from

an engineer's viewpoint so that practical solutions can be obtained. Therefore, in

some cases, a median filter may be applied, after bispectral averaging and the

image reconstruction has been implemented, to further smooth the image.

-/-



3.0 SPECKLE

To properly model speckled images, I must attempt to review the underlying phys

ics and mathematics behind speckle theory. Since speckle is random, it lends itself

quite well to statistical analysis and the literature is very complete regarding this

aspect of speckle. By using key concepts from this area, it will be shown that

speckle obeys certain constraints that are conducive to computer modeling.

3.1 Electromagnetic Field

The general method I will use to describe the electric field vector of the propagat

ing source is defined by several authors (Gaskill. Haus) and is reviewed here.

Obviously any representation of the electric field vector must also obey Maxwell's

equations, which in turn leads to the wave equation:

V-E - pe = 0 (1)
5 t "

where:

E is the electric field intensity vector E(x.y.z;t)

u. is the permeability

e is the dielectric constant

a: a2 a:

v- is the Laplacian operator: + + .

o x
: 3 y

~ 3 z
2

One solution to the wave equation is found by writing the vector E as (with

r = (x.y.z) being a \ector component):

E [r; t] = A(r ) exp[j2i7Vt] (2)



where:

A(r) is the amplitude function

v is the mean frequency.

In imaging I am concerned primarily with spatial quantities and not temporal ones.

Thus, I can suppress the time dependence in the previous equation. Furthermore.

since the electric field is, in general, a complex quantity, I can express it as:

A(r) =Re[A(r)l +jIm[A(r)] =|a(i)| exp[jd>(r)] (3)

where:

Re denotes the real part of the field

Im denotes the imaginary part of the field

|A(r) | denotes the magnitude of the field

<Hr) denotes a phase function.

Therefore, this is the representation of the complex amplitude of the wave field, 1

will use this notation throughout the thesis. Another quantity of interest will be the

intensity, defined as:

I (r ) = |.A(r )
|:

(4)

It is the squared modulus of the complex field. Implicit in the definition of the

complex field that is a solution to the wave equation is that it is assumed to be

perfectly monochromatic and linearly polarized. Linear polarization is required so

that each component can be treated as a separate random walk (Goodman. 1986)

and so that each component will be statistically independent. Monochromatieity is

-9-



required because if other wavelengths are present then each one can produce its

own speckle pattern causing the overall statistics of the speckled image to be pre

cluded by the effect of all the individual statistical distributions for each wave

length. The reflected field remains linearly polarized and monochromatic, though

it does undergo a uniformly distributed phase change upon reflection.

3.2 Object Surface Statistics

Once this electromagnetic field strikes the object, it is reflected from this object.

The surface is assumed to reflect all of the energy and any loss is due to the

destructive interference of the reflected waves. It is at this point that the speckle

phenomenon occurs. The derivation for the object field statistics that I will use is

the classic random walk (Beckmann & Spizzichino, 1964; Goodman. 1976, 1984.

1985. 1986). This approach requires some assumptions as follows below.

A "rough is a surface which scatters the energy of the incident plane

wave into various and random directions upon reflection. The
"smoothness"

of this

surface is dependent upon the relative wavelength-to-surface-roughness relation

ship. If this relationship is of the order of a wavelength (where a 2tt phase excur

sion can occur that is uniformly distributed), speckle can occur. If the phase is not

uniformly distributed then, even with the presence of a large number of scatterers

(a central limit requirement [Stark & Woods, 1986]), the speckle intensity will not

have its required necative exponential distribution. Similarly, a large number of

scatterers are required so that Gaussian random variables can be used as the field

amplitude model. Shadowing effects (where a portion of the surface
"shades"

an

adjacent seatterer) and multiple scattering from the surface are neglected: only one

-10-



reflection of the incident field occurs at the surface before it interferes with an

adjacent coherent, reflected wave. The density of the scatterers (number/m2) is not

considered and there is always enough return signal to measure adequately, i.e,

unconstrained intensity is assumed so as to preclude Poisson statistics

(photocounts). I assume that this surface reflected field (or its analytic representa

tion) can be modeled a= a circular, complex, Gaussian random variable whose

probability density function is given as:

p(Ar.A;
2-0

exp
-((Ar)2+(Aj)2)

2tto2

where:

Aris the real part of the field, A(r)

Ails the imaginary part of the field. A(n

o is the standard deviation.

This is a complex Gaussian process where both components are independent, iden

tically distributed with zero means and equal variances. By using a
probability-

transformation one can show that (Goodman, 1984) the modulus of this Gaussian

field is Ravleieh distributed:

I I Afr)
p ( |A(rJ I = exP

o-

- Afr
(6)

where:

Afr) | = V ( Ar
)"

-11-



It can be shown that the intensity I = |A(r)
|"

(Goodman, 1984) has a negative

exponential probability density function given bv:

1 T -I
pi) =-r~^ exP ~^2o' L 2o- (?)

From the previous development, 2o: =<|aR
|:

> , where < > denotes the ensemble

average. Notice that the value within the <> is simply the individual phasor intensi

ties, therefore 1 can rewrite Equation 7 in the more familiar form:

pll) =

<I>
exp

-I

<I>
(S)

Another parameter is called the contrast of the speckle pattern and is defined as an

inverse SXR. For fully-developed speckle, the contrast should equal one (Good

man, 19S5: Cederquist. 1988). The contrast is given by:

C
<I>

(9)

All of these first-order statistics will be important when I create computer-

generated speckle because they will be used to verify that the speckle patterns are

actually
"speckled."

3.3 Propagation And Imaging Of The Speckle Field

Since I am dealing with images, their representation must of necessity be real and

non-negative because image intensity (or its field modulus) can never be less than

zero. Second-order statistics will help in describing the image formation process in

-12-



this case because these statistics define the spatial structure of the field (Dainty.

1976). I have reviewed several cases and will relate key results here. Goldfischer

(1965) derived the autocorrelation (ATC) and the PSD for a uniform diffuse object

viewed in the farfield at the pupil plane, thus not imaged. The farfield is that

ttL2

region a distance z from the object that satifisfies the constraints of z
A.

(Gaskill), where L is the size of the aperture and X is the wavelength of the inci

dent radiation.

The farfield, or Fraunhrfer. diffraction pattern intensity is proportional to the com

plex ATC of the object and is thus a measure of the spatial frequency spectrum of

the power. In other words, the ATC and the PSD are Fourier transform pairs

(Yariv). Goldfiseher"s model used a uniform, and hence a statistically stationary

object. Since images are. in general, non-stationary, it will be shown that his re

sults are a special case of the more usual case of non-uniformity. Enloe (196~)

later extended these results to an imaged, uniform object.

There exists a Fourier transform relationship between the speckle field and its

farfield propagation, given by (Enloe,:

AjU.ti ) = //a0(x.v) exp
z\

(X t + XT) ) dx dv (10)

where:

An(x.y) is the object speckle field

A,( oil ) is the farfield distribution.

13-



At the farfield an aperture is located at the pupil plane. This aperture could be a

pupil stop some distance from a lens or the lens itself. The lens then focuses this

coherent radiation onto a detector located at the image plane. The resultant field at

the image plane is given by:

A,(v.w) = //H(:,Ti)A1(t,Ti)exp ^j^-(vt + a)Ti)JdS dr, (11)

where:

HfC.T)) is the System Transfer Function (Fourier transform of pupil func

tion)

f is the focal length of the lens

i'.c merely denote a different coordinate system from that of the object.

The lens acts as a Fourier transformer (Goodman. 1968 1. Thus the field at the

image plane is the Fourier transform of the field in front of the lens, mod, lied by

the aperture. The intensity a: the image plane is found from Equation 11 times its

complex conjugate (denoted by ") by:

I( v. w ) = A, (v, co )(A, (x\ u )
)'

(12)

Notice that the i:v.er.s.~y at the image plane is nothing more than the autocorrela

tion of the obiect convolved with the imaging system.

3.4 Nonstationary. Second-Order Image Statistics

The previous development was for stationary objects. Lowenthal and Arsenault

(19~0) studied the case of an imaged, nonstationary object being speckled. Their

development is important because several important relationships regarding the
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object structure and the second order statistics of the speckle field arise. To begin

with, the object f (r) is composed of two components: t(r) is the actual object func

tion that acts to modulate the rough surface, which is denoted by d(r). This non

uniform object is represented by (neglecting the vector representation for r for

notational simplicity):

fu") = t(r)d(r) (13)

The image plane field, g(r). is related to the object field via the convolution opera

tor (") with the system impulse response, h(r):

g(r) = f(rrh(r) (14)

Relating dir) to the statistics discussed previously. d(r) is stationary and a circular,

complex Gaussian random variable with independent real and imaginary parts hav

ing zero means and equal variances. The function can also be thought of as

wideband, random noise (Lim and Nawab. 1981). An important point here is that.

even though the object is non-stationary, its noise function is stationary and thu =

for all cases of tin. we can find the parameters of gir). Referring to Equationl4. I

can express the mean of the image as (hfr) is the same function throughout the

ensemble):

< g(r) > = < f \') > hd') (15)

Since < 6>r) > = 0. then < br) > = < on > < din > = 0. and therefore < gfn > = 0

The variance of the amplitudefor field) is given for real, non-negative images as

(from the standard relationship
o"

= <x*> (Friedan):

(o.ir))"
=<|gir)|"> - (16)
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Since the image mean is zero and the magnitude squared of the amplitude equals

the intensity, I can rewrite the variance of the image amplitude as:

(og(r))'
=<I(r)> (17)

This interesting result says that the variance of the image amplitude is equal to the

mean of the image intensity. For the variance of the intensity I can write:

(^(r))2
=<I (r):> _ <I (r)

>2

(18)

The definition of a statistical ATC function is given by Goodman(19S5) for the

intensity (since intensity is real) as:

Rn(rr r: > = <I^ri )I(r2) > (19;

This function allows us to compare the intensities at i'j and n over the ensemble.

By letting ij = r^ = r. can rewrite Equation IS as:

(o (r)):
= R ( r.r ) - < I (r)

>: (20)

It can be shown (Goodman. 1985) that another way to write Equation 19. with

rl = r2 = r. is given by:

Rn(r.r )=< ](r) >< I(r) > + |Rc. (r,r)|: ^21)

where R0,, (r.r) is the ATC of the image amplitude and. from the relationship be

tween Equation 12 and Equation 19. is equal to < g(r) (g(r))
*
> (since amplitude

can be complex, in general). For t(r) and h(r). though, this will always be a real
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function, so I can write Rce (r,r) =< | g (r) p>= < I (r) >. Equation 21 can be

written as:

Rn ( r,r ) = < I(r)
>:

+ < I(r)
>2

=2< I(r)
>2 (22)

Using this result in Equation 20 gives ( ou (r))2
=<I(r) >2, which, upon taking

the square root of both sides and dividing by the ensemble averaged intensity,

gives us the same result as Equation 9 for the contrast. So the rms of the intensity-

equals the mean intensity even for non-stationary objects. The difference here is

that, in general, the variance is not a constant but is a result of the ensemble

average and the image coordinates. Consider the mean intensity of the image given

as. by definition. < I(r) > = < g(r) g'r)
*

>. However, as shown above, this j?

nothing more than the ATC of g(r). given as < I(r) > = R2: (r.r)

Another important property is the ATC of the image. Returning to my original

notation, where d(n is assumed stationary, its ATC can be written as

R, , (r., x -. ) = R ir. -r-, ) = b (r.-r^) since I assume the ATC peak to be very-

narrow tor the wideband noise (b represents the Dirac delta function). The ATC of

the speckled object f(r) then becomes:

Rn C'T r: ) = < T ,ri ) d Cri )
x*

(r: ) d
*

lr : ) >

R;^ri-r: ) =<t!ri )t(r;r>Rdd(ri. r; ) (2?)

R.f(ri. r. i = tdo ) t fr;
)'

8 (r2 -r: )
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Note that Rff (rr r2) is still a function of r1 and r2 and not just r1
-

r2 . even

though d(r) is stationary, since I have retained the nonstationarity of t(r). So the

image amplitude ATC can be expressed in integral form as:

Rcc(rl'r2 ) = /kro)|2h(ri -r0)h(r2 - r0 ) *

dr0 (24)
n0

where the integration is over the object plane n0 and a linear filter operation is

assumed with the impulse response h(r). Again letting r1 = r? = r. and using the

relation from a previous paragraph of < I (r) > = R cc (r,r) in the expression

above (Equation 24) I can write
(* denotes convolution):

< I (r) > =

|t(r)|: * |h(r)|: (25)

From Goodman (1965) this equation is of the form of the transfer function for a

system illuminated by incoherent light (where |t(r)|: is the source intensity and

hir) is the system impulse response).

Thus, the transfer function that determines the mean intensity in the image is the

incoherent transfer function of the system, even for an optical system illuminated

by a coherent diffuse object field! One can see from Equation 25 that the PSD of a

speckle pattern has the shape of the ATC of the squared modulus of the pupil

function (Goodman. 1985).

Labeyrie and Dainty (1973) use the principle of Equation 25 to analyze atmos

pheric speckle. I mention this because it relates a practical application of this ex

pression. By measuring the image intensities and summing their individual Fourier
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transforms from each realization, and then dividing this result by the time-aver

aged modulus of each transfer function, the Fourier magnitude of the object's

intensity can be reconstructed.

Miller, et al. (1975) use a more rigorous approach to come to the same conclusions

as given above. They find that the intensity is, in general, a nonstationary random

process so the ATC must be a function of two variables. They make the point that

these second-order results are good for both Fresnel (so-called near field) and

Fraunhofer diffraction but that the usual ATC/PSD Fourier relationship does not

necessarily hold. For nonstationary images, the PSD of the intensity is given as:

SjU) = <| J I (r) exp [-j27rtr] dr |2
> (26)

where Sj ( C ) the PSD. is the average value of the modulus squared Fourier-trans

formed image intensity and C is a spatial frequency vector.

This relationship was extended by April and Lowenthal (1984). They showed that

Equation 26 is really only one of two parts of the PSD of the image intensity The

complete PSD is-
given as Sj(c) = Sj(c)i +Sj(t ): (eq. 26 is Sj( t )1 ) . This is

derived simply by taking the PSD of Equation 21. The first term is the object and

the second term is the speckle noise. Sj ( l ): is written as:

oo

si( ): =11 l< (ri )S *('':) >T exP [-J277t( ri ~r2 ' ] dri dr2 (2")
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The key point in all of this is that the noise spatial frequencies are across the same

frequency region as the incoherent transfer function relationship given by Equation

26. This was proven by April and Lowenthal experimentally. Using the speckled

image of a Ronchi ruling, they showed that it is the incoherent cutoff frequency

(which is twice the coherent cutoff frequency (Goodman (1968) and Gaskill)) that

determines the distribution of the spatial frequencies present in the diffuse coher

ent light. Note that all indication of the object's presence is still lost in a speckled

image if the incoherent cutoff frequency is less than the fundamental frequency of

the Ronchi ruling. Kozma and Christensen (1976) also experimentally verified that

the aperture of a coherently illuminated system must be twice as large as an

equivalent incoherently illuminated system to achieve the same resolution for each.

They compared bar targets of varying spatial frequencies illuminated by both inco

herent and coherent sources.

To summarize all of these points, it was shown that, even using nonstationary

statistics, the rms intensity still equals the mean intensity and so. for fully devel

oped speckle, the contrast is one. Also, nonstationary statistics do not change the

fact that the rough surface is a complex Gaussian random variable leading to a

negative exponential distribution in intensity. Finally, the signal was shown to be

the object intensity attenuated by the incoherent transfer function of the system.

Therefore, information transmission with coherent diffuse illumination is depend

ent on the incoherent bandwidth of the optical system.



3.5 Multiplicative Noise Model

These results are the basis for the noise model used by most researchers (Kuan, et

al, 1987; April and Arsenault, 1976, 1984, 1986; Guenther, et al, 1978; Jain and

Christensen, 1980). They describe speckle noise as multiplicative in the sense that

the speckled object's intensity is a product of the incoherent signal and a noise

function.

Therefore, the amount of speckle noise is proportional to the image. The signal-

dependent nature of speckle is due to the fact that the rms amplitude of the speckle

noise is proportional to the image. This model is described by (Tur. et al, 1982) as:

I5(r) = a<I0(r)Ix(r) CS;

where:

Is 0') is the speckled intensity
I0(ri is the incoherent image intensity of t(r)
I\(r) is the speckle noise intensity of d(r)
a is a proportionality constant dependent upon the system parameters.

The above model breaks down if the object has details beyond the resolution capa

bilities of the coherent optical system used to image the object. In other words, if

the bandwidth of the image is greater than the bandwidth of the optical system, the

multiplicative model will not be applicable. Lim and Nawab (1981) ensure this

condition will not occur by sampling the speckled image coarsely enough so that all

points in the degraded image will be considered independent. The sampling dis

tance must be larger than the correlation length of the speckles at neighboring

pixels to ensure a spatially uncorrected random field in the image (Sadjadi. 1990).
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This is the case for most speckle computer models. In this thesis, I will assume that

my coherent system can resolve all of the details of the object surface, t(r).

3.6 Speckle Computer Models

Having resolved that a speckled image is a signal-dependent, multiplicative noise

process, I now turn to how I want to model this on the computer. There are several

methods I can choose to do this. Before I describe them, I will review speckle.

A speckled object results when a coherent, electromagnetic wave reflects from a

rough surface which contains a very large number of scatterers. This rough surface

varies randomly and uniformly at depths on the order of a wavelength of the inci

dent radiation. The reflected, dephased. yet still coherent wave interferes with it

self and speckle is detected. The object structure modulates the speckle and sur

face roughness greater than one wavelength of the incident radiation produces no

greater amount of speckle. Once the surface roughness exceeds the coherence

length of the source, though, speckle will cease since it no longer has the modulo

2tt (or integer multiples thereof) phase shift. The speckles "'wash due to the

loss of coherence of the source. This is the idea behind speckle reduction tech

niques that are performed physically.

The negative exponential probability distribution of speckle intensity has been ex

perimentally verified (Dainty. 1976). This probability density function (pdfi can

result from a circular, complex Gaussian random variable with the real and imagi

nary components having zero means and equal variances (Goodman. 1985). The



standard deviation and the mean of the intensity are equal for fully developed

speckle, giving a contrast (C) ratio (an inverse SNR) of one.

The most direct way to model this is given by Guenther. et al, (1978). The speckle

field can be described as (using m,n as pixel locations):

a (m,n) = aR(m,n) + ja^m.n) (29)

where aR(m.n) and aj(m.n) are zero mean. Gaussian random variables

for the real and imaginary components, respectively, with variances of

cZ = E { aR- (m.n)}= E{aj~ (m.n) } . j^e speckle intensity becomes:

g (m.n) =
aR2

(m.n) + aj2(m,n) = a (m.n) |: (30)

To model digital speckle. I first generate, for each pixel, a pseudo-random pair of

Gaussian random variables of zero mean and equal variances based on the field

strength (square root of the intensity; of the object at each pixel. The Gaussian

random variables of zero mean and unity variance are created by a routine from

Forsythe. Figure 1 i; a typical histogram of the Gaussian random variable I have

created for a given seed 1/654321). I then take the complex absolute value squared

of this quantity to obtain the speckle intensity. Different realizations are provided

bv using different starting random seeds for each new image. The optical system is

ignored in this approach and completely uncorrelated speckle is produced. I call

this technique the Direct Dieital Model (DDM). Its flowchart is shown in Ficure 2.
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DIRECT DIGITAL MODEL

CREATE TRUTH OBJECT l(m,n)

II
Vl(m,n) =

(a,)2

ii
aRe(m,n) = GAUS RAN1(a,)

4
a|m(m,n) r GAUS RAN2(G,)

U
|a(m,n) = aRe(m,n) + j a,m(m,n)

hi
SPECKLE INTENSITY: g(m,n) = a(m,n) P

Signal dependency occurs because the rms of the field is

proportional to the input signal.

The function, a(m,n), is a circular, complex, Gaussian

random variable with zero mean real and imaginary
components having independent, identically distributed

variances.

Figure 2. Flow Diacram for Direct Digital Model



This result can be extended to include the optical system by propagating the speck

le field to the farfield and multiplying this by the coherent transfer function of the

aperture. Inverse Fourier transforming this function (focusing through a lens) and

then taking the magnitude squared (square law detector) gives a speckled object

that includes the coherent point spread function (psf) of the optical system (Enloe,

1967; Goodman. 1968). I call this technique the Transfer Function Model (TFM).

Its flowchart is seen in Figure 3.

A technique used by Marathay, et al, (1989) and Voelz, et al, (1988) is to create

a random, uniform phase of modulo
2

and then, using Eulehs relationship

exp[j0] = cos0 + jsinG. multiply the phase by the object field at each pixel location.

From Friedan. this phase is given by:

f(m.n) = t: (2R-1) (31)

where 0 < R < 1 is a uniformly distributed, pseudo-random number produced by a

random number generator. The key here is that the phase is statistically independ

ent of the original object. I call this technique the Random Phase Model (RPM).

See Figure 4 for its flowchart.
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TRANSFER FUNCTION MODEL

CREATE TRUTH OBJECT l(m,n)

II
Vl(m,n) =

(0|)2

H
aRe(m,n) = GAUS RAN1(G,)

U
a|m(m,n) = GAUS RAN2(C,)

II
a(m,n) = aRe(m,n) + j a,m(m,n)

II
)3{a(m,n)} = A(i,j

It
A(i,j)H(i,j) = B(i,j)!

II
|3'1{B(i,j)} = b(m,n)J

II
SPECKLE INTENSITY: g(m,n) = I b(m,n) p

H(i,j) is the coherent transfer function of the optical

system

Ficure 3. Flow Diagram for Transfer Function Model



RANDOM PHASE MODFI

CREATE TRUTH OBJECT I(m,n)!

U
V'(m,n)
U

6(m,n) = 7l(2*UNF_RAN-1)!

U
aRe(m,n) =r\/l(m,n)cos(o(m,n))

U
a.m(m'n) = Vl(mJn)sin(0(m)n))

II
ia(m,n) = aRe(m,n) + j a1m(m,n)

II
SPECKLE INTENSITY: g(m,n) = I a(m,n) p

The phase is statistically independent of the original

object and is modulo 2tc ( -n < ty < n )

Fioure 4. Flow Diagram for Random Phase Model



Another way to obtain g(m,n) above is given by Kuan, et al, (1987). They describe

the complex quantity b(m,n) as:

b(mn) = H h(m-i,n-k)V~f(rJO exp[jG(i,k)] (32)
i k

where hii.k) is the coherent psf of the system for pixels i,k. Kuan terms Equation

32 as the single phase speckle model. He extends this model to what he calls the

multiple phase model by rewriting Equation 32 as:

b(m.n) = Z Zh(m-i, n-k)^ f(i,k) a(i.k) (35)
] K

where a(i.k) is a circular, complex, Gaussian random variable. Kuan prefers this

latter model because it reduces the sampling rate to that which accurately reflects

the speckle statistics and "abstracts the dependence of the speckle model on the

object I have modeled this by creating a(i,k) as discussed for the DDM.

multiplying this by the object field and then convolving this quantity with hfi.k) in

the spatial domain. Tnus. hii.k) is a 3X5 spatial window of equal strengths (1'9)

that moves across the image correlating the object from pixel-to-pixel (see

Gonzalez and Wintzi. Adjacent pixels are no longer uncorrelated. Notice that the

TFM uses a coherent transfer function that operates in the frequency domain upon

the entire image simultaneously. Its correlation is much weaker than this tech

nique. The magnitude squared of this quantity gives the speckled object intensity. ]

call this model the Correlated Window Model (CWM). Figure 5 shows the CWM

flowchart.

_^o.



CORRELATED WINDOW MODEL

CREATE TRUTH OBJECT l(m,n)

II
VKm.n) = (c

II
aRp(m,n) = GAUS_RAN1(a,)

U
alm(m,n) = GAUS_RAN2(0,)

H
!a(m,n) = aRe(m,n) + j a,m(m,n)j

U
b(m,n) = XXh(m-i,n-k)a(i,k)!

i k !

II
SPECKLE INTENSITY: g(m,n) = I b(m,n) p

The function, h(i,k) is a 3X3 spatial window of equal

strengths (1/9).

Fieure 5. Flow Diaeram for Correlated Window Model
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The C\SM is probably the most physically accurate of the speckle models since the

assumption of the existence of totally independent scatterers on the diffuser, d(r),

is not realistic for high quality optical systems (Fujii, et al, 1976). These systems

tend to correlate the scattering spots because they are so smooth across the sur

face. Most researchers ignore this model because it severely complicates the statis

tical nature of the resultant image thus complicating any statistical filters used to

reduce the speckle noise. As Kuan shows in his paper, the reconstructed image is

more blurred than the original, and I found that to be the case in this paper, also.

As proven in earlier sections, a speckled object has the following relationship (in

Kuan's notation):

g (m.n) = I(m,n)u(m,n) (34)

where u(m,n) is a signal independent, white noise process with a negative expo

nential pdf and I(m,n) is the incoherent image of the original image. This leads to

another method of generating speckle images that are
"correct"

statistically. First

create u(m.n). a function, that has an intensity that obeys a negative exponential

pdf with unity mean and unity variance. Then multiply this by the original object

thereby creating a signal-dependent, multiplicative noise process with the requisite

negative exponential pdf. I call this model the Negative Exponential Model (NEM).

The NEM flowchart is seen in Figure 6.
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NEGATIVE EXPONENTIAL PDF MODEL

CREATE TRUTH OBJECT \(m,n)\

li
u(m,n) = -ln(1-UNF_RAN)

II
SPECKLE INTENSITY: g(m,n) = l(m,n)u(m,n)

The function, u(m,n), Is found from the probability

transformation of a uniform pdf to a negative exponential

pdf.

Ficure 6. Flow.- Diagram for Negative Exponential pdf Model

The value c^f uirn.n, can be found from the following equation (see Friedan::

uimm) = - in( 1 - R ) (55.

wthere R has the same meaning as in Equation 31 and In is the natural logarith:



Similar to the development of the NEM is the following technique. Arsenault and

April (1976) showed that the natural logarithm of a speckled object has an ap

proximately Gaussian pdf and is additive. To take advantage of this property, I

create a Gaussian random variable, a(m,n), as above and add it to the natural

logarithm of the original object, I(m,n). I then exponentiate this sum to obtain the

speckle intensity. To see this:

p (m,n) = ln(I(m,n)) + a(m,n) (36)

by exponentiation:

g (m.n) = exp fp(m,n)j (-3 0

I call this model the Additive Gaussian Model (AGM) and its flowchart is seen in

Figure 7a. Figure 7b is the histogram of the function, a (m.n). used to create this

speckle. These last two methods are statistically correct but they may be difficult to

model physically.

All six of these speckle models are imaged, i.e.. the speckled object exists in the

image plane and not the pupil, or Fourier plane. Several authors (Marathay. et ah

19S9: Voeiz. et al. 19SS: Idell. et al, 19S~j model this latter speckle condition but it

is not considered in this thesis. Welford (1976) reviews the difference between

imaeed and non-imaged speckle statistics and states that similar statistics will re

sult as lone as the phase excursion is large, the number of effective scatterers is

laree. and the imagine system is not telecentric (i.e.. the optical path length from

object plane to image plane is the same along all principal rays). All optical sys

tems considered in this thesis are aberration-free.



ADDITIVE GAUSSIAN MODEL

jCREATE TRUTH OBJECT l(m,n)

U
a(m,n) N(0,1)|

U
b(m,n) = ln(l(m,n)) + a(m,n)

li
JSPECKLE INTENSITY: g(m,n) = exp[b(m,n)]j

Forces the logarithm of the speckle intensity to have a

Gaussian noise pdf.

Fieure 7a. Flow Diaeram of Additive Gaussian Model
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Dainty (1980) lists several other types of speckle that are seen but these cases have

different statistics than the modeled versions in this thesis and are merely listed

here:

1. Non-circular Gaussian speckle - the phase is not uniformly distributed from

--it to 77 but the number of scatterers (N) is still large.

2. Small -N speckle - the number of scatterers are small and thus non-Gaussian

statistics result.

3. Mliiic //g/;: speckle - spatially coherent yet partially temporally coherent

radiation is used for illumination.

4. Spatially partially coherent speckle - similar to stellar speckle where atmos

pheric turbulence provides the
"speckled"

appearance.

5 Depolarized speckle - the object depolarizes the incident radiation upon reflec

tion.

The next section will review the checks necessary to verify the speckle models and

give examples of each.



3.7 Speckle Verification

There are four key ways to ensure an image is
"correctly"

speckled, i.e., it meets

the proper first order statistics that define speckle noise. These four checks for

fully developed speckled objects are that its:

1. Field modulus histogram has a Rayleigh pdf.

2. Intensity histogram has a negative exponential pdf.

3. Natural logarithm of the speckle intensity has an approximately Gaussian

pdf. i.e., exp[-g-exp(-g)] pdf seen in Figure 8.

4. Contrast ratio is approximately one.

Checks one through three are shown in the following figures. Check four can be

found one of two ways. If my image fills the entire array I can compute the global

mean and global variance to obtain the global contrast. If not, 1 have to obtain

these values locally by, for the mean:

1 i

u(m.n) = Z X c( m + i. n + j ) (55'

for the standard deviation:

o (m.n) = ^, 9
2. 2^ (e( m + i. n + j )

)"

pfm.n)

for the speckle contrast (Crimmins, 1985):

1 sy' * '
a (m.n) (40)

_

( X -2

;,- tZ- 7l~ p(m.n)
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f (x) = exp (-x- (exp (-x) ) )

2 .20
-

Figure 8. Plot of exp(-x-(exp(-x))) Function
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I compute these values for each speckled image. To compare each of these model

ing techniques I use the same truth object. For pure speckle statistics, I use a

uniform
"wall"

as an object that is the same size as the array (64X64) and has an

uniform pixel intensity value of one. For a constrained object I use a
sine"

(x/16,y/16) in a 64X64 array (see Figures 9a and 9b). Several different plots will

be shown for each method, depending on the parameters I want to use to describe

the statistics of that particular method. An explanation will accompany each plot.

The same starting random number seed was given for all models (seed=7654321).

Figures 10a through lOe demonstrate the DDM. Figures lOa-d show the speckle

statistics for a uniform
"wall."

The contrast is 0.9942375 and the skewness of the

logarithm of the intensity is 1.2944. Notice that the histograms match the exact

statistical criteria that represent their given phenomenon (intensity, field, log(inten-

sity)). The speckle phase is a white noise process. Figure lOe is an example of a

sinc2(r.'16) speckled via the DDM. Its imaged contrast is 0.9873512.

Figures 11a through 1 If demonstrate the CWM. Figure 11a is a depiction of a

speckle pattern seen due to a uniform
"wall."

Its contrast is 1.027807S. Notice that

there is no difference between the statistical histograms or the phase of this

method and that of the DDM. That is because this technique is similar to the DDM

except for the 3X3 spatial correlating window. The correlating makes the logarithm

of the speckle intensity slightly more symmetrical than the DDM (skew-

ness=1.2122, so closer to zero than the DDM for the same implementation) indicat

ing the localized Gaussian psf s are playing a small role.
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Figure 9a. Three-dimensional Plot of Sinc2(X/'16,Y/16)Truth Object

Fieure 9b. Two-dimensional Contour Plot of Truth Object
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Figure lOa-d. Statistical Histograms and Phase for Direct Digital Model
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DIRECT DIGITAL SPECKLE METHOD

Fieure lOe. Truth Object Speckled Using the DDM

-41-



CORRELATED WINDOW MODEL

o.c 10.0 20.0 30.0 40.0

C-l. 0278078
50.0 60.0 70.0

Ficure 11a. A Uniform
"Wall"

Speckled Via the CWM
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Fieure llb-e. Statistical Histograms and Phase for the CWM
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CORRELATED WINDOW SPECKLE METHOD

Ficure llf. Truth Object Speckled Via the CWM
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Figures 12a through 12c demonstrate the TFM. The TFM is another modification

to the DDM using a coherent transfer function. The statistics of this technique are

too dependent on the choice of the transfer function to be universally applicable.

For example, Figure 12a is the speckled sine2 (C=0.9634319) using a rectangular

aperture of width N=64 pixels. Figure 12b is the same object but with a circular

aperture of diameter N=64 pixels. Notice how the speckle is much smoother. Fig

ure 12c is the image if I used an incoherent transfer function and the circular

aperture with the TFM.

Figures 15a through 13g demonstrate the RPM. Figure 13a shows the imaged,

speckled sine2 (C=0. 7850590). Using the modification in Figure 13b, where I

propagate the speckle field to the farfield (via Fourier transformation (Goodman.

1968)), I obtain the speckle pattern shown in Figure 13c (C=l. 001926). Comparing

these figures with their contrast ratios, it is obvious that the best way to use this

technique is for pupil-plane speckle and not for image-plane speckle (see Voelz.

et al, 19S8 and Marathay, et al, 1989). The skewness for the farfield case was

1.20904. This technique could also be used to create the speckle field and then be

imaged via a coherent transfer function similar to the TFM.

Figures 14a through I4e demonstrate the NEM. The imaged speckle contrast for

this model is 1.071339 By forcing the object to have a negative exponential pdf

with unit mean and variance, it is not surprising that the histograms fulfill the

statistical criteria so well. Figure 14c is the histogram of the speckle intensity for

the
"wall"

object (C=.9949181). The skewness is 1.3722.
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COHERENT TRANSFER FUNCTION METHOD

\\&

Figure 12a. Truth Object Speckled Via the TFM. Coherent Transfer

Function Was a 64 x 64 Rectangular Aperture
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Figure 12b. Truth Object Speckled Via the TFM. Coherent Transfer

Function Y\as a Cylindrical Aperture (Diameter = 64 pixels)
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incoherentlyimaged speckle pattern

Figure 12c. Truth Object Speckled Via the TFM. Incoherent Transfer

Function Used. Cylindrical Aperture (Diameter = 64 pixels)
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RANDOM PHASE SPECKLE METHOD

Figure 13a. Truth Object Speckled Via the RPM in Image Plane
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RANDOM PHASE MODEL

CREATE TRUTH OBJECT: l(m,n)

\s

IVl(m,n)

i
0(m,n) = 7C(2*UNF_RAN - 1)

j.
aRe(m,n) = V'(m,n) cos(<}>(m,n))

i
a|m(m,n) = \/l(m,n) sin(4>(m,n))

i
a(m,n) = aRe(m,n) + j a,m(m,n)

i
A(i,j) = 3{a(m,n)}

i
g(m,n) = | A(m,n) I2

Ficure 13b. Flow Diaeram for the Random Phase Model
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RANDOM PHASE METHOD

10.0 2D.0 30.0

C-l.001926
so.o 60. 0 70.0

Figure 15c. Truth Object Speckled Via the RPM in the Pupil Plane
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NEG EXP PDF MULT METHOD

Figure 14a. Truth Object Speckled Via the NEM
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Figure 14b-e. Statistical Histograms and Phase for the NEM
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Figures 15a through 15h demonstrate the AGM. Figure 15a is the AGM using a

"wall" for an object (C=l.214454) and Figures 15b-e exhibit its statistics. Notice

that the logarithm of the speckle intensity has a Gaussian histogram (skew-

ness=7.562X10"4

as it should given that the object had a completely singular inten

sity (ln(l)=0). Figure 15f shows the speckled sine2 using the AGM (C=l. 102836).

Figure 15g show its logarithm of the speckle intensity histogram and Figure 15h

shows the same statistics but for the logarithm of the object intensity subtracted

first (skewness=6.56X10~4). This simply verifies that my model was implemented

correctly (see Figure 7a).

From these results, it is clear that a coherently speckled object can be modeled in

either the pupil or image plane. For my bispectral analysis, I will use the DDM.

CWM. and the AGM for the speckle modeling. As will be shown in the 2-D recon

struction, the bispectrum works particularly well for the AGM case. Appendix A

has a tabular synopsis of all of these speckling techniques.



ADDITIVE GAUSSIAN MODEL
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GAUSSIAN IN DENSITY DOMAIN METHOD

Fieure 15f. Truth Object Speckled Via the AGM
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4.0 BISPECTRUM ESTIMATION

4.1 Overview

The definition of the bispectrum, as stated previously, is given as the Fourier trans

form of the triple correlation. A more rigorous definition than this is given by

Nikias and Raghuveer (1987), where the bispectrum is the Fourier transform of the

third order cumulant sequence of a random process. This definition satisfies a

broader range of statistical criteria, using cumulants, than the correlation does. But

for purposes of this thesis, the correlation definition will suffice. Having stated this

in words I now relate its mathematical description, using the notation of Lohmann

and Wirnitzer (19S4j. The triple correlation is given as:

oo

\(3>(xvx2) =Ji(x)i(x + x1)i(x + x2)dx (41)

CO

where i(.\) is a 1-D object (or a two dimensional (2-D) object with x being a 2-D

vector).

The bispectrum is then formally given as:

CO oo

I^tfj.f.) =J Ji(xrx2) exp [-2i7j(f1x1 + f2x2) ] dxj dx2 (42)
OO OO

This can be written as (see Appendix B):

I'-

(fl.f2 ) =l(f1)I(f2)U(fi + f2) (4?'

The bispectrum. then, becomes the triple product of the object Fourier transform

over spatial frequencies fi and f2- From Equation 43 it can be seen that the
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bispectrum is generally complex and has redundant regions providing hexagonal

support (Nikias and Raghuveer, 1987). This is shown in Figure 16 (Bartlelt, et al,

1984). Note that, from Equation 43, a 1-D Fourier object results in a 2-D

bispectrum and thus, by inference, a 2-D Fourier object will give a four dimen

sional (4-D) bispectrum. This can be a concern for large dimensions due to the

memory space required in a computer. Therefore, any algorithm which applies the

bispectrum must attempt to resolve this by sampling only portions of the

bispectrum, since it has redundant information built into it.

* p

(i) I(3)(p,q) =I(3)(q,p)

(ii) I(3)(p,q) =I(3)(p, -p-q)

(iii) I(3j(p,q) =|l(3)(-p. ~q) T
if i (x) is real

Ficure 16. Redundant Regions of the Bispectrum
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4.2 Properties

Signal processing with the bispectrum has several important advantages. Unlike

the power spectrum density (PSD), Fourier phase information is retained in the

bispectrum so that unique image reconstruction can occur. Fourier phase is lost in

the PSD due to the complete spatial symmetry of the autocorrelation while the

bispectrum's support retains this object phase. This is quite easy to see from the

definition of the phase of the bispectrum (see Appendix B). This property is also

useful in identifying whether a system is maximum, minimum, or mixed phase

(Nikias and Raghuveer, 1987).

Another advantage of the bispectrum is that it is shift-invariant, i.e., it is insensi

tive to linear, translational motion. This property allows one to use ensemble aver

aging to reduce noise present in the image without concern for registering images.

When averaging M images together, the noise decreases as the yM (Jain and

Christensen, 1980). If these images are not perfectly aligned, the resultant noise-

reduced image will be blurred (Gonzalez and Wintz). Since the bispectrum is in

sensitive to this misregistration, ensemble averaging can be performed without this

image blur if the averaging is performed in the bispectral domain. In this thesis.

this property will be tested by randomly shifting the image from frame-to-frame

while bispectral averaging is being performed.
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Another property of the bispectrum has to do with its third order correlation. If the

noise present in the image has a symmetric pdf, then its third order moment is

zero in the average. This is a property of all odd-order correlations. If the noise,

n(x), is signal-independent, additive and stationary, then the noisy image, j(x), can

be written as(Lohmann and Wirnitzer, 1984):

j(x) = i(x) + n(x) (44)

Taking the ensemble average of the triple correlation of Equation 44 gives (Loh-

mann and Wirnitzer, 1984; Bartelt, et al, 1984; Freeman, et al. 1988):

<j(3)(x1,x2)> =i(3)(Xl,x2) +<n(3,(x1,x2)>

+<n(x)>[i(2)(Xl)+ i(2J(x2)+ i(2)(x2-Xl)] (45)

+ T[<n(2,(x1)>+<n(2)(x2)>+nr2)(x2-x1)]
where:

< > denotes the ensemble average

n (x) is the autocorrelation (ATC) of the noise

n (xj, x2) is the triple correlation of the noise

i is the image mean

<n(x)> is the noise mean

i <-xl> x2) is the triple correlation of the image.

Three undesired terms exist that need to be dissolved. If the noise is assumed to be

zero mean, all values multiplied by that term go to zero. Thus the ATC of the

image is of no concern. If the noise has a symmetric pdf, its third order moment

goes to zero and thus the n (x1( x2) term vanishes. Finally, the i term can be

zero if the image mean is subtracted from the image before processing, or if the

-63-



image mean is zero initially. The terms multiplied by that value are ignored if this

is the case. All that is left is:

<j(3)(Xl,x2)> = i(3)(Xl,x2) (46)

From this relationship the object Fourier magnitude and phase can be recovered

(via the bispectrum) and then the original object can be reconstructed. Sun-

daramoorthy, et al, (1990), proved this same result in the Fourier domain. They

found that as long as the bispectral axes were not used in the reconstruction,

unbiased estimates would be obtained for the original object (if it was in an addi

tive noise process that had a zero bispectrum).

Two key points should be considered here before I continue. One is that the noise

above is additive and that the noise reduction is performed in the ensemble. As

stated previously, speckle noise is multiplicative. The task is to convert this multi

plicative process into an additive one. To do this a homomorphic transformation

can be taken on the speckled image. The transformation is called homomorphic

because a homomorphism from the set of multiplicative numbers to an additive

group of numbers has occurred. A homomorphic transformation is one in which

the natural logarithm of the image intensity is taken before any further processing

is performed. The multiplicative noise process then becomes additive due to this

logarithmic operation. Several authors review this technique in general (Oppen-

heim and Schafer, 1975; Lim, 1987; Arsenault and Levesque, 1984; and Gonzalez

and Wintz, 1987) while others have reviewed this transformation for speckle in

particular (Jain and Christensen, 1980; Lim and Nawab, 1981; and Sadjadi, 1990).

Arsenault and April (1976) have shown that an object in speckle noise becomes
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additive and signal-independent with an approximately Gaussian pdf when under

going the transformation of:

D = -ln(I) (47)

where D is the density (a term left over from the film grain studies) and I is the

speckle intensity. Therefore, theoretically at least, performing a homomorphic

transformation on Equation 34 will give me the result of Equation 44. After the

homomorphic transformation is performed for each speckled image, these images

should be ensemble averaged. Guenther, et al, (1978) shows that this should re

duce the noise level by the \ N, where N is the number of images processed. How

this will be done using the bispectrum is discussed next.

4.3 Algorithms

In this section I will review the algorithms used to reconstruct multiple, speckle-de

graded, jittered images. To begin I refer to the bispectrum definition of Equation

43, written here as:

I(3,(f1,f2) = |l(3J(fi,f2)| exp[j*(flff2)] (4S)

This function has both magnitude and phase, broken into their respective compo

nents here as:

|l(3)(ii,f2)| = |l(fi)l U(h)\ |l*(fi + f2)l (49)

\|/(f!,f2; = 4>(fi) + <Mf2) - 4>(fi + h ) (50)
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For a noisy sequence j(k)=i(k)+n(k), from 0 < k < N-l, its Fourier transform is

given as:

J(M= E j(n)exp[-j27rnx] (51)
n = - oo

For M images, the ensemble-averaged bispectrum of Equation 51 becomes:

j(3)Ui>M =17 S JI(X1)JI(X2)JI*(X1 + X2) (52)
i =i

A
where j(3)( X^, \2) is the bispectrum estimate of the noisy image. The ultimate

A

goal is to obtain a bispectrum estimate
J(3) that is as close as possible to the

image bispectrum I^3) (\lt \2) , the Fourier transform of Equation 46. Once this

is attained image recovery can be performed by the following algorithms.

4.3.1 One-Dimensional Algorithm

For 1-D images I use a different algorithm each for the magnitude and the phase

reconstruction. The magnitude algorithm is from Sundaramoorthy, et al, (1990)

while the phase algorithm is from Bartelt, et al, (1984). Matsuoka and Ulrych

(1984) discuss several other phase algorithms that could be used for 1-D images

(seismic wavelets) but the recursive algorithm of Bartelt appears to be sufficient. I

will first develop the 1-D algorithm for a 1-D sequence from 0 < m.n < N-l,

letting B(m,n) denote
I(3) ( \1 , X 2 ) and H denote I. With these substitutions I get:

B(m,n) = H(m)H(n)H*(m+n) (53)
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where B(m,n) is the bispectrum of H ( the Fourier transform of the 1-D sequence).

Letting m=l, Equation 53 becomes:

B(l,n) =H(l)H(n)H*(l+n) (54)

Since the object is assumed to be real its Fourier transform is Hermitian, i.e.,

f(x) = f *(-x) (Gaskill). Hermitian means that the complex function has a real

component which is even (e(x) = e(-x)) and an imaginary component which is odd

(o(x)=-o(-x)). This implies I only have to sample the bispectrum from Equation 54

for 1 < n < 1 and then I can later extend the reconstructed object from these
~

2
J

samples for ^ to N-l. The value of H(0) is the image mean (Gonzalez and

Wintz). If this value is zero, or the mean is subtracted from the image before

Fourier transformation, this term could cause magnitude reconstruction problems,

since many magnitude algorithms have this term as a divisor (see Bartelt, 19S4).

Once the bispectrum values of Equation 54 have been calculated and summed for

M images, I can reconstruct the Fourier magnitude and phase of the original ob

ject. For the magnitude, I simply write Equation 54 in terms of its magnitude,

letting n=j-l, as (for real objects):

|H(j)|-,
I^-"I

(55,
|H(1)| I H(j-l) |

where the value of j eoes from 2 to For values of j > , |H( j) = H(N-j) .

2 2

Notice that I have the H( 1)| term as a constant to determine before I can recur-

-67-



sively find the other values of |H(n)|. This value is given from Sundaramoorthy, et

al, as:

6/

H(l)| =

B(l,l)|3

|B(1,3)
|B(1,2)| |B(2,2)|

(56)

Note that an additional bispectrum term has arisen in this formulation. Therefore

the constant B(2,2) must be calculated and summed during the calculation of the

other bispecturm terms. From Equation 53 this becomes:

B(2,2 ) =H(2)2H*(4) (57)

From this I can find its magnitude and use its value in the recursive routine (B(2,2)

is not needed in the phase recursion routine). Since this technique requires only

-^- samples of the bispectrum along the m=l line and the B(2,2) sample (for an

image of size N), considerable savings can be had both in memory allocation and

computation time.

The phase portion of the bispectrum reconstruction is also recursive. The calcu

lated values of the bispectrum phase are an extension of Equation 50 used in

Equation 54, written as:

v>(l,n) = <M1) + 4>(n) - <t>(l+n) (5S)

where, as before, t|f is the bispectrum phase and $ is the object phase. Letting

i = n-l, these values are calculated only from 1 < i < . I can rewrite Equation 58

to determine the values of 4> as:
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<j>(i) = -(l,i-l) +<()(1) + 4>(i-l) (59)

where: 4>(1) = -^ $ (l, n) (60a)

4>(i)= -4>(N-i) for i > -E +1 (60b)

Values for both the magnitude and the phase for n > +1 to N-l can be found by

taking advantage of the Hermitian property of the Fourier object. The value of

4>(^-) is set initially at zero since it does not affect the reconstruction but merely

the placement of the reconstructed object (Matsuoka and Ulrych, 1984; Bartelt,

1984). The final values of |H(n)| and 4>(n) can then be combined using Euler's

relationship and the inverse Fourier transform taken to obtain the reconstructed

object.

4.3.2 Two-Dimensional Algorithm

The 1-D algorithm developed previously worked extremely well on all types of

noise, as well as speckle (see Results section) but, being a 1-D algorithm, it did

not extend well to 2-D images. By extension I mean continuing to use this 1-D

approach on 2-D images by first "raster-scanning", or peeling, the image before

obtaining its bispectrum. If the 2-D image was noise-free, this technique worked

perfectly for jittered, image reconstruction. All 2-D objects of any extent, con

straint, or phase type could be reconstructed with this method. Once a noise was

added, thoush. even in small amounts, reconstruction would not occur. Since noise

-69-



essentially creates phase errors in the object phase (Marron, et al, 1990), these

phase errors are propagated and therefore increased when scanning an image re

cursively over its NXN extent. This is because you have given the phase errors a

greater amount of data to accumulate in as you scan the array as opposed to a

1XN image.

The 2-D magnitude reconstruction algorithm I used is from Dianat and Raghuveer

(1990). Their approach is developed as follows. Write Equation 53 for 2-D images

as:

B(i,j;m,n) = H(i,j)H(m,n)H*(i+m,j+n) (61)

where the B(i,j:m,n) is the 4-D bispectrum of the 2-D Fourier object H for pixels

m,n,i,j. To simplify to a 2-D problem, let i = m, j = n, to get, only for 2-D sub-

plane:

B(m,n) H*(2m,2n) (62)

Taking the natural logarithm of the magnitude of both sides of Equation 61 gives:

In [|B(m,n)|] = 2 In [|H(m,n)|] + In [ | H (2m, 2n)|] (63)

By describing the above equation in terms of its discrete Fourier transform (DFT,

see Equation 51) and equating like coefficients on both sides, the following rela

tionships can be seen as (where the ~ term denotes the DFT of the natural loga

rithm of the magnitude):
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1. For m,n odd:

H(m,n) B(m,n) (64)

2. For 0r ^ odd:

2 2

(65)

3. Repeat Step 2 recursively for cases when -21 or is odd for L = 2,3 .

2L 2L

log2(N)-l.

4. Finally, compute:

H(0,0) =^[5(0,0)-h(0,-|] -H^,0]-h(^,^]] (66)

Once I have calculated all values of H(m,n) recursively from the bispectrum usins

the above relationships, I exponentiate this value to obtain the Fourier magnitude

|H(m n) |. I have found this algorithm to work practically flawlessly for magnitude

reconstruction. As will be discussed in detail later, it is the 2-D phase that will

determine the true shape of the reconstructed object. The above routine also can

be extended to the phase but it is not as robust in phase recovery as the magnitude

algorithm is. Thus, for phase reconstruction, I used a 2-D recursive routine similar

to the 1-D in development but with some added calculations.
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The two-dimensional, recursive, phase reconstruction algorithm is a 2-D extension

of the Lii-Rosenblatt technique described by Matsuoka and Ulrych (1984). This

algorithm requires the H(0,1) and H(1,0) subplanes as a minimum because these

subplanes represent the lowest spatial frequencies in the 2-D object. This being the

case, I let i=0, j=l in Equation 61 to get:

B(m,n) = H(0,l)H(m,n)H*(m,n+l) (67)

Similarly, for i=l, j=0 I get:

B(m,n) = H(l,0)H(m,n)H*(m+l,n) (68)

Finally, I need to calculate a single bispectrum constant to complete the calculated

values necessary to reconstruct the image. This value represents the limit of the

subplanes given above that I will need to sample:

B (f ,0; Q,f) - H (f ,0) H (0,f ) H* (f,f) (69)

To calculate the Fourier phase I use the following relationships, once I have ob-

tained the bispectrum for 2 < m,n < - 1:

1. Usine tl/ calculated from Equation 67 for m=0, 2 < n < - 1,
" Y 2

4>(0,n) = cb(O.l) + 4)(0,n-l) - \|/(0,n-l) (70)

N

2 2-
-^ i

where: ^,(1.0) =

-^ " ^ (0,n)
N m=l
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2. Using \|/ calculated from Equation 68 for n=0, 2 < m < -1,
2

4>(m,0) = cb(l,0) + 4>(m-l,0) - \|/(m-l,0) (71)

where: 4>(L 0) = -2-

i|r(m,0)
N

m=l

3. Using Equation 70 for 1 < m,n < -1,
2

<K0,n+^) = - <K0,-|-n) (72)

4. Using Equation 71 for 1 < m,n < -1,
2

<|>(m+N/2) = - <fo(N/2-m,0) (73)

5. Usinc \|/ calculated from Equation 67 for 1 < m < N-l, 1 < n <

2

<J>(m,n) = <t>(0,l) + <|)(m,n-l) - \J/(m,n) (74a)
<J)(m,n+ ) = - 4)(N-m, -n) (74b)2 2

6. Finally, the following constant values, which affect the position of the object,

are set at:

4>(0,0) = 0

<K-^,0) = 0
2

<j)(0, ) = 0 (or tt ifB( ) is less than zero).
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As one can see from this, finding the phase recursively for 2-D images is a bit

more involved than for 1-D. Once both the Fourier magnitude and phase have

been determined, I combine them and inverse Fourier transform them to get the

object. Examples of both 1-D and 2-D image reconstruction will be found in the

next section.

-74-



5.0 RESULTS

In this section I report my findings from the computer simulations I have per

formed on shift-invariant image reconstruction of speckle-degraded images using

the bispectrum. I have separated the results into two sections: 1) non-speckled,

and 2) speckled. This is because of certain results I obtained from the algorithms

used above that were totally unrelated to the speckle problem.

In Appendix C, I have given an overall flowchart of the 2-D reconstruction algo

rithm used for jittered, speckled images. It is directly applicable to both unspeckled

images and all of the 1-D cases. The pieces of the algorithm that make up the

entire program have been described previously.

When I began this thesis my first question was: "Is the bispectrum robust enough

to handle speckled
images?"

The bispectrum has recently been used for tonal noise

and additive Gaussian noise (Sundaramoorthy, et al, 1990) as well as photon-

limited background noise with SNR < 1 (Newman and Van Vracken. 1989). The

bispectrum has been used in the last few years (see Avers, et al, 1988: Bartelt, et

al, 1984; Lohmann. et al. 1983: and Freeman, et al, 1988) to retrieve astronomical

objects from atmospheric speckle (described by Dainty (1971, 1973) and Labeyrie

(1970)). Marathay (1986) and Sato, et al, (1978) have investigated methods to

physically perform correlations to help retrieve objects. Thus, the recent interest in

bispectrum estimation to reconstruct objects in noise led to this thesis. The concern

for coherent speckle is that, by definition, its phase is a modulo 277 random phase.
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white noise process. Is this too big of a challenge for a phase retrieval routine such

as the bispectrum?

Another question was: "Can ensemble averaging be performed on multiple,

shifted, and possibly blurred images in noise without image blurring in the ensem

ble occurring as a
result?"This problem can occur when imaging an object moving

against a uniform background that is recorded by videotape. The same image is

taken over many frames (at the standard video rate of 30 frames per second) and

trying to register these perfectly without introducing blurring is a formidable task.

Thus, the shift-invariant nature of bispectrum estimation makes it an excellent

candidate to perform this function.

Therefore, this thesis was proposed as a conceptual study of image reconstruction

of speckled images. Since ensemble averaging of the speckled images is the MLE

of the noise-free object, performing this in the bispectral domain while jittering the

object in the spatial domain should test its shift-invariant capabilities as well as its

phase-retrieval capabilities.

5.1 Non-Speckled

When I began this task I did not foresee that I would have problems reconstructing

a noise-free object and, in most cases, I did not. There are certain conditions that

can occur that can either distort the reconstructed object or preclude its reconstruc

tion at all and I will discuss those conditions next. These problems were found by

thoroughly exercising the algorithms for various types of constrained objects in
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various extents and viewing the results. The biggest problem was phase distortion

of the reconstructed object and I will review that next.

5.1.1 Phase Distortion Problem

Bispectrum estimation results in a linear phase shift being introduced into the re

constructed object, given as H(\)exp[-j27ro;V|, where H(V) is the Fourier domain

representation of the reconstructed object and exp[-j27ro;X] is the linear phase shift

(a: is a real constant). This phase shift can be seen in the reconstructed objects of

the following figures.

Figure 17a is the reconstructed version of Figure 9a. Figure 17b is a 2-D contour

plot of Figure 9b while Figure 17c is the recentered object using a program I wrote

that centers the image by wrapping it around given the amount of shift desired in

both the x and y direction. Notice that the reconstructed values go negative. This is

an artifact of the 2-D bispectrum reconstruction. Figure 18a is a 1-D slice of the

object in Figure 26a and the reconstructed object is in 18b. The reconstruction

there is exact except for the phase shift. This phase shift acts as a filter that

merely introduces a shifting of the object in the spatial domain. The 1-D tribar

target of Figure 19a did not show a phase shift upon reconstruction (Figure 19b).

probably because a was zero so the phase shift was zero. To explain this I will use

a linear systems approach (Gaskill). For an object, f(x'). being convolved with a

filter, h(x), I can write (where (*)) denotes the convolution operator):

g(x) = f(x) * h(.\) (75)

and its Fourier transform relationship is (Gaskill):

G(M = F(a)Hu) (76)
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Figure 17a. Three-Dimensional Plot of Bispectrally-Reconstructed

Sinc2(X/16,Y/16)

ac.o *.c x.c %j> cd t.c u.o ls.c s.a

17b. Two-Dimensional Contour

of (a)

17c. Recentered Version of (b)
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Figure 18a. One-Dimensional Truth Object

aECONSTR'JCTEO 1-D SLICE OF S/C (GHY)
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Figure 18b. Bispectrally Reconstructed Version of (a)
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Figure 19a. One-dimensional Truth Object

BISPECTRUM RECONSTRUCTED TRIBAR (NO PADO|H)
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Figure 19b. Bispectrally Reconstructed Version of (a)
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As we have seen, each Fourier quantity has both magnitude and phase since the

Fourier expression is, in general, complex. Thus, I can write Equation 76 as:

G(M = |F(\)||H(X)|exp[-j{a>F(X) + <DH(X)}] (77)

But for a phase filter, |H(x.)| = 1 and Equation 76 is written as:

G(X)=F(Mexp[-jO>H(M"] (78)

If ^h(^-) = 2ifcv\, then the output function, g(x) would merely be a shifted ver

sion of the input, since, by definition, h(x) = 8(x - a) in Equation 75 (where 8 is

the Dirac delta function (Papoulis)):

g(x) = f(x) * 8(x - a) = f(x - a) (79)

There is no phase distortion, then, if the phase transfer function is a linear func

tion of \. Also, if $H(V) is a constant no phase distortion will occur (Gaskill).

For example, if <J> (A.) =-5-, the real-valued input becomes an imaginary-valued
H 2

output. Similarly, for <J> (X) = t\2tt (n is an integer), g(x) = f(x) and for
H

<J> (X,) =(2n +1)tt. gfx) = -f(x). The 1-D tribar target of Figure 18a did not show
H w

a phase shift upon reconstruction probably because of the spatial frequency of the

tribar was such that O (X.) = n2it.
H

The importance of phase information cannot be overstated when reconstructing an

object. In general, the magnitude gives you information regarding the strengths of

the signal but the phase gives you information about the structure of the signal.

Reconstructing an object merely from its Fourier magnitude is similar to taking the

autocorrelation of the object (Goodman, 1985). This is the result of the square-law
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detection aspect of image recording. As shown above, phase records the location

of the image whereas the magnitude does not. A simple example of this is seen by

the following three objects where (Dainty and Fienup):

f(x,y) is the original object

f(x - xo, y - yo) is the object shifted by xrj, xo

-f(x - xo, y - yo is the object shifted and reflected about origin.

All three objects have the same Fourier modulus but all 3 are not located at the

same position or orientation. The phase problem becomes, then, as posed by Bates

and McDonnell, does there exist more than one object belonging to the set of all

possibilities for the phase? If the phase can be retained exactly, there is no ambigu

ity in the object reconstruction (Oppenheim, et al, 1982).

An illustration that compares the relative importance of phase versus magnitude

for image reconstruction is given by Oppenheim and Lim (1981). They provide the

example of the reconstruction of the atomic structure of a L-tyrosine HCL crystal

image from its exact phase data. They compare three succeedingly worse cases for

the magnitude: 1) magnitude of one; 2) magnitude equal to an average of several

different L-tyrosine HCL atoms; and 3) magnitude from a totally different atom!

In all cases the original L-tyrosine HCL atomic structure was reproduced from the

correct phase but erroneous magnitude information.
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For further proof of the importance of phase in reconstructing an object, I per

formed my own experiment using the truth objects of Figure 20a ("battleship")

and Figure 20b ("Lena"). I combined the battleship's phase with Lena's magnitude

and obtained Figure 21a. Similarly, I combined Lena's phase with the battleship's

magnitude and created Figure 21b. Clearly, the phase is key when reconstructing

an image.

Returning to the phase filter, if the recovered phase is distorted, the reconstructed

object will be distorted. Phase distortion occurs when the
"phase-filter"

aspects of

the operation cause the spectral components of the original signal to be misplaced

from their original spacing (i.e., the amount of shift of the spectral components is

not linear with increasing frequency (Gaskill)). When phase distortion occurs, you

do not have the simple, shifted, delta function convolution described in Equation79

for integer values of ex. This relationship is merely a special case of the more

general result:

g(x) = f(x)
*

sinc(x-o;) (80)

where sinc(x)
-sin^7TX/(see Gaskill) and a delta function results at the limit (see

Papoulis, p. 280-281). If | a | S -- (Dianat and Raghuveer, 1990) then nonin-

teger values of the phase filter exist and thus nonlinear increases in the phase shift

occur. For values of a > y up to multiple integer values, the shift is merely a it or

2tt phase shift and further distortion does not occur. The reconstructed object ap

pears to be blurred by a convolution with a sine function. Examples of this are

seen in Figures 22 through 26.
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Figure 20a. "Battleship"

Used for Magnitude/Phase

Comparison

Figure 20b. "Lena"

OflP

Figure 21a. Recon

structed Object Using
"Battleship" Phase and

"Lena" Magnitude

Figure 21b. Recon

structed Object Using
"Lena"

Phase and "Battle
ship"

Maginitude
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Figure 22a is the same tribar as in Figure 19a except that now it is zero-padded.

Its reconstructed image is in Figure 22b. Notice that this image exhibits the phase

shifting and the sine blurring (which causes the negative-valued artifacts seen, for

example, in Figure 17). For the 1-D case I removed the sine blurring with data

windows, which I will discuss shortly.

For 2-D images, the sine blurring was much worse. I tried several different phase

reconstruction algorithms (Dianat and Raghuveer, 1990; Swami and Giannakis,

1988) before settling on the one described previously and it still shows sine blur

ring for certain constrained objects. For example, Figure 23a is a tri(-r-,-^-) truth
o o

object reconstructed in Figure 23b. Notice the severe sine blurring of the object. I

now change the constraint of the object to be tri(y,-r) and the reconstructed

object of Figure 24a is exact, save for the introduced phase shift. My shift-image

program then recenters the object for viewing (Figure 24b).

Not only is object constraint a problem but also the object shape can cause sine

blurring in the reconstructed image. Figure 25a is what I call a "binary"

spacecraft

because its gray levels change value abruptly. Figure 25b is the reconstructed ob

ject. Notice that the sine blurring has actually distorted the object and makes it

appear noisy. Even for smoothly varying objects, such as my
"gray"

spacecraft of

Figure 26a (so-called because there are several gray levels in the image that vary-

smoothly), you can see a ripple of sine blurring in the reconstructed object

(Figure 26b).
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Figure 22a. Original Object
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Fisure 22b. Bispectrally Reconstructed Version of (a)
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TRUTH OBJECT. TtOff/i.X/S)

Figure 23a. Original Object

TRIff/e.VS) *TTH 3INC BUTR AOT PHASE SHOT

Figure 23b. Bispectrally Reconstructed Version of (a)
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Figure 24a. Bispectrally Reconstructed Tri {XII, Y/7)
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Figure 24b. Centered Version of (a)
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Figure 25b. Bispectrally Reconstructed Version of (a)
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Figure 26b. Bispectrally Reconstructed Versions of (a)
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One way to avoid the sine blurring in the 2-D case was to use the 1-D algorithm

and raster-scan the image before calculating its bispectrum. Figures 27a shows the

binary spacecraft, its jittered representation is in Figure 27b from and the recon

structed object is in Figure 27c. Notice that there is no sine blurring of the recon

structed image (I have recentered it after image reconstruction). No noise was

present so there was no reconstruction problems when applying the 1-D raster-

scan method to the 2-D image.

5.1.2 Windowing the Data

In the 1-D case certain bispectrum reconstructions resulted not only in sine blur

ring but also in incomplete reconstructions, i.e., it would lead to an indeterminate

condition (divide by zero). For the 1-D case, I believed these occurrences were

happening because of errors in sampling the spectrum. This was because I noticed

that whenever I zero-padded an array, the reconstructed object often had sine

blurring or it would not reconstruct at all. To overcome this, I decided to use data

windows and they worked as advertised.

To review, data windows are used to relieve leakage or
"ringing"

artifacts when

spectrum data is aperiodically sampled. Data windows help by forcing the sampled

spectra to have a period of N extent (where N is the length of the data record) even

though the object itself may have an aperiodic spectra. The formulas used for the

data windows were taken from Stearns and David. In particular, I used the Bartlett

(triangular) and the tapered rectangular data windows.
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Figure 27a. Original Object

K.O 70. 0

Figure 27b. Representative Object

Jittered Randomly In The Field Of

View For 10 Frames-No Noise

o.o m.c

Figure 27c. Bispectrally Reconstructed Version of (a)
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Figure 28 is an example of using a tapered rectangular window on the object in

Figure 22a before calculating its bispectrum. Compare this result to that of Figure

22b. This implies to me that the sine blurring in the 1-D case is actually ringing

due to aperiodic sampling and not the same phenomenon seen in the 2-D recon

struction.

Figure 29a is an example of an object that would not reconstruct with the 1-D

algorithm unless a data window was used. By using a tapered rectangular window,

though, I obtained the reconstructed object of Figure 29b. I noticed that if a certain

(N7
X*

NT \

V'^T'V' etc-)'

then it would not reconstruct at all, either. Figure 30a is an example of this object

and Figure 30b is its reconstructed shape after windowing by a Bartlett window. In

all cases where an indeterminate reconstruction arose, data windowing allowed for

its reconstruction (though the window function is visible in the reconstruction).

Finally, in the 1-D case, objects placed in very large data records (1X256, 512.

1024, etc.) would not reconstruct but give an indeterminate condition unless data

windows were used.

I attempted to use data windowing in the 2-D reconstruction but was never suc

cessful in removing the sine blur. Thus, I conclude that the cause of the sine blur is

more fundamental in the 2-D case then mere aperiodic sampling errors. It appears

that, since my 2-D phase reconstruction algorithm only samples the two lowest

spatial frequency bispectral subplanes [(1,0), (0,1)], I have bandlimited the result

to these lower spatial frequencies. Higher spatial frequencies present in the recon-
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structed image would give me sharper edges and not the sine-blurred edges I am

getting now.

co
z
LU

A.J. |

1.0 - 1

.9 h

> 1 1 1 1 1 1 1 1 1 1

II n i-

.B
t- .

.7
-

!

i
6 j-

u
5

,

3

.4
- l\ P

.3
-

M
.2

-

.1
- II II h

n 1 | ! 1 1 1 1 1 1 ! 1 1

5 10 15 20 25 30 35 40 45 50 55 60 65

Figure 28. Bispectrally Reconstructed Padded Tribar with Data Window
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Figure 30a. Original Object Figure 30b. Bispectral Reconstruc
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-95-



5.2 Speckled

To begin the speckled section I should review at the outset the flow of the process

ing that I performed to reconstruct a speckled object. Before I do that I will briefly

discuss it. The overall methodology will be, in general, the same whether using

thel-D or 2-D bispectrum algorithm.

The truth object is created and stored in an array that does not change. For a

selected number of images, M, each one is speckled independently using one of the

speckle algorithms. The speckled object varies from frame-to-frame by using a

different random number seed to create the speckle for each frame. I then ran

domly jitter the speckled object in x and y for each frame. This models image

capture. I then perform a homomorphic transformation before I Fourier transform

the image. I then calculate the bispectrum of this function and sum it with previ

ously calculated values. Once all images have been summed, I normalize the resul

tant function and calculate the Fourier magnitude and phase from their respective

1-D or 2-D algorithms. Combining these quantities and inverse transforming, then

exponentiating that result, gives the final answer. A median filter is included, if

desired. See Appendix C for the flow diagram of this entire procedure.

As noted previously several times, the MLE of an undegraded version of the speck

led image is the ensemble average of the multiple speckled images. To find the

MLE of the undegraded image using multiple observations of the multiplicative

noise model, I can write:

g,(m,n) = I(m,n)uk(m,n) (81)
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where the values take the same meaning as Equation 34 except that it is the kth

estimate for N observations (k=l,2,3 ,N). Performing the homomorphic trans

formation, I get:

ln(gk(m,n))= ln(I(m,n)) + ln(uk(m,n)) (82)

From Raghuveer, let these values equal, respectively,:

Zk = 0 + nk (83)

To find the MLE, I want to maximize the probability that the N observations pro

duce the original object. For N independent observations I can write:

P(z|e) =P(zJe )p(z2|e )p(z3|e ) p(zN|e) (84)

where z is a vector. Looking only at one observation, I can express it in terms of

n1 = z1
- 9 as:

p(zje) = p(n2) =p(Zl-6) (85)

From the pdf for the logarithm of the intensity, I can be write:

p(zi-Q)= exp[-(zi-e)-exp[-(zi-0)]] (86)

therefore, for all N observations, taking the logarithm of Equation 86 gives:

N r ,

ln(p(z,-6)) = E(-(z -6
)-exp[-(zk- 6)J ) (87)

k=l
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ln(p(z -6)) = Sz + N0 - Eexp [-(z.-8)] (88)
k=l *

k=l
K

differentiating this with respect to 0 and setting it equal to zero gives:

N = exp [0] S exp [-zJ (89)
k=l k

returning to the original definitions, I can substitute in for 0 and zk and divide by N

to cet:

I(m, n ) =-1 g, (m, n) (90)
N k=i

K

Thus, averaging N observations of the noisy image will provide the MLE of the

degraded image. This result is similar to the result given by Lim and Nawab (1981)

except they kept the noise expression in the non-logarithmic domain during the

proof.

To see what this implies for image reconstruction, notice the speckled version of a

sine2 seen in Figures 31a and b, both in 2-D and 1-D, respectively. Figures 32a

and b are the resultant images after 150, independently-speckled images were

ensemble averaged. Notice that you do not reconstruct the image to obtain Figure 9

but, hopefully, to see what the object was in the first place! This is a result of the

severe image degradation caused by the fully-developed speckle.
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Figure 31a. Three-Dimensional Plot of Speckled Sinc2(X/16,Y/16)

^y\
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Fieure 31b. One-Dimensional Slice of (a) DDM Used

-99-



Figure 32a. Ensemble-Averaged Version of Figure 31a After 150 Frames

Figure 32b. One-Dimensional Slice of (a)
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5.2.1 One-Dimensional Examples

The first example used showing image reconstruction is found in Figures 33a-g.

Figure 33a is the truth object and Figure 33b is a typical speckled object before the

bispectrum routine begins. The DDM was used to speckle the object. Figure 33c is

the ensemble averaged reconstruction of the jittered images and Figure 33d is the

reconstructed object after 200 images were bispectrum averaged. Figure 33e is the

object after a 1X3 median filter has passed over the reconstructed image. Figure

33f is the reconstructed object if no homomorphic transformation is taken. As one

can see, no object reconstruction will occur for speckled objects unless the natural

logarithm is taken first. Figure 33g is the reconstructed object after only 30 images

were bispectrum averaged, showing how rapidly bispectral averaging can converge

to a solution.

One reason the bispectrum rapidly converges to a solution is shown in Figures

34a-c. Figure 34a is the natural logarithm of a sinc2(x/8) function. Wherever the

real function goes to zero I set its density domain representation to -150. Figure

34b is the log of the speckle intensity shown in Figure 33b. Notice how the noise

now appears to
"ride"

on top of the function, essentially improving the SNR of the

resultant image. Figure 34c is the bispectrally averaged estimate of the speckled

image prior to exponentiation (which then gives Figure 33d). Notice how the noise

has smoothed considerably.
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Figure 33a-d. Example of Bispectral Averaging of Jittered, Speckled Objects
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Fieure 33e-g. Example of Bispectral Averaging of Jittered, Speckled Objects

(Cont'd)
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Figure 34a-c. Result of Bispectral Averaging an Object in its Logarithmic

Domain

-104-



Another reason the bispectrum can handle speckled images is seen in Figures

35a-f. I use the same sine2

again but with no zero padding so as to view the results

better. I show the logarithmic representation but I also include the Fourier trans

form of the log of the speckle intensity (Figure 35f). Compare this to Figure 35e.

Thus, the bispectrum, which uses the function in Figure 35f to obtain its values,

basically sees a very close approximation of the original object when processing in

this domain (the Fourier of the log domain).

The next three sets of Figures use a tri(x) object to describe three key points.

Figures 36a-f show a non-jittered object with its bispectrally-averaged rendition.

Notice that, even using the ensemble average (Figure 36c) I only get a form of the

tri back. Figure 36d is what a 1X3 median filter would do if used directly on

Figure 36b. Figures 36e-f are the bispectrally reconstructed image without and

with the median filter, respectively.

The next set of Figures (37a-e) are of a tri that is jittered randomly in a wider field

200 times. Since averaging is done in the bispectral domain, the shifting is ignored

by the bispectrum and reconstruction occurs (Figures 37c-d). Figure 37e shows the

result if no homomorphic transformation occurs.
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Figure 35a-d. Comparison of the Fourier Representation of a Speckled Object

with its Unspeckled Version
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Figure 35e-f. Comparison of the Fourier Representation of a Speckled Object
with its Unspeckled Version (Cont'd)
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Figure 36a-d. Example of Bispectral Averaging of Speckled Object
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Figure 36e-f. Example of Bispectral Averaging of Speckled Object (Cont'd)
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Figure 37a-c. Example of Bispectral Averaging of Jittered, Speckled Object
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(Cont'd)
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The third set of Figures (38a-e) show why bispectral averaging works for the tri.

The log of the speckled tri (Figure 38b) has such an improved SNR (visually) than

the speckled version. After averaging (Figure 38c), the noise is considerably

smoothed. Figure 38d is the Fourier transform of the log of the tri. Compare this

to Figure 38e: there is no difference! For the scale factors used, the noise is practi

cally nonexistent in this domain. This is what the bispectrum sees when it is being

calculated.

Finally, Figures 39 and 40 are speckled and reconstructed versions of Figures 18a

and 22a, respectively. Notice how well we can discriminate the form of these ob

jects which was lost in the speckle (see Korwar and Pierce, (1981) for a discussion

of this loss of discrimination) after bispectral averaging.

5.2.2 Two-Dimensional Examples

I was so pleased with the results of the 1-D algorithm that I decided to extend it to

2-D images. To do this, I would raster-scan the 2-D image, after jittering and

speckling, to reconstruct the object. Before attempting this, though, I tested the

1-D algorithm on Figure 41a, which is the object
"E" jittered in a

'"smearing"

action (Figure 41b). Figure 41c is the result: perfect reconstruction!

I then tried it on a very small amount of additive Gaussian noise. It is so small

(variance + 0.003 about the image) that you can barely see it on a 3-D plot (Figure

42a). After 32 iterations, an
"E"

results that is slightly distorted (Figure 42b). By

150 iterations, the noise is gone and the original image results (though it is phase-

shifted) (Figure 42c).
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Figure 38a-c. Bispectral Reconstruction in Logarithmic Domain and Fourier

Comparison of Speckled Object with Original Version
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Figure 38d-e. Bispectral Reconstruction in Logarithmic Domain and Fourier
Comparison of Speckled Object with Original Version (Cont'd)
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Figure 39a-b. Bispectral Reconstruction of Speckled Object
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Figure 40a-b. Bispectral Reconstruction of Speckled Object
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Figure 41a-c. Bispectral Reconstruction of 2-D Object Using 1-D

Algorithm - No Noise
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Figure 42a-c. Bispectral Reconstruction of 2-D Object Using 1-D

Algorithm - Additive Gaussian Noise (Variance = 0.001)
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I next increased the variance of the zero mean, additive Gaussian noise to 10X the

previous value to see the results. Figure 43b is the result: unrecognizable recon

struction! When noise was present, a 2-D extension of the 1-D algorithm was not

possible. This is due to the phase errors propagating throughout the reconstruction

algorithm from the recursion formula used. Larger noise means larger phase

errors.

Obviously, speckle was an even worse problem than this so I had to find a 2-D

algorithm to work on 2-D images. That 2-D algorithm, developed previously in

this thesis, was used on these 2-D images.

Figure 44a is the speckled version of Figure 27a using the CWM with a contrast of

1.053862. Figure 44b shows 30 speckled images ensemble-averaged together. Fig

ure 44c is the reconstructed object after 30 images were bispectrally averaged, and

Figure 44d is the same image but with a median filter passed over the image.
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(b)

Figure 43a-b. Bispectral Reconstruction of 2-D Object Using 1-D

Algorithm - Additive Gaussian Noise (Variance = 0.01)
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Figure 44a-d. Bispectral Reconstruction Using 2-D Algorithm. Object

Speckled Via CWM
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Figure 45a-c. Bispectral Reconstruction Using 2-D Algorithm. DDM Used to

Speckle Object
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Figure 46a-d. Bispectral Reconstruction Using 2-D Algorithm. AGM Used to

Speckle Object
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Figure 47 is the reconstructed spacecraft from 30 speckled images using a correla

tion technique I devised to keep track of the shift of the object from frame-to-

frame. Basically, I use the first speckled image as a reference with which I corre

late all of the following images. Since speckle is wideband, random noise, their

correlations have a distinct peak when they overlap during the correlation proce

dure. I keep track of this peak's location and align the images with the reference

image so that ensemble averaging can be performed. The 2-D contour plot shows

a gradual sloping toward the center of each object structure and the edges are a bit

blurred. No homomorphic transformation is taken with this method.

A very important point has to be made here. When using the bispectrum to esti

mate a speckled object, the logarithm must be taken prior to the estimation. This

was seen in the 1-D case and Figure 48 is the proof in the 2-D case for a speckled

binary spacecraft.

In using the homomorphic transformation, I also discovered that care must be

taken prior to exponentiation to obtain optimum results. In some cases, the recon

structed Fourier object had values that would cause an arithmetic overflow if not

normalized by some constant. The choice of this constant also was an integral part

of the quality of the reconstruction. Different objects required different normaliz

ing factors and the choice was purely subjective based on what the reconstructed

object needed to enhance its appearance, i.e, edges. Since the goal of speckle-im

age reconstruction is the return of the object form destroyed by the speckle, this is

the only necessary metric by which to base the decision on the choice of the nor

malizing factor.
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5.3 Conclusions

This thesis has shown that, conceptually, bispectrum estimation is robust enough to

recover speckle-degraded images when a homomorphic transformation is taken

and the objects are averaged in the bispectrum. This is especially true in the 1-D

case, where any object could be reconstructed from any form of the speckle model.

The necessary object conditions were that: 1) it had to stay consistently within the

field of view of the array when jittering and, 2) even though it could change posi

tion within the field of view, it could not change orientation.

The phase recovery problems with the 2-D case were not totally resolved. Phase

unwrapping was thought to be a solution but trying to unwrap a 2-D object's phase

to obtain a unique solution in 2-D is difficult, especially if the phase changes by

modulo 2tt every pixel! A 2-D object has phase terms going in the x and y direc

tions; phase unwrapping in one direction may not be what is needed in the other

direction at each m,n pixel location. This is because phase unwrapping attempts to

impose continuity on the phase function to remove any ambiguities present in the

phase (Fiddy and Stark). One ambiguity that arises is from the introduced phase

shift of the reconstructed bispectrum. If I could write the reconstructed estimate as

an integer phase shift then I would get (after Kaveh and Soumekh):

F(\) = F(U) exp[j2Trn] = |f ( \ ) |exp [j ( <J>( X ) +2tt n)] (91)

A

The argument of F ( k. t ) for the phase, then, is given by:

r^ i flm(F(\, )M
ARG{F ( X, ) } = 27m + arctan [^p^^ J (92)
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The ambiguity for the value of the integer, n, is no problem since

^(^'O and <J>F(A., ) + 2,m give the same function for the given modulus,

| F(^ t ) I The term 2irn carries no information thus no physical means exist to

determine it anyway (Takajo and Takahashi, 1988). But if I take the logarithm of

the function, F (*.,{;), we need to know n. This can be seen from the logarithm of

the complex function, F (K), which is written as:

In (F ( \, ) ) = In (j F( \, ) | ] + j (2 + arctan^^^ * } ) ) (93)

Note that the log of the reconstructed object has the same real part as the log of

the real object but it has an imaginary part that differs by integrals of 2tt. The

logarithm of the spectrum is no longer unique, as in the real object's case, due to

this phase ambiguity. Phase unwrapping becomes a process whereby we attempt to

retrieve this term.

Finally, phase can be described physically as the wavefront surface of a propagat

ing complex wave field. If the amplitude of the propagating wave is zero at any

point, its phase is indeterminate. Moving about that point causes a phase change of

2tt (1 wavelength) implying wavefront dislocations (Fiddy and Stark). Since

speckle is caused by modulo 2tr phase excursions, there are as many wavefront

dislocations as there are speckles. Phase unwrapping in this case would be indeter

minate since the chance of obtaining an unambiguous phase unwrap would be

slim.
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In summation, this thesis was an attempt to apply spectral techniques to remove

multiplicative noise from an object jittered against a uniform background in both

one and two dimensions. It was also an exercise in determining the utility of the

bispectrum as a signal processing tool. The homomorphic transformation creates a

situation where you have a signal plus noise and this noise is small compared to

the signal in the bispectral domain. Averaging in this domain allows us to obtain

an estimate of the original object. Finally, this thesis attempts to review speckle

theory and then model it in different fashions to fully understand the mechanisms

behind coherent speckle. Further work could attempt to use actual speckled images

and also increase the robustness of the 2-D phase reconstruction routine. One

could also look at using additional enhancement routines (aside from the median

filter used in this thesis) as post-processing techniques to improve image recon

struction.
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6.0 APPENDICES

Appendix A

Tabular Synopsis Of Speckle Models

Model Description Assumptions Transfer Function?

DDM Circular, complex
Gaussian r.v. with zero

mean, i.i.d. real and

imaginary components

created as field.
Magnitude squared for
speckle intensity.

TFM Speckle field as in DDM,
then Fourier transformed
for propagation. Coherent
transfer function multiplied

by this and then inverse
transformed before
magnitude squaring.

CWM Speckle field as in DDM.

Complex spatial window

of equal strengths

correlates complex field.

Magnitude squaring
result gives intensity.

RPM Modulo 2tt random phase

created from uniform

random number generator.

This used with image

field via Euler's notation

to create speckle field,
then magnitude squared

to give speckle intensity.

Can be imaged or

pupil-plane speckle.

NEM Noise function created

that has a negative

exponential pdf. This is

then multiplied by the

incoherent image of

the truth object.

AGM Zero mean, unity variance,

Gaussian noise added to

the logarithm of the

object intensity.

Large number of
surface scatterers;

no multiple scat

tering; no depol
arization upon

reflection.

Coherent optical
system can resolve

all details in object.

High quality optics

would correlate

the speckle locally.

Object surface is
rough on the order

of the wavelength

of the incident
coherent source,

up to multiples of

2tt until coherence
length of source is
reached.

Speckle noise is a

signal-dependent

and multiplicative

noise process.

Log of multiple

speckle intensity
is approximately
Gaussian.

NO-assumed embedded

in incoherent image.

YES-user defined. A

key player in ultimate

object appearance and

statistics.

YES-in the form of a

3X3, 5X5, etc. spatial
window. Window acts

as averaging filter.

YES-is optional but would
be implemented similar to

TFM once speckle field has
been created.

NO-field statistics are never

derived.

NO-field statistics are never

derived.
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Appendix B
Bispectrum Fourier Expression

This appendix is proof of Equation 43 in the text. Rewriting Equation 42, the

bispectrum is given as the Fourier transform of the triple correlation:

l(3)(fi- f2) = J /i(3)(xrx2)exp[-277j(f1x1 + f2x2)] dxt dx2 (Bl)
oo oo

oo

where:
i(3) (xr x2) =Ji (x) i( x + Xj)i(x + x2 ) dx (B2)

oo

is the triple correlation of the spatial image i(x) and x is a 2-D vector. Substituting

B2 into Bl gives the bispectrum definition in terms of the real object, i(x) and its

shifted versions, i(x + x1 ) and i(x + x2) as:

oo oo oo

I(3)(flt f2) =/ / Ji(x)i(x +xx )i(x +x2)

(B3)

exp [-27TJ(f1x1 + f2X2)j dx dx1 dx2

let (3 = (x + x1), oi = (x + x2), therefore d(3 = dxi and da = dx2 since x is

constant and (x1+ x2)are the shifted, changing values. Substitute these into B3

above to get:

oo oo oo

l(3)(fi. h) = J J /i(x)i(3)i(a)
(BA)

exp [-27tj(f1(p-x) + f2 (a -x ))]dx d(Bda
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Collecting terms, noting that J f(x) exp [- j2ttx] =F() is the continuous

oo

definition of the Fourier transform of f(x) (Gaskill), I get:

p oo oo

I(3)(f1,f2)= Ji(x)dx/i(3) exp[-j27rf1f3]d(3 Ji(a)
OO

_oo oo

exp [- j 2tt f2 a] da exp [j 2.7^ x] exp [j27rf2xj
(B5)

oo

I(3)(frf2) =/i(x)dx exp[j2Trx(f1 +f2)]l(f1)I(f2) (B6)
_oo

Expanding the exponential term in Equation B6 into its Euler's notation, exp[-j9] =

cos(6) - jsin(6), I can write the Fourier transform definition in terms of its real and

imaginary components, respectively, as F(t)
= FRe(b) - JFjm(t). Thus, I can

write Equation B6 as:

I(3)(flf f2) = I(fi )I(f2)[lRe(fl + h) + J Ilm(fl+ f2)] (B7)

oo

Noting that F * () = Jf(x) exp [j277x] Equation B7 then becomes:

I(3; (fi, f2) = I(f! ) I(f2)I (fl+f2) (BS)
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From this expression I can simply write the bispectrum magnitude and phase rela

tionships as functions of the object's Fourier representation as ( I I I is the object

magnitude and 4> is the object phase):

I(3)(fi,f2) = |l(3)(fi, f2)| exp[ jiKfi,f2)] (B9)

where: |l(3) (fi , f2) | = | I(fi) | | I (f2) | |l(-fi -f 2) | (B10a)

4> (fi,f2) = 4>(fi) + 4>(f2) -4>(f1 + f2) (B1ob)

To compare this result with the power spectrum density (PSD), which is the

Fourier transform of the autocorrelation, it is defined as:

IC2)(fi) = |l(2)(fi)| exp [jtKfi)] (BH)

where:
|l(2 \fx ) | = | l(f1 ) | ^(-f^ | = | I(fj_ ) |2 (B12a)

^(fl) = <j>(fi) -4>(fi) = 0 (B12b)

The PSD gives us magnitude information regarding the object but phase is lost.

-132-



Appendix C
Bispectrum Reconstruction Algorithm Flowchart

This top level block diagram gives the logic flow of how the algorithm was imple

mented to perform shift-invariant, speckle-degraded image reconstruction. The

details of each block are in the text.
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