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SHIFT-INVARIANT SPACES ON THE REAL LINE

RONG-QING JIA

(Communicated by J. Marshall Ash)

ABSTRACT. We investigate the structure of shift-invariant spaces generated
by a finite number of compactly supported functions in Lp(R) (1 < p < 00).
Based on a study of linear independence of the shifts of the generators, we
characterize such shift-invariant spaces in terms of the semi-convolutions of
the generators with sequences on Z. Moreover, we show that such a shift-
invariant space provides Ly-approximation order k if and only if it contains all
polynomials of degree less than k.

1. INTRODUCTION

The purpose of this paper is to investigate the structure of shift-invariant spaces
on the real line. In particular, we are interested in those properties of shift-invariant
spaces on the real line which are not shared by shift-invariant spaces on higher
dimensional spaces R®; s > 1.

Finitely generated shift-invariant subspaces of La(R®) were studied in [4] by de
Boor, DeVore, and Ron, who gave a simple characterization for such spaces in terms
of the Fourier transforms of their generators. However, when p # 2, few results
have been known for shift-invariant subspaces of L,(R?).

In this paper, we are mainly concerned with shift-invariant spaces generated by
a finite number of compactly supported functions in L,(R) (1 < p < o0). We will
give a characterization for such spaces in terms of the semi-convolutions of their
generators with sequences on Z. The result is then applied to give a characterization
of the approximation order provided by such shift-invariant spaces.

Let S be a linear space of distributions on R. We say that S is shift-invariant if

feS=f(-—-4jesS Vjel.

A mapping from Z to C is called a sequence. The linear space of all sequences
on Z is denoted by ¢(Z). Let ¢ be a compactly supported distribution on R, and
let a : Z — C be a sequence. The semi-convolution of ¢ with a, denoted ¢ *’ a, is
defined by

¢ a:=Y_ ¢(-—ja(j).

JEZ

Received by the editors April 13, 1995 and, in revised form, August 10, 1995.
1991 Mathematics Subject Classification. Primary 41A25, 41A15, 46E30.

Key words and phrases. Shift-invariant spaces, approximation order.

The author was supported in part by NSERC Canada under Grant OGP 121336.

©1997 American Mathematical Society

785



786 RONG-QING JIA

Given a finite collection ® of compactly supported distributions on R, we denote
by So(®) the linear span of {¢(- — j) : ¢ € ®,j € Z}, and by S(®P) the linear space
of all distributions of the form >, 4 ¢ +' as with ay being a sequence on Z for
each ¢ € ®. The elements in ® are called the generators for S(®).

Now suppose that ® is a finite subset of L,(R) for some p with 1 < p < co. We
denote by S,(®) the closure of So(®) in L,(R). One of the main results of this
paper is a characterization of S,(®) in terms of semi-convolution. In Section 3, we
shall prove that for 1 < p < oo, a function f € L,(R) lies in S,(®) if and only if

(11) F=3 0+ 0

PP

for some sequences a, € ¢(Z). When p = oo, a modified result will also be estab-
lished.

We observe that this result is not valid for the case p = 1. To see this, let x be
the characteristic function of the interval [0,1), and let ¢ := x — x(- —1). Then for
any f € S1(¢) we have [ f = 0; hence x & S1(¢). But x = 3272, ¢(- — 7).

Next, we consider approximation in L,(IR) spaces (1 < p < 00). For f,g € L,(R),
we write dist,(f, g) for ||f — g||,. Moreover, for a subset G of L,(RR), the distance
from f to G, denoted dist,(f, G), is defined by

disty(f, @) = 1nf [If = g]l,.

Let ® be a finite collection of compactly supported functions in L,(R). The
preceding result tells us that S,(®) = S(®) N Ly(R) for 1 < p < oo. Suppose
1 <p< oo Let S :=8(®)N Ly(R), and let S" := {g(-/h) : g € S} for h > 0.
Given a real number r > 0, we say that S(®) provides L,-approzimation order r
if, for each sufficiently smooth function f € L,(R),

dist,(f, S") < O™,

where C is a positive constant independent of h (C may depend on f). We say that
S(®) provides L,-density order r (see [3]) if, for each sufficiently smooth function

feLy(R),
. . h ro_
hh—% dist, (f, S™)/h" = 0.

In [7] Jia characterized the L.-approximation order of S(®) in terms of the
Strang-Fix conditions (see [16]). When & consists of a single generator ¢, Ron
[13] proved that, for a positive integer k, S(¢) provides Lo.-approximation order
k if and only if S(¢) contains IIj_1, the set of all polynomials of degree < k — 1.
Zhao [18] also gave a characterization for the Ly-approximation order (1 < p < 00)
provided by S(¢).

In Section 4, we shall prove that S(®) provides L,-approximation order (1 <
p < o0) if and only if S(®) contains IIx_;. This result is no longer true for shift-
invariance spaces on R®, s > 1. See the counterexamples given in [5] and [6].

In our study of shift-invariant spaces linear independence plays a crucial role.
Let ® be a finite collection of compactly supported distributions on R. The shifts
of the elements in ® are said to be linearly independent if

Y o ay=0=0as=0 Yocd
PP
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When the shifts of the elements in ® are linearly independent, we say that S(®)
has linearly independent generators.

In Section 2 we shall show that a finitely generated shift-invariant space always
has linearly independent generators. More precisely, if ® is a finite collection of
compactly supported distributions on R, then there exists a finite collection ¥ of
compactly supported distributions on R such that S(¥) = S(®) and the shifts of the
elements in ¥ are linearly independent. When ® consists of compactly supported
continuous functions, this result was essentially known to de Boor and DeVore
(see [2]). When @ consists of a single generator ¢, Ron [12] showed that S(¢)
contains a linearly independent generator. Our contribution is to give a concrete
construction for ¥ so that ¥ inherits most properties possessed by ®. For instance,
if & C LP(R) for some p with 1 < p < oo, then ¥ can be chosen to be a subset
of Ly(R). Furthermore, for 1 < p < oo, ¥ can be chosen to be a subset of S,(®).
These properties enable us to characterize shift-invariant subspaces of L,(R) and
the approximation order provided by them.

2. LINEAR INDEPENDENCE

This section is devoted to a study of linear independence. Linear independence
can be characterized in terms of the Fourier transforms of the generators. For a
compactly supported integrable function f on R, the Fourier-Laplace transform of
f is given by

= / f(x)e ™ da, £eC.
R

The domain of the Fourier-Laplace transform can be extended to all compactly
supported distributions. If f is a compactly supported distribution, then f €
f(€) is an entire function on C. It is known (see [10] and the references cited there)
that the shifts of the elements in ® are linearly independent if and only if for every
¢ € C, the sequences ((;AS(C + 27k))kez, ¢ € @, are linearly independent.

For later use we introduce some concepts related to compactly supported distri-
butions. Let ¢ be a compactly supported distribution on R. Suppose ¢ # 0. The
support of ¢, denoted supp ¢, is a compact subset of R. Let [rg, s¢] be the smallest
integer-bounded interval containing supp ¢. The length of the interval [rg, s¢] is

l(gb) =S¢ — T
We call I(¢) the length of ¢.

Let ® be a finite collection of compactly supported distributions on R. The
length of @, denoted I(®), is defined by

= 1(9)
ped
Also, we denote by #® the number of elements in ®.

Theorem 1. Let @ be a finite collection of nontrivial distributions on R with com-
pact support. Then there exists a finite collection ¥ of compactly supported distri-
butions on R with the following properties:

(a) The shifts of the elements in U are linearly independent;
(b) #W < #&;

(c) © C So(W);

(d) S(¥) = S(P).
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If, in addition, ® C L,(R) for some p, 1 < p < oo, then U can be chosen to be a
subset of L,(R). Furthermore, for 1 < p < oo, ¥ can be chosen to be a subset of
Sp (D).

Proof. Tt is sufficient to prove that, if the shifts of the elements in ® are linearly
dependent, then there exists ¥ with [(¥) < [(®) — 1 satisfying all the conclusions
of the theorem, except perhaps (a). Suppose ® = {¢1,..., ¢ }. Let

K(®):={ (b1,...,by) € (L(Z)™ : Z@- ¥ b =0

Then the shifts of the elements in ® are linearly independent if and only if K (®) =
{0}. If K(®) = {0}, then we may take ¥ = ®. Suppose K(®) # {0}. By
[10, Theorem 3.3], K(®) # {0} implies that there exists some § € C\{0} and
(a1,...,am) € C™\{0} such that

(2.1) (a169, ..., a,09) € K(®),
where #0 denotes the sequence k — 6%, k € Z. It follows from (2.1) that
(2.2) S atfe(-—k) =0.

j=1k=—o0

For each ¢, let r; := 1y, and s; := s4,. After shifting the ¢; appropriately, we
may assume that all ; = 0. Then s; = [(¢;), the length of ¢;. Let

[ :=max{l(¢;) : aj # 0}.
For simplicity, we assume that aq # 0 and I(¢1) = [. Let

m
pi=_a;p;
j=1

and
(2.3) b=y 0%p(- — k).
k=0
By our choice of p, we deduce from (2.2) that
(2.4) S 0hp(— k) =0
k=—oc0
Let O :={v, ¢a,...,dm}. We have
G=0u(—1) =3 (= k) = 0"~k 1) = p=a1d+ + amdm.
k=0 k=0

Since a1 # 0, we obtain ¢1 € So(¥, P2, ..., dm), and hence ® C Sp(¥). It follows
that S(®) C S(V).

Evidently, ¢p € S(®). If f = ¢ «’ b for some sequence b on Z, then for any
bounded open interval E of R, there exists an element g € S(®) such that g agrees
with f on E. Thus, by [8, Theorem 4], f belongs to S(®). This shows S(¥) C S(®).
Therefore S(¥) = S(P).

Let us show I(¥) < [(®). For this purpose we only have to prove supp 1 C
[0,1 — 1]. Clearly, supp % C [0,00). Hence, it suffices to show that (¢, u) = 0 for



SHIFT-INVARIANT SPACES ON THE REAL LINE 789

every u € C°(R) with supp v C (I — 1,00). Let u be such a test function. Note
that for each j, ¢;(- — k) is supported on [k,l + k]. Hence (¢;(- — k), u) = 0 for
k < —1. Tt follows that {p(- — k),u) = 0 for kK < —1. This in connection with (2.4)
gives

(1h, u) = <Z 0% p(- — k),u> = < > 0kp( - k),u> =0.
k=0

k=—oc0

Consequently, supp % C [0,] — 1].

Now suppose ® C L,(R) for some p, 1 < p < co. Then p € L,(R), and (2.3)
tells us that for each integer k, v is pth power integrable on the interval [k, k + 1].
But ¢ is compactly supported; hence 1 € L,(R).

It remains to prove that ¢ € Sp(®) if & C L,(R) for 1 < p < oo. If |§] < 1, then
(2.3) implies ¥ € S,(®). If || > 1, then ¢ — 6y(- — 1) = p implies

Y = i —07Fp(- + k) € Sp(®).

k=1
When |0] = 1, we set

n—1

o= Y (L=k/n)6*p(- — k),

k=0
where n is an integer greater than . Then f,, € Sy(®). The desired result ¢ € S,(P)
will be established if we can show
(25) 1= tlly — 0 asn— oo
To prove (2.5) we observe that p is supported on [0,1], ¢ is supported on [0,1 — 1],
and f, is supported on [0,n + 1 — 1]. For = € [0,] — 1] we have
-1

$(@) = fulx) =D (k/n)0* p(x — k).

k=0
Hence
(2.6) ¥ — fullz,o0i-1) — 0 asn— oo.
For z € [n — 1,n+1 — 1], we have ¢(z) = 0 and

1

V() — fulz) = —(1—k/n)0"p(z — k).

S
|

But |1 — k/n| <l/nforn—1<k<n—1; hence

(2.7) % = fall,(n—1,n+1-1)) — 0 asn — oc.
It remains to prove

(2.8) [ = fall,i-1,n—17) = 0 asn — oo.

For this purpose let j be an integer in [l — 1,n — 2]. We observe that for almost
every z € [§,j+ 1], p(x — k) =0for k &€ (j — I,j + 1), and hence by (2.4) we have

Z 0k p(x — k) = Z 0k p(x — k) = 0.

k=j—1+1 k=—o00
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Therefore, for almost every z € [j, j + 1], we have

J

() = folz) = (1= j/n) Z 0oz —k)— Y (L—k/n)d*p(ax k)
k=j— 141 k=j—i+1
= Ej: —k;jﬁkp(x—k).
k=j—l+1

But |k —j| <lfor j— 1+ 1<k <j. Consequently, (2.8) holds true for p = oo. If
1 < p < o0, then there exists a positive constant C' independent of n such that

/ |w($)_fn(x>|pdxgcp/np7 l_lgygn_Q
[4,0+1]
It follows that
/ [ () = fu(@)]P dz < nCP /0P = CP [nP~1.
[l—1,n—1]

This verifies (2.8) for 1 < p < co. Finally, (2.6), (2.7), and (2.8) together imply
(2.5). We conclude that ¢ € Sp(®) for 1 < p < co.

The results obtained so far can be summarized as follows: If the shifts of the
elements in ® are linearly dependent, then we can find a collection ¥ of distributions
such that #U < #®, [(¥) < I(P), © C So(¥), and S(¥) = S(P). Furthermore,
if® ¢ L,(R) (1 <p < ), then ¥ possesses the additional properties stated in
the theorem. Repeat the preceding process until I(¥) achieves its minimum. The
resulting set ¥ has the property that the shifts of the elements in ¥ are linearly
independent. Moreover, ¥ meets the requirement of the theorem. O

3. CHARACTERIZATION OF SHIFT-INVARIANT SPACES

In this section we investigate the structure of shift-invariant spaces generated by
a finite number of compactly supported functions in L,(R) (1 < p < 00).

We use #(Z) to denote the linear space of all finitely supported sequences on Z.
Then, for 1 < p < oo, ly(Z) is dense in £,(Z). For p = oo, the closure of ¢y(Z) in
lso(Z) is co(Z), the linear space of all sequences a on Z such that limy|_, a(k) = 0.
For a measurable subset E of R and a measurable function f on R, we denote by
I flloo(E) the essential supremum of f on E. Let Lo o(R) be the linear space of all
functions f € Loo(R) for which lim, o0 || f|loo(R\[—7,7]) = 0.

Let ® = {¢1,...,¢m} be a finite collection of compactly supported functions in
L,(R). We say that the shifts of the functions of ® are stable, if there exist two
positive constants C7 and Cs such that for any choice of sequences ai,...,a, €
ZP(ZL

CIZHQJHEP(Z Z(bg « a; <Y llajlle,@)-
Ly (®) =t
It was proved by Jia and Micchelli in [10] and [11] that the shifts of the functions
in ® are stable if and only if for every £ € R, the sequences (gZ;J (€ + 27k))kez,
7 =1,...,m, are linearly independent. Thus, if the shifts of the functions in ® are
linearly independent, then they are stable.
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Consider the linear mapping Tg from(¢,(Z))™ to L,(R) given by
Tq>(a1,...,am):z¢>j */ CLj, al,...,ameép(Z).
j=1

If the shifts of the functions in ® are stable, then T4 is a continuous mapping and
the range of To is closed (see [14, p. 70]). Therefore, for 1 < p < oo, Sp(®) is
the range of To. In other words, for 1 < p < oo, f lies in S,(®) if and only if
f= Z¢>eq>¢ *' aq for some sequences ay € (p(Z), ¢ € ®. In the case p = oo,
f €8x (®)ifand only if f =3, 4 ¢ *' ag for some sequences ay € co(Z), ¢ € D.

In general, we have the following characterization for S,(®) (1 < p < 00), where
the stability condition is not assumed.

Theorem 2. Let ® be a finite collection of compactly supported functions in Ly(R).
Then for 1 <p < oo, S(®) N L,(R) is closed in L,(R). Moreover, for 1 < p < oo,

(3.1) S(®) N Ly(R) = S, (®).

In other words, for 1 < p < oo, a function f lies in Sp(®) if and only if f € Ly(R)
and

(3.2) F=>Y ¢+ a

ped
for some sequences ay € ((Z). In the case p = oo, f € Sxo(®) if and only if
f € Lo o(R) and (3.2) holds true for some sequences ag € ((Z).

Proof. By Theorem 1, there exists a finite collection ¥ C L,(R) such that S(¥) =
S(®) and the shifts of the functions in ¥ are linearly independent. Moreover, for
1 < p < o0, ¥ can be so chosen that S,(¥) = S, (D).

We first show that S(®) N L,(R) is closed in L,(R) (1 < p < oo). This can
be derived from [8, Theorem 4]. Here we establish this result by using the dual
functionals discussed in [1] and [17]. Suppose ¥ = {41,...,¢¥}. Let f € S(¥)N
L,(R). Then

(33) f=2_v;+ a,
j=1
where a; € ¢(Z), j = 1,...,m. From [1] and [17] we see that there are functions

Uty ...y U € C°(R) such that for j, k=1,...,m and a € Z,

<7/’j7uk(' - Oé>> = jk6a07
where ;5 stands for the Kronecker sign: ¢;, = 1 for j = k and 6, = 0 for j # k.
It follows that

(3.4) a;j(a) = (f,u;(- — a)), a€Z.

Since f € Ly(R), we obtain a; € £,(Z) for j = 1,...,m (see [11, Theorem 3.1]).
Thus, by the discussion at the beginning of this section, S(¥) N L,(R) is closed in
L,(R). But S(®) = S(¥). Hence S(®) N L,(R) is closed in £,(R).

Furthermore, for 1 < p < 0o, S(¥) N L,(R) = S,(¥). But, for 1 < p < oo, we
have S,(¥) = S,(®). Therefore, (3.1) is true for 1 < p < oco.

Finally, it is easily seen that S (¥) C S(¥)NLsoo(R). If f € S(¥)NLso,0(R) has
the expression as in (3.3), then it follows from (3.4) that a; € ¢o(Z) for j =1,...,m.
Hence f € Soo(¥). This shows that Soo (V) = S(¥) N Logo(R). But S(®) = S(¥)
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and S (P) = Soo(T). We therefore conclude that Soo(®) = S(P) N Loo o(R). This
verifies the last statement of the theorem. O

4. APPROXIMATION ORDER
We are now in a position to consider approximation in L, (R) spaces (1 < p < 00).
Theorem 3. Let ® be a finite collection of compactly supported functions in Ly(R),

1 <p<oo. Let k be a positive integer. Then the following statements are equiva-
lent.

a) S(®) provides Ly,-approzimation order k.
(b) S(®) provides Ly-density order k — 1.
) S(®)
) S(®)

(c contains Ii_1, the set of all polynomials of degree < k — 1.
(d contains a compactly supported function i such that
(4.1) D aBW(-—B) =q YgeTl .
BEZ

Proof. It is obvious that (a) implies (b). It was proved in [8] that (b) implies (c).
The implication (d) = (a) is well known. See [9] for an explicit L,-approximation
scheme. It remains to prove (c) = (d). By Theorem 1, we may assume that the
shifts of the functions in ® are linearly independent. Suppose ® = {1, ..., Pm}-

Since the shifts of the functions in ® are linearly independent, there exist test
functions w1, ..., u, € C°(R) such that

(4.2) (or (- — a),us(- = B)) = brsbap, r,se{l,...,m}, a,0 €Z.
By condition (c), ¢ € S(®) for ¢ € IIx_1. Hence by (4.2) we have
q= Z Z o (- — a){g(- + a),uj ).
j=1 a€Z

Let (¢, : 7 =1,...,k) be the Lagrange polynomials of degree k — 1 for the points
., k. Then, for any q € II_1,

m k
Sy 0w <zw+wr,ua>—2w<'—
r=1

a€Z j=1 BEZ
with
b= D b+ ) uy)
j=1r=1
certainly a compactly supported element of S(®). Therefore, (c) implies (d). O
It was proved by Schoenberg [15] that (4.1) is equivalent to the following condi-

tions: D) (0) = 840 and D*)(2mj) = 0 for 0 < o < k and j € Z\{0}. Now these
conditions are referred to as the Strang-Fix conditions (see [16]).
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