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Shifted 1/N expansion for the Klein-Gordon equation with vector and scalar potentials
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The shifted 1/N expansion method has been extended to solve the Klein-Gordon equation with both

scalar and vector potentials. The calculations are carried out to the third-order correction in the energy

series. The analytical results are applied to a linear scalar potential to obtain the relativistic energy ei-

genvalues. Our numerical results are compared with those obtained by Gunion and Li [Phys. Rev. D 12,

3583 (1975)].
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I. INTRODUCTION

Recently the shifted I/X expansion technique [1] has

received much attention in solving the Schrodinger equa-

tion. It has been applied to a large number of physically

interesting potentials yielding highly accurate results

[1—7]. Very recently the Klein-Gordon (KG) and Dirac
equations have been studied by some authors [8—11] to
determine the energy eigenvalues of these equations.

In the present paper we have extended the method to
deal with the KG equation for any radially symmetric

vector and scalar potentials. While the formalism applies
for both vector- and scalar-type potentials, numerical re-

sults are obtained only for a scalar potential of the form

S(r)= Ar, which is a Lorentz scalar used in the study of
quarkonium systems [8,12—14]. Accurate numerical re-

sults are used to compare with our results.
In Sec. II we extend the formalism of Ref. [1] and ap-

ply a different approach [11]to deal with both vector and

scalar potentials in the KG equation. In Sec. III we

present our numerical results and compare with those

given in Ref. [13]. Section IV is left for concluding re-

marks.

II. THE METHOD

The radial part of the N-dimensional KG equation (in

units fi=c =1) for radially symmetric vector and scalar
potentials [15]can be written as

d (k —1)(k —3)+
dp' 4r

and shift the origin of coordinate by

x =k '"(r r, )/—r, ,

and also accordingly expand V(r), S(r), and E as

V(r)=(k /Q)[V(ro)+ V'(ro)roxlk '

+V"(ro)rox /(2k+ . ], (4a)

S(r)=(k IQ)[S(ro)+S'(ro)rox/k '~

+S"(ro)rox l(2k)+ . ],

E =Eo+Eilk+E2lk +E3/k + (4c)

Q=b(ro)+[b (ro)+c(ro)],

in which

where Q is a scale to be determined later. After substitut-

ing Eqs. (4a)—(4c) in Eq. (1), we obtain a Schrodinger-like

equation which has been solved by Imbo, Pagnamenta,
and Sukhatme [1]. We therefore just quote the results

and give the final expression for the energy eigenvalue.

E =Eo+ [P(1)+P(2)/k ]/2Eoro

where P(1) and P(2) are defined in Ref. [8] and

Eo=V(ro)+[[S(ro)+m] +QI4ro j'

where ro is chosen to be the minimum of Eo. Hence ro
satisfies the relation

+ [[m +S(r)] —[E—V(r)] j P(r)=0 (1)

b (ro)=4roS"'(ro)[S(ro)+m]+2r&V'(ro)

c ( ro ) = 16ro [S( ro ) +m ] [ V'( ro )
—S'( ro ) ] .

(8)

where S (r) is a scalar potential and V(r) the fourth com-
ponent of a vector potential, k =%+21, and P(r) is the
radial wave function.

Following Ref. [1],we use k, which is defined as a =2—(1+2n„)w, (10)

The shifting parameter a is chosen so as to make the
first-order correction E& /k vanish. Consequently

(2) where

w = [3+(4ro/Q)[[S(ro)+m ](S"(ro)+[ I+(QI4ro)[S(r )+om] j'~ V"(ro))+S'(ro) —V'(ro) ] j
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TABLE I. Klein-Gordon results for part of the energy levels

(in GeV) of P, g' system with A =0.137 GeV and m =1.12

GeV. The values in parentheses are those given by Gunion and

Li [13].

From Eq. (5) the eigenvalue E is calculated and accord-

ingly the Klein-Gordon results for the energy levels are
listed in Tables I—III. Our results are compared with the
numerical results obtained by Gunion and Li [13].

n„

3.12

(3.1)

3.70

(3.7)

4.16

(4.17)

4.537

(4.54)

49
(4.8)

3.46
(3.47)

3.96
(3.95)
4.36

(4.38)

4.719
{4.72)

5.039
(5.04)

3.74

(3.73)
4.18

(4.17)

4.556

(4.56)

4.89

(4.90)
5.196

(5.2)

3.99
(3.98)
4.387

(4.39)
4.738

(4.73}
5.06

(5.05}
5.346

(5.35)

III. APPLICATION TO A PURE SCALAR
POTENTIAL [ V(r ) =O, S (r) = Ar]

By this case we are precisely referring to the quark-
confining linear potential regarded as a Lorentz scalar.

I

Equations (7)—(9) along with Q=k and Eqs. (10) and

(11) read

Ib (r )o+[b(r )o +c(ro)]'~ ]
'~ =1+2l +(1 2n„)w . —

(12)

IV. CONCLUDING REMARKS

We have developed a general formalism for the shifted
1/N expansion of the Klein-Gordon equation with both
vector and scalar potentials. The case where V(r)=0
and S(r)= Ar only has been treated in this paper, leaving

the other cases for later investigations. The comparison
of our results with those of Gunion and Li [13) gives no
doubt about the good agreement between them. In Table
I the accuracy ranges from 97.96% to 100.00%. In Table
II the accuracy is noted to range between 99.21% and

99.88%. In Table III the accuracy is between 98.87%
and 99.62%. It has also been noted that the term con-

tributing most to the energy levels is the leading term Eo
of Eq. (5) in the sense that the ratio of the leading term
contribution to the contribution of E, Eq. (5), ranges be-

tween 0.9962 and 0.9998 for Table I, 0.9987 and 0.9997
for Table II, and 0.9992 and 0.9998 for Table III. A11 in

all we can say that the shifted 1/X expansion works well

for the KG equation with a scalar potential of the form
S(r)= Ar

APPENDIX

We list below the definitions of e. and 6'

e& =(2—a), @2=—3(2—a)/2,

E3
—

1 + ( ro /3Q )[mS" '( ro ) +Eo V"'( ro ) +S ( ro )S'"( ro )
—V( ro ) V"'( ro ) +3S'( ro )S"(ro )

—3 V'( ro ) V"( ro ) ]

and

e~= ,'+(ro/12Q)[—mS""(ro)S""(ro)+EoV""(ro)+S(ro)S'"'(ro)+4S'(ro)S"'(ro)+3$"(ro)

—V(ro)V""(ro) 4V'(ro)V'"(r—
)
—o3V"(ro) ],

TABLE II. Klein-Gordon results for part of the energy level~

(in GeV) of the p system, using p' (1.25) as a first excitation, with

A =0.07 GeV and m =0.15 GeV. The values in parentheses

are those given by Gunion and Li [13].

L

TABLE III. Klein-Gordon results for part of the energy lev-

els (in GeV) of the p system, using p' (1.6) as a first excitation,

with A =0.21 GeV and m =0.15 GeV. The values in

parentheses are those given by Gunion and Li [13].

1.127

(1.13)

1.60
(1.61)
1.955

(1.96)
2.247

(2.25)

2.50
(2.52)

1.396
(1.4)

1.792
(1.79)
2.11

{2.12)

2.38

(2.39)
2.62

(2.63)

1.79
(1.8)

2.63
(2.64)

3.24

(3.27)
3.74

(3.78)

2.26
(2.28)

2.95
(2.98)
3.50

(3.54)

3.98
(4.0)
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5&= —(1—a)(3 —a)/2, 52=3(1—a)(3 —a)/4,

5~=2(2 —a), 5~= —5(2 —a)/2,

5&
= —

—,
' + (ro /60Q) [mS"'"(ro )+Eo V'""(ro )+S(rz )S'""(ro)+5S'(rz)S""(rz )+15S"(ro )S"'(ro )

—V(ro ) V"'"(r
o)
—5 V'(rz) V""(rz)—15 V"(rz ) V'"(ro ) ],

5s= ,'+—(ro/360Q)[mS'""'(ro)+EoV"""(ro)+S(ro)S"""(ro)+6S'(ro)S"'"(ro)+15S"(ro)S""(ro)

+10S'"(ro) —V(ro) V"'"'(ro) —6V'(r o)
V'""(r

o)
—15 V"(ro) V""(r

o)
—10V'"(ro) ] .

(A2)
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