PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 125, Number 3, March 1997, Pages 785–793 S 0002-9939(97)03586-7

SHIFT-INVARIANT SPACES ON THE REAL LINE

RONG-QING JIA

(Communicated by J. Marshall Ash)

ABSTRACT. We investigate the structure of shift-invariant spaces generated by a finite number of *compactly supported* functions in $L_p(\mathbb{R})$ $(1 \le p \le \infty)$. Based on a study of linear independence of the shifts of the generators, we characterize such shift-invariant spaces in terms of the semi-convolutions of the generators with sequences on \mathbb{Z} . Moreover, we show that such a shiftinvariant space provides L_p -approximation order k if and only if it contains all polynomials of degree less than k.

1. INTRODUCTION

The purpose of this paper is to investigate the structure of shift-invariant spaces on the real line. In particular, we are interested in those properties of shift-invariant spaces on the real line which are not shared by shift-invariant spaces on higher dimensional spaces \mathbb{R}^s , s > 1.

Finitely generated shift-invariant subspaces of $L_2(\mathbb{R}^s)$ were studied in [4] by de Boor, DeVore, and Ron, who gave a simple characterization for such spaces in terms of the Fourier transforms of their generators. However, when $p \neq 2$, few results have been known for shift-invariant subspaces of $L_p(\mathbb{R}^s)$.

In this paper, we are mainly concerned with shift-invariant spaces generated by a finite number of *compactly supported* functions in $L_p(\mathbb{R})$ $(1 \le p \le \infty)$. We will give a characterization for such spaces in terms of the semi-convolutions of their generators with sequences on \mathbb{Z} . The result is then applied to give a characterization of the approximation order provided by such shift-invariant spaces.

Let S be a linear space of distributions on \mathbb{R} . We say that S is *shift-invariant* if

$$f \in S \Rightarrow f(\cdot - j) \in S \quad \forall j \in \mathbb{Z}.$$

A mapping from \mathbb{Z} to \mathbb{C} is called a *sequence*. The linear space of all sequences on \mathbb{Z} is denoted by $\ell(\mathbb{Z})$. Let ϕ be a compactly supported distribution on \mathbb{R} , and let $a : \mathbb{Z} \to \mathbb{C}$ be a sequence. The *semi-convolution* of ϕ with a, denoted $\phi *' a$, is defined by

$$\phi *' a := \sum_{j \in \mathbb{Z}} \phi(\cdot - j) a(j).$$

©1997 American Mathematical Society

Received by the editors April 13, 1995 and, in revised form, August 10, 1995.

¹⁹⁹¹ Mathematics Subject Classification. Primary 41A25, 41A15, 46E30.

Key words and phrases. Shift-invariant spaces, approximation order.

The author was supported in part by NSERC Canada under Grant OGP 121336.

RONG-QING JIA

Given a finite collection Φ of compactly supported distributions on \mathbb{R} , we denote by $S_0(\Phi)$ the linear span of $\{\phi(\cdot - j) : \phi \in \Phi, j \in \mathbb{Z}\}$, and by $S(\Phi)$ the linear space of all distributions of the form $\sum_{\phi \in \Phi} \phi *' a_{\phi}$ with a_{ϕ} being a sequence on \mathbb{Z} for each $\phi \in \Phi$. The elements in Φ are called the *generators* for $S(\Phi)$.

Now suppose that Φ is a finite subset of $L_p(\mathbb{R})$ for some p with $1 \leq p \leq \infty$. We denote by $S_p(\Phi)$ the closure of $S_0(\Phi)$ in $L_p(\mathbb{R})$. One of the main results of this paper is a characterization of $S_p(\Phi)$ in terms of semi-convolution. In Section 3, we shall prove that for $1 , a function <math>f \in L_p(\mathbb{R})$ lies in $S_p(\Phi)$ if and only if

(1.1)
$$f = \sum_{\phi \in \Phi} \phi \, *' \, a_{\phi}$$

for some sequences $a_{\phi} \in \ell(\mathbb{Z})$. When $p = \infty$, a modified result will also be established.

We observe that this result is not valid for the case p = 1. To see this, let χ be the characteristic function of the interval [0, 1), and let $\phi := \chi - \chi(\cdot - 1)$. Then for any $f \in S_1(\phi)$ we have $\int f = 0$; hence $\chi \notin S_1(\phi)$. But $\chi = \sum_{j=0}^{\infty} \phi(\cdot - j)$.

Next, we consider approximation in $L_p(\mathbb{R})$ spaces $(1 \le p \le \infty)$. For $f, g \in L_p(\mathbb{R})$, we write $\operatorname{dist}_p(f,g)$ for $||f - g||_p$. Moreover, for a subset G of $L_p(\mathbb{R})$, the distance from f to G, denoted $\operatorname{dist}_p(f,G)$, is defined by

$$\operatorname{dist}_p(f,G) := \inf_{g \in G} \|f - g\|_p.$$

Let Φ be a finite collection of compactly supported functions in $L_p(\mathbb{R})$. The preceding result tells us that $S_p(\Phi) = S(\Phi) \cap L_p(\mathbb{R})$ for 1 . Suppose $<math>1 \leq p \leq \infty$. Let $S := S(\Phi) \cap L_p(\mathbb{R})$, and let $S^h := \{g(\cdot/h) : g \in S\}$ for h > 0. Given a real number $r \geq 0$, we say that $S(\Phi)$ provides L_p -approximation order rif, for each sufficiently smooth function $f \in L_p(\mathbb{R})$,

$$\operatorname{dist}_p(f, S^h) \le Ch^r,$$

where C is a positive constant independent of h (C may depend on f). We say that $S(\Phi)$ provides L_p -density order r (see [3]) if, for each sufficiently smooth function $f \in L_p(\mathbb{R})$,

$$\lim_{h \to 0^+} \operatorname{dist}_p(f, S^h) / h^r = 0.$$

In [7] Jia characterized the L_{∞} -approximation order of $S(\Phi)$ in terms of the Strang-Fix conditions (see [16]). When Φ consists of a single generator ϕ , Ron [13] proved that, for a positive integer k, $S(\phi)$ provides L_{∞} -approximation order k if and only if $S(\phi)$ contains Π_{k-1} , the set of all polynomials of degree $\leq k - 1$. Zhao [18] also gave a characterization for the L_p -approximation order $(1 provided by <math>S(\phi)$.

In Section 4, we shall prove that $S(\Phi)$ provides L_p -approximation order $(1 \le p \le \infty)$ if and only if $S(\Phi)$ contains Π_{k-1} . This result is no longer true for shift-invariance spaces on \mathbb{R}^s , s > 1. See the counterexamples given in [5] and [6].

In our study of shift-invariant spaces linear independence plays a crucial role. Let Φ be a finite collection of compactly supported distributions on \mathbb{R} . The shifts of the elements in Φ are said to be *linearly independent* if

$$\sum_{\phi \in \Phi} \phi \, \ast' \, a_{\phi} = 0 \Rightarrow a_{\phi} = 0 \quad \forall \phi \in \Phi.$$

786

When the shifts of the elements in Φ are linearly independent, we say that $S(\Phi)$ has linearly independent generators.

In Section 2 we shall show that a finitely generated shift-invariant space always has linearly independent generators. More precisely, if Φ is a finite collection of compactly supported distributions on \mathbb{R} , then there exists a finite collection Ψ of compactly supported distributions on \mathbb{R} such that $S(\Psi) = S(\Phi)$ and the shifts of the elements in Ψ are linearly independent. When Φ consists of compactly supported continuous functions, this result was essentially known to de Boor and DeVore (see [2]). When Φ consists of a single generator ϕ , Ron [12] showed that $S(\phi)$ contains a linearly independent generator. Our contribution is to give a concrete construction for Ψ so that Ψ inherits most properties possessed by Φ . For instance, if $\Phi \subset L_p(\mathbb{R})$ for some p with $1 \leq p \leq \infty$, then Ψ can be chosen to be a subset of $L_p(\mathbb{R})$. Furthermore, for $1 , <math>\Psi$ can be chosen to be a subset of $S_p(\Phi)$. These properties enable us to characterize shift-invariant subspaces of $L_p(\mathbb{R})$ and the approximation order provided by them.

2. Linear independence

This section is devoted to a study of linear independence. Linear independence can be characterized in terms of the Fourier transforms of the generators. For a compactly supported integrable function f on \mathbb{R} , the Fourier-Laplace transform of f is given by

$$\hat{f}(\xi) := \int_{\mathbb{R}} f(x) e^{-ix\xi} dx, \qquad \xi \in \mathbb{C}.$$

The domain of the Fourier-Laplace transform can be extended to all compactly supported distributions. If f is a compactly supported distribution, then $\hat{f} : \xi \mapsto \hat{f}(\xi)$ is an entire function on \mathbb{C} . It is known (see [10] and the references cited there) that the shifts of the elements in Φ are linearly independent if and only if for every $\zeta \in \mathbb{C}$, the sequences $(\hat{\phi}(\zeta + 2\pi k))_{k\in\mathbb{Z}}, \phi \in \Phi$, are linearly independent.

For later use we introduce some concepts related to compactly supported distributions. Let ϕ be a compactly supported distribution on \mathbb{R} . Suppose $\phi \neq 0$. The support of ϕ , denoted supp ϕ , is a compact subset of \mathbb{R} . Let $[r_{\phi}, s_{\phi}]$ be the smallest integer-bounded interval containing supp ϕ . The length of the interval $[r_{\phi}, s_{\phi}]$ is

$$l(\phi) := s_{\phi} - r_{\phi}$$

We call $l(\phi)$ the *length* of ϕ .

Let Φ be a finite collection of compactly supported distributions on \mathbb{R} . The *length* of Φ , denoted $l(\Phi)$, is defined by

$$l(\Phi) := \sum_{\phi \in \Phi} l(\phi).$$

Also, we denote by $\#\Phi$ the number of elements in Φ .

Theorem 1. Let Φ be a finite collection of nontrivial distributions on \mathbb{R} with compact support. Then there exists a finite collection Ψ of compactly supported distributions on \mathbb{R} with the following properties:

(a) The shifts of the elements in Ψ are linearly independent;

(b) $\#\Psi \leq \#\Phi;$

(c) $\Phi \subset S_0(\Psi);$

(d) $S(\Psi) = S(\Phi)$.

RONG-QING JIA

If, in addition, $\Phi \subset L_p(\mathbb{R})$ for some $p, 1 \leq p \leq \infty$, then Ψ can be chosen to be a subset of $L_p(\mathbb{R})$. Furthermore, for $1 , <math>\Psi$ can be chosen to be a subset of $S_p(\Phi)$.

Proof. It is sufficient to prove that, if the shifts of the elements in Φ are linearly dependent, then there exists Ψ with $l(\Psi) \leq l(\Phi) - 1$ satisfying all the conclusions of the theorem, except perhaps (a). Suppose $\Phi = \{\phi_1, \ldots, \phi_m\}$. Let

$$K(\Phi) := \left\{ (b_1, \dots, b_m) \in (\ell(\mathbb{Z}))^m : \sum_{j=1}^m \phi_j \, *' \, b_j = 0 \right\}.$$

Then the shifts of the elements in Φ are linearly independent if and only if $K(\Phi) = \{0\}$. If $K(\Phi) = \{0\}$, then we may take $\Psi = \Phi$. Suppose $K(\Phi) \neq \{0\}$. By [10, Theorem 3.3], $K(\Phi) \neq \{0\}$ implies that there exists some $\theta \in \mathbb{C} \setminus \{0\}$ and $(a_1, \ldots, a_m) \in \mathbb{C}^m \setminus \{0\}$ such that

(2.1)
$$(a_1\theta^{()},\ldots,a_m\theta^{()}) \in K(\Phi),$$

where $\theta^{()}$ denotes the sequence $k \mapsto \theta^k$, $k \in \mathbb{Z}$. It follows from (2.1) that

(2.2)
$$\sum_{j=1}^{m} \sum_{k=-\infty}^{\infty} a_j \theta^k \phi_j(\cdot - k) = 0$$

For each ϕ_j , let $r_j := r_{\phi_j}$ and $s_j := s_{\phi_j}$. After shifting the ϕ_j appropriately, we may assume that all $r_j = 0$. Then $s_j = l(\phi_j)$, the length of ϕ_j . Let

$$l := \max\{l(\phi_j) : a_j \neq 0\}.$$

For simplicity, we assume that $a_1 \neq 0$ and $l(\phi_1) = l$. Let

$$\rho := \sum_{j=1}^m a_j \phi_j$$

and

(2.3)
$$\psi := \sum_{k=0}^{\infty} \theta^k \rho(\cdot - k).$$

By our choice of ρ , we deduce from (2.2) that

(2.4)
$$\sum_{k=-\infty}^{\infty} \theta^k \rho(\cdot - k) = 0.$$

Let $\Psi := \{\psi, \phi_2, \dots, \phi_m\}$. We have

$$\psi - \theta \psi(\cdot - 1) = \sum_{k=0}^{\infty} \theta^k \rho(\cdot - k) - \sum_{k=0}^{\infty} \theta^{k+1} \rho(\cdot - k - 1) = \rho = a_1 \phi_1 + \dots + a_m \phi_m.$$

Since $a_1 \neq 0$, we obtain $\phi_1 \in S_0(\psi, \phi_2, \dots, \phi_m)$, and hence $\Phi \subset S_0(\Psi)$. It follows that $S(\Phi) \subseteq S(\Psi)$.

Evidently, $\psi \in S(\Phi)$. If $f = \psi *' b$ for some sequence b on \mathbb{Z} , then for any bounded open interval E of \mathbb{R} , there exists an element $g \in S(\Phi)$ such that g agrees with f on E. Thus, by [8, Theorem 4], f belongs to $S(\Phi)$. This shows $S(\Psi) \subseteq S(\Phi)$. Therefore $S(\Psi) = S(\Phi)$.

Let us show $l(\Psi) < l(\Phi)$. For this purpose we only have to prove supp $\psi \subseteq [0, l-1]$. Clearly, supp $\psi \subseteq [0, \infty)$. Hence, it suffices to show that $\langle \psi, u \rangle = 0$ for

788

every $u \in C_c^{\infty}(\mathbb{R})$ with supp $u \subset (l-1,\infty)$. Let u be such a test function. Note that for each j, $\phi_j(\cdot - k)$ is supported on [k, l+k]. Hence $\langle \phi_j(\cdot - k), u \rangle = 0$ for $k \leq -1$. It follows that $\langle \rho(\cdot - k), u \rangle = 0$ for $k \leq -1$. This in connection with (2.4) gives

$$\langle \psi, u \rangle = \left\langle \sum_{k=0}^{\infty} \theta^k \rho(\cdot - k), u \right\rangle = \left\langle \sum_{k=-\infty}^{\infty} \theta^k \rho(\cdot - k), u \right\rangle = 0.$$

Consequently, supp $\psi \subseteq [0, l-1]$.

Now suppose $\Phi \subset L_p(\mathbb{R})$ for some $p, 1 \leq p \leq \infty$. Then $\rho \in L_p(\mathbb{R})$, and (2.3) tells us that for each integer k, ψ is *p*th power integrable on the interval [k, k+1]. But ψ is compactly supported; hence $\psi \in L_p(\mathbb{R})$.

It remains to prove that $\psi \in S_p(\Phi)$ if $\Phi \subset L_p(\mathbb{R})$ for $1 . If <math>|\theta| < 1$, then (2.3) implies $\psi \in S_p(\Phi)$. If $|\theta| > 1$, then $\psi - \theta \psi(\cdot - 1) = \rho$ implies

$$\psi = \sum_{k=1}^{\infty} -\theta^{-k} \rho(\cdot + k) \in S_p(\Phi).$$

When $|\theta| = 1$, we set

$$f_n := \sum_{k=0}^{n-1} (1 - k/n) \theta^k \rho(\cdot - k),$$

where n is an integer greater than l. Then $f_n \in S_0(\Phi)$. The desired result $\psi \in S_p(\Phi)$ will be established if we can show

(2.5)
$$||f_n - \psi||_p \to 0 \text{ as } n \to \infty.$$

To prove (2.5) we observe that ρ is supported on [0, l], ψ is supported on [0, l-1], and f_n is supported on [0, n+l-1]. For $x \in [0, l-1]$ we have

$$\psi(x) - f_n(x) = \sum_{k=0}^{l-1} (k/n) \theta^k \rho(x-k).$$

Hence

(2.6)
$$\|\psi - f_n\|_{L_p([0,l-1])} \to 0 \quad \text{as } n \to \infty.$$

For $x \in [n-1, n+l-1]$, we have $\psi(x) = 0$ and

$$\psi(x) - f_n(x) = \sum_{k=n-l}^{n-1} -(1-k/n)\theta^k \rho(x-k).$$

But $|1 - k/n| \le l/n$ for $n - l \le k \le n - 1$; hence

(2.7)
$$\|\psi - f_n\|_{L_p([n-1,n+l-1])} \to 0 \text{ as } n \to \infty.$$

It remains to prove

(2.8)
$$\|\psi - f_n\|_{L_p([l-1,n-1])} \to 0 \text{ as } n \to \infty.$$

For this purpose let j be an integer in [l-1, n-2]. We observe that for almost every $x \in [j, j+1]$, $\rho(x-k) = 0$ for $k \notin (j-l, j+1)$, and hence by (2.4) we have

$$\sum_{k=j-l+1}^{j} \theta^k \rho(x-k) = \sum_{k=-\infty}^{\infty} \theta^k \rho(x-k) = 0.$$

Therefore, for almost every $x \in [j, j+1]$, we have

$$\psi(x) - f_n(x) = (1 - j/n) \sum_{k=j-l+1}^{j} \theta^k \rho(x-k) - \sum_{k=j-l+1}^{j} (1 - k/n) \theta^k \rho(x-k)$$
$$= \sum_{k=j-l+1}^{j} \frac{k-j}{n} \theta^k \rho(x-k).$$

But $|k - j| \le l$ for $j - l + 1 \le k \le j$. Consequently, (2.8) holds true for $p = \infty$. If 1 , then there exists a positive constant C independent of n such that

$$\int_{[j,j+1]} |\psi(x) - f_n(x)|^p \, dx \le C^p / n^p, \qquad l-1 \le j \le n-2$$

It follows that

$$\int_{[l-1,n-1]} |\psi(x) - f_n(x)|^p \, dx \le nC^p / n^p = C^p / n^{p-1}.$$

This verifies (2.8) for $1 . Finally, (2.6), (2.7), and (2.8) together imply (2.5). We conclude that <math>\psi \in S_p(\Phi)$ for 1 .

The results obtained so far can be summarized as follows: If the shifts of the elements in Φ are linearly dependent, then we can find a collection Ψ of distributions such that $\#\Psi \leq \#\Phi$, $l(\Psi) < l(\Phi)$, $\Phi \subset S_0(\Psi)$, and $S(\Psi) = S(\Phi)$. Furthermore, if $\Phi \subset L_p(\mathbb{R})$ ($1 \leq p \leq \infty$), then Ψ possesses the additional properties stated in the theorem. Repeat the preceding process until $l(\Psi)$ achieves its minimum. The resulting set Ψ has the property that the shifts of the elements in Ψ are linearly independent. Moreover, Ψ meets the requirement of the theorem.

3. CHARACTERIZATION OF SHIFT-INVARIANT SPACES

In this section we investigate the structure of shift-invariant spaces generated by a finite number of compactly supported functions in $L_p(\mathbb{R})$ $(1 \le p \le \infty)$.

We use $\ell_0(\mathbb{Z})$ to denote the linear space of all finitely supported sequences on \mathbb{Z} . Then, for $1 \leq p < \infty$, $\ell_0(\mathbb{Z})$ is dense in $\ell_p(\mathbb{Z})$. For $p = \infty$, the closure of $\ell_0(\mathbb{Z})$ in $\ell_{\infty}(\mathbb{Z})$ is $c_0(\mathbb{Z})$, the linear space of all sequences a on \mathbb{Z} such that $\lim_{|k|\to\infty} a(k) = 0$. For a measurable subset E of \mathbb{R} and a measurable function f on \mathbb{R} , we denote by $\|f\|_{\infty}(E)$ the essential supremum of f on E. Let $L_{\infty,0}(\mathbb{R})$ be the linear space of all functions $f \in L_{\infty}(\mathbb{R})$ for which $\lim_{r\to\infty} \|f\|_{\infty}(\mathbb{R}\setminus[-r,r]) = 0$.

Let $\Phi = \{\phi_1, \ldots, \phi_m\}$ be a finite collection of compactly supported functions in $L_p(\mathbb{R})$. We say that the shifts of the functions of Φ are *stable*, if there exist two positive constants C_1 and C_2 such that for any choice of sequences $a_1, \ldots, a_m \in \ell_p(\mathbb{Z})$,

$$C_1 \sum_{j=1}^m \|a_j\|_{\ell_p(\mathbb{Z})} \le \left\| \sum_{j=1}^m \phi_j *' a_j \right\|_{L_p(\mathbb{R})} \le C_2 \sum_{j=1}^m \|a_j\|_{\ell_p(\mathbb{Z})}.$$

It was proved by Jia and Micchelli in [10] and [11] that the shifts of the functions in Φ are stable if and only if for every $\xi \in \mathbb{R}$, the sequences $(\hat{\phi}_j(\xi + 2\pi k))_{k \in \mathbb{Z}}, j = 1, \ldots, m$, are linearly independent. Thus, if the shifts of the functions in Φ are linearly independent, then they are stable.

790

Consider the linear mapping T_{Φ} from $(\ell_p(\mathbb{Z}))^m$ to $L_p(\mathbb{R})$ given by

$$T_{\Phi}(a_1,\ldots,a_m) = \sum_{j=1}^m \phi_j \, *' \, a_j, \qquad a_1,\ldots,a_m \in \ell_p(\mathbb{Z}).$$

If the shifts of the functions in Φ are stable, then T_{Φ} is a continuous mapping and the range of T_{Φ} is closed (see [14, p. 70]). Therefore, for $1 \leq p < \infty$, $S_p(\Phi)$ is the range of T_{Φ} . In other words, for $1 \leq p < \infty$, f lies in $S_p(\Phi)$ if and only if $f = \sum_{\phi \in \Phi} \phi *' a_{\phi}$ for some sequences $a_{\phi} \in \ell_p(\mathbb{Z}), \phi \in \Phi$. In the case $p = \infty$, $f \in S_{\infty}(\Phi)$ if and only if $f = \sum_{\phi \in \Phi} \phi *' a_{\phi}$ for some sequences $a_{\phi} \in c_0(\mathbb{Z}), \phi \in \Phi$. In general, we have the following characterization for $S_p(\Phi)$ (1), where

the stability condition is not assumed.

Theorem 2. Let Φ be a finite collection of compactly supported functions in $L_p(\mathbb{R})$. Then for $1 \leq p \leq \infty$, $S(\Phi) \cap L_p(\mathbb{R})$ is closed in $L_p(\mathbb{R})$. Moreover, for 1 ,

$$(3.1) S(\Phi) \cap L_p(\mathbb{R}) = S_p(\Phi)$$

In other words, for 1 , a function <math>f lies in $S_p(\Phi)$ if and only if $f \in L_p(\mathbb{R})$ and

(3.2)
$$f = \sum_{\phi \in \Phi} \phi *' a_{\phi}$$

for some sequences $a_{\phi} \in \ell(\mathbb{Z})$. In the case $p = \infty$, $f \in S_{\infty}(\Phi)$ if and only if $f \in L_{\infty,0}(\mathbb{R})$ and (3.2) holds true for some sequences $a_{\phi} \in \ell(\mathbb{Z})$.

Proof. By Theorem 1, there exists a finite collection $\Psi \subset L_p(\mathbb{R})$ such that $S(\Psi) = S(\Phi)$ and the shifts of the functions in Ψ are linearly independent. Moreover, for $1 , <math>\Psi$ can be so chosen that $S_p(\Psi) = S_p(\Phi)$.

We first show that $S(\Phi) \cap L_p(\mathbb{R})$ is closed in $L_p(\mathbb{R})$ $(1 \leq p \leq \infty)$. This can be derived from [8, Theorem 4]. Here we establish this result by using the dual functionals discussed in [1] and [17]. Suppose $\Psi = \{\psi_1, \ldots, \psi_m\}$. Let $f \in S(\Psi) \cap L_p(\mathbb{R})$. Then

(3.3)
$$f = \sum_{j=1}^{m} \psi_j \, *' \, a_j$$

where $a_j \in \ell(\mathbb{Z}), j = 1, ..., m$. From [1] and [17] we see that there are functions $u_1, ..., u_m \in C_c^{\infty}(\mathbb{R})$ such that for j, k = 1, ..., m and $\alpha \in \mathbb{Z}$,

$$\langle \psi_j, u_k(\cdot - \alpha) \rangle = \delta_{jk} \delta_{\alpha 0},$$

where δ_{jk} stands for the Kronecker sign: $\delta_{jk} = 1$ for j = k and $\delta_{jk} = 0$ for $j \neq k$. It follows that

(3.4)
$$a_j(\alpha) = \langle f, u_j(\cdot - \alpha) \rangle, \quad \alpha \in \mathbb{Z}$$

Since $f \in L_p(\mathbb{R})$, we obtain $a_j \in \ell_p(\mathbb{Z})$ for $j = 1, \ldots, m$ (see [11, Theorem 3.1]). Thus, by the discussion at the beginning of this section, $S(\Psi) \cap L_p(\mathbb{R})$ is closed in $L_p(\mathbb{R})$. But $S(\Phi) = S(\Psi)$. Hence $S(\Phi) \cap L_p(\mathbb{R})$ is closed in $\ell_p(\mathbb{R})$.

Furthermore, for $1 \leq p < \infty$, $S(\Psi) \cap L_p(\mathbb{R}) = S_p(\Psi)$. But, for $1 , we have <math>S_p(\Psi) = S_p(\Phi)$. Therefore, (3.1) is true for 1 .

Finally, it is easily seen that $S_{\infty}(\Psi) \subseteq S(\Psi) \cap L_{\infty,0}(\mathbb{R})$. If $f \in S(\Psi) \cap L_{\infty,0}(\mathbb{R})$ has the expression as in (3.3), then it follows from (3.4) that $a_j \in c_0(\mathbb{Z})$ for $j = 1, \ldots, m$. Hence $f \in S_{\infty}(\Psi)$. This shows that $S_{\infty}(\Psi) = S(\Psi) \cap L_{\infty,0}(\mathbb{R})$. But $S(\Phi) = S(\Psi)$ and $S_{\infty}(\Phi) = S_{\infty}(\Psi)$. We therefore conclude that $S_{\infty}(\Phi) = S(\Phi) \cap L_{\infty,0}(\mathbb{R})$. This verifies the last statement of the theorem.

4. Approximation order

We are now in a position to consider approximation in $L_p(\mathbb{R})$ spaces $(1 \le p \le \infty)$.

Theorem 3. Let Φ be a finite collection of compactly supported functions in $L_p(\mathbb{R})$, $1 \leq p \leq \infty$. Let k be a positive integer. Then the following statements are equivalent.

- (a) $S(\Phi)$ provides L_p -approximation order k.
- (b) $S(\Phi)$ provides L_p -density order k-1.
- (c) $S(\Phi)$ contains Π_{k-1} , the set of all polynomials of degree $\leq k-1$.
- (d) $S(\Phi)$ contains a compactly supported function ψ such that

(4.1)
$$\sum_{\beta \in \mathbb{Z}} q(\beta) \psi(\cdot - \beta) = q \quad \forall q \in \Pi_{k-1}.$$

Proof. It is obvious that (a) implies (b). It was proved in [8] that (b) implies (c). The implication (d) \Rightarrow (a) is well known. See [9] for an explicit L_p -approximation scheme. It remains to prove (c) \Rightarrow (d). By Theorem 1, we may assume that the shifts of the functions in Φ are linearly independent. Suppose $\Phi = \{\phi_1, \ldots, \phi_m\}$.

Since the shifts of the functions in Φ are linearly independent, there exist test functions $u_1, \ldots, u_m \in C_c^{\infty}(\mathbb{R})$ such that

(4.2)
$$\langle \phi_r(\cdot - \alpha), u_s(\cdot - \beta) \rangle = \delta_{rs} \delta_{\alpha\beta}, \quad r, s \in \{1, \dots, m\}, \ \alpha, \beta \in \mathbb{Z}.$$

By condition (c), $q \in S(\Phi)$ for $q \in \Pi_{k-1}$. Hence by (4.2) we have

$$q = \sum_{j=1}^{m} \sum_{\alpha \in \mathbb{Z}} \phi_j(\cdot - \alpha) \langle q(\cdot + \alpha), u_j \rangle.$$

Let $(\ell_r : r = 1, ..., k)$ be the Lagrange polynomials of degree k - 1 for the points 1, ..., k. Then, for any $q \in \prod_{k-1}$,

$$q = \sum_{\alpha \in \mathbb{Z}} \sum_{j=1}^{m} \phi_j(\cdot - \alpha) \left\langle \sum_{r=1}^{k} q(r+\alpha)\ell_r, u_j \right\rangle = \sum_{\beta \in \mathbb{Z}} \psi(\cdot - \beta)q(\beta),$$

with

$$\psi := \sum_{j=1}^{m} \sum_{r=1}^{k} \phi_j(r+\cdot) \langle \ell_r, u_j \rangle$$

certainly a compactly supported element of $S(\Phi)$. Therefore, (c) implies (d).

It was proved by Schoenberg [15] that (4.1) is equivalent to the following conditions: $D^{\alpha}\hat{\psi}(0) = \delta_{\alpha 0}$ and $D^{\alpha}\hat{\psi}(2\pi j) = 0$ for $0 \leq \alpha < k$ and $j \in \mathbb{Z} \setminus \{0\}$. Now these conditions are referred to as the Strang-Fix conditions (see [16]).

References

- A. Ben-Artzi and A. Ron, On the integer translates of a compactly supported function: dual bases and linear projectors, SIAM J. Math. Anal. 21 (1990), 1550–1562. MR 91j:41009
- C. de Boor and R. DeVore, *Partitions of unity and approximation*, Proc. Amer. Math. Soc. 93 (1985), 705–709. MR 86f:41003
- C. de Boor, R. DeVore, and A. Ron, Approximation from shift-invariant subspaces of L₂(ℝ^d), Trans. Amer. Math. Soc. 341 (1994), 787–806. MR 94d:41028
- _____, The structure of finitely generated shift-invariant subspaces in L₂(R^d), J. Functional Analysis 119 (1994), 37–78. MR 95g:46050
- C. de Boor and K. Höllig, Approximation order from bivariate C¹-cubics: a counterexample, Proc. Amer. Math. Soc. 87 (1983), 649–655. MR 84j:41014
- C. de Boor and R. Q. Jia, A sharp upper bound on the approximation order of smooth bivariate pp functions, J. Approx. Theory 72 (1993), 24–33. MR 94e:41012
- R. Q. Jia, A characterization of the approximation order of translation invariant spaces, Proc. Amer. Math. Soc. 111 (1991), 61–70. MR 91d:41018
- Trans. Amer. Math. Soc. 347 (1995), 2585–2594. CMP 94:13
- R. Q. Jia and J. J. Lei, Approximation by multiinteger translates of functions having global support, J. Approx. Theory 72 (1993), 2–23. MR 94f:41024
- R. Q. Jia and C. A. Micchelli, On linear independence of integer translates of a finite number of functions, Research Report CS-90-10 (1990), University of Waterloo. A revised version appeared in Proc. Edinburgh Math. Soc. 36 (1992), 69–85. MR 94e:41044
- Using the refinement equation for the construction of pre-wavelets II: Powers of two, Curves and Surfaces (P. J. Laurent, A. Le Méhauté, and L. L. Schumaker, eds.), Academic Press, New York, 1991, pp. 209–246. MR 92c:65006
- A. Ron, Factorization theorem for univariate splines on regular grids, Israel J. Math. 70 (1990), 48–68. MR 91g:65025
- _____, A characterization of the approximation order of multivariate spline spaces, Studia Math. 98 (1991), 73–90. MR 92g:41017
- M. Schechter, Principles of Functional Analysis, Academic Press, New York, 1971. MR 56:3607
- I. J. Schoenberg, Contributions to the problem of approximation of equidistant data by analytic functions, Quart. Appl. Math. 4 (1946), 45–99, 112–141. MR 8:55d
- G. Strang and G. Fix, A Fourier analysis of the finite-element variational method, Constructive Aspects of Functional Analysis (G. Geymonat, ed.), C.I.M.E. (1973), 793–840.
- K. Zhao, Global linear independence and finitely supported dual basis, SIAM J. Math. Anal. 23 (1992), 1352–1355. MR 93h:41034
- <u>Approximation from locally finite-dimensional shift-invariant spaces</u>, Proc. Amer. Math. Soc. **124** (1996), 1857–1867. MR **96h:**41019

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALBERTA, EDMONTON, CANADA T6G 2G1 *E-mail address*: jia@xihu.math.ualberta.ca