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SHIFT-INVARIANT SPACES ON THE REAL LINE

RONG-QING JIA

(Communicated by J. Marshall Ash)

Abstract. We investigate the structure of shift-invariant spaces generated
by a finite number of compactly supported functions in Lp(R) (1 ≤ p ≤ ∞).
Based on a study of linear independence of the shifts of the generators, we
characterize such shift-invariant spaces in terms of the semi-convolutions of
the generators with sequences on Z. Moreover, we show that such a shift-
invariant space provides Lp-approximation order k if and only if it contains all
polynomials of degree less than k.

1. Introduction

The purpose of this paper is to investigate the structure of shift-invariant spaces
on the real line. In particular, we are interested in those properties of shift-invariant
spaces on the real line which are not shared by shift-invariant spaces on higher
dimensional spaces Rs, s > 1.

Finitely generated shift-invariant subspaces of L2(Rs) were studied in [4] by de
Boor, DeVore, and Ron, who gave a simple characterization for such spaces in terms
of the Fourier transforms of their generators. However, when p 6= 2, few results
have been known for shift-invariant subspaces of Lp(Rs).

In this paper, we are mainly concerned with shift-invariant spaces generated by
a finite number of compactly supported functions in Lp(R) (1 ≤ p ≤ ∞). We will
give a characterization for such spaces in terms of the semi-convolutions of their
generators with sequences on Z. The result is then applied to give a characterization
of the approximation order provided by such shift-invariant spaces.

Let S be a linear space of distributions on R. We say that S is shift-invariant if

f ∈ S ⇒ f(· − j) ∈ S ∀j ∈ Z.

A mapping from Z to C is called a sequence. The linear space of all sequences
on Z is denoted by `(Z). Let φ be a compactly supported distribution on R, and
let a : Z→ C be a sequence. The semi-convolution of φ with a, denoted φ ∗′ a, is
defined by

φ ∗′ a :=
∑
j∈Z

φ(· − j)a(j).
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Given a finite collection Φ of compactly supported distributions on R, we denote
by S0(Φ) the linear span of {φ(· − j) : φ ∈ Φ, j ∈ Z}, and by S(Φ) the linear space
of all distributions of the form

∑
φ∈Φ φ ∗′ aφ with aφ being a sequence on Z for

each φ ∈ Φ. The elements in Φ are called the generators for S(Φ).
Now suppose that Φ is a finite subset of Lp(R) for some p with 1 ≤ p ≤ ∞. We

denote by Sp(Φ) the closure of S0(Φ) in Lp(R). One of the main results of this
paper is a characterization of Sp(Φ) in terms of semi-convolution. In Section 3, we
shall prove that for 1 < p <∞, a function f ∈ Lp(R) lies in Sp(Φ) if and only if

f =
∑
φ∈Φ

φ ∗′ aφ(1.1)

for some sequences aφ ∈ `(Z). When p = ∞, a modified result will also be estab-
lished.

We observe that this result is not valid for the case p = 1. To see this, let χ be
the characteristic function of the interval [0, 1), and let φ := χ−χ(· − 1). Then for
any f ∈ S1(φ) we have

∫
f = 0; hence χ 6∈ S1(φ). But χ =

∑∞
j=0 φ(· − j).

Next, we consider approximation in Lp(R) spaces (1 ≤ p ≤ ∞). For f, g ∈ Lp(R),
we write distp(f, g) for ‖f − g‖p. Moreover, for a subset G of Lp(R), the distance
from f to G, denoted distp(f,G), is defined by

distp(f,G) := inf
g∈G
‖f − g‖p.

Let Φ be a finite collection of compactly supported functions in Lp(R). The
preceding result tells us that Sp(Φ) = S(Φ) ∩ Lp(R) for 1 < p < ∞. Suppose
1 ≤ p ≤ ∞. Let S := S(Φ) ∩ Lp(R), and let Sh := {g(·/h) : g ∈ S} for h > 0.
Given a real number r ≥ 0, we say that S(Φ) provides Lp-approximation order r
if, for each sufficiently smooth function f ∈ Lp(R),

distp(f, S
h) ≤ Chr,

where C is a positive constant independent of h (C may depend on f). We say that
S(Φ) provides Lp-density order r (see [3]) if, for each sufficiently smooth function
f ∈ Lp(R),

lim
h→0+

distp(f, S
h)/hr = 0.

In [7] Jia characterized the L∞-approximation order of S(Φ) in terms of the
Strang-Fix conditions (see [16]). When Φ consists of a single generator φ, Ron
[13] proved that, for a positive integer k, S(φ) provides L∞-approximation order
k if and only if S(φ) contains Πk−1, the set of all polynomials of degree ≤ k − 1.
Zhao [18] also gave a characterization for the Lp-approximation order (1 < p <∞)
provided by S(φ).

In Section 4, we shall prove that S(Φ) provides Lp-approximation order (1 ≤
p ≤ ∞) if and only if S(Φ) contains Πk−1. This result is no longer true for shift-
invariance spaces on Rs, s > 1. See the counterexamples given in [5] and [6].

In our study of shift-invariant spaces linear independence plays a crucial role.
Let Φ be a finite collection of compactly supported distributions on R. The shifts
of the elements in Φ are said to be linearly independent if∑

φ∈Φ

φ ∗′ aφ = 0⇒ aφ = 0 ∀φ ∈ Φ.
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When the shifts of the elements in Φ are linearly independent, we say that S(Φ)
has linearly independent generators.

In Section 2 we shall show that a finitely generated shift-invariant space always
has linearly independent generators. More precisely, if Φ is a finite collection of
compactly supported distributions on R, then there exists a finite collection Ψ of
compactly supported distributions on R such that S(Ψ) = S(Φ) and the shifts of the
elements in Ψ are linearly independent. When Φ consists of compactly supported
continuous functions, this result was essentially known to de Boor and DeVore
(see [2]). When Φ consists of a single generator φ, Ron [12] showed that S(φ)
contains a linearly independent generator. Our contribution is to give a concrete
construction for Ψ so that Ψ inherits most properties possessed by Φ. For instance,
if Φ ⊂ Lp(R) for some p with 1 ≤ p ≤ ∞, then Ψ can be chosen to be a subset
of Lp(R). Furthermore, for 1 < p ≤ ∞, Ψ can be chosen to be a subset of Sp(Φ).
These properties enable us to characterize shift-invariant subspaces of Lp(R) and
the approximation order provided by them.

2. Linear independence

This section is devoted to a study of linear independence. Linear independence
can be characterized in terms of the Fourier transforms of the generators. For a
compactly supported integrable function f on R, the Fourier-Laplace transform of
f is given by

f̂(ξ) :=

∫
R
f(x)e−ixξdx, ξ ∈ C.

The domain of the Fourier-Laplace transform can be extended to all compactly
supported distributions. If f is a compactly supported distribution, then f̂ : ξ 7→
f̂(ξ) is an entire function on C. It is known (see [10] and the references cited there)
that the shifts of the elements in Φ are linearly independent if and only if for every
ζ ∈ C, the sequences (φ̂(ζ + 2πk))k∈Z, φ ∈ Φ, are linearly independent.

For later use we introduce some concepts related to compactly supported distri-
butions. Let φ be a compactly supported distribution on R. Suppose φ 6= 0. The
support of φ, denoted supp φ, is a compact subset of R. Let [rφ, sφ] be the smallest
integer-bounded interval containing supp φ. The length of the interval [rφ, sφ] is

l(φ) := sφ − rφ.
We call l(φ) the length of φ.

Let Φ be a finite collection of compactly supported distributions on R. The
length of Φ, denoted l(Φ), is defined by

l(Φ) :=
∑
φ∈Φ

l(φ).

Also, we denote by #Φ the number of elements in Φ.

Theorem 1. Let Φ be a finite collection of nontrivial distributions on R with com-
pact support. Then there exists a finite collection Ψ of compactly supported distri-
butions on R with the following properties :

(a) The shifts of the elements in Ψ are linearly independent ;
(b) #Ψ ≤ #Φ;
(c) Φ ⊂ S0(Ψ);
(d) S(Ψ) = S(Φ).
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If, in addition, Φ ⊂ Lp(R) for some p, 1 ≤ p ≤ ∞, then Ψ can be chosen to be a
subset of Lp(R). Furthermore, for 1 < p ≤ ∞, Ψ can be chosen to be a subset of
Sp(Φ).

Proof. It is sufficient to prove that, if the shifts of the elements in Φ are linearly
dependent, then there exists Ψ with l(Ψ) ≤ l(Φ) − 1 satisfying all the conclusions
of the theorem, except perhaps (a). Suppose Φ = {φ1, . . . , φm}. Let

K(Φ) :=

(b1, . . . , bm) ∈ (`(Z))m :
m∑
j=1

φj ∗′ bj = 0

 .

Then the shifts of the elements in Φ are linearly independent if and only if K(Φ) =
{0}. If K(Φ) = {0}, then we may take Ψ = Φ. Suppose K(Φ) 6= {0}. By
[10, Theorem 3.3], K(Φ) 6= {0} implies that there exists some θ ∈ C\{0} and
(a1, . . . , am) ∈ Cm\{0} such that

(a1θ
(), . . . , amθ

()) ∈ K(Φ),(2.1)

where θ() denotes the sequence k 7→ θk, k ∈ Z. It follows from (2.1) that
m∑
j=1

∞∑
k=−∞

ajθ
kφj(· − k) = 0.(2.2)

For each φj , let rj := rφj and sj := sφj . After shifting the φj appropriately, we
may assume that all rj = 0. Then sj = l(φj), the length of φj . Let

l := max{l(φj) : aj 6= 0}.
For simplicity, we assume that a1 6= 0 and l(φ1) = l. Let

ρ :=
m∑
j=1

ajφj

and

ψ :=
∞∑
k=0

θkρ(· − k).(2.3)

By our choice of ρ, we deduce from (2.2) that
∞∑

k=−∞
θkρ(· − k) = 0.(2.4)

Let Ψ := {ψ, φ2, . . . , φm}. We have

ψ − θψ(· − 1) =
∞∑
k=0

θkρ(· − k)−
∞∑
k=0

θk+1ρ(· − k − 1) = ρ = a1φ1 + · · ·+ amφm.

Since a1 6= 0, we obtain φ1 ∈ S0(ψ, φ2, . . . , φm), and hence Φ ⊂ S0(Ψ). It follows
that S(Φ) ⊆ S(Ψ).

Evidently, ψ ∈ S(Φ). If f = ψ ∗′ b for some sequence b on Z, then for any
bounded open interval E of R, there exists an element g ∈ S(Φ) such that g agrees
with f on E. Thus, by [8, Theorem 4], f belongs to S(Φ). This shows S(Ψ) ⊆ S(Φ).
Therefore S(Ψ) = S(Φ).

Let us show l(Ψ) < l(Φ). For this purpose we only have to prove supp ψ ⊆
[0, l − 1]. Clearly, supp ψ ⊆ [0,∞). Hence, it suffices to show that 〈ψ, u〉 = 0 for
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every u ∈ C∞c (R) with supp u ⊂ (l − 1,∞). Let u be such a test function. Note
that for each j, φj(· − k) is supported on [k, l + k]. Hence 〈φj(· − k), u〉 = 0 for
k ≤ −1. It follows that 〈ρ(· − k), u〉 = 0 for k ≤ −1. This in connection with (2.4)
gives

〈ψ, u〉 =

〈 ∞∑
k=0

θkρ(· − k), u

〉
=

〈 ∞∑
k=−∞

θkρ(· − k), u

〉
= 0.

Consequently, supp ψ ⊆ [0, l− 1].
Now suppose Φ ⊂ Lp(R) for some p, 1 ≤ p ≤ ∞. Then ρ ∈ Lp(R), and (2.3)

tells us that for each integer k, ψ is pth power integrable on the interval [k, k + 1].
But ψ is compactly supported; hence ψ ∈ Lp(R).

It remains to prove that ψ ∈ Sp(Φ) if Φ ⊂ Lp(R) for 1 < p ≤ ∞. If |θ| < 1, then
(2.3) implies ψ ∈ Sp(Φ). If |θ| > 1, then ψ − θψ(· − 1) = ρ implies

ψ =
∞∑
k=1

−θ−kρ(·+ k) ∈ Sp(Φ).

When |θ| = 1, we set

fn :=
n−1∑
k=0

(1− k/n)θkρ(· − k),

where n is an integer greater than l. Then fn ∈ S0(Φ). The desired result ψ ∈ Sp(Φ)
will be established if we can show

‖fn − ψ‖p → 0 as n→∞.(2.5)

To prove (2.5) we observe that ρ is supported on [0, l], ψ is supported on [0, l− 1],
and fn is supported on [0, n+ l− 1]. For x ∈ [0, l− 1] we have

ψ(x) − fn(x) =
l−1∑
k=0

(k/n)θkρ(x− k).

Hence

‖ψ − fn‖Lp([0,l−1]) → 0 as n→∞.(2.6)

For x ∈ [n− 1, n+ l− 1], we have ψ(x) = 0 and

ψ(x) − fn(x) =
n−1∑
k=n−l

−(1− k/n)θkρ(x− k).

But |1− k/n| ≤ l/n for n− l ≤ k ≤ n− 1; hence

‖ψ − fn‖Lp([n−1,n+l−1]) → 0 as n→∞.(2.7)

It remains to prove

‖ψ − fn‖Lp([l−1,n−1]) → 0 as n→∞.(2.8)

For this purpose let j be an integer in [l − 1, n − 2]. We observe that for almost
every x ∈ [j, j + 1], ρ(x− k) = 0 for k 6∈ (j − l, j + 1), and hence by (2.4) we have

j∑
k=j−l+1

θkρ(x− k) =
∞∑

k=−∞
θkρ(x− k) = 0.
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Therefore, for almost every x ∈ [j, j + 1], we have

ψ(x)− fn(x) = (1− j/n)

j∑
k=j−l+1

θkρ(x− k)−
j∑

k=j−l+1

(1− k/n)θkρ(x− k)

=

j∑
k=j−l+1

k − j
n

θkρ(x− k).

But |k − j| ≤ l for j − l + 1 ≤ k ≤ j. Consequently, (2.8) holds true for p =∞. If
1 < p <∞, then there exists a positive constant C independent of n such that∫

[j,j+1]

|ψ(x)− fn(x)|p dx ≤ Cp/np, l − 1 ≤ j ≤ n− 2.

It follows that ∫
[l−1,n−1]

|ψ(x) − fn(x)|p dx ≤ nCp/np = Cp/np−1.

This verifies (2.8) for 1 < p < ∞. Finally, (2.6), (2.7), and (2.8) together imply
(2.5). We conclude that ψ ∈ Sp(Φ) for 1 < p ≤ ∞.

The results obtained so far can be summarized as follows: If the shifts of the
elements in Φ are linearly dependent, then we can find a collection Ψ of distributions
such that #Ψ ≤ #Φ, l(Ψ) < l(Φ), Φ ⊂ S0(Ψ), and S(Ψ) = S(Φ). Furthermore,
if Φ ⊂ Lp(R) (1 ≤ p ≤ ∞), then Ψ possesses the additional properties stated in
the theorem. Repeat the preceding process until l(Ψ) achieves its minimum. The
resulting set Ψ has the property that the shifts of the elements in Ψ are linearly
independent. Moreover, Ψ meets the requirement of the theorem.

3. Characterization of shift-invariant spaces

In this section we investigate the structure of shift-invariant spaces generated by
a finite number of compactly supported functions in Lp(R) (1 ≤ p ≤ ∞).

We use `0(Z) to denote the linear space of all finitely supported sequences on Z.
Then, for 1 ≤ p < ∞, `0(Z) is dense in `p(Z). For p = ∞, the closure of `0(Z) in
`∞(Z) is c0(Z), the linear space of all sequences a on Z such that lim|k|→∞ a(k) = 0.
For a measurable subset E of R and a measurable function f on R, we denote by
‖f‖∞(E) the essential supremum of f on E. Let L∞,0(R) be the linear space of all
functions f ∈ L∞(R) for which limr→∞ ‖f‖∞(R\[−r, r]) = 0.

Let Φ = {φ1, . . . , φm} be a finite collection of compactly supported functions in
Lp(R). We say that the shifts of the functions of Φ are stable, if there exist two
positive constants C1 and C2 such that for any choice of sequences a1, . . . , am ∈
`p(Z),

C1

m∑
j=1

‖aj‖`p(Z) ≤

∥∥∥∥∥∥
m∑
j=1

φj ∗′ aj

∥∥∥∥∥∥
Lp(R)

≤ C2

m∑
j=1

‖aj‖`p(Z).

It was proved by Jia and Micchelli in [10] and [11] that the shifts of the functions

in Φ are stable if and only if for every ξ ∈ R, the sequences (φ̂j(ξ + 2πk))k∈Z,
j = 1, . . . ,m, are linearly independent. Thus, if the shifts of the functions in Φ are
linearly independent, then they are stable.
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Consider the linear mapping TΦ from(`p(Z))m to Lp(R) given by

TΦ(a1, . . . , am) =
m∑
j=1

φj ∗′ aj , a1, . . . , am ∈ `p(Z).

If the shifts of the functions in Φ are stable, then TΦ is a continuous mapping and
the range of TΦ is closed (see [14, p. 70]). Therefore, for 1 ≤ p < ∞, Sp(Φ) is
the range of TΦ. In other words, for 1 ≤ p < ∞, f lies in Sp(Φ) if and only if
f =

∑
φ∈Φ φ ∗′ aφ for some sequences aφ ∈ `p(Z), φ ∈ Φ. In the case p = ∞,

f ∈ S∞(Φ) if and only if f =
∑
φ∈Φ φ ∗′ aφ for some sequences aφ ∈ c0(Z), φ ∈ Φ.

In general, we have the following characterization for Sp(Φ) (1 < p ≤ ∞), where
the stability condition is not assumed.

Theorem 2. Let Φ be a finite collection of compactly supported functions in Lp(R).
Then for 1 ≤ p ≤ ∞, S(Φ) ∩ Lp(R) is closed in Lp(R). Moreover, for 1 < p <∞,

S(Φ) ∩ Lp(R) = Sp(Φ).(3.1)

In other words, for 1 < p <∞, a function f lies in Sp(Φ) if and only if f ∈ Lp(R)
and

f =
∑
φ∈Φ

φ ∗′ aφ(3.2)

for some sequences aφ ∈ `(Z). In the case p = ∞, f ∈ S∞(Φ) if and only if
f ∈ L∞,0(R) and (3.2) holds true for some sequences aφ ∈ `(Z).

Proof. By Theorem 1, there exists a finite collection Ψ ⊂ Lp(R) such that S(Ψ) =
S(Φ) and the shifts of the functions in Ψ are linearly independent. Moreover, for
1 < p ≤ ∞, Ψ can be so chosen that Sp(Ψ) = Sp(Φ).

We first show that S(Φ) ∩ Lp(R) is closed in Lp(R) (1 ≤ p ≤ ∞). This can
be derived from [8, Theorem 4]. Here we establish this result by using the dual
functionals discussed in [1] and [17]. Suppose Ψ = {ψ1, . . . , ψm}. Let f ∈ S(Ψ) ∩
Lp(R). Then

f =
m∑
j=1

ψj ∗′ aj ,(3.3)

where aj ∈ `(Z), j = 1, . . . ,m. From [1] and [17] we see that there are functions
u1, . . . , um ∈ C∞c (R) such that for j, k = 1, . . . ,m and α ∈ Z,

〈ψj , uk(· − α)〉 = δjkδα0,

where δjk stands for the Kronecker sign: δjk = 1 for j = k and δjk = 0 for j 6= k.
It follows that

aj(α) = 〈f, uj(· − α)〉, α ∈ Z.(3.4)

Since f ∈ Lp(R), we obtain aj ∈ `p(Z) for j = 1, . . . ,m (see [11, Theorem 3.1]).
Thus, by the discussion at the beginning of this section, S(Ψ) ∩ Lp(R) is closed in
Lp(R). But S(Φ) = S(Ψ). Hence S(Φ) ∩ Lp(R) is closed in `p(R).

Furthermore, for 1 ≤ p < ∞, S(Ψ) ∩ Lp(R) = Sp(Ψ). But, for 1 < p ≤ ∞, we
have Sp(Ψ) = Sp(Φ). Therefore, (3.1) is true for 1 < p <∞.

Finally, it is easily seen that S∞(Ψ) ⊆ S(Ψ)∩L∞,0(R). If f ∈ S(Ψ)∩L∞,0(R) has
the expression as in (3.3), then it follows from (3.4) that aj ∈ c0(Z) for j = 1, . . . ,m.
Hence f ∈ S∞(Ψ). This shows that S∞(Ψ) = S(Ψ) ∩ L∞,0(R). But S(Φ) = S(Ψ)
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and S∞(Φ) = S∞(Ψ). We therefore conclude that S∞(Φ) = S(Φ) ∩ L∞,0(R). This
verifies the last statement of the theorem.

4. Approximation order

We are now in a position to consider approximation in Lp(R) spaces (1 ≤ p ≤ ∞).

Theorem 3. Let Φ be a finite collection of compactly supported functions in Lp(R),
1 ≤ p ≤ ∞. Let k be a positive integer. Then the following statements are equiva-
lent.

(a) S(Φ) provides Lp-approximation order k.
(b) S(Φ) provides Lp-density order k − 1.
(c) S(Φ) contains Πk−1, the set of all polynomials of degree ≤ k − 1.
(d) S(Φ) contains a compactly supported function ψ such that

∑
β∈Z

q(β)ψ(· − β) = q ∀q ∈ Πk−1.(4.1)

Proof. It is obvious that (a) implies (b). It was proved in [8] that (b) implies (c).
The implication (d)⇒ (a) is well known. See [9] for an explicit Lp-approximation
scheme. It remains to prove (c) ⇒ (d). By Theorem 1, we may assume that the
shifts of the functions in Φ are linearly independent. Suppose Φ = {φ1, . . . , φm}.

Since the shifts of the functions in Φ are linearly independent, there exist test
functions u1, . . . , um ∈ C∞c (R) such that

〈φr(· − α), us(· − β)〉 = δrsδαβ, r, s ∈ {1, . . . ,m}, α, β ∈ Z.(4.2)

By condition (c), q ∈ S(Φ) for q ∈ Πk−1. Hence by (4.2) we have

q =
m∑
j=1

∑
α∈Z

φj(· − α)〈q(· + α), uj〉.

Let (`r : r = 1, . . . , k) be the Lagrange polynomials of degree k − 1 for the points
1, . . . , k. Then, for any q ∈ Πk−1,

q =
∑
α∈Z

m∑
j=1

φj(· − α)

〈
k∑
r=1

q(r + α)`r, uj

〉
=
∑
β∈Z

ψ(· − β)q(β),

with

ψ :=
m∑
j=1

k∑
r=1

φj(r + ·)〈`r, uj〉

certainly a compactly supported element of S(Φ). Therefore, (c) implies (d).

It was proved by Schoenberg [15] that (4.1) is equivalent to the following condi-

tions: Dαψ̂(0) = δα0 and Dαψ̂(2πj) = 0 for 0 ≤ α < k and j ∈ Z\{0}. Now these
conditions are referred to as the Strang-Fix conditions (see [16]).
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