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Abstract—Electromagnetic (EM) problem model for anisotropic
plasma in kDB coordinates system is set up. And the model includes
almost all the respects of EM-problems for anisotropic plasma. Based
on shift-operator finite difference time-domain (SO-FDTD) method,
Maxwell equations and EM-field constitutive equations are solved and
discrete difference scheme of each EM-field component is obtained.
Then the propagation characteristics of eigen wave are expressed by
the two components of electric displacement vector as well. Lastly,
three typical examples are calculated by SO-FDTD method, and the
results verify the effectiveness and exactness of SO-FDTD method in
kDB coordinates system.

1. INTRODUCTION

When cold plasma is placed in bias magnetic field, the plasma becomes
dielectric anisotropy, and the equivalent permittivity of it is a tensor [1–
4]. Therefore, the solutions of plane electromagnetic (EM) wave in
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anisotropic plasma could not be obtained easily in xyz Cartesian
coordinates system. However, there are only two components of electric
placement vector D and magnetic induction B respectively in kDB
coordinates system, which is much easier for solving the problem above.
Some scholars have paid their attention to the interaction between
EM-wave and anisotropic medium in kDB coordinates system [5–
7]. For instance, Guo et al. discussed the relations between EM-
wave propagation characteristics and medium parameters in kDB
coordinates system [5]. Using the kDB system, Wei et al. calculated
the reflection coefficient when the layered uniaxial anisotropic medium
is illuminated by a plane EM-wave [6]. Zhan et al. studied the plane
wave propagation in chiral plasma and chiral ferrite media in kDB
coordinate system [7]. However, there are no numerical results in the
references mentioned above, so we want to find an effective numerical
method to solve the EM-problems in anisotropic medium.

Shift-operator FDTD (SO-FDTD) method is a kind of effective
numerical method for dealing with EM-problems in dispersive and
anisotropic mediums, such as magnetized plasma. In 2003, Ge et
al. presented the concept of the SO-FDTD method and applied it to
calculating EM scattering problems of un-magnetized plasma [8]. Yang
et al. [9, 10] and Wang et al. [11] expanded the SO-FDTD method
to calculate the reflection coefficient and transmission coefficient of
magnetized plasma respectively. However, only a case of EM-wave
propagation direction paralleling to bias magnetic is concerned in
[9] and [11]. In [10], the propagation characteristic of EM-wave
propagating through magnetized plasma is analyzed when wave vector
is perpendicular to the bias magnetic field. Nevertheless, before
discussion, the numerical results are obtained by using the complex
permittivity of the extraordinary wave, which breaks up the integrity
of anisotropic plasma EM-problem. Therefore, the way in [10] is
unadvisable. In [12], piecewise linear recursive convolution FDTD is
applied to the numerical analysis of magnetized plasma with arbitrary
magnetic declination, whereas, the derivation of EM-field iterative
schemes are very complicated, and the numerical results are not
analyzed comprehensively.

In this paper, EM-problem model for anisotropic plasma in kDB
coordinates system is set up. The model nearly covers all the respects
of EM-problem for anisotropic plasma. Then, the SO-FDTD method
is introduced into kDB coordinates system. By using this method,
Maxwell equations and EM-field constitutive equations are solved
numerically. Lastly, three kinds of EM-model are calculated by the
SO-FDTD method. Excellent agreement between the numerical results
and exact analytical solutions is demonstrated, which validates the
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availability of SO-FDTD method in kDB coordinates system.

2. CONSTITUTIVE RELATIONS FOR ANISOTROPIC
PLASMA IN kDB COORDINATES SYSTEM

kDB coordinates system consists of wave vector k and DB -plane, in
which three unit vector are e1, e2 and e3, respectively. Let e3 parallel
to k, e2 be on the intersection line between koz - and DB -planes, and
e1 is on the intersection line between xoy- and DB -planes. Unit vector
e1, e2 and e3 are perpendicular to each other and constitute a right-
handed coordinate system, shown in Figure 1.

From Figure 1, we get the conversion matrix between xyz
Cartesian coordinates system and kDB coordinates system [1, 2]

T̂ =

[ sinϕ − cosϕ 0
cos θ cosϕ cos θ sinϕ − sin θ
sin θ cosϕ sin θ sinϕ cos θ

]
(1)

The inverse matrix is

T̂−1 =

[ sinϕ cos θ cosϕ sin θ cosϕ
− cosϕ cos θ sinϕ sin θ sinϕ

0 − sin θ cos θ

]
. (2)

The conversion matrix is acceptable for all the vector fields including
E, D, B and H.

In constitutive equations, E and H can be expressed by D and B
[

E
H

]
=

[
κ̂ χ̂
γ̂ ν̂

]
·
[

D
B

]
(3)
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Figure 1. kDB coordinates system.
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where κ̂, χ̂, γ̂ and ν̂ are constitutive parameter matrixes, which are
defined as follows:

κ̂ =

[
κ −jκg 0

jκg κ 0
κg 0 κz

]
(4a)

ν̂ = νÎ (4b)
χ̂ = γ̂ = 0 (4c)

In Equation (4), v = 1
µ is reluctivity. The components of κ̂ are listed

as follow [2]

κ =
εxx

ε2
xx + ε2

xy

=
1
ε0

(
1− jven

ω

) (
1− jven

ω − ω2
p

ω2

)
− ω2

b
ω2

(
1− jven

ω − ω2
p

ω2

)2
− ω2

b
ω2

(5a)

κg =
jεxy

ε2
xx + ε2

xy

=
1
ε0

ω2
p

ω2
ωb
ω(

1− jven

ω − ω2
p

ω2

)2
− ω2

b
ω2

(5b)

κz =
1
εz

=
1
ε0

1− jven

ω

1− jven

ω − ω2
p

ω2

. (5c)

The constitutive relation in kDB coordinates system is
[

Ek

Hk

]
=

[
κ̂k χ̂k

γ̂k ν̂k

]
·
[

Dk

Bk

]
(6)

where

Ek = T̂ · E (7a)

Hk = T̂ ·H (7b)

κ̂k = T̂ · κ̂ · T̂−1 (7c)

χ̂k = T̂ · χ̂ · T̂−1 (7d)

γ̂k = T̂ · γ̂ · T̂−1 (7e)

ν̂k = T̂ · ν̂ · T̂−1. (7f)

To illustrate the problem clearly and simply, suppose bias
magnetic field B0 parallel to z axis and EM-wave propagation
direction, which is wave vector k, declining an angle θ from z axis.
Let DB -plane rotate an angle around e3, and then e1 is coincident
with x axis. In kDB coordinates system, the constitutive parameter
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matrixes are

κ̂k =




κ −jκg cos θ −jκg sin θ
jκg cos θ κ cos2 θ + κ2 sin2 θ (κ− κz) sin θ cos θ
jκg sin θ (κ− κz) sin θ cos θ κ sin2 θ + κ2 cos2 θ


 (8a)

ν̂k = νÎ (8b)
χ̂k = γ̂k = 0 (8c)

From constitutive relations (6) and constitutive parameters (8)
and (5), we get the components of Ek, H k expressed by Dk, Bk

E1 = κD1 − jκg cos θD2 (9a)

E2 = jκg cos θD1 +
(
κ cos 2θ + κz sin 2θ

)
D2 (9b)

E3 = jκg sin θD1 + (κ− κz) sin θ cos θD2 (9c)

H1 =
1
µ

B1 (9d)

H2 =
1
µ

B2. (9e)

As for k parallel to B0, the constitutive relations between E and
D can be written as

E1 = κD1 − jκgD2 (10a)
E2 = jκgD1 + κD2 (10b)
E3 = 0. (10c)

As for k perpendicular to B0, the constitutive relations between
E and D can be denoted as

E1 = κD1 (11a)
E2 = κzD2 (11b)
E3 = jκgD1. (11c)

3. SO-FDTD METHOD IN kDB COORDINATES
SYSTEM

Maxwell equations in kDB coordinates system are

∇×Hk =
∂Dk

∂t
(12a)

∇× Ek = −∂Bk

∂t
. (12b)
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Take a component for example, the discrete difference schemes
of (12) in one dimensional are

Dn+1
1 = Dn

1 −∆t
H

n+1/2
2 (k + 1/2)−H

n+1/2
2 (k − 1/2)

∆l
(13a)

H
n+1/2
1 = H

n−1/2
1 +

∆t

µ

En
2 (k + 1)− En

2 (k)
∆l

. (13b)

where ∆l is the space step size.
Substitute constitutive parameters (5) into (10), for application of

the SO-FDTD method. The coefficients in two sides of the equation
are written as rational fractional function

N∑

n=0

hn(jω)nE1 = ε0

N∑

n=0

gn(jω)nD1 − ε0

N∑

n=0

rn(jω)nD2 (14a)

N∑

n=0

hn(jω)nE2 = ε0

N∑

n=0

rn(jω)nD1 + ε0

N∑

n=0

gn(jω)nD2 (14b)

where N is 4, and hn, gn and rn (n = 0, 1, . . . , N) are



h0 =ω4
p, h1 =2ω2

pven, h2 =2ω2
p+ω2

b +v2
en, h3 =2ven, h4 =1;

g0 =0, g1 =ω2
pven, g2 =ω2

p + ω2
b + v2

en, g3 =2ven, g4 =1;
r0 = r2 = r3 = r4 = 0, r1 = ωbω

2
p.

(15)

Transform Equation (14) to time domain and introduce shift operator
into the formula by using the SO-FDTD method, and then the discrete
difference schemes of E1 and E2 are arranged as

En+1
1 =

1
a0

[
1
ε0

(
4∑

i=0

biD
n+1−i
1 −

4∑

i=0

ciD
n+1−i
2

)
−

4∑

i=1

aiE
n+1−i
1

]
(16a)

En+1
2 =

1
a0

[
1
ε0

(
4∑

i=0

ciD
n+1−i
1 +

4∑

i=0

biD
n+1−i
2

)
−

4∑

i=1

aiE
n+1−i
2

]
(16b)

where



δ=
(

2
∆t

)
, a0 =

4∑
i=0

hi · δi,

a1 =4h0 + 2h1δ − 2h3δ
3 − 4h4δ

4, a2 = 6h0 − 2h2δ
2 + 6h4δ

4,

a3 =4h0 − 2h1δ + 2h3δ
3 − 4h4δ

4, a4 =
4∑

i=0
(−1)i · hi · δi;

b0 =
4∑

i=1
gi ·δi, b1 =+2g1δ−2g3δ

3−4g4δ
4, b2 =−2g2δ

2+6g4δ
4,

b3 =−2g1δ + 2g3δ
3 − 4g4δ

4, b4 =
4∑

i=1
(−1)i · gi · δi;

c0 =r1δ, c1 = 2r1δ, c2 = 0, c3 = −2r1δ, c4 = −r1δ.

(17)
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Substitute constitutive parameters (5) into (11), and the
coefficients in two sides of the equation are written as rational fractional
function

N∑

n=0

hn(jω)nE1 = ε0

N∑

n=0

gn(jω)nD1 (18a)

M∑

m=0

qm(jω)mE2 = ε0

M∑

m=0

pm(jω)mD2 (18b)

N∑

n=0

hn(jω)nE3 = ε0

N∑

n=0

rn(jω)nD1 (18c)

where, N = 4 and M = 2; hn, gn and rn are the same as in (15); qm

and pm (m = 0, 1, . . . , M) are as follow{
q0 = ω2

p, q1 = ven, q2 = 1;
p0 = 0, p1 = ven, p2 = 1 (19)

Similarly, the discrete difference schemes of E1, E2 and E3 are

En+1
1 =

1
a0

(
1
ε0

4∑

i=0

biD
n+1−i
1 −

4∑

i=1

aiE
n+1−i
1

)
(20a)

En+1
2 =

1
d0

(
1
ε0

2∑

i=0

fiD
n+1−i
2 −

2∑

i=1

diE
n+1−i
2

)
(20b)

En+1
3 =

1
a0

[
1
ε0

(
4∑

i=0

ciD
n+1−i
1 −

4∑

i=1

aiE
n+1−i
3

)]
(20c)

where ai, bi and ci (i = 0, 1, . . . , N) are the same as in (17), and dj

and fj (j = 0, 1, . . . , M) are as follow{
d0 =q0+q1δ+q2δ

2, d1 =2q0−2q2δ
2, q2 =q0−q1δ+q2δ

2;
f0 =p1δ + p2δ

2, f1 =−2p2δ
2, f2 =−p1δ + p2δ

2.
(21)

Substitute constitutive parameters (5) into (8), and the coefficients
in two sides of the equation are written as rational fractional function

N∑

n=0

hn(jω)nE1 = ε0

N∑

n=0

gn(jω)nD1 − ε0

N∑

n=0

rn(jω)n · cos θ ·D2 (22a)

L∑

l=0

vl(jω)lE2 = ε0

L∑

l=0

wl(jω)l · cos θ ·D1 + ε0

L∑

l=0

yl(jω)lD2 (22b)

L∑

l=0

vl(jω)lE2 = ε0

L∑

l=0

wl(jω)l · sin θ ·D1 + ε0

L∑

l=0

zl(jω)lD2 (22c)
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where, N = 4 and L = 6, and hn, gn and rn are the same as in (15).
vl, pl, yl and zl are as follows




v0 =ω6
p, v1 =3ω4

pven, v2 =3ω4
p+3ω4

pv2
en+v2

enω2
b , v3 =v3

en+6ω2
pven+ω2

bven,
v4 = 3ω2

p + 2v2
en + ω2

b , v5 = 3ven, v6 = 1;
w0 = 0, w1 = ω4

pωb, w2 = ω2
pωbven, w3 = ω2

pωb, w4 = w5 = w6 = 0;
y0 =0, y1=ω4

pven, y2 =ω4
p+2ω4

pv2
en+v2

enω2
b·cos2θ, y3 =v3

en+4ω2
pven+ω2

bven,
y4 = 2ω2

p + 2v2
en + ω2

b , y5 = 3ven, y6 = 1;
z0 = z1 = 0, z2 = ω2

pω2
b · sin θ · cos θ, z3 = z4 = z5 = z6 = 0.

(23)
Similarly, the discrete difference schemes of E1, E2 and E3 are

En+1
1 =

1
a0

[
1
ε0

(
4∑

i=0

biD
n+1−i
1 −cos θ·

4∑

i=0

ciD
n+1−i
2

)
−

4∑

i=1

aiE
n+1−i
1

]
(24a)

En+1
2 =

1
A0

[
1
ε0

(
cos θ·

6∑

i=0

CiD
n+1−i
1 +

6∑

i=0

EiD
n+1−i
2

)
−

6∑

i=1

AiE
n+1−i
2

]
(24b)

En+1
3 =

1
A0

[
1
ε0

(
sin θ·

6∑

i=0

CiD
n+1−i
1 +

6∑

i=0

FiD
n+1−i
2

)
−

6∑

i=1

AiE
n+1−i
3

]
(24c)

where ai, bi and ci (i = 0, 1, . . . , N) are the same as in (17), and Ak,
Ck, Ek and Fk (k = 0, 1, . . . , L) are as follows




A0 =
6∑

i=0

vi · δi, A1 = 6v0 + 4v1δ + 2v2δ
2 − 2v4δ

4 − 4v5δ
5 − 6v6δ

6,

A2 = 15v0 + 5v1δ − v2δ
2 − 3v3δ

3 − v4δ
4 + 5v5δ

56 + 15v6δ
6,

A3 = 20v0 − 4h2δ
2 + 4h4δ

4 − 20v6δ
6,

A4 = 15v0 − 5v1δ − v2δ
2 + 3v3δ

3 − v4δ
4 − 5v5δ

56 + 15v6δ
6,

A5 = 6v0 − 4v1δ + 2v2δ
2 − 2v4δ

4 + 4v5δ
5 − 6v6δ

6, A6 =
6∑

i=0

(−1)i · vi · δi;

C0 =
6∑

i=1

wi · δi, C1 = 4w1δ + 2w2δ
2 − 2w4δ

4 − 4w5δ
5 − 6w6δ

6,

C2 =5w1δ−w2δ
2−3w3δ

3−w4δ
4+5w5δ

56+15w6δ
6, C3 =−4w2δ

2+4w4δ
4−20w6δ

6,
C4 = −5w1δ − w2δ

2 + 3w3δ
3 − w4δ

4 − 5w5δ
56 + 15w6δ

6,

C5 = −4w1δ + 2w2δ
2 − 2w4δ

4 + 4w5δ
5 − 6w6δ

6, C6 =
6∑

i=1

(−1)i · wi · δi;

E0 =
3∑

i=1

yi · δi, E1 = 4y1δ + 2y2δ
2, E2 = 5y1δ − y2δ

2 − 3y3δ
3, E3 = −4y2δ

2,

E4 = −5y1δ − y2δ
2 + 3y3δ

3, E5 = −4y1δ + 2y2δ
2, E6 =

3∑
i=1

(−1)i · yi · δi;

F0 =z2δ
2, F1 =2z2δ

2, F2 =−z2δ
2, F3 =−4z2δ

2, F4 =−z2δ
2, F5 =2z2δ

2, F6 =z2δ
2.

(25)
From formulae mentioned above, there comes a conclusion of the

computation processes by the SO-FDTD:

(a) From formula (13a), H is yielded from E ;
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(b) From formulae (13b), D is yielded from H ;
(c) From formula (16) or (20) or (24), E is yielded from D ;
(d) According to the sequences of (a), (b) and (c), a recursion is

completed, and next recursion begins.

4. NUMERICAL EXAMPLES AND DISCUSSION

4.1. Example 1

When EM-waves propagates through uniform magnetized plasma plate
with wave vector k paralleling to bias magnetic field B0, the reflection
and transmission coefficients of which are calculated.

It is known that the eigen wave in this case becomes two kinds
of circularly polarized wave [1–3], and there are only two components
for E and D along direction e1 and e2. Using the above SO-FDTD
method, only four formulae (13a), (13b), (16a) and (16b) work. The
FDTD problem space consists of 450 cells, the magnetized plasma
occupying cells 200–320. Each cell is 75µm long, so the plasma layer is
9.0mm thick. Each end of the cell space is set up with Mur’s absorbing
boundary condition [13]. For these simulations, the plasma parameters
are: ωp = 28.7×2π×109 rad/s, ωb = 8.8×1010 rad/s, ven = 2×1010. To
satisfy courant stability condition, the time step ∆t is set as 0.125 ps.
The incidence excite source is a Gaussian-derivative pulsed plane wave:
Einc = (t−t0)/τ×exp[−4×π(t−t0)2/τ2], where t0 = 70∆t, τ = 140∆t.

The electric displacement vector data are recorded at cell 199
and cell 321, then are transformed to frequency domain through
discrete Fourier transform. From the FDTD data, the reflection and
transmission coefficients of left-handed circularly polarized wave (LCP)
and right-handed circularly wave (RCP) are achieved by

RLCP,RCP = D1r(ω)∓ jD2r(ω) (26a)
TLCP,RCP = D1t(ω)∓ jD2t(ω) (26b)

where the subscripts r and t correspond to the reflected wave and the
transmitted one, respectively.

Figures 2 and 3 show the comparisons of the reflection coefficient
and transmission coefficient vs. frequency obtained from the SO-FDTD
method and analytical method [14] for LCP wave and RCP wave,
respectively.

From Figures 2 and 3, it is shown that the SO-FDTD method
in kDB coordinates system is quite accurate and coincident with the
analytical method very well. So it is successful to use the SO-FDTD
method to calculate the EM-problem in anisotropic plasma.
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(a) (b)

Figure 2. LCP wave reflection and transmission coefficients in
anisotropic plasma. (a) Reflection coefficient. (b) Transmission
coefficient.

(a) (b)

Figure 3. RCP wave reflection and transmission coefficients in
anisotropic plasma. (a) Reflection coefficient. (b) Transmission
coefficient.

It also can be seen that the propagation characteristic of LCP
and RCP waves is of great difference. It can be explained that the
working principle of them are different. For LCP wave, there only
exists a cut-off frequency [15] (in this example it is 22.54 GHz). As
EM-wave frequency is below this frequency, the reflection coefficient
is big, and the transmission coefficient is small. For RCP wave, there
are two pass-bands separated by a stop-band [12, 15, 16]. The stop-
band is from 14.01 GHz to 36.55 GHz. However, the propagation
performance of RCP wave in the left pass-band is much worse than
that in right pass-band. Trough the whole stop-band, especially near
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the resonant frequency, the reflection coefficient is above −3 dB, and
the transmission coefficient is bellow −30 dB, which is mainly caused
by plasma resonant absorbing. This phenomenon only occurs in RCP
wave because the electric circumnutation in magnetized plasma is
right-hand rotating towards bias magnetic field B0 [3].

4.2. Example 2

When EM-waves propagates through uniform magnetized plasma plate
with wave vector k perpendicular to bias magnetic field B0, the
reflection and transmission coefficients of which are calculated.

It is known that there are two kinds of eigen waves in this case.
One is ordinary wave (O-wave), and the other is extraordinary wave
(X-wave) [1–4]. Both of them are linearly polarized waves. Using the
SO-FDTD method above, formulae (13a), (13b), (20a), (20b) and (20c)
are selected to implement the different iterations.

Calculation parameters and plasma parameters are the same as
those in Example 1. Because these two linearly polarized waves are not
coupling with each other, the reflection and transmission coefficients
of X-wave and O-wave are obtained by D1 and D2 respectively.
Figure 4 and Figure 5 show the comparisons of the reflection coefficient
and transmission coefficient vs. frequency obtained from the SO-
FDTD method and the analytical method for X-wave and O-wave,
respectively.

It can be seen from Figure 4 that the propagation characteristic
of O-wave in anisotropic plasma is similar to that in un-magnetized
plasma [8]. However, the propagation characteristic of X-wave is much

(a) (b)

Figure 4. O-wave reflection and transmission coefficients in
anisotropic plasma. (a) Reflection coefficient. (b) Transmission
coefficient.
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(a) (b)

Figure 5. X-wave reflection and transmission coefficients in
anisotropic plasma. (a) Reflection coefficient. (b) Transmission
coefficient.

different from O-wave, as seen from Figure 5. There are two pass-bands
and one resonant frequency for X-wave in anisotropic plasma [15].
One pass-band is from 22.54 GHz to 31.94 GHz, and the other is from
31.94GHz to 36.55 GHz. It is also can be seen that there is a sudden
change at the point of plasma frequency. It can be explained that the
plasma frequency is an inherently turning point in the pass-band.

4.3. Example 3

When EM-waves propagates through uniform magnetized plasma plate
with an angle 45◦ between wave vector k and bias magnetic field B0,
the reflection and transmission coefficients of which are calculated.

It is known that there are two kinds of eigen wave in this case,
which are both elliptically polarized wave. One is called first type wave
(I-wave), and the other is second type wave (II-wave) [1–3]. Using the
above SO-FDTD method, formulae (13a), (13b), (24a), (24b) and (24c)
are applied to implement the different iterations. The two components
of electric displacement vector satisfy such a relation as follows [1, 2]:

D2

D1
=

2jκg cos θ

(κ− κz) sin2 θ ±
√

(κ− κz)2 sin4 θ + 4(κg cos θ)2
(27)

where, “+” denotes I-wave, and “−” denotes II-wave. When θ is 0◦, it
becomes the case as Example 1. When θ is 90◦, k is perpendicular to
B0, and it is the case as Example 2.

The simulation parameters related to plasma medium are selected
as: ωp = 50 × 2π × 109 rad/s, ven = 2 × 1010 Hz, ωb = 3 × 1011 Hz.
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The other simulation parameters are the same as those in Example 1.
Figure 6 and Figure 7 are the comparisons of the reflection coefficient
and transmission coefficient vs. frequency obtained from the SO-FDTD
method and the analytical method for I-wave and II-wave, respectively.

From (27), it is known that when κ > κz, I-wave is left-handed
elliptically polarized wave, and II-wave is right-handed elliptically
polarized wave. So I-wave possesses the property similar to LCP wave
and II-wave alike that of RCP wave. These can be seen from Figure 5
and Figure 6. However, there is a sudden change in the point of plasma
frequency. It can be explained that the plasma frequency is inherently
one of the reflection points [12]. It also can be seen that the SO-FDTD

(a) (b)

Figure 6. I-wave reflection and transmission coefficients in anisotropic
plasma. (a) Reflection coefficient. (b) Transmission coefficient.

(a) (b)

Figure 7. II-wave reflection and transmission coefficients in
anisotropic plasma. (a) Reflection coefficient. (b) Transmission
coefficient.
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method coincides with the analytical well except some points, such as
in Figure 6(b). The reason is that there exists the stop-band in the
frequency spectrum.

5. CONCLUSION

In this paper, EM-problem model for anisotropic plasma in kDB
coordinates system is set up. The model nearly covers all the
respects of EM-problem for anisotropic plasma. Then, the SO-
FDTD method is introduced. Its application is expanded, and the
discrete different schemes of each EM-field component are deduced in
kDB coordinates system. By three typical one-dimensional examples,
excellent agreement between the numerical results and analytical
solutions is demonstrated, which validates the availability of the SO-
FDTD method in kDB coordinates system. Furthermore, an effective
method dealing with EM-problem of anisotropic plasma is presented
too. Though only one-dimensional examples are discussed in the paper,
the SO-FDTD method in kDB coordinates system can also be applied
to calculating EM-wave scattering for anisotropic plasma in two- or
three-dimension.
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