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ABSTRACT
Multirate filtering generally introduces time-varying phe-
nomena into the decomposed signals. These phenomena de-
pend on whether the signals are viewed as deterministic, or
as wide-sense (WS) stationary random signals. We consider
the behaviour of subband energy spectra and subband ener-
gies for deterministic signals, and of subband power spectra
and subband power for WS stationary random signals. We
show that aliasing in decimation causes energy spectra and
energies of deterministic signals to be translation variant,
but leaves WS stationary random signals WS stationary. In-
terpolation by upsampling and anti-imaging filtering atten-
uates translation variance of deterministic signals, but con-
verts WS stationary random signals into WS cyclostationary
random signals. In perfect reconstruction (PR) filter banks,
the time-varying effects of the filter bank channels cancel out.
Subband signal processing such as filtering or quantization,
however, distorts the balance between the filter channels and
lets these effects appear in the output signal. Based on our
analysis, we therefore derive quantitative measures for trans-
lation variance and cyclostationarity. These may be used to
compare different multirate filter banks.

1. Introduction

Conversion of sampling rates in critically sampled filter
banks generally causes the subband coefficients to be transla-
tion variant. For instance, when a deterministic input signal
is shifted along time axis or spatial coordinates, its subband
coefficients will not translate in the same manner, and sub-
band energy may change significantly [1]. Adaptive subband
filtering, e.g. for multirate noise reduction and enhancement
of X-ray images [2], may therefore generate translation-
dependent results. This is particularly annoying in interframe
image sequence processing and compression: shift variance
makes motion estimation more difficult [3], and makes the
processing results for given objects to vary as the objects
move. Approaches to reduce or avoid shift variance include
to operate without sampling rate conversion [4], cycle spin-
ning [5], and signal normalization [6, 7].

If the signals are modelled as wide-sense (WS) stationary
random signals, they are described by statistical properties
which, by definition, do not depend on time shifts. Analysis
of shift variance is therefore not applicable to stationary ran-
dom signals. However, a WS stationary random signal does
generally not remain WS stationary when passing through a
filter bank. While decimation changes the power spectrum,
but leaves the signal WS stationary, interpolation causes cor-
relations and power spectra to become periodically time de-
pendent, or cyclostationary [8, 9]. How severe shift vari-
ance and cyclostationarity are, depends on the anti-aliasing
filter before downsampling, and the anti-imaging filter after

upsampling. In perfect reconstruction (PR) filter banks, PR
constraints impose close relations between these filters.

An earlier approach to quantify aliasing in multirate fil-
ter banks is the so-called non-aliasing energy ratio (NER)
[10]. However, while complementing the energy compaction
measures used in transform coding [11], the NER makes no
distinction between deterministic and WS stationary random
signals. Also, it implicitly averages over the cyclostationar-
ity, and does not separate between effects caused by deci-
mation and by interpolation. Here, we therefore develop the
effects energy and power spectra undergo in multirate filter
channels in a parallel, comparative way. From this analysis,
we derive quantitative measures for shift variance and cyclo-
stationarity.

The multirate filter bank is shown in Fig. 1: In each
channel, the input signal s(n) is first filtered by an anal-
ysis (or anti-aliasing) filter Hi(z), i = 0, . . . ,M, yielding
Ti(z) = S(z)Hi(z). It is then downsampled by a factor M to
xi(n) = ti(Mn). Signal synthesis starts by upsampling ac-
cording to

vi(n) =
{

xi( n
M ) for n

M integer
0 otherwise (1)

The upsampled signal is filtered by the synthesis filter Gi(z)
to attenuate or remove frequency images (i.e., the replicas of
the spectrum Xi(e jω) lying within −π < ω ≤ π) by interpo-
lating between the samples xi(n/M) [10, 12].

Figure 1: M-channel critically sampled multirate filter bank.

2. Deterministic Signals

The energy spectrum RE
ss(e

jω) of a deterministic real L2-
signal s(n) ◦−• S(e jω) is given as the Fourier transform of
the autocorrelation sequence (ACS) according to

rE
ss(n) = s(−n)∗ s(n)◦−•RE

ss(e
jω) = |S(e jω)|2 (2)
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The (finite) energy Es of s(n) can be calculated along the time
or frequency axis by

Es = rE
ss(0) =

∞

∑
n=−∞

s2(n) =
1

2π

∫ π

−π
|S(e jω)|2dω (3)

2.1 Decimation

The spectrum of the downsampled signal xi(n) is Xi(z) =
1
M ∑M−1

k=0 Ti(z1/MW k), with W = e− j 2π
M . The correlation se-

quence rE
xix j

(n) and the (cross) energy spectrum RE
xix j

(z) of
xi(n) and x j(n) are

rE
xix j

(n) = xi(−n)∗ x j(n)◦−•RE
xix j

(z) = Xi(z−1)Xj(z) (4)

yielding for the energy spectrum

RE
xix j

(z) =
1

M2

M−1

∑
k=0

Tj(z
1
M W k) ·

M−1

∑
l=0

Ti(z−
1
M W l) (5)

We now regard a shift of s(n) by m samples to s(n − m).
In a uniform M-channel critically sampled filter bank, shift-
induced effects will be periodic with period M. It therefore
suffices to consider m for m = 0, . . . ,M − 1. Inserting the
phase factor z−m in both sums of Eq. (5) yields the shift-
variant energy spectra

RE
xix j

(m,z) =
1

M2

M−1

∑
k=0

Tj(z
1
M W k)·W−km ·

M−1

∑
l=0

Ti(z−
1
M W l)·W−lm

(6)
This expression can be regarded as the product of the discrete
Fourier spectra of J(k) = Tj(z

1
M W k) and I(l) = Ti(z−

1
M W l).

Rewriting this product as the discrete Fourier spectrum of the
convolution of J(k) and I(k), and grouping the energy spectra
for m = 1, . . . ,M−1 into a vector, we obtain

[
RE

xix j
(0,z), . . . ,RE

xix j
(M−1,z)

]T
=

W
M2

[
Ai j

0 (z1/M), . . . ,Ai j
M−1(z

1/M)
]T

(7)

where W is the Fourier matrix, and Ai j
k (z) is the convolution

of modulated spectra

Ai j
k (z) =

M−1

∑
l=0

Tj(zW−l)Ti(z−1W l−k) (8)

Focussing now on i = j, i.e., excluding cross energy spectra,
RE

xixi
(m,z) is independent of m, or shift invariant, for any S(z)

if and only if Aii
k (z1/M) = 0,k = 1, . . . ,M. This is identical

to the absence of aliasing. The shift-independent subband
energy spectrum is then equal to the average

RE
xixi

(z) = R
E
xixi

(z) =
1

M2 Aii
0(z1/M) (9)

In practice, FIR filters will not prevent aliasing. The devi-
ations ∆RE

xixi
(m,z) = RE

xixi
(m,z)−R

E
xixi

(z) from the average
spectrum are then given by non-DC components of Eq. (7):

[
∆RE

xixi
(0,z), . . . ,∆RE

xixi
(M−1,z)

]T =
W
M2

[
0,Aii

1(z1/M), . . . ,Aii
M−1(z

1/M)
]

(10)

With the energy ex
k(i)

ex
k(i) =

1
2πM2

∫ π

−π
Aii

k (e j ω
M )dω (11)

where Aii
k (e j ω

M ) is the convolution

Aii
k (e j ω

M ) =
M−1

∑
l=0

Ti(e j ω+2πl
M )T ∗

i (e j ω+2π(l−k)
M ) (12)

the energy average is Exixi = ex
0(i). The shift-induced energy

deviations from the average are

[∆Exixi(0), . . . ,∆Exixi(M−1)]T = W
[
0,ex

1(i), . . . ,e
x
M−1(i)

]T

(13)
As a quantitative measure of the susceptibility of the sub-
band energy to shifts, we define the normalized mean square
deviation from the average energy as

C2
e (xi) =

1
M ∑M−1

m=0 (∆Exixi(m))2

(Exixi)2
=

M ∑M−1
k=1 |ex

k(i)|2
(ex

0(i))2 (14)

For a given input spectrum S(z), this measure depends only
on the properties of the analysis filters Hi(z).

2.2 Interpolation

Upsampling stretches input signals xi(n), and correspond-
ingly compresses energy spectra to RE

viv j
(z) = RE

xix j
(zM) [13].

Auto- and cross correlation sequences are therefore upsam-
pled like the signals themselves. After filtering by the syn-
thesis filters Gi(z), the energy spectra obey

RE
viv j

(z) = Gi(z−1)RE
xix j

(zM)G j(z) (15)

Unlike decimation, interpolation causes no shift dependen-
cies of energy spectra and energies.

2.3 Decimation and Interpolation

We now examine the energy-related shift dependencies of the
output signals yi(n) of the filter bank channels in Fig. 1. From
decimation, the input energy spectra are shift-dependent. Eq.
(15) therefore becomes

RE
viv j

(m,z) = Gi(z−1)RE
xix j

(m,zM)G j(z) (16)

Inserting Eq. (7), we obtain for the output energy spectra

[
RE

yiy j
(0,z), . . . ,RE

yiy j
(M−1,z)

]T
=

W
M2

[
Bi j

0 (z), . . . ,Bi j
M−1(z)

]T

(17)
where

Bi j
k (z) = Gi(z−1)Ai j

k (z)G j(z) (18)

For i = j, the average energy spectrum of yi(n) is

R
E
yiyi

(z) =
1

M2 Bii
0(z) (19)

and the remaining deviations after synthesis filtering are

[
∆RE

yiyi
(0,z), . . . ,∆RE

yiyi
(M−1,z)

]T =
W
M2

[
0,Bii

1(z), . . . ,Bii
M−1(z)

]
(20)
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For the output signals yi(n), a measure of shift dependence
can be derived analog to Eq. (14): with the energy

ey
k(i) =

1
2πM2

∫ π

−π
Bii

k (e jω)dω (21)

where

Bii
k (e jω) =

M−1

∑
l=0

Ti(e j(ω+ 2πl
M ))T ∗

i (e j(ω+ 2π(l−k)
M ))|Gi(e jω)|2

(22)
the energy average is Eyiyi = ey

0(i). The energy deviations are

[∆Eyiyi(0), . . . ,∆Eyiyi(M−1)]T = W
[
0,ey

1(i), . . . ,e
y
M−1(i)

]T

(23)
The normalized mean square energy deviation of the output
signal energies therefore is

C2
e (yi) =

1
M ∑M−1

m=0 (∆Eyiyi(m))2

(Eyiyi)2
=

M ∑M−1
k=1 |ey

k(i)|2
(ey

0(i))2
(24)

Evidently, the synthesis filters tend to attenuate the shift de-
pendencies. If the bandwidths of Gi(z) are sufficiently nar-
row (less than 2π/M if the analysis filters Hi(z) do not pre-
vent aliasing) they could even eliminate the shift variances
in the output signals. In perfect reconstruction (PR) filter
banks, analysis and synthesis filters are, however, closely re-
lated. For instance, in QMF banks, filters are designed from a
common lowpass prototype H(z) by modulation, coefficient
reversal and shifts. Hence, |Hi(e jω | = |Gi(e jω |. Shift depen-
dencies can then not be filtered out.

3. WS Stationary Random Signals

The ACS rss(n) of a WS stationary signal s(n) is the expec-
tation

rss(n) = E[s(m)s(m+n)] =
∫ ∫ ∞

−∞
xypss(x,y,n)dxdy (25)

where pss(x,y,n) is the joint probability density function of
any two samples s(m) and s(m + n). The power spectrum
Rss(e jω) is the Fourier transform of rss(n). The power of
s(n) is

Ps = E[s2(m)] = rss(0) =
1

2π

∫ π

−π
Rss(e jω)dω (26)

The expectations are ensemble averages taken over the same
m, n of different realizations of the random signal s(n).

3.1 Decimation

The power spectrum of the filtered signal ti(n) is

Rtiti(z) = Hi(z−1)Rss(z)Hi(z) (27)

The ACS of the downsampled signal xi(n) is

rxixi(n) = E [ti(Mm)ti(M(m+n))]

=
∫ ∞

−∞

∫ ∞

−∞
xyptiti(x,y,Mn)dxdy

= rtiti(Mn) (28)

The ACS is downsampled like the signal itself. The power
spectrum therefore undergoes the same changes as a deter-
ministic signal’s spectrum, yielding

Rxixi(z) =
1
M

M−1

∑
k=0

Hi(z−1/MW−k)Rss(z1/MW k)Hi(z1/MW k)

(29)
With a M × M diagonal matrix of modulated versions of
Rss(z) defined as

Rss(z) = diag[Rss(z),Rss(zW ), . . . ,Rss(zW M−1)] (30)

and the modulation vector him(z) of the i-th filter Hi(z)

him(z) =
[
Hi(z),Hi(zW ), . . . ,Hi(zW M−1)

]T
(31)

Eq. (29) becomes

Rxixi(z) =
1
M

hT
im(z−1/M)JMRss(z1/M)him(z1/M) (32)

JM is a M×M-matrix permutation matrix, which reverses the
order of vector entries in hT

im(z−1/M) except the first one, thus
accounting for the W−k = W M−k-dependence in Eq. (29).
While Rxixi(z) generally contains aliasing, the subband sig-
nal xi(n) is still WS stationary. Its power, variance and mean
value are the same as those of ti(n). Aliasing only changes
the shape of Rxixi(e

jω) by increasing the contributions from
higher frequencies.

3.2 Interpolation

Upsampling inserts M − 1 deterministic zeros between two
successive samples of the input signal xi(n). The upsam-
pled signal is therefore not WS stationary [13]. Its ACS and
power spectrum vary periodically along the time coordinate
m. Interpolation by the anti-imaging filter Gi(z) smoothes
over these periodic variations, but will in practice not elimi-
nate these. Output ACS ryiyi(m,n) and output power spec-
trum Ryiyi(m,z) therefore depend periodically on m, m =
0, . . . ,M−1, making yi(n) WS cyclostationary. To derive the
relation between the correlation structure of xi(n) and yi(n),
we decompose the interpolator into its polyphase representa-
tion in Fig. 2. Evidently, the output ACS ryiyi(m,n) can then
be rewritten as the cross correlation of two polyphase filter
output signals [13]. Grouping the M different power spectra
Ryiyi(m,z) into a vector, we derived in [13] that this vector is
given by

[Ryiyi(0,z), . . . ,Ryiyi(M−1,z)]T =
Rxixi(z

M)WGi(z)
M

gim(z−1)
(33)

where gim(z) is the modulation vector of Gi(z). Clearly, for
any WS stationary xi(n), yi(n) is WS stationary if and only if

Gi(z) ·gim(z−1) = [Gi(z)Gi(z−1),0, . . .0]T (34)

i.e. the bandwidth of Gi(z) must be 2π/M or less. In this
ideal case, the power spectra Ryiyi(m,z) are equal to the aver-
age

1
M

M−1

∑
m=0

Ryiyi(m,z) =
Rxixi(z

M)
M

Gi(z)Gi(z−1) (35)

If condition (34) is not met, the deviations ∆Ryiyi(m,z) from
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Figure 2: Polyphase representation of interpolation. Gp
k (z),

k = 0, . . . ,M − 1 denote the polyphase components of the
anti-imaging filter G(z).

the average are

[∆Ryiyi(0,z), . . . ,∆Ryiyi(M−1,z)]T =

Rxixi(z
M)

M
WGi(z)

[
0,Gi(z−1W ), . . . ,Gi(z−1W M−1)

]T
(36)

Similar to the analysis of shift-dependent energy for de-
terministic signals, we find the periodically varying power
Pyi(m) of yi(n) to

Pyi(m) =
1

2π

∫ π

−π
Ryiyi(m,e jω)dω , m = 0, . . . ,M−1 (37)

With the power pi
k from the overlap of Gi(z) and Gi(z−1W k)

pi
k =

1
2πM

∫ π

−π
Rxixi(e

jωM)Gi(e jω)Gi(e− j(ω+2πk/M))dω

(38)
and inserting Eq. (33), the vector of output powers is

[Pyi(0), . . . ,Pyi(M−1)]T = W[pi
0, . . . pi

M−1]
T (39)

The average power Pyi of yi(n) then is

Pyi =
1
M

M−1

∑
k=0

Pyi(k) = pi
0 (40)

and the power ripple ∆Pyi(m) is

[∆Pyi(0), . . . ,∆Pyi(M−1)]T = W[0, pi
1, . . . , pi

M−1]
T (41)

As in Eq. (14) for energies, we can quantify the generation
of cyclostationarity by the normalized mean square power
deviation from the average power as

C2
p(yi) =

1
M ∑M−1

m=0 (∆Pyi(m))2

( 1
M ∑M−1

m=0 Pyi(m)
)2 =

M ∑M−1
k=1 |pi

k|2
(pi

0)2
(42)

For a given input power spectrum Rxixi(z), this measure de-
pends only on the properties of the synthesis filters Gi(z).

3.3 Decimation and Interpolation

To calculate the relation between the vector with output
power spectra Ryiyi(m,z) and the input power spectrum
Rss(z), we cascade Eqs. (32) and (33), what leads to

[Ryiyi(0,z),Ryiyi(1,z), . . . ,Ryiyi(M−1,z)]T =
1

M2 hT
im(z−1)JMRss(z)him(z)Gi(z)Wgim(z−1) (43)

Modifying the cyclostationarity measure C2
p(yi) in Eq. (42)

to cover the full filter bank is straightforward: in Eq. (38),
Rxixi(e

jωM) becomes with Eq. (29)

Rxixi(e
jωM) =

1
M

M−1

∑
k=0

Rss(e j(ω− 2πk
M ))|Hi(e j(ω− 2πk

M ))|2 (44)

C2
p(yi) now depends on both analysis and synthesis filters,

which, in PR filter banks, cannot be designed independently.

4. Conclusions

We have seen that decimation causes periodic shift depen-
dence of the subband energy of deterministic signals, while
interpolation causes WS stationary random signals to be-
come periodically WS stationary, or WS cyclostationary. To
quantify these effects, we have developed quantitative mea-
sures, which complement measures like energy compaction
and decorrelation used to characterize transforms and sub-
band decompositions. These measures can be evaluated ana-
lytically for given signals, such as AR(1)-processes, allow-
ing individual assessments of filter bank channels as well
as of the entire filter bank. We intend to evaluate different
decomposition techniques, such as DCT, lapped transforms,
and various multirate filter bank types, in the near future.
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