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Abstract: Building extraction by deep learning from remote sensing images is currently a research
hotspot. PSPNet is one of the classic semantic segmentation models and is currently adopted by many
applications. Moreover, PSPNet can use not only CNN-based networks but also transformer-based
networks as backbones; therefore, PSPNet also has high value in the transformer era. The core of
PSPNet is the pyramid pooling module, which gives PSPNet the ability to capture the local features
of different scales. However, the pyramid pooling module also has obvious shortcomings. The grid is
fixed, and the pixels close to the edge of the grid cannot obtain the entire local features. To address
this issue, an improved PSPNet network architecture named shift pooling PSPNet is proposed, which
uses a module called shift pyramid pooling to replace the original pyramid pooling module, so that
the pixels at the edge of the grid can also obtain the entire local features. Shift pooling is not only
useful for PSPNet but also in any network that uses a fixed grid for downsampling to increase the
receptive field and save computing, such as ResNet. A dense connection was adopted in decoding,
and upsampling was gradually carried out. With two open datasets, the improved PSPNet, PSPNet,
and some classic image segmentation models were used for comparative experiments. The results
show that our method is the best according to the evaluation metrics, and the predicted image is
closer to the label.

Keywords: building extraction; deep learning; improved PSPNet; shift pooling; remote sensing image

1. Introduction

Building data are widely used in urban planning, urban management, population
surveys, logistics distribution, and other fields, and using remote sensing images to obtain
housing data is undoubtedly one of the most efficient approaches, especially using com-
puter vision technology to automatically extract housing data from remote sensing images,
which can greatly save human and material resources. In the early stage, some scholars
tried to design features manually and use machine learning algorithms, such as random
forest, support vector machine, decision tree based on supervised learning, and clustering
based on unsupervised learning methods, to classify remote sensing images [1–4]. Since
this kind of algorithm is very dependent on the manually designed features, different
datasets are required, and because the design of the features is rarely comprehensive, the
generalization of building extraction is poor, and the extraction accuracy is low.

Deep learning technology can automatically extract the required features, which
addresses the defects of traditional machine learning. The earliest deep learning network
models, such as LeNet5 [5] and VGGNet [6], can only be used for image classification
and not for semantic segmentation, so they cannot be used to extract buildings from
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remote sensing images. Long et al. [7] proposed the full convolution network model
for the first time in 2015, which outputs the result with the same size as the input image
through upsampling. It is therefore pixel-level semantic segmentation, but the segmentation
accuracy of this method is insufficient. In the same year, Ronneberger et al. [8] proposed a
classical semantic segmentation model called UNet, which concatenates feature information
of different depths through jump connection, and the segmentation accuracy is significantly
improved. Badrinarayanan et al. [9] proposed a SegNet network model similar to UNet,
which stores the pooled index information during downsampling, and only the data has an
index that can be restored to the corresponding position during upsampling, so as to obtain
a more accurate feature map. Zhao et al. [10] proposed a network model called PSPNet,
which uses multi-scales to pool the feature map output using the backbone network and
then concatenates them together for convolution fusion, and the pyramid pooling module
enhances the receptive field of the network and improves the accuracy of the segmentation.
In 2014, Google released DeepLabV1 [11], in which dilated convolution is proposed to
increase the receptive field. Subsequently, Google has successively released some semantic
segmentation network models, such as DeepLabV2 [12] and DeepLabV3 [13], which have
increased image segmentation accuracy.

1.1. Related Works

With the maturity of deep learning technology, many scholars use this technology
to extract building data from remote sensing images. Liu et al. [14] proposed a structure
that is composed of a spatial residual convolution module called spatial residual initiation
(SRI) to extract buildings from remote sensing images. Liu et al. [15] also used a resid-
ual connection network to extract buildings from remote sensing images. Yi et al. [16]
proposed a deep convolutional neural network named DeepResUnet. According to the
UNet structure, this network can effectively extract urban buildings from remote sensing
images. Diakogiannis et al. [17] proposed a network called Resunet-a, which includes hole
convolution, pyramid pooling, residual connection, and multi-task learning mechanism
methods. These methods help to improve the accuracy of segmentation; however, the
fusion of deep and shallow features is insufficient, so the improvement of the accuracy
is limited. Ye et al. [18] proposed a network named RFA-UNet, which adopts attention
based on reweighting to extract buildings in remote sensing images. Yu et al. [19] proposed
an end-to-end network to extract buildings from high-resolution remote sensing images
without postprocessing to improve the results. The network is composed of a convolutional
neural network structure and pyramid pool module, which is helpful to extract multi-scale
features. Zheng [20] proposed a network called SETR, which reshapes the output of the
transformer from vectors into an image. SETR was the first attempt to apply a transformer
to the field of semantic segmentation. Yuan [21] proposed a multi-scale adaptive network
based on Swin Transformer [22]. The network fused the multi-level feature map of Swin
Transformer to capture multi-scale information and improved the accuracy of the building
segmentation. Pan et al. [23] proposed a generative countermeasure network based on
spatial and channel attention mechanisms to improve the results of the building extraction.
Protopapadakis et al. [24] proposed a deep neural network based on a stacked automatic en-
coder drive and semi-supervised learning to extract buildings from remote sensing images.
Wang et al. [25] proposed a lightweight U-shaped residual network, which includes a fea-
ture distillation pyramid residual group (FDPRG), to extract buildings from remote sensing
images on low computing power or a portable device. Liu et al. [26] proposed a lightweight
network for single-image super-resolution, named the attention-based multi-scale residual
network. Cheng et al. [27] proposed an automatic building segmentation network named
the deep active ray network (DARNet) and a loss function that is helpful for the contours to
match the building boundaries. Experiments on open datasets show that this method can
improve the accuracy of building segmentation in remote sensing images. Yuan et al. [28]
proposed a loss function considering the spatial relationship of pixels. By using the predic-
tion consistency between pixels and the surrounding pixels, each pixel is given different
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weights, which greatly improves the accuracy of the building extraction. In order to solve
problems such as the network structure being too complex, the low-level features, and
abstract features extracted by the neural network not being fully fused, Chen et al. [29]
proposed a dense residual neural network with fewer parameters to extract the building
from remote sensing images. Considering the segmentation accuracy and speed, a Feature
Residual Analysis Network (FRA-Net) was proposed by Miao et al. [30] to realize fast and
accurate building extraction. Hou et al. [31] rethought the formulation of spatial pooling by
introducing a new pooling strategy called strip pooling, which considers a long but narrow
kernel, i.e., 1xN or Nx1. A new strip pooling module was thus proposed. Yu et al. [32]
proposed an efficient and effective architecture with a good trade-off between speed and
accuracy, termed Bilateral Segmentation Network BiSeNet V2. Chen et al. [33] proposed a
novel fully convolutional neural network called the Context Feature Enhancement Network
(CFENet) to extract buildings from remote sensing images. Wang et al. [34] proposed a
novel representation learning-based domain adaptation method, i.e., neural embedding
matching (NEM) method, to transfer information from the source domain to the target
domain where labeled data is scarce. Na, Y., et al. [35] proposed segmentation networks
based on a domain adaptive transfer attack (DATA) scheme for building extraction from
aerial images.

Although many new semantic segmentation network models have been proposed
by scholars after PSPNet, PSPNet still is a mature, popular, and lightweight algorithm,
which is currently adopted for many applications, especially on mobile devices. Moreover,
PSPNet can use many networks as backbones, not only CNN-based networks but also the
Swin Transformer. Therefore, the improvement of PSPNet is very meaningful.

1.2. Innovation and Contribution of This Paper

This paper mainly focuses on the improvement of the PSPNet network to improve
the accuracy of extracting building data from remote sensing images. The innovations and
contributions of this paper are as follows:

(1) A method called shift pooling is proposed, which can make the pixels at the edge of
the pooling grid obtain the entire local features. Shift pooling is not only useful for PSPNet
but also in any network that uses a fixed grid for downsampling to increase the receptive
field and save computing.

(2) An improved PSPNet network called shift pooling PSPNet is proposed by adding
shift pooling and step-by-step upsampling decoding. Since shift pooling PSPNet is a
further processing of the backbone, the latest network can be used as the backbone and get
a better performance.

(3) We compare the semantic segmentation networks based on a convolutional neural
network and Transformer on open datasets, and it is concluded that neither the convo-
lutional neural network or Transformer is better than the other, but as long as an appro-
priate algorithm is designed, the convolutional neural network can perform better than
the Transformer.

The next section introduces the data used in the experiment, the improved architecture
of PSPNet, and the architecture of the shift pooling module. The third section introduces
the experimental software and hardware platform and the evaluation metrics, as well as
the comparison results and discussion of the improved PSPNet and other classic semantic
segmentation networks in building extraction. The fourth section is the conclusion that
outlines the research limitations and the direction of improvement in the future.

2. Method
2.1. Architecture of Shift Pooling PSPNet

PSPNet is a deep learning network proposed by Zhao et al. in 2017. The core module
is the pyramid pooling module, which can aggregate the contextual information of different
scales so as to improve the ability to obtain multiscale features. The specific model structure
is shown in Figure 1. Firstly, the classical neural networks, such as vgg16 and resnet101,
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are used to extract the features of the input image. This step is the content represented
by the CNN box in Figure 1. Then, the obtained feature map is pooled at different scales
to enhance the actual receptive field of each pixel, which is called the pyramid pooling
module in this paper. The dotted rectangle in Figure 1 is the pyramid pooling module.
The red part pools the whole feature map into one pixel, then convolution with a kernel of
1 × 1 reduces the depth to 1/4 of the original. The yellow module divides the whole feature
map into 4 grids and pools them into 1 pixel, a feature map with the size of 2 × 2 pixel
is obtained, and then, convolution with a kernel of 1 × 1 reduces the depth to 1/4 of the
original. The blue module divides the whole feature map into 9 grids and pools them into
1 pixel, a feature map with the size of 3 × 3 pixel is obtained, and then, convolution with
a kernel of 1 × 1 reduces the depth to 1/4 of the original. The green module divides the
whole feature map into 36 grids and pools them into 1 pixel, a feature map with the size of
6 × 6 pixel is obtained, and then, convolution with a kernel of 1 × 1 reduces the depth to
1/4 of the original. Finally, the pooled results of four different scales are upsampled to the
same size as the input feature map, concatenated with the input feature map, then fused by
convolution to obtain the prediction results.
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PSPNet can capture multi-scale local features by using the pyramid pooling module,
but the pixels at the edge of the grid cannot cross the grid to capture the entire local
features. The pixels at the corner of the grid can capture only 1/4 of the local features,
which is obviously not enough. Moreover, the feature map output by the pyramid pooling
module is directly upsampled to the size of the input image, so the ability to capture
local details is weak. In order to address this problem, this paper proposes an improved
PSPNet, the architecture of which is shown in Figure 2. Like PSPNet, in our method,
the input image passes through one of classic backbones to obtain the feature map F1.
In this model, resnet101 is used as the backbone, and the features extracted from the
“block2/unit_4/bottleneck_v2/conv1” layer are used as the output feature map F1 of the
backbone, so the size of feature map F1 is 64× 64× 128. Feature map F1 is sent into the shift
pyramid pooling module instead of the pyramid pooling module in PSPNet, as shown in
the blue dotted rectangle in Figure 2. Similar to PSPNet, the shift pyramid pooling module
also performs multi-scale pooling, but for the top global pooling, similar to PSPNet, the
following three scales of pooling are shift pooling instead of normal pooling, the details of
which are introduced later. The depth of the feature map output by each shift pooling is 1/4
of the input feature map F1. Finally, the output features of the four scales are concatenated
with the input feature map F1 to obtain feature map F2, the depth of which is twice that
of the input feature map F1. Convolution with a kernel of 1 × 1 is followed to adjust the
depth to 1/4 of the input feature map F1. After the whole shift pyramid pooling module,
the size of the obtained feature map F3 is the same as that of the input feature map F1,
except the depth is 1/4 that of feature map F1. In this model, the size of feature map F3 is
64 × 64 × 32.
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Figure 2. Architecture of the shift pooling PSPNet network model. The green arrow is the backbone.
The numbers under the input image, output image, and feature map are their size. The blue arrow is
convolution with a kernel of 1 × 1, and the cyan arrow is transpose convolution. The area contained
in the blue dashed rectangle is the encoding block, and the area contained in the red dashed rectangle
is the decoding block.

In order to avoid the loss of detailed features caused by PSPNet directly upsampling
the feature map, feature map F3, which is output by the shift pyramid pooling module,
is upsampled step by step, and the feature fusion of multiple scales is enhanced by the
dense connection, as shown in the red rectangle of Figure 2. Firstly, transpose convolution
is used to upsample the feature map F3 twice, and then, convolution with a kernel of
3 × 3 follows to obtain feature map F4, and the size of feature map F4 is 128 × 128 × 32.
Secondly, transpose convolution is used to upsample feature map F4 twice and upsample
feature map F3 four times. The results are concatenated, and then, convolution with a
kernel of 3 × 3 follows to obtain fused feature map F5, and the size of feature map F5 is
256 × 256 × 32. Thirdly, feature map F5 is upsampled twice, feature map F4 is upsampled
four times, and feature map F3 is upsampled eight times. All results are concatenated,
and then, convolution with a kernel of 3 × 3 follows to obtain fused feature map F6, and
the size of feature map F6 is 512 × 512 × 32. Finally, convolution with a kernel of 1 × 1
is used for adjusting the depth to the number of classifications. In this model, buildings
are the only objects extracted from the remote sensing images, so the final output result is
512 × 512 × 2.

Table 1 shows the comparison of the parameters between each module of our proposed
method and the original PSPNet. It can be seen that the number of parameters of the
original PSPNet is 42.57 million. After replacing the pyramid pooling module with the shift
pyramid pooling module, the parameters only increase by 0.05 million, and the percentage
is only 0.12%. By adding the proposed step-by-step upsampling module to the original
PSPNet, the number of parameters increased by 0.07 million, and the percentage is only
0.16%. The shift pyramid pooling module and step-by-step upsampling module are used at
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the same time in our proposed shift pooling PSPNet. According to Table 1, the parameters
increase by only 0.12 million, and the percentage of increase is 0.28%. It can be seen that,
compared to the original PSPNet, the parameters of shift pooling PSPNet we proposed
increase only slightly, so it will not have a significant impact on the speed during both the
training and inference.

Table 1. Comparison of the parameter numbers before and after using the shift pooling and step-by-
step upsampling modules.

Methods Params (M)

PSPNet 42.57
PSPNet + shift pooling 42.62
PSPNet + our decoder 42.64

PSPNet + shift pooling + our decoder
(shift pooling PSPNet) 42.69

2.2. Shift Pooling

The pooling used in the pyramid pooling of PSPNet divides a feature map into several
grids equally, then maximum pooling or average pooling is used in each grid, and the
result is upsampled to the original feature map size. This method results in the problem
that the pixels at the edge of the grid cannot capture the entire local features across the
grid, and the pixels at the corner of the grid can capture only 1/4 of the local features,
which is obviously insufficient. As shown in Figure 3a, 2 × 2 normal pooling is used in the
pyramid pooling module of PSPNet, and the whole feature map is bisected vertically and
horizontally to obtain 4 grids. Since the yellow pixels are located at the corner of the grid,
they can only capture the local features in the range of 1/4, while the green and blue pixels
can only capture the local features in the range of 1/2, because they are located at the edges
of the grid.

In order to make up for the above shortcomings, we propose a pooling method called
shift pooling. As shown in Figure 3b, the division line of the grid is shifted horizontally by
1/2 the grid size, and the places without pixels are padded with the method of symmetrical
replication, which will not change the pooling results. The feature map is then divided
into 3 grids equally in the horizontal direction and bisected in the vertical direction, and
2 × 3 grids are obtained. The pixels in each grid are pooled to a pixel using the maximum
pooling method and then upsampled to the size before pooling. Then, the nonpixel part in
the feature map before padding is cut off using the slicing method, and the feature map is
restored to the same size before padding. The pseudocode of horizontal shift pooling is
shown in Algorithm 1.

After horizontal shift pooling, the green pixels can capture all the local features, but the
yellow and blue pixels cannot capture all the local feature information, so the vertical shift
is also required. As shown in Figure 3c, the division line of the grids is shifted vertically by
1/2 the grid size, and the places without pixels are padded with the method of symmetrical
replication. The feature map is then divided into 3 grids equally in the vertical direction
and bisected in the horizontal direction, and 3 × 2 grids are obtained. The pixels in each
grid are pooled to a pixel using the maximum pooling method and then upsampled to the
size before pooling. Then, the nonpixel part in the feature map before padding is cut off
using the slicing method, and the feature map is restored to the same size before padding.
The pseudocode of vertical shift pooling is shown in Algorithm 2.
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Algorithm 1: Horizontal shift pooling

Input: feature map, pool_factor, depth
Output: feature map
1: Divide the size of the feature map by pool_factor to obtain the pooling size and stride. (For
example, If the pool_factor is 2, the pooling size is half of the feature map size, and the stride
equals pooling size.)
2: Obtain the size of padding on the left and right of the feature map; the value is half of the
pooling size.
3: Pad the feature map on the left and right symmetrically to obtain feature map 1.
4: Maxpool feature map 1 with size and stride obtained by step 1 to obtain feature map 2.
5: Feature map 2 is convoluted with a 1 × 1 kernel into a feature map 3 with the same width and
height, but the channel is deep.
6: Through batch normalization and activation layers, feature map 4 is obtained.
7: Upsample feature map 4 to the size of feature map 1 to obtain feature map 5.
8: Crop off the left and right padding parts of feature map 5 to obtain feature map 6.
9: Return feature map 6.

After vertical shift pooling, the blue pixels can also capture all the local features, but
the yellow pixels can only capture 3/4. For example, the yellow pixel with an orange
border in Figure 3c cannot capture the local feature in the upper left corner after horizontal
and vertical shift. Therefore, it is also necessary to shift in both the horizontal and vertical
directions. As shown in Figure 3d, the division line of the grid is shifted by 1/2 the grid
size in the horizontal and vertical directions at the same time, the places without pixels
are padded with the method of symmetrical replication, the feature map is divided into
3 grids equally both in the horizontal and vertical directions, and 3 × 3 grids are obtained.
The pixels in each grid are pooled to a pixel using the maximum pooling method and then
upsampled to the size before pooling. Then, the nonpixel part in the feature map before
padding is cut off using the slicing method, and the feature map is restored to the same
size before padding. The pseudocode of horizontal and vertical shift pooling is shown in
Algorithm 3.

Algorithm 2: Vertical shift pooling

Input: feature map, pool_factor, depth
Output: feature map
1: Divide the size of the feature map by pool_factor to obtain the pooling size and stride.
2: Obtain the size of padding on the top and bottom of the feature map; the value is half of the
pooling size.
3: Pad the feature map on the top and bottom symmetrically to obtain feature map 1.
4: Maxpool feature map 1 with size and stride obtained by step 1 to obtain feature map 2.
5: Feature map 2 is convoluted with a 1 × 1 kernel into feature map 3 with same width and height,
but the channel is deep.
6: Through batch normalization and activation layers, feature map 4 is obtained.
7: Upsample feature map 4 to the size of feature map 1 to obtain feature map 5.
8: Crop off top and bottom padding parts of feature map 5 to obtain feature map 6.
9: Return feature map 6.

After horizontal and vertical shift pooling, yellow pixels can also capture the complete
local features. When the four pooling methods of normal pooling, horizontal shift pooling,
vertical shift pooling, and horizontal and vertical shift pooling are combined, each pixel in
the feature map can capture the entire local feature. As shown in Figure 3, a yellow pixel
with an orange border can only capture 1/4 of the local feature in (a), while when (a)–(d)
are used together, the pixel can actually capture the entire local feature, which is shown in
the green rectangle of (e).

The detailed architecture of the shift pooling model in Figure 2 is shown in Figure 4.
Firstly, feature map F1 with a size of 64 × 64 × 128 output by the backbone is pooled
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normally to obtain feature map F2, feature map F3 is obtained by horizontal shift pooling,
feature map F4 is obtained by vertical shift pooling, and feature map F5 is obtained by
horizontal and vertical shift pooling. F2–F5 all have the size 64 × 64 × 32. Then, F2–F5 are
concatenated to obtain feature map F6 with a size of 64 × 64 × 128. Finally, a convolution
with a kernel of 1 × 1 adjusts the depth of F6 to 32 to obtain feature map F7, and the size of
feature map F7 is 64 × 64 × 32. After the shift pooling module, each pixel in the feature
map can fully capture the whole local feature information.

Algorithm 3: Horizontal and vertical shift pooling

Input: feature map, pool_factor, depth
Output: feature map
1: Divide the size of the feature map by pool_factor to obtain the pooling size and stride.
2: Obtain the size of padding on the left, right, top, and bottom of the feature map; the value is
half of the pooling size.
3: Pad the feature map on the left and right symmetrically, then pad the top and bottom
symmetrically again to obtain feature map 1.
4: Maxpool feature map 1 with the size and stride obtained by step 1 to obtain feature map 2.
5: Feature map 2 is convoluted with a 1 × 1 kernel into a feature map 3 with same width and
height, but the channel is deep.
6: Through batch normalization and activation layers, feature map 4 is obtained.
7: Upsample feature map 4 to the size of feature map 1 to obtain feature map 5.
8: Crop off the left, right, top, and bottom padding parts of feature map 5 to obtain feature map 6.
9: Return feature map 6.
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Figure 3. Shift pooling method. The size of the feature map is 16 × 16, the thin black line is the pixel
border, and the thick black line is the pooling grid border. (a) Normal pooling, (b) horizontal shift
pooling, (c) vertical shift pooling, and (d) pooling method of both horizontal and vertical shifts at the
same time. (e) Receptive field of the yellow pixel with orange border after the four pooling methods
of (a)–(d) are carried out at the same time.
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3. Experiment and Results
3.1. WHU Building Dataset and Preprocessing

The aerial dataset of the WHU building open dataset [36] was chosen for our exper-
iment. This dataset was labeled by Professor Ji Shunping. The aerial dataset consists of
more than 220,000 independent buildings extracted from aerial images with 0.075-m spatial
resolution and 450 km2 covering Christchurch, New Zealand. The original aerial data
are from the New Zealand land information service website, and the ground resolution
is 0.075 m. In order to train on most computers, the data were downsampled to 0.3 m at
the ground resolution and then cropped into 8189 tiles with 512 × 512 pixels. All tiles
were divided into three parts: training set (including 130,500 buildings), validation set
(including 14,500 buildings), and test set (including 42,000 buildings). The training dataset
includes 4736 tiles, the validation dataset includes 1036 tiles, and the test dataset includes
2416 tiles. Each tile contains one three-channel TIF format image and one single-channel
TIF format label.

In order to speed up reading the data from the hard disk during training, we wrote
data compression software in Python to compress the training, verification, and test datasets
into a TFrecord file. TFrecord is the official format of TensorFlow, using data stored in
binary form.
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Some scholars use data augmentation to solve the problem of limited training data [37].
However, few-shot learning is the development direction of deep learning algorithms [38].
Moreover, the number of tiles in the WHU building dataset is adequate, and the same
training and test data are convenient for comparison among other scholars. Therefore, no
dataset augmentation was used in this work.

3.2. Massachusetts Building Dataset and Preprocessing

The Massachusetts building dataset [39] consists of images of the Boston area of the
United States, and the entire dataset covers about 340 square kilometers. The dataset
has 151 aerial images in total, the size of each image is 1500 × 1500 pixels, the ground
resolution is 1 m, the format is three-channel TIF, and the corresponding annotation image
is single-channel TIF format data.

Due to the limitations of the computer hardware used in the experiment, we cropped
the original image to 512 × 512 pixels, so nine images could be cropped out of one original
image. Where there were no pixels in the original image, the pixel value was set to 0, and
a total of 1359 images were obtained. We divided the dataset into a training set and a
test set. There were 1233 images in the training set and 126 images in the test set. Like
the WHU dataset, we used our own Python program to convert cropped images into the
TFrecord format of TensorFlow to speed up the reading of data from the hard disk and
save training time.

3.3. Hardware and Settings for Experiment

The CPU model used is an Intel i5-9400f with Kingston DDR4 8 G memory, and the
GPU model is an NVIDIA GeForce RTX 2060 super 8 G. The environment in which the
code was written and run is Python 3.6.8.

AdamOptimizer [40] was used for back propagation, and the learning rate was set to
0.0001 during training. The sum of L2 regularization and binary cross-entropy was used as
the total loss to prevent overfitting. The total loss is shown in Formula (1). The maximum
number of training epochs was set to 100. After each epoch, an evaluation was performed
on the validation dataset. Unlike the stopping standard used in [21], in which training
was stopped if the metrics in the validation set no longer increased for 10 consecutive
epochs, our stopping standard was that, if the loss in the validation set no longer reduced
for 10 consecutive epochs, then training was stopped. In this paper, the backbone of the
original PSPNet and our shift pooling PSPNet are both resnet101.

TotalLoss = BinaryCrossEntropy + L2

L2 = ||w||22 = ∑
i

∣∣w2
i

∣∣
 (1)

3.4. Evaluation Metrics

Some scholars use recall and precision as evaluation metrics, but the increase in one
of these two metrics may lead to the decrease in the other, so, alone, they are not reliable.
To this end, we used the more scientific F1-score for evaluation, together with the most
commonly used mIoU and accuracy, a total of three evaluation metrics.

The formula for mIoU is:

mIoU =
1

N + 1

N

∑
i=0

TP
TP + FN + FP

(2)

The formula for accuracy is:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)
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The formula for the F1-score is:

F1− Score =
2× Precison× Recall

Precison + Recall
(4)

where the precision and recall are:

Precison =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

In all formulas, N is the number of the foreground. TP is the abbreviation of true
positives—that is, the number of pixels correctly predicted as the foreground. FP is the
abbreviation of false positives—that is, the number of background pixels misjudged as
the foreground. TN is the abbreviation of true negatives—that is, the number of pixels
correctly predicted as the background. FN is the abbreviation of false negatives—that is,
the number of foreground pixels misjudged as background. In Equation (2), the building
and background are regarded as the foreground to obtain IoU, then the average value is
taken as mIoU. The foreground in Equations (4)–(6) is the building.

3.5. Results on WHU Building Dataset

The comparison results of the main segmentation networks on the test dataset of the
WHU building dataset are shown in Table 2. As shown in Table 2, our improved method
based on PSPNet performs best in all evaluation metrics: mIoU, F1-score, and accuracy.

Table 2. Results of classic semantic segmentation on the WHU building test dataset.

Methods mIoU F1-Score Accuracy

SETR 83.5 83.1 96.3
MSST-Net 88.0 88.2 97.4

SegNet 83.8 83.5 96.4
DeepLab V3 84.6 84.3 96.7

PSPNet 86.7 86.8 97.0
SPNet 87.3 87.5 97.2

BiSeNet V2 87.6 87.8 97.3
CFENet 88.1 88.2 97.5

Ours 89.1 89.4 97.7

SegNet, DeepLabV3, SPNet, BiSeNetV2, CFENet, and PSPNet are classic semantic
segmentation networks based on convolutional neural networks. Among them, in terms
of evaluation metrics, the best is CFENet, followed by BiSeNetV2, SPNet, PSPNet, and
DeepLabV3, and the worst is SegNet. Due to the use of the pyramid pooling module,
PSPNet addresses the problem that the actual receptive field of the multilayer convolu-
tional neural network is smaller than the theoretical receptive field. For mIoU, PSPNet is
2.1% higher than DeepLabV3; for the F1-score, PSPNet is 2.5% higher than DeepLabV3;
and for accuracy, PSPNet is 0.3% higher than DeepLabV3. Compared with SegNet, mIoU
of PSPNet is 2.9% higher than that of SegNet, the F1-score of PSPNet is 3.3% higher than
that of SegNet, and the accuracy of PSPNet is 0.6% higher than that of SegNet. It can be
seen that the PSPNet network itself is excellent. Due to the combined use of pyramid
pooling and strip pooling, the effect of SPNet is the better than PSPNet. The mIoU of SPNet
is 0.6% higher than PSPNet, the F1-score is 0.7% higher, and the accuracy is 0.2% higher.
However, BiSeNetV2, which is the Bilateral Segmentation Network, performs a little better
than SPNet. The performance of CFENet is even better than that of BiSeNetV2: the mIoU is
as high as 88.1%, the F1-score is 88.2%, and the accuracy is 97.5%.



Remote Sens. 2022, 14, 4889 12 of 21

MSST-Net and SETR are networks based on Transformer. It can be seen that the
performance of SETR is poor. Compared with the other networks, the three metrics are the
worst. MSST-Net fuses the multi-scale feature of Swin Transformer, so all the metrics are
greatly improved. Compared with SETR, the mIoU of MSST-Net increased by 4.5%, the
F1-score of MSST-Net increased by 5.1%, and the accuracy of MSST-Net increased by 1.1%.

Our network improved from PSPNet is the best among all the network models, because
it fixes the disadvantage that the pixels on the edge of the pooling grid cannot fully capture
the entire local feature, so all the evaluation metrics are significantly improved. Compared
with the original PSPNet network, our network improves the mIoU by 2.4%, F1-score by
2.6%, and accuracy by 0.7%. Even compared with MSST-Net, which is based on multi-scale
Swin Transformer, the mIoU of our network increases by 1.1%, the F1-score increases by
1.2%, and the accuracy increases by 0.3%. This is enough to show that there is no meaningful
difference in results between the convolutional neural network and Transformer. As long
as an appropriate algorithm is designed, a convolutional neural network can also capture
local and global features well, so as to achieve high-precision semantic segmentation.

Figures 5–7 show the comparison results of various classical segmentation models
with our method on large buildings, small buildings, and roads, which have a similar
texture to buildings.
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As can be seen in the red circle of Figure 5, the segmentation ability of DeepLabV3
with small buildings is very poor. In brief, small buildings cannot be predicted, as the
edges and corners of the buildings are relatively smooth, with few right angles. Although
other segmentation networks can also predict small buildings, such as the original PSPNet
network, our method is the best one in the segmentation of small buildings. Our method
uses the shift pyramid pooling module instead of the pyramid pooling module in PSPNet,
which can enhance the ability of the network to capture local features at the edge of the
pooling grid. Therefore, small buildings at the edge of the pooling grid can also be predicted
well by our improved PSPNet. For example, the position of two small buildings in the red
circle of Figure 5 is exactly close to edge of the grid of pooling with 2× 2, and pixels at edges
cannot cross the pooling grid to capture all local feature information, so the segmentation
effect of the original PSPNet network is poor, but the segmentation effect of our method is
significantly improved and even close to the label.

It can be seen from the prediction of the red circle in Figure 6 that there are holes in
the large buildings predicted by the segmentation network models SETR and MSST-Net,
which are based on Transformer, while there are no obvious holes in the large buildings
predicted by the network models SegNet, DeepLabV3, PSPNet, SPNet, BiSeNetV2, CFENet,
and our method, which are based on convolution. The segmentation network model SETR
and MSST-Net, which are based on Transformer, have better predictions on the edges of
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large targets, especially the edges of buildings predicted by MSST-Net that are basically
straight lines and right angle corners. There are some concaves on the edges of the large
building predicted by SegNet and PSPNet, which is because the original PSPNet has an
insufficient ability to capture entire local features, and our method can better capture local
features due to the improvement in this aspect, so the edge of the prediction building is
much better and almost the same as the label.
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It can be seen from the red circle area in Figure 7 that, because some cement roads
have a similar texture to the roofs of buildings, many segmentation networks misjudge the
pixels of the road as pixels of a building. In particular, the misjudgment of PSPNet is the
most obvious one among all the networks, and it is followed by SETR, DeepLabV3, and
BiSeNetV2, while the misjudgment of SPNet is lower in this regard. MSST-Net fuses the
multi-scale features of Swin Transformer, which allow it to better capture the local features
of multiple scales, so it performs well in this regard, and there are very few misjudged
pixels. Although SPNet and CFENet do not predict roads as buildings incorrectly, the edge
distortions of houses with correct predictions are serious.
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Our network is the best one among all the networks in this regard. Due to the
improvement of the pyramid pooling module, each pixel in the feature map, including
the pixels at the edges and corners of the pooling grid, can capture enough local feature
information. With a more comprehensive analysis of local feature information, there are no
pixels of road misjudged as building pixels by our network.

3.6. Results on Massachusetts Building Dataset

The comparison results of the classic segmentation networks for the Massachusetts
building dataset are shown in Table 3. Our method based on shift pooling performs best in
all evaluation metrics: mIoU, F1-score, and accuracy.

Table 3. Results of classic semantic segmentation on the Massachusetts building test dataset.

Methods mIoU F1-Score Accuracy

SETR 67.9 63.5 90.2
MSST-Net 71.0 68.6 90.9

SegNet 69.9 66.7 90.7
DeepLab V3 67.5 63.8 89.3

PSPNet 71.8 70.0 90.8
SPNet 70.6 68.0 90.6

BiSeNet V2 72.2 70.3 91.2
CFENet 71.4 68.7 91.4

Ours 75.4 74.3 92.6

SegNet, DeepLabV3, SPNet, BiSeNetV2, CFENet, and PSPNet are classic semantic
segmentation networks based on the convolutional neural network. Among them, in
terms of evaluation metrics, the best is BiSeNetV2, PSPNet is the second best, the worst is
DeepLabV3, SegNet is the second worst, CFENet and SPNet are in the middle.

MSST-Net and SETR are networks based on Transformer. MSST-Net achieved a
better performance than SETR, but on the whole, their performances were not as good as
the convolutional neural network. Unlike the MSST-Net performance being better than
BiSeNetV2 and PSPNet on the WHU building dataset, BiSeNetV2 and PSPNet performance
was better than MSST-Net on the Massachusetts building dataset. This is because the
annotation accuracy of the Massachusetts building dataset is relatively low, and there
is too much noise. When using supervised learning, the advantages of the MSST-Net
that performs well on the WHU building dataset are suppressed due to the influence
of incorrectly labeled pixels. This also shows that BiSeNetV2 and PSPNet have better
anti-noise ability than MSST-Net.

Our network is the best among all the network models whether a CNN or Transformer
is used, because it improves on PSPNet, and it fixes the disadvantage of PSPNet that the
pixels on the edges of the pooling grid cannot fully capture the entire local feature, so all
the evaluation metrics are significantly improved. Compared with the original PSPNet
network, our network improves the mIoU by 3.6%, F1-score by 4.3%, and accuracy by
1.8%. Compared with the second best network among all network models, our network
improves the mIoU by 3.2%, F1-score by 4.0%, and accuracy by 1.4%. It can be seen
that the shift pooling structure has a stronger anti-noise ability for the dataset with low
annotation accuracy.

Figure 8 shows the segmentation results of small buildings in various segmentation
networks on the Massachusetts building dataset. It can be seen that DeepLabV3 and
PSPNet perform poorly in small building segmentation, as many small buildings are not
detected, and there is an obvious error that several small buildings close to each other
are predicted as a continuous building, as shown in the red rectangle in Figure 8. SegNet,
SPNet, BiSeNetV2, and CFENet, which are also based on convolutional neural networks,
perform better than DeepLabV3 and PSPNet; they hardly predict two small buildings close
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to each other as one continuous building. However, the shapes of larger buildings are
slightly worse than DeepLabV3 and PSPNet, as shown in the red circle in Figure 8.
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The performance of the networks, SETR and MSST-Net, which are based on Trans-
former, on the segmentation of small buildings is better than that of DeepLabV3 and
PSPNet. The boundaries of the predicted small buildings are very clear, as there is no error
where two or more small buildings close to each other are predicted as one building. The
boundaries of the larger buildings segmented by MSST-Net are closer to the straight line,
which is consistent with the label. However, the segmentation of larger buildings by SETR
is the worst among all the networks, and a large building is wrongly segmented as multiple
small buildings, as shown in the red circle in Figure 8.

In general, our network achieves good performance in segmentation for small build-
ings, with clear boundaries and few missed inspections; there is no case where multiple ad-
jacent small buildings are segmented as a larger building. Meanwhile, the larger buildings
boundaries predicted by our network are closest to the label among all the network models.
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4. Discussion
4.1. Ablation Experiment

In order to prove that the shift pooling module and the step-by-step upsampling
module proposed by us can improve the effect of PSPNet extracting houses from remote
sensing images, we conducted ablation experiments on the Massachusetts building dataset,
and the results are shown in Table 4.

Table 4. Comparison before and after using shift pooling and step-by-step. upsampling modules on
the Massachusetts building test dataset.

Methods mIoU F1-Score Accuracy

PSPNet 71.8 70.0 90.8
PSPNet + Our decoder 72.8 71.1 91.4
PSPNet + shift pooling 73.8 72.6 91.7

PSPNet + Our decoder + shift pooling
(shift pooling PSPNet) 75.4 74.3 92.6

It can be seen from Table 4 that mIoU increased by 1.0% when only using the step-
by-step upsampling module. The mIoU increased by 2.0% when only using shift pooling
instead of normal pooling. The mIoU increased by 3.6% when these two modules were
used at the same time. Therefore, these two modules both can make shift pooling PSPNet
much better than the original PSPNet model.

As we said in the introduction, PSPNet can use many networks as backbones, including
some excellent networks in the future. To verify that our shift pooling PSPNet is better
than the original PSPNet when various networks are used as the backbone, we used three
different networks, resNet50, resNet101, and resNet152, as backbones for comparative
experiments. The results are shown in Table 5.

Table 5. Comparison of different backbones on the Massachusetts building test dataset.

Methods Backbone mIoU F1-Score Accuracy

PSPNet
ResNet50

72.1 70.2 91.2
Shift pooling PSPNet 75.3 74.4 92.4

PSPNet
ResNet101

71.8 70.0 90.8
Shift pooling PSPNet 75.4 74.3 92.6

PSPNet
ResNet152

71.9 69.9 91.1
Shift pooling PSPNet 75.7 74.8 92.5

The experimental results show that our shift pooling PSPNet performs better than the
original PSPNet on all backbones. When ResNet152 is used as the backbone, the mIoU
increases by 3.6%.

4.2. Feature Visualization

In order to visualize the feature map captured by the shift pooling pyramid module
and pyramid pooling module, we selected an image in the WHU building dataset for
visualization, and the results are shown in Figure 9. In Figure 9a is a color image, (b) is
the corresponding feature visualization of the pyramid pooling module in PSPNet, and
(c) is the corresponding feature visualization of the shift pyramid pooling module in shift
pooling PSPNet.

The visualization feature map is the output of convolution with a 3 × 3 kernel after
the concatenated feature map of four-scale shift pooling; there are 32 channels in total, so
we add them together. Since the value of the visualization feature map is not necessarily
between 0 and 255, in order to display it as an image, we mapped each pixel between 0 and
255, as shown in Equation (7).
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Pvisualization =
Pfeature − Pmin

Pmax − Pmin
(7)

where Pvisualization represents the pixel value for display, Pfeature represents the pixel value
of the feature map, and Pmax and Pmin represent the maximum and minimum values of the
feature map, respectively.

It can be seen from the visualization results of the feature map that the shift pyramid
pooling module is much better for the feature extraction of a building, and the building
edges are very clear, while the differences between the building and background in the
feature map of the pyramid pooling module is not obvious, and the building edges are
very fuzzy, which cannot effectively distinguish between the building and background.
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where visualizationP  represents the pixel value for display, featureP  represents the pixel 

value of the feature map, and maxP  and minP  represent the maximum and minimum 
values of the feature map, respectively. 

It can be seen from the visualization results of the feature map that the shift pyra-
mid pooling module is much better for the feature extraction of a building, and the 
building edges are very clear, while the differences between the building and back-
ground in the feature map of the pyramid pooling module is not obvious, and the 
building edges are very fuzzy, which cannot effectively distinguish between the build-
ing and background. 
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Figure 9. Feature visualization of the pyramid pooling module and shift pooling pyramid. (a) One
of the color images of the WHU building dataset. (b) Corresponding feature visualization of the
pyramid pooling module in PSPNet. (c) Corresponding feature visualization of the shift pyramid
pooling module in shift pooling PSPNet.

4.3. Generalizations Discussion

In order to discuss the generalization of the model, we list the mIoU values of all the
models in the validation dataset and test the dataset of the WHU building dataset in Table 6.
It can be seen that the generalization of networks based on Transformer is good. Although
the performance of SETR on both the validation dataset and the test dataset is poor, the
generalization of SETR is the best, and the mIoU on the test dataset is 0.7% higher than that
on the validation dataset. The generalization of MSST-Net is also good, and the mIoU on
the test dataset is only 0.1% lower than that on the validation dataset.

Table 6. mIoU of all networks on the validation and test datasets of the WHU building dataset.

Methods mIoU of Validation
Dataset

mIoU of Test
Dataset Test Validation

SETR 82.8 83.5 0.7
MSST-Net 88.1 88.0 -0.1

SegNet 86.3 83.8 -2.5
DeepLab V3 85.2 84.6 -0.6

PSPNet 87.4 86.7 -0.7
SPNet 87.9 87.3 -0.6

BiSeNet V2 87.4 87.6 0.2
CFENet 89.0 88.1 -0.9

Ours 89.6 89.1 -0.5

Among networks based on convolution, BiSeNet V2 has the best generalization, the
mIoU on the test dataset is 0.2% higher than that on the validation dataset. Our shift
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pooling PSPNet is the second best, and the mIoU on the test dataset is only 0.5% lower than
that in the validation dataset.

SegNet is the worst among all the networks, whether convolution-based or Transformer-
based, and the mIoU on the test dataset is 2.5% lower than that in the validation dataset.

5. Conclusions

In this paper, we propose a pooling method called shift pooling and improve PSPNet
on this basis. By shifting the position of the pooling grid, the pixels at the edge and corner
of the pooling grid can capture the complete local feature information, so the results of the
segmentation are improved.

We used SETR, SegNet, DeepLabV3, PSPNet, SPNet, MSST-Net, and our proposed
network to compare using the open dataset. The results showed that our method performs
best in three evaluation metrics of the mIoU, F1-score, and accuracy. From the prediction
results, our method can accurately predict small buildings, the shapes of which are very
close to the label. From the prediction results of large buildings, there are no holes in the
buildings predicted by our segmentation network, the edges of the buildings are close
to straight lines, and the corners of the buildings are right angles. In the road prediction
results, our segmentation network does not misjudge the road pixels, the texture of which
is similar to that of the buildings.

In future work, we will continue to explore how to apply the shift pooling method to
other segmentation networks, so as to design a better semantic segmentation network model.
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