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Abstract

Recent work on eigenvalues and eigenvectors for tensors of order m ≥ 3 has been motivated by
applications in blind source separation, magnetic resonance imaging, molecular conformation, and more.
In this paper, we consider methods for computing real symmetric-tensor eigenpairs of the form Ax

m−1 =
λx subject to ‖x‖ = 1, which is closely related to optimal rank-1 approximation of a symmetric tensor.
Our contribution is a novel shifted symmetric higher-order power method (SS-HOPM), which we show
is guaranteed to converge to a tensor eigenpair. SS-HOPM can be viewed as a generalization of the
power iteration method for matrices or of the symmetric higher-order power method. Additionally,
using fixed point analysis, we can characterize exactly which eigenpairs can and cannot be found by
the method. Numerical examples are presented, including examples from an extension of the method to
finding complex eigenpairs.
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1 Introduction

Tensor eigenvalues and eigenvectors have received much attention lately in the literature [11, 14, 16, 15,
3, 12, 22]. The tensor eigenproblem is important because it has applications in blind source separation
[9], magnetic resonance imaging [20, 18], molecular conformation [6], etc. There is more than one possible
definition for a tensor eigenpair [14]. In this paper, we specifically use the following definition.

Definition 1.1 Assume that A is a symmetric mth-order n-dimensional real-valued tensor. For any x ∈ C
n,

define
(
Axm−1

)

i1
≡

n∑

i2=1

· · ·
n∑

im=1

ai1i2···imxi2 · · ·xim for i1 = 1, . . . , n. (1)

Then λ ∈ C is an eigenvalue of A if there exists x ∈ C
n such that

Axm−1 = λx and x†x = 1. (2)

The vector x is a corresponding eigenvector, and (λ,x) is called an eigenpair.

Definition 1.1 is closely related to the E-eigenpairs defined by Qi [14, 15] but differs in the constraint on
x.1 In the case that x is real (which implies that λ is also real), Definition 1.1 is equivalent to the Z-eigenpairs
defined by Qi [14, 15] and the l2-eigenpairs defined by Lim [11]. In particular, Lim [11] observes that any
real eigenpair (λ,x) is a Karush-Kuhn-Tucker (KKT) point [13] (i.e., a constrained stationary point) of the
nonlinear optimization problem

max
x∈Rn

Axm subject to xTx = 1, where Axm ≡
n∑

i1=1

· · ·
n∑

im=1

ai1···imxi1 · · ·xim . (3)

This is equivalent to the problem of finding the best symmetric rank-1 approximation of a symmetric tensor
[5].

In this paper, we build upon foundational work by Kofidis and Regalia [9] for solving (3). Their paper is
extremely important for computing tensor eigenvalues even though it predates the definition of the eigenvalue
problem by three years. Kofidis and Regalia consider the higher-order power method (HOPM) [5], a well-
known technique for approximation of higher-order tensors, and show that its symmetric generalization (S-
HOPM) is not guaranteed to converge. They go on, however, to use convexity theory to provide theoretical
results (as well as practical examples) explaining conditions under which the method is convergent for even-
order tensors (i.e., m even). Further, these conditions are shown to hold for many problems of practical
interest.

We present a new method for finding real-valued tensor eigenpairs, called the shifted symmetric higher-
order power method (SS-HOPM), along with theory showing that it is guaranteed to converge to a constrained
stationary point of (3). The proof is general and works for both odd- and even-order tensors (i.e., all m ≥ 3).
The effectiveness of SS-HOPM is demonstrated on several examples, including a problem noted previously
[9] for which S-HOPM does not converge. We also present a version of SS-HOPM for finding complex-valued
tensor eigenpairs and provide examples of its effectiveness.

We mention some additional related work on finding tensor eigenvalues. Qi, Wang, and Wang [17] propose
some methods specific to third-order tensors (m = 3). Ng, Qi, and Zhou [12] propose a method for finding
the largest eigenvalue of a nonnegative tensor that is also a power method; however, it is aimed at a different
definition of eigenvalue.

1Qi [14, 15] requires x
T
x = 1 rather than x

†
x = 1.
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2 Preliminaries

Throughout, let Γ and Σ denote the unit ball and sphere on R
n, i.e.,

Γ = {x ∈ R
n : ‖x‖ ≤ 1} and Σ = {x ∈ R

n : ‖x‖ = 1}.
Additionally, define

Πm ≡ the set of all permutations of (1, . . . ,m).

Let x⊥y denote xTy = 0, and define x⊥ ≡ {y ∈ R
n : x⊥y}. Let ρ(A) denote the spectral radius, i.e., the

magnitude of the largest eigenvalue, of a square matrix A.

2.1 Tensors

A tensor is an m-way array. We let R[m,n] denote the space of mth-order real-valued tensors with dimension
n, e.g., R[3,2] = R

2×2×2. We adopt the convention that R[0,n] = R.

We formally introduce the notion of a symmetric tensor, sometimes also called supersymmetric, which
is invariant under any permutation of its indices. Further, we define a generalization of the tensor-vector
multiplication in equations (1) and (3).

Definition 2.1 (Symmetric tensor [4]) A tensor A ∈ R
[m,n] is symmetric if

aip(1)···ip(m)
= ai1···im for all i1, . . . , im ∈ {1, . . . , n} and p ∈ Πm.

Definition 2.2 (Symmetric tensor-vector multiply) Let A ∈ R
[m,n] be symmetric and x ∈ R

n. Then
for 0 ≤ r ≤ m−1, the (m−r)-times product of the tensor A with the vector x is denoted by Axm−r ∈ R

[r,n]

and defined by

(Axm−r)i1···ir ≡
∑

ir+1,...,im

ai1···imxir+1
· · ·xim for all i1, . . . , ir ∈ {1, . . . , n}.

Example 2.3 The identity matrix plays an important role in matrix analysis. This notion can be extended
in a sense to the domain of tensors. We may define an identity tensor as a symmetric tensor E ∈ R

[m,n] such
that

Exm−1 = x for all x ∈ Σ.

We restrict x ∈ Σ since it is not possible to have a tensor with m > 2 such that the above equation holds
for all x ∈ R

n. For any x /∈ Σ, the above equation implies

Exm−1 = ‖x‖m−1
E(x/‖x‖)m−1 = ‖x‖m−1(x/‖x‖) = ‖x‖m−2x.

Consider the case of m = 4 and n = 2. The system of equations that must be satisfied for all x ∈ Σ is

e1111x
3
1 + 3e1112x

2
1x2 + 3e1122x1x

2
2 + e1222x

3
2 = x1,

e1112x
3
1 + 3e1122x

2
1x2 + 3e1222x1x

2
2 + e2222x

3
2 = x2.

Consider x =
[
0 1

]T
. This yields e1111 = 1 and e1112 = 0. Similarly, x =

[
1 0

]T
yields e2222 = 1 and

e1222 = 0. The only remaining unknown is e1122, and choosing, e.g., x =
[√

2/2
√
2/2
]T

yields e1122 = 1/3.
In summary, the identity tensor for m = 4 and n = 2 is

eijkl =







1 if i = j = k = l,

1/3 if i = j 6= k = l,

1/3 if i = k 6= j = l,

1/3 if i = l 6= j = k,

0 otherwise.

9



We generalize this idea in the next property. �

Property 2.4 For m even, the identity tensor E ∈ R
[m,n] satisfying Exm−1 = x for all x ∈ Σ is given by

ei1···im =
1

m!

∑

p∈Πm

δip(1)ip(2)δip(3)ip(4) · · · δip(m−1)ip(m)
(4)

for i1, . . . , im ∈ {1, . . . , n}, where δ is the standard Kronecker delta, i.e.,

δij ≡
{

1 if i = j,

0 if i 6= j.

This identity tensor appears in a previous work [14], where it is denoted by IE and used to define a
generalization of the characteristic polynomial for symmetric even-order tensors.

Example 2.5 There is no identity tensor for m odd. This is seen because if Exm−1 = x for some odd m
and some x ∈ Σ, then we would have −x ∈ Σ but E(−x)m−1 = x 6= −x. �

It has been observed [15, 2] that the complex eigenpairs of a tensor form equivalence classes under a
multiplicative transformation. Specifically, if (λ,x) is an eigenpair of A ∈ R

[m,n] and y = eiϕx with ϕ ∈ R,
then y†y = x†x = 1 and

Aym−1 = ei(m−1)ϕ
Axm−1 = ei(m−1)ϕλx = ei(m−2)ϕλy.

Therefore (ei(m−2)ϕλ, eiϕx) is also an eigenpair of A for any ϕ ∈ R. Consequently, if λ is an eigenvalue, then
any other λ′ ∈ C with |λ′| = |λ| is also an eigenvalue. This leads to the notion of an eigenring.

Definition 2.6 (Eigenring) For any (λ,x) ∈ C × C
n that is an eigenpair of A ∈ R

[m,n], we define a
corresponding equivalence class of (vector-normalized) eigenpairs

P(λ,x) = {(λ′,x′) : λ′ = ei(m−2)ϕλ,x′ = eiϕx, ϕ ∈ R},

as well as a corresponding eigenring

R(λ) = {λ′ ∈ C : |λ′| = |λ|}.

For any even-order tensor (i.e., m even), observe that choosing ϕ = π yields x′ = −x and λ′ = λ. Thus,
even though it seems that λ has 2 distinct real eigenvectors, they are both members of the same equivalence
class. Likewise, for any odd-order tensor (i.e., m odd), choosing ϕ = π yields x′ = −x and λ′ = −λ, so both
(λ,x) and (−λ,−x) are members of the same equivalence class.

Since we assume that A is real-valued, any nonreal eigenpairs must come in sets of 2 related by complex
conjugation, because taking the conjugate of the eigenvalue equation does not change it. Such conjugate
eigenpairs are not members of the same equivalence class unless they are equivalent to a real eigenpair.

An elegant result has recently been derived for the number of distinct (non-equivalent) eigenvalues of a
symmetric tensor, and we state it here for later reference.2

Theorem 2.7 (Cartwright and Sturmfels [2, Theorem 5.5]) A generic symmetric tensor A ∈ R
[m,n]

has ((m− 1)n − 1)/(m− 2) distinct complex eigenvalues.

2Cartwright and Sturmfels [2] use the condition x
T
x = 1 to normalize eigenpairs, but in the generic case the result is the

same for our condition x
†
x = 1. The case of m = 2 requires application of l’Hôpital’s rule to see that there are n eigenvalues.

10



Because the tensor eigenvalue equation for m > 2 amounts to a system of nonlinear equations in the
components of x, a direct solution is challenging. A further complication is that the normalization condition
x†x = 1 is nonpolynomial due to the complex conjugation. The system, however, becomes polynomial if the
normalization condition xTx = 1 is temporarily adopted. Any such x can be rescaled to satisfy x†x = 1. On
the other hand, any complex eigenvector with xTx = 0 will not be found, but these do not occur generically.

Numerical algorithms exist for finding all solutions of a system of polynomial equations, but become
computationally expensive for systems with many variables (here, large n) and with high-order polynomials
(here, large m). A polynomial system solver (NSolve) using a Gröbner basis method is available in Mathe-
matica [23] and has been employed to generate a complete list of eigenpairs for some of the examples in this
paper.

The solver is instructed to find all complex solutions (λ,x) of the system

Axm−1 = λx and xTx = 1.

Redundant solutions with the opposite sign of x (for even m) or the opposite signs of x and λ (for odd
m) are then eliminated. The remaining solutions are rescaled to satisfy x†x = 1. For real solutions, this
condition is already satisfied; other complex solutions are transformed to a representative of the eigenring
with positive real λ by setting

(λ,x)←
(

|λ|
(x†x)m/2−1

,

( |λ|
λ

)1/(m−2)
x

(x†x)1/2

)

.

2.2 Convex functions

Convexity theory plays an important role in our analysis. Here we recall two important properties of convex
functions [1].

Property 2.8 (Gradient of convex function) A differentiable function f : Ω ⊆ R
n → R is convex if

and only if Ω is a convex set and f(y) ≥ f(x) +∇f(x)T (y − x) for all x,y ∈ Ω.

Property 2.9 (Hessian of convex function) A twice differentiable function f : Ω ⊆ R
n → R is convex

if and only if Ω is a convex set and the Hessian3 of f is positive semidefinite on Ω, i.e., ∇2f(x) � 0 for all
x ∈ Ω.

We prove an interesting fact about convex functions on vectors of unit norm that will prove useful in our
later analysis. This fact is implicit in a proof given previously [9, Theorem 4], but we state it here explicitly.

Theorem 2.10 (Kofidis and Regalia [9]) Let f be a function that is convex and continuously differen-
tiable on Γ. If v,w ∈ Σ with v = ∇f(w)/‖∇f(w)‖ 6= w, then f(v)− f(w) > 0.

Proof. For arbitrary nonzero z ∈ R
n, zTx is strictly maximized for x ∈ Σ by x = z/‖z‖. Substituting

z = ∇f(w), it follows that ∇f(w)Tv > ∇f(w)Tw, since v = ∇f(w)/‖∇f(w)‖ 6= w and w ∈ Σ. By the
convexity of f on Γ and Property 2.8, we have f(v) ≥ f(w)+∇f(w)T (v−w) for all v,w ∈ Γ. Consequently,
f(v)− f(w) ≥ ∇f(w)T (v −w) > 0. �

3By ∇2 we denote the Hessian matrix and not its trace, the Laplacian.
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2.3 Constrained optimization

Here we extract relevant theory from constrained optimization [13].

Theorem 2.11 Let f : Rn → R be continuously differentiable. A point x∗ ∈ Σ is a (constrained) stationary
point of

max f(x) subject to x ∈ Σ

if there exists µ∗ ∈ R such that ∇f(x∗) + µ∗x∗ = 0. The point x∗ is a (constrained) isolated local maximum
if, additionally,

wT (∇2f(x∗) + µ∗I)w < 0 for all w ∈ Σ ∩ x⊥.

Proof. The constraint x ∈ Σ can be expressed as c(x) = 1
2 (x

Tx − 1) = 0. The Lagrangian for the
constrained problem is then given by

L(x, µ) = f(x) + µc(x).

Its first and second derivatives with respect to x are

∇L(x, µ) = ∇f(x) + µx and ∇2L(x, µ) = ∇2f(x) + µI.

By assumption, ∇L(x∗, µ∗) = 0 and c(x∗) = 0. Therefore, the pair (x∗, µ∗) satisfies the Karush-Kuhn-
Tucker (KKT) conditions [13, Theorem 12.1] and so is a constrained stationary point. It is additionally a
constrained isolated local maximum if it meets the second-order sufficient condition [13, Theorem 12.6]. �

2.4 Fixed point theory

We consider the properties of iterations of the form

xk+1 = φ(xk).

Under certain conditions, the iterates are guaranteed to converge to a fixed point. In particular, we are
interested in “attracting” fixed points.

Definition 2.12 (Fixed point) A point x∗ ∈ R
n is a fixed point of φ : Rn → R

n if φ(x∗) = x∗. Further,
x∗ is an attracting fixed point if there exists δ > 0 such that the sequence {xk} defined by xk+1 = φ(xk)
converges to x∗ for any x0 such that ‖x0 − x∗‖ ≤ δ.

Theorem 2.13 ([19, Theorem 2.8]) Let x∗ ∈ R
n be a fixed point of φ : Rn → R

n, and let J : Rn → R
n×n

be the Jacobian of φ. Then x∗ is an attracting fixed point if σ ≡ ρ(J(x∗)) < 1; further, if σ > 0, then the
convergence of xk+1 = φ(xk) to x∗ is linear with rate σ.

This condition on the Jacobian for an attracting fixed point is sufficient but not necessary. In particular, if
σ ≡ ρ(J(x∗)) = 1, then x∗ may or may not be attracting, but there is no neighborhood of linear convergence
to it. For σ < 1, the rate of linear convergence depends on σ and is slower for σ values closer to 1. On the
other hand, for σ > 1, an attractor is ruled out by the following.

Theorem 2.14 ([21, Theorem 1.3.7]) Let x∗ ∈ R
n be a fixed point of φ : Rn → R

n, and let J : Rn →
R

n×n be the Jacobian of φ. Then x∗ is an unstable fixed point if σ ≡ ρ(J(x∗)) > 1.
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3 Symmetric higher-order power method (S-HOPM)

We review the symmetric higher-order power method (S-HOPM), introduced by De Lathauwer et al. [5] and
analyzed further by Kofidis and Regalia [9]. The purpose of S-HOPM is to solve the optimization problem

max
x∈Rn

|Axm| subject to x ∈ Σ. (5)

The solution of this problem will be a solution of either the following maximization problem (lacking the
absolute value) or its opposite minimization problem:

max
x∈Rn

f(x) subject to x ∈ Σ, where f(x) = Axm. (6)

Setting λ = f(x), these problems are equivalent to finding the best symmetric rank-1 approximation of a
symmetric tensor A ∈ R

[m,n], i.e.,

min
λ,x
‖A−B‖ subject to bi1...im = λxi1 · · ·xim and x ∈ Σ. (7)

Details of the connection between (6) and (7) are available elsewhere [5]. The S-HOPM algorithm is shown
in Algorithm 1. We discuss its connection to the eigenvalue problem in Section 3.1 and its convergence
properties in Section 3.2.

Algorithm 1 Symmetric higher-order power method (S-HOPM) [5, 9]

Given a symmetric tensor A ∈ R
[m,n].

Require: x0 ∈ R
n with ‖x0‖ = 1. Let λ0 = Axm

0 .
1: for k = 0, 1, . . . do
2: x̂k+1 ← Axm−1

k

3: xk+1 ← x̂k+1/‖x̂k+1‖
4: λk+1 ← Axm

k+1

5: end for

3.1 Properties of the function

The function f(x) = Axm plays an important role in the analysis of eigenpairs of A because all eigenpairs
are constrained stationary points of f , as we show below.

We first need to derive the gradient of f . This result is perhaps generally well known [11, Equation 4],
but here we provide a proof.

Lemma 3.1 Let A ∈ R
[m,n] be symmetric. The gradient of f(x) = Axm is

g(x) ≡ ∇f(x) = mAxm−1 ∈ R
n. (8)

Proof. We use the basic relation ∇kxj = δjk. Applying the product rule to (6), we find

∇kf(x) =
∑

i1,...,im

m∑

q=1

ai1i2···imxi1xi2 · · ·xiq−1
δiqkxiq+1

· · ·xim .

Upon bringing the sum over q to the outside, we observe that for each q the dummy indices i1 and iq can

13



be interchanged (without affecting the symmetric tensor A), and the result is independent of q:

∇kf(x) =

m∑

q=1

∑

i1,...,im

ai1i2···imδi1kxi2 · · ·xiq−1xiqxiq+1 · · ·xim

=
m∑

q=1

∑

i2,...,im

aki2···imxi2 · · ·xim

= m(Axm−1)k.

Hence, ∇f(x) = mAxm−1. �

Theorem 3.2 Let A ∈ R
[m,n] be symmetric. Then (λ,x) is an eigenpair of A if and only if x is a constrained

stationary point of (6).

Proof. By Theorem 2.11, any constrained stationary point x∗ of (6) must satisfy mAxm−1
∗ + µ∗x∗ = 0

for some µ∗ ∈ R. Thus, λ∗ = −µ∗/m is the eigenvalue corresponding to x∗. Conversely, any eigenpair meets
the condition for being a constrained stationary point with µ∗ = −mλ∗. �

This is is the connection between (6) and the eigenvalue problem. It will also be useful to consider the
Hessian of f , which we present here.

Lemma 3.3 Let A ∈ R
[m,n] be symmetric. The Hessian of f(x) = Axm is

H(x) ≡ ∇2f(x) = m(m− 1)Axm−2 ∈ R
n×n. (9)

Proof. The (j, k) entry of H(x) is given by the kth entry of ∇gj(x). The function gj(x) can be rewritten
as

gj(x) = m
∑

i2,...,im

aji2···imxi2 · · ·xim = mB
(j)xm−1

where B
(j) is the order-(m − 1) symmetric tensor that is the jth subtensor of A, defined by b

(j)
i1···im−1

=
aji1···im−1 . From Lemma 3.1, we have

∇gj(x) = m(m− 1)B(j)xm−2.

Consequently,

(H(x))jk = m(m− 1)
∑

i3,...,im

ajki3···imxi3 · · ·xim ,

that is, H(x) = m(m− 1)Axm−2. �

From Theorem 2.11, we know that the projected Hessian of the Lagrangian plays a role in determining
whether or not a fixed point is a local maximum or minimum. In our case, since µ∗ = −mλ∗, for any
eigenpair (λ∗,x∗) (which must correspond to a constrained stationary point by Theorem 3.2) we have

∇2L(x∗, λ∗) = m(m− 1)Axm−2
∗ −mλ∗I.

Specifically, Theorem 2.11 is concerned with the behavior of the Hessian of the Lagrangian in the subspace
orthogonal to x∗. Thus, we define the projected Hessian of the Lagrangian as

C(λ∗,x∗) ≡ UT
∗

(
(m− 1)Axm−2

∗ − λ∗I
)
U∗ ∈ R

(n−1)×(n−1), (10)

where the columns of U∗ ∈ R
n×(n−1) form an orthonormal basis for x⊥

∗ . Note that we have removed a factor
of m for convenience. We now classify eigenpairs according to the spectrum of C(λ∗,x∗). The import of this
classification will be made clear in Section 4.2.
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Definition 3.4 Let A ∈ R
[m,n] be a symmetric tensor. We say an eigenpair (λ,x) of A ∈ R

[m,n] is positive
stable if C(λ,x) is positive definite, negative stable if C(λ,x) is negative definite, and unstable if C(λ,x)
is indefinite.

These labels are not exhaustive because we do not name the cases where C(λ,x) is only semidefinite,
with a zero eigenvalue. Such cases do not occur for generic tensors.

If m is odd, then (λ,x) is positive stable if and only if (−λ,−x) is negative stable, even though these
eigenpairs are in the same equivalence class. On the other hand, in m is even, then (λ,x) is a positive
(negative) stable eigenpair if and only if (λ,−x) is also positive (negative) stable.

3.2 S-HOPM convergence analysis

S-HOPM has been deemed unreliable [5] because convergence is not guaranteed. Kofidis and Regalia [9]
provide an analysis explaining that S-HOPM will converge if certain conditions are met, as well as an
example where the method does not converge, which we reproduce here.

Example 3.5 (Kofidis and Regalia [9, Example 1]) Let A ∈ R
[4,3] be the symmetric tensor defined by

a1111 = 0.2883, a1112 = −0.0031, a1113 = 0.1973, a1122 = −0.2485,
a1123 = −0.2939, a1133 = 0.3847, a1222 = 0.2972, a1223 = 0.1862,

a1233 = 0.0919, a1333 = −0.3619, a2222 = 0.1241, a2223 = −0.3420,
a2233 = 0.2127, a2333 = 0.2727, a3333 = −0.3054.

Kofidis and Regalia [9] observed that Algorithm 1 does not converge for this tensor. Because this problem
is small, all eigenpairs can be calculated by Mathematica as described in Section 2.1. From Theorem 2.7,
this problem has exactly 13 distinct complex eigenpairs, and these are listed in Table 1. We ran 100 trials
of S-HOPM using different random starting points x0 chosen from a uniform distribution on [−1, 1]n. For
all experiments in this paper, we allow up to 1000 iterations and say that the algorithm has converged if
|λk+1 − λk| < 10−16. In every single trial for this tensor, the algorithm failed to converge. In Figure 1, we

show an example {λk} sequence with x0 =
[
−0.2695 0.1972 0.3370

]T
. This coincides with the results

reported previously [9]. �

Figure 1: Example λk values for S-HOPM on A ∈ R
[4,3] from Example 3.5.
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Table 1: Eigenpairs for A ∈ R
[4,3] from Example 3.5.

(a) Real.

λ x
T Eigenvalues of C(λ,x) Type

0.8893 [ 0.6672 0.2471 −0.7027 ] { −0.8857, −1.8459 } Neg. stable
0.8169 [ 0.8412 −0.2635 0.4722 ] { −0.9024, −2.2580 } Neg. stable
0.5105 [ 0.3598 −0.7780 0.5150 ] { 0.5940, −2.3398 } Unstable
0.3633 [ 0.2676 0.6447 0.7160 ] { −1.1765, −0.5713 } Neg. stable
0.2682 [ 0.6099 0.4362 0.6616 ] { 0.7852, −1.1793 } Unstable
0.2628 [ 0.1318 −0.4425 −0.8870 ] { 0.6181, −2.1744 } Unstable
0.2433 [ 0.9895 0.0947 −0.1088 ] { −1.1942, 1.4627 } Unstable
0.1735 [ 0.3357 0.9073 0.2531 ] { −1.0966, 0.8629 } Unstable

−0.0451 [ 0.7797 0.6135 0.1250 ] { 0.8209, 1.2456 } Pos. stable
−0.5629 [ 0.1762 −0.1796 0.9678 ] { 1.6287, 2.3822 } Pos. stable
−1.0954 [ 0.5915 −0.7467 −0.3043 ] { 1.8628, 2.7469 } Pos. stable

(b) Nonreal.

λ x
T

0.6694 [ 0.2930 + 0.0571i 0.8171− 0.0365i −0.4912− 0.0245i ]
0.6694 [ 0.2930− 0.0571i 0.8171 + 0.0365i −0.4912 + 0.0245i ]

Example 3.6 As a second illustrative example, we consider an odd-order tensor A ∈ R
[3,3] defined by

a111 = −0.1281, a112 = 0.0516, a113 = −0.0954, a122 = −0.1958,
a123 = −0.1790, a133 = −0.2676, a222 = 0.3251, a223 = 0.2513,

a233 = 0.1773, a333 = 0.0338.

From Theorem 2.7, A has exactly 7 eigenpairs, which are listed in Table 2. We ran 100 trials of S-HOPM
as described for Example 3.5. In this case, every trial converged to either λ = 0.8730 or λ = 0.4306, as
summarized in Table 3. In this case, therefore, S-HOPM finds 2 of the 7 possible eigenvalues. �

Table 2: Eigenpairs for A ∈ R
[3,3] from Example 3.6.

λ x
T Eigenvalues of C(λ,x) Type

0.8730 [ −0.3922 0.7249 0.5664 ] { −1.1293, −0.8807 } Neg. stable
0.4306 [ −0.7187 −0.1245 −0.6840 ] { −0.4420, −0.8275 } Neg. stable
0.2294 [ −0.8446 0.4386 −0.3070 ] { −0.2641, 0.7151 } Unstable
0.0180 [ 0.7132 0.5093 −0.4817 ] { −0.4021, −0.1320 } Neg. stable
0.0033 [ 0.4477 0.7740 −0.4478 ] { −0.1011, 0.2461 } Unstable
0.0018 [ 0.3305 0.6314 −0.7015 ] { 0.1592, −0.1241 } Unstable
0.0006 [ 0.2907 0.7359 −0.6115 ] { 0.1405, 0.0968 } Pos. stable

Table 3: Eigenpairs for A ∈ R
[3,3] from Example 3.6 computed by S-HOPM with 100 random starts.

# Occurrences λ x
T

62 0.8730 [ −0.3922 0.7249 0.5664 ]
38 0.4306 [ −0.7187 −0.1245 −0.6840 ]

In their analysis, Kofidis and Regalia [9] proved that the sequence {λk} in Algorithm 1 converges if
A ∈ R

[m,n] is even-order and the function f(x) is convex or concave on R
n. Since m = 2ℓ (because m is

even), f can be expressed as

f(x) = (x⊗ · · · ⊗ x
︸ ︷︷ ︸

ℓ times

)TA (x⊗ · · · ⊗ x
︸ ︷︷ ︸

ℓ times

),
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where A ∈ R
nℓ×nℓ

is an unfolded version of the tensor A.4 Since A is symmetric, it follows that A is
symmetric. The condition that f is convex (concave) is satisfied if the Hessian

∇2f(x) = ( I⊗ x⊗ · · · ⊗ x
︸ ︷︷ ︸

ℓ − 1 times

)TA ( I⊗ x⊗ · · · ⊗ x
︸ ︷︷ ︸

ℓ − 1 times

)

is positive (negative) semidefinite for all x ∈ R
n.

We make a few notes regarding these results. First, even though f is convex, its restriction to the
nonconvex set Σ is not. Second, {λk} is increasing if f is convex and decreasing if f is concave. Third, only
{λk} is proved to converge for S-HOPM [9, Theorem 4]; the iterates {xk} may not. In particular, it is easy
to observe that the sign of xk may flip back and forth if the concave case is not handled correctly.

4Specifically, A ≡ A(R×C) with R = {1, . . . , ℓ} and C = {ℓ+ 1, . . . ,m} in matricization notation [10].
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4 Shifted symmetric higher-order power method (SS-HOPM)

In this section, we show that S-HOPM can be modified by adding a “shift” that guarantees that the method
will always converge to an eigenpair. We make no assumptions that the tensor order is even; therefore,
our results generalize those of Kofidis and Regalia [9] even in the case that there is no shift. Based on the
observation that S-HOPM is guaranteed to converge if the underlying function is convex or concave on R

n,
our new method works with a suitably modified function

f̂(x) ≡ f(x) + α(xTx)m/2. (11)

Maximizing f̂ on Σ is the same as maximizing f plus a constant, yet the properties of the modified function
force convexity or concavity and consequently guarantee convergence.

For even m, the function f̂ in (11) can be interpreted as

f̂(x) = Âxm ≡ (A+ αE)xm,

where E is the identity tensor as defined in (4). Thus, for even m, our proposed method can be interpreted as
S-HOPM applied to a modified tensor that directly satisfies the convexity properties to guarantee convergence
[9]. Because Exm−1 = x for x ∈ Σ, the eigenvectors of Â are the same as those of A and the eigenvalues
are shifted by α. Our results, however, are for both odd- and even-order tensors.

Algorithm 2 presents the new shifted symmetric higher-order power method (SS-HOPM). Without loss
of generality, we assume that a positive shift (α ≥ 0) is used to make the modified function in (11) convex
and a negative shift (α < 0) to make it concave. We have two key results. Theorem 4.4 shows that for
any starting point x0 ∈ Σ, the sequence {λk} produced by Algorithm 2 is guaranteed to converge to an
eigenvalue in the convex case if

α > β(A) ≡ (m− 1) ·max
x∈Σ

ρ(Axm−2). (12)

Corollary 4.6 handles the concave case where we require α < −β(A). Theorem 4.8 further shows that
Algorithm 2 in the convex case will generically converge to a an eigenpair (λ,x) that is negative stable.
Corollary 4.9 proves that Algorithm 2 in the concave case will generically converge to an eigenpair that is
positive stable. Generally, neither version will converge to an eigenpair that is unstable.

Algorithm 2 Shifted Symmetric Higher-Order Power Method (SS-HOPM)

Given a tensor A ∈ R
[m,n].

Require: x0 ∈ R
n with ‖x0‖ = 1. Let λ0 = Axm

0 .
Require: α ∈ R

1: for k = 0, 1, . . . do
2: if α ≥ 0 then
3: x̂k+1 ← Axm−1

k + αxk ⊲ Assumed Convex
4: else
5: x̂k+1 ← −(Axm−1

k + αxk) ⊲ Assumed Concave
6: end if
7: xk+1 ← x̂k+1/‖x̂k+1‖
8: λk+1 ← Axm

k+1

9: end for

4.1 SS-HOPM convergence analysis

We first establish a few key lemmas that guide the choice of the shift α > β(A) in SS-HOPM.
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Lemma 4.1 Let A ∈ R
[m,n] be symmetric and let β(A) be as defined in (12). Then β(A) ≤ (m −

1)
∑

i1,...,im
|ai1...im |.

Proof. For all x,y ∈ Σ, we obtain |yT (Axm−2)y| ≤∑i1,...,im
|ai1...im | by applying the triangle inequality

to the sum of nm terms. Thus ρ(Axm−2) ≤∑i1,...,im
|ai1...im | for all x ∈ Σ, and the result follows. �

Lemma 4.2 Let A ∈ R
[m,n] be symmetric, let f(x) = Axm, and let β(A) be as defined in (12). Then

|f(x)| ≤ β(A)/(m− 1) for all x ∈ Σ.

Proof. We have |Axm| = |xT (Axm−2)x| ≤ ρ(Axm−2) ≤ β(A)/(m− 1). �

The preceding lemma upper bounds the magnitude of any eigenvalue of A by β(A)/(m − 1) since any
eigenpair (λ,x) satisfies λ = f(x). Thus, choosing α > β(A) implies that α is greater than the magnitude
of any eigenvalue of A.

Lemma 4.3 Let A ∈ R
[m,n] be symmetric and let H(x) and β(A) be as defined in (9) and (12). Then

ρ(H(x)) ≤ mβ(A) for all x ∈ Σ.

Proof. This follows directly from (9) and (12). �

The following theorem proves that Algorithm 2 will always converge. Choosing α > (m−1)∑i1,...,im
|ai1...im |

is a conservative choice that is guaranteed to work by Lemma 4.1, but this is often an overly conservative
choice, as we show in subsequent examples.

Theorem 4.4 Let A ∈ R
[m,n] be symmetric. For α > β(A), where β(A) is defined in (12), the iterates

{λk,xk} produced by Algorithm 2 satisfy the following properties. (a) The sequence {λk} is nondecreasing,
and there exists λ∗ such that λk → λ∗. (b) The sequence {xk} has an accumulation point. (c) For every such
accumulation point x∗, the pair (λ∗,x∗) is an eigenpair of A. (d) If A has finitely many real eigenvectors,
then there exists x∗ such that xk → x∗.

Proof. Our analysis depends on the modified function f̂ defined in (11). Its gradient and Hessian are

ĝ(x) ≡ ∇f̂(x) = g(x) +mα(xTx)m/2−1x, (13)

Ĥ(x) ≡ ∇2f̂(x) = H(x) +mα(xTx)m/2−1I+m(m− 2)α(xTx)m/2−2xxT , (14)

where g and H are the gradient and Hessian of f from Lemma 3.1 and Lemma 3.3, respectively.

Because it is important for the entire proof, we first show that f̂ is convex on R
n for α > β(A). If x = 0,

we have Ĥ(x) = 0 for m ≥ 3. Consider nonzero x ∈ R
n and define x̄ = x/‖x‖ ∈ Σ; then Ĥ(x) is positive

semidefinite (in fact, positive definite) by Lemma 4.3 since

yT Ĥ(x)y = ‖x‖m−2
(
yTH(x̄)y +mα+m(m− 1)α(x̄Ty)2

)

≥ ‖x‖m−2 (−mβ(A) +mα+ 0) > 0 for all y ∈ Σ.

By Property 2.9, f̂ is convex on R
n because its Hessian is positive semidefinite.

We also note that −α must be an eigenvalue of A if ĝ(x) = 0 for some x ∈ Σ, since

ĝ(x) = 0 implies Axm−1 + αx = 0.

By Lemma 4.2, choosing α > β(A) ensures that α is greater than the magnitude of any eigenvalue, and so
ĝ(x) 6= 0 for all x ∈ Σ. This ensures that the update in Algorithm 2, which reduces to

xk+1 =
ĝ(xk)

‖ĝ(xk)‖
(15)

in the convex case, is always well defined.
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(a) Since f̂ is convex on Γ and xk+1,xk ∈ Σ and xk+1 = ∇f̂(xk)/‖∇f̂(xk)‖, Theorem 2.10 yields

λk+1 − λk = f̂(xk+1)− f̂(xk) ≥ 0,

where the nonstrict inequality covers the possibility that xk+1 = xk. Thus, {λk} is a nondecreasing sequence.
By Lemma 4.2, λk = f(xk) is bounded, so the sequence must converge to a limit point λ∗.

(b) Since {xk} is an infinite sequence on a compact set Σ, it must have an accumulation point x∗ ∈ Σ
by the Bolzano-Weierstrass theorem. Note also that continuity of f implies that λ∗ = Axm

∗ .

(c) By part (a) of the proof, convexity of f̂ , and Property 2.8, we have

f̂(xk+1)− f̂(xk)→ 0

and thus
ĝ(xk)

T (xk+1 − xk)→ 0.

Using (15), we can rewrite the above formula as

‖ĝ(xk)‖ − ĝ(xk)
Txk → 0. (16)

By continuity of ĝ, an accumulation point x∗ must satisfy

‖ĝ(x∗)‖ − ĝ(x∗)
Tx∗ = 0, (17)

which implies
‖ĝ(x∗)‖ = ĝ(x∗)

Tx∗ = (mAxm−1
∗ +mαx∗)

Tx∗ = m(λ∗ + α).

Because x∗ ∈ Σ, (17) can hold only if

x∗ =
ĝ(x∗)

‖ĝ(x∗)‖
=

mAxm−1
∗ +mαx∗

m(λ∗ + α)
,

that is,
Axm−1

∗ = λ∗x∗.

Hence (λ∗,x∗) is an eigenpair of A.

(d) Equation (16) gives
‖ĝ(xk)‖(1− xT

k+1xk)→ 0.

Because ‖ĝ(xk)‖ is bounded away from 0 and because xk,xk+1 ∈ Σ, this requires that

‖xk − xk+1‖ → 0. (18)

Recall that every accumulation point of {xk} must be a (real) eigenvector of A. If these eigenvectors are
finite in number and thus isolated, consider removing an arbitrarily small open neighborhood of each from
Σ, leaving a closed and thus compact space Y ⊂ Σ containing no accumulation points of {xk}. If {xk}
had infinitely many iterates in Y , it would have an accumulation point in Y by the Bolzano-Weierstrass
theorem, creating a contradiction. Therefore at most finitely many iterates are in Y , and {xk} is ultimately
confined to arbitrarily small neighborhoods of the eigenvectors. By (18), however, ‖xk − xk+1‖ eventually
remains smaller than the minimum distance between any two of these neighborhoods. Consequently, the
iteration ultimately cannot jump from one neighborhood to another, and so in the limit {xk} is confined to
an arbitrarily small neighborhood of a single eigenvector x∗, to which it therefore converges.

Hence, the proof is complete. �

Note that the condition of finitely many real eigenvectors in part (d) holds for generic tensors. We
conjecture that the convergence of {xk} is guaranteed even without this condition.

21



Example 4.5 Again consider A ∈ R
[4,3] from Example 3.5. We show results using a shift of α = 2. We

ran 100 trials of SS-HOPM using the experimental conditions described in Example 3.5. We found 3 real
eigenpairs; the results are summarized in Table 4a. Three example runs (one for each eigenvalue) are shown
in Figure 2a.

Analogous results are shown for A ∈ R
[3,3] from Example 3.6 with a shift of α = 1 in Table 4b and

Figure 2b. Here SS-HOPM finds 2 additional eigenpairs compared to S-HOPM.

These values of α were not chosen to ensure applicability of Theorem 4.4, but they are sufficient to achieve
convergence for these examples. For both tensors, {λk} is always a nondecreasing sequence. Observe further
that SS-HOPM converges only to eigenpairs that are negative stable. �

# Occurrences λ x
T

46 0.8893 [ 0.6672 0.2471 −0.7027 ]
24 0.8169 [ 0.8412 −0.2635 0.4722 ]
30 0.3633 [ 0.2676 0.6447 0.7160 ]

(a) A ∈ R[4,3] from Example 3.5 with α = 2.

# Occurrences λ x
T

40 0.8730 [ −0.3922 0.7249 0.5664 ]
29 0.4306 [ −0.7187 −0.1245 −0.6840 ]
18 0.0180 [ 0.7132 0.5093 −0.4817 ]
13 −0.0006 [ −0.2907 −0.7359 0.6115 ]

(b) A ∈ R[3,3] from Example 3.6 with α = 1.

Table 4: Eigenpairs computed by SS-HOPM (convex) with 100 random starts.

(a) A ∈ R[4,3] from Example 3.5 with α = 2. (b) A ∈ R[3,3] from Example 3.6 with α = 1.

Figure 2: Example λk values for SS-HOPM (convex). One sequence is shown for each distinct eigenvalue.

Using a large enough negative value of α makes f̂ concave. It was observed [9] that f(x) = f(−x) for
even-order tensors and so the sequence {λk} converges regardless of correctly handling the minus sign. The
only minor problem in the concave case is that the sequence of iterates {xk} does not converge. This is easily
fixed, however, by correctly handling the sign as we do in Algorithm 2. The corresponding theory for the
concave case is presented in Corollary 4.6. In this case we choose α to be negative, i.e., the theory suggests
α < −β(A).
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Corollary 4.6 Let A ∈ R
[m,n] be symmetric. For α < −β(A), where β(A) is defined in (12), the iterates

{λk,xk} produced by Algorithm 2 satisfy the following properties. (a) The sequence {λk} is nonincreasing,
and there exists λ∗ such that λk → λ∗. (b) The sequence {xk} has an accumulation point. (c) For any such
accumulation point x∗, the pair (λ∗,x∗) is an eigenpair of A. (d) If the eigenvalues of A are isolated, then
xk → x∗.

Proof. Apply the proof of Theorem 4.4 with f(x) = −Axm. �

Example 4.7 Revisiting A ∈ R
[4,3] in Example 3.5 again, we run another 100 trials using α = −2. We

find 3 (new) real eigenpairs; the results are summarized in Table 5a. Three example runs (one for each
eigenvalue) are shown in Figure 3a.

We also revisit A ∈ R
[3,3] from Example 3.6 and use α = −1. In this case, we find the opposites, i.e.,

(−λ,−x), of the eigenpairs found with α = 1, as shown in Table 5b. This is to be expected for odd-order
tensors since there is symmetry, i.e., f(x) = −f(−x), C(λ,x) = −C(−λ,−x), etc. Four example runs (one
per eigenvalue) are shown in Figure 3b.

The sequence {λk} is nonincreasing in every case. Each of the eigenpairs found in the concave case is
positive stable. �

# Occurrences λ x
T

15 −0.0451 [ −0.7797 −0.6135 −0.1250 ]
40 −0.5629 [ −0.1762 0.1796 −0.9678 ]
45 −1.0954 [ −0.5915 0.7467 0.3043 ]

(a) A ∈ R[4,3] from Example 3.5 with α = −2.

# Occurrences λ x
T

19 0.0006 [ 0.2907 0.7359 −0.6115 ]
18 −0.0180 [ −0.7132 −0.5093 0.4817 ]
29 −0.4306 [ 0.7187 0.1245 0.6840 ]
34 −0.8730 [ 0.3922 −0.7249 −0.5664 ]

(b) A ∈ R[3,3] from Example 3.6 with α = −1.

Table 5: Eigenpairs computed by SS-HOPM (concave) with 100 random starts.

4.2 SS-HOPM fixed point analysis

In this section, we show that fixed point analysis allows us to easily characterize convergence to eigenpairs
according to whether they are positive stable, negative stable, or unstable. The convex version of SS-HOPM
will generically converge to eigenpairs that are negative stable; the concave version will generically converge
to eigenpairs that are positive stable.

To justify these conclusions, we consider Algorithm 2 in the convex case as a fixed point iteration xk+1 =
φ(xk), where φ is defined as

φ(x) = φ1(φ2(x)) with φ1(x) =
x

(xTx)
1
2

and φ2(x) = Axm−1 + αx. (19)

Note that an eigenpair (λ,x) is a fixed point if and only if λ+ α > 0, which is always true for α > β(A).

From [7], the Jacobian of the operator φ is

J(x) = φ′
1(φ2(x))φ

′
2(x),
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(a) A ∈ R[4,3] from Example 3.5 with α = 2. (b) A ∈ R[3,3] from Example 3.6 with α = 1.

Figure 3: Example λk values for SS-HOPM (concave). One sequence is shown for each distinct eigenvalue.

where

φ′
1(x) =

(xTx)I− xxT

(xTx)
3
2

and φ′
2(x) = (m− 1)Axm−2 + αI.

At any eigenpair (λ,x), we have

φ2(x) = (λ+ α)x, φ′
1(φ2(x)) =

(I− xxT )

λ+ α
,

and φ′
2(x) = (m− 1)Axm−2 + αI.

Thus, the Jacobian at x is

J(x) =
(m− 1)(Axm−2 − λxxT ) + α(I− xxT )

λ+ α
. (20)

Observe that the Jacobian is symmetric.

Theorem 4.8 Let (λ,x) be an eigenpair of a symmetric tensor A ∈ R
[m,n]. Assume α ∈ R such that

α > β(A), where β(A) is as defined in (12). Let φ(x) be given by (19). Then (λ,x) is negative stable if and
only if x is a linearly attracting fixed point of φ.

Proof. Assume that (λ,x) is negative stable. The Jacobian J(x) is given by (20). By Theorem 2.13, we
need to show that ρ(J(x)) < 1 or, equivalently since J(x) is symmetric, |yTJ(x)y| < 1 for all y ∈ Σ. We
restrict our attention to y⊥x since J(x)x = 0.

Let y ∈ Σ with y⊥x. Then

|yTJ(x)y| =
∣
∣
∣
∣
∣

yT
(
(m− 1)Axm−2

)
y + α

λ+ α

∣
∣
∣
∣
∣

The assumption that (λ,x) is negative stable means that C(λ,x) is negative definite; therefore, yT
(
(m− 1)Axm−2

)
y <

λ. On the other hand, by the definition of β,

ρ
(
(m− 1)Axm−2

)
≤ β(A).
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Thus, using the fact that λ+ α is positive, we have

0 <
−β(A) + α

λ+ α
≤ yT

(
(m− 1)Axm−2

)
y + α

λ+ α
<

λ+ α

λ+ α
= 1

Hence, ρ(J(x)) < 1, and x is a linearly attracting fixed point.

On the other hand, if (λ,x) is not negative stable, then there exists w ∈ Σ such that w⊥x and
wT

(
(m− 1)Axm−2

)
w ≥ λ. Thus,

wTJ(x)w =
wT

(
(m− 1)Axm−2

)
w + α

λ+ α
≥ λ+ α

λ+ α
= 1.

Consequently, ρ(J(x)) ≥ 1, and x is not a linearly attracting fixed point by Theorem 2.13 and Theorem 2.14.
�

In fact, we can see from the proof of Theorem 4.8 that if the eigenpair (λ,x) is not negative stable, there
is no choice of α ∈ R that will make ρ(J(x)) < 1. For x to be a fixed point at all, we must have λ+ α > 0,
and this is sufficient to obtain ρ(J(x)) ≥ 1 if (λ,x) is not negative stable. In other words, smaller values of
α do not induce “accidental” convergence to any additional eigenpairs.

An alternative argument establishes, for α > β(A), the slightly broader result that any attracting fixed
point, regardless of order of convergence, must be a strict constrained local maximum of f(x) = Axm on Σ.
That is, the marginally attracting case corresponds to a stationary point that has degenerate C(λ,x) but is
still a maximum. This follows from Theorem 2.10, where the needed convexity holds for α > β(A), so that
any vector x′ ∈ Σ in the neighborhood of convergence of x must satisfy f(x′) < f(x). One can convince
oneself that the converse also holds for α > β(A), i.e., any strict local maximum corresponds to an attracting
fixed point. This is because the strict monotonicity of f under iteration (other than at a fixed point) implies
that the iteration acts as a contraction on the region of closed contours of f around the maximum.

The counterpart of Theorem 4.8 for the concave case is as follows.

Corollary 4.9 Let (λ,x) be an eigenpair of a symmetric tensor A ∈ R
[m,n]. Assume α ∈ R such that

α < −β(A), where β(A) is as defined in (12). Let φ(x) be given by (19). Then (λ,x) is positive stable if
and only if x is a linearly attracting fixed point of −φ.

Example 4.10 We return again to A ∈ R
[4,3] as defined in Example 3.5. Figure 4a shows the spectral

radius of the Jacobian of the fixed point iteration for varying values of α for all eigenpairs that are positive
or negative stable. At α = 0, the spectral radius is greater than 1 for every eigenvalue, and this is why
S-HOPM never converges. At α = 2, on the other hand, we see that the spectral radius is less than 1
for all of the negative stable eigenpairs. Furthermore, the spectral radius stays less than 1 as α increases.
Conversely, at α = −2, the spectral radius is less than 1 for all the eigenpairs that are positive stable.

Figure 5a plots f(x) on the unit sphere using color to indicate function value. We show the front and
back of the sphere. Notice that the horizontal axis is from 1 to −1 in the left plot and from −1 to 1 in the
right plot, as if walking around the sphere. In this image, the horizontal axis corresponds to x2 and the
vertical axis to x3; the left image is centered at x1 = 1 and the right image at x1 = −1. Since m is even,
the function is symmetric, i.e., f(x) = f(−x). The eigenvectors are shown as white, gray, and black circles
corresponding to their classification as negative stable, positive stable, and unstable, respectively; in turn,
these correspond to maxima, minima, and saddle points of f(x).

Figure 5b shows the basins of attraction for SS-HOPM with α = 2. Every grid point on the sphere was
used as a starting point for SS-HOPM, and it is colored5 according to which eigenvalue it converged to.
In this case, every run converges to a negative stable eigenpair (labeled with a white circle). Recall that

5Specifically, each block on the sphere is colored according to the convergence of its lower left point.
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SS-HOPM must converge to some eigenpair per Theorem 4.4, and Theorem 4.8 says that it is generically a
negative stable eigenpair. Thus, the non-attracting points lie on the boundaries of the domains of attraction.

Figure 5c shows the basins of attraction for SS-HOPM with α = −2. In this case, every starting point
converges to an eigenpair that is positive stable (shown as gray circles). �

(a) A ∈ R[4,3] from Example 3.5. (b) A ∈ R[3,3] from Example 3.6.

Figure 4: Spectral radii of the Jacobian J(λ,x) for different eigenpairs as α varies.

Example 4.11 We return again to A ∈ R
[3,3] from Example 3.6, which is interesting because S-HOPM was

able to find 2 of its eigenpairs without any shift. In Figure 6a, f(x) is plotted on the unit sphere, along
with each eigenvector, colored white, gray, or black based on whether it is negative stable, positive stable,
or unstable, respectively. Observe that the function is antisymmetric, i.e., f(x) = −f(−x). Figure 6b shows
the basins of attraction for S-HOPM (i.e., SS-HOPM with α = 0). Every starting point converges to one
of the 2 labeled eigenpairs. This is not surprising because Figure 4b shows that there are 2 eigenvalues for
which the spectral radius of the Jacobian is less than 1 (λ = 0.8730 and 0.4306). The other 2 eigenvalues
are non-attracting for α = 0.

Figure 6c shows the basins of attraction for SS-HOPM with α = 1; each negative stable eigenpair (shown
as a white circle) is an attracting eigenpair. From Figure 4b, it may be surprising that we find 4 rather
than 3 eigenvalues because it appears that there are only 3 eigenvalues with a spectral radius less then 1.
However, since m is odd, we must also consider that we will pick up the opposite of any eigenvalues for which
the spectral radius is less than 1 for −α. In this case, it means that we find λ = −0.0006. The concave case
is just a mirror image and is not shown. �

As the previous example reminds us, for odd order, there is no need to try both positive and negative α
because the definiteness of C flips for eigenvectors of opposite sign.

4.3 Relationship to power method for matrix eigenpairs

The power method for matrix eigenpairs is a technique for finding the largest-magnitude eigenvalue (and
corresponding eigenvector) of a diagonalizable symmetric matrix [8]. Let A be a symmetric real-valued n×n
matrix. Then the matrix power method is defined by

xk+1 =
Axk

‖Axk‖
.

Assume that VΛVT is the Schur decomposition of A with eigenvalues satisfying |λ1| > |λ2| ≥ · · · ≥ |λn|
(note the strict difference in the first 2 eigenvalues). The sequence {xk} produced by the matrix power method
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(a) Function values for f(x) = Ax
m.

(b) SS-HOPM basins of attraction using α = 2.

(c) SS-HOPM basins of attraction using α = −2.

Figure 5: Illustrations for A ∈ R
[4,3] from Example 3.5. The horizontal axis corresponds to x2 and the

vertical axis to x3; the left image is centered at x1 = 1 and the right at x1 = −1. White, gray, and black
dots indicate eigenvectors that are negative stable, positive stable, and unstable, respectively.
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(a) Function values for f(x) = Ax
m.

(b) SS-HOPM basins of attraction using α = 0.

(c) SS-HOPM basins of attraction using α = 1.

Figure 6: Illustrations for A ∈ R
[3,3] from Example 3.6. The horizontal axis corresponds to x2 and the

vertical axis to x3; the left image is centered at x1 = 1 and the right at x1 = −1. White, gray, and black
dots indicate eigenvectors that are negative stable, positive stable, and unstable, respectively.
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always converges (up to sign) to the eigenvector associated with λ1. Shifting the matrix by A ← A + αI
shifts the eigenvalues by λj ← λj + α, potentially altering which eigenvalue has the largest magnitude.

In the matrix case, the eigenvalues of the Jacobian defined by (20) for an eigenpair (λj ,xj) are given by

{0} ∪
{
λi + α

λj + α
: 1 ≤ i ≤ n with i 6= j

}

.

Thus, the Jacobian at x1 is the only one such that ρ(J(x)) < 1; no other eigenvectors are stable fixed points
of the iteration. This corresponds to Theorem 4.8 (or Corollary 4.9), since the most positive eigenvalue is
negative stable, the most negative eigenvalue is positive stable, and every other eigenvalue is unstable. The
eigenpair (λ1,x1) is an attractor for ordinary (convex) power iteration if λ1 > 0 or for flipped (concave)
power iteration if λ1 < 0.

In contrast to the matrix power method, SS-HOPM can find multiple eigenpairs since there may be
multiple positive and negative stable eigenpairs. But, as for matrices, since the most positive and most
negative eigenvalues correspond to the global maximum and minimum of f(x), they must be negative stable
and positive stable respectively. Thus, choosing α positive is necessary for finding the most positive tensor
eigenvalue; conversely, α negative is necessary for finding the most negative tensor eigenvalue. Unfortunately,
the ability to find multiple eigenpairs means that there is no guarantee that the iterates will converge to an
extremal eigenpair from every starting point. In fact, multiple starting points may be needed.

4.4 Comparison to other methods

SS-HOPM is useful for its guaranteed convergence properties and its simple implementation based on tensor-
vector multiplication. For fixed m and large n, the computational complexity of each iteration of SS-HOPM
is O(nm), which is the number of individual terms to be computed in Axm−1. This is analogous to the
O(n2) complexity of matrix-vector multiplication as used in the matrix power method. We do not yet know
how the number of iterations needed for numerical convergence of SS-HOPM depends on m and n.

The convergence of SS-HOPM to only a subset of eigenvalues, which tend to be among the largest in
magnitude, is beneficial when the large eigenvalues are of primary interest, as in the rank-1 approximation
problem [9]. In particular, the most positive eigenvalue and most negative eigenvalue always have a region
of stable convergence for a suitable choice of shift. However, the lack of stable convergence to certain other
eigenvalues is a disadvantage if those eigenvalues are of interest.

One evident computational approach for finding tensor eigenpairs should be compared with SS-HOPM.
This is to apply a numerical solver for nonlinear equation systems, such as Newton’s method, directly to
the eigenvalue equations (2). The computational complexity of each iteration of Newton’s method for this
system is that of SS-HOPM plus the construction and inversion of the (n+ 1)× (n+ 1) Jacobian for (λ,x).
The Jacobian construction is effectively included in SS-HOPM, since it is dominated by computing Axm−2,
which is a precursor of Axm−1. The additional work for inversion is O(n3), and for m ≥ 3 it does not affect
the complexity scaling, which remains O(nm).

Two advantages of an approach such as Newton’s method are generic locally stable convergence, which
enables finding eigenpairs not found by SS-HOPM, and the quadratic order of convergence, which can be
expected to require fewer iterations than the linearly convergent SS-HOPM. On the other hand, there is
no known guarantee of global convergence as there is for SS-HOPM, and it is possible that many starting
points fail to converge. Even those that do converge may lead to eigenpairs of less interest for a particular
application. Furthermore, certain tensor structures can be more efficiently handled with SS-HOPM than
with Newton’s method. For example, consider a higher-order symmetric tensor expressed as a sum of terms,
each of which is an outer product of matrices. The computation of Axm−1 then reduces to a series of
matrix-vector multiplications, which are O(n2). This compares favorably to the O(n3) of Newton’s method
for the same tensor. Further investigation of general nonlinear solver approaches to the tensor eigenvalue
problem will be beneficial.
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Finally, we consider a polynomial solver approach, such as we implemented in Mathematica. This can
find all eigenpairs (subject to numerical conditioning issues) but becomes computationally expensive for large
m and n. In part this is simply because, from Theorem 2.7, the number of eigenpairs grows exponentially
with n. The solver in Mathematica is designed to find all solutions; it is not clear whether a substantial
improvement in efficiency would be possible if only one or a few solutions were required.

Nevertheless, for comparison with the iterative approaches discussed above, we have measured the com-
putational time per eigenpair on a desktop computer for various values of m and n, as shown in Figure 7. The
complexity of the polynomial solution, even measured per eigenpair, is seen to increase extremely rapidly
(faster than exponentially) with n. Thus the polynomial solver approach is not expected to be practical for
large n.

Figure 7: Average time (over 10 trials) required to compute all eigenpairs, divided by the number of eigen-
pairs, for random symmetric tensors in R

[m,n]. Note logarithmic vertical scale. Measured using NSolve in
Mathematica on a 4 GHz Intel Core i7.
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5 Complex case

We propose an extension of the SS-HOPM algorithm to the case of complex vectors in Algorithm 3. Observe
that the division by λk + α keeps the phase of xk from changing unintentionally. It is akin to taking the
negative in the concave case in Algorithm 2. It is important to note that even if an eigenpair is real, there
is no guarantee that the complex SS-HOPM will converge to the real eigenpair; instead, it will converge to
some random rotation in the complex plane. We have no convergence theory in the convex case, but we
present several promising numerical examples.

Algorithm 3 Complex SS-HOPM

Given a tensor A ∈ R
[m,n].

Require: x0 ∈ C
n with ‖x0‖ = 1. Let λ0 = Axm

0 .
Require: α ∈ C

1: for k = 0, 1, . . . do
2: x̂k+1 ← (Axm−1

k + αxk)/(λk + α)
3: xk+1 ← x̂k+1/‖x̂k+1‖
4: λk+1 ← x†

k+1Axm−1
k+1

5: end for

Example 5.1 We once again revisit A ∈ R
[4,3] from Example 3.5 and test the complex version of SS-

HOPM in Algorithm 3. Table 6a shows the results of 100 runs using the same experimental conditions as
in Example 3.5 except with complex random starting vectors. We find 7 distinct eigenrings — the 6 stable
real eigenpairs as well as a ring corresponding to the 2 complex eigenpairs. Figure 8a shows the individual
λ∗ values plotted on the complex plane. As mentioned above, it may converge anywhere on the eigenring,
though there is clear bias toward the value of α.

To investigate this phenomenon further, we do another experiment with α = −(1 + i)/
√
2. It finds the

same eigenrings as before as shown in Table 6b, but this time the λ∗ values are distributed mostly in the
lower left quadrant of the complex plane as shown in Figure 8b, again close to the value of α. In the case of
the 2 complex eigenpairs with the same eigenring, the method finds the 2 distinct eigenvectors (i.e., defining
2 different equivalence classes) in the 4 different times it converges to that eigenvalue; this is not surprising
since the complex eigenvalue has 2 different eigenvectors as shown in Table 1.

We also ran an experiment with α = 0. In this case, 95 trials converged, but to non-eigenpairs (all with
|λ| = 0.3656). �

Table 6: Eigenrings computed for A ∈ R
[4,3] from Example 3.5 by complex SS-HOPM with 100 random

starts.

(a) α = 2.

# Occurrences |λ|
18 1.0954
18 0.8893
21 0.8169
1 0.6694
22 0.5629
8 0.3633
12 0.0451

(b) α =
√
2(1+ i) (2 failures).

# Occurrences |λ|
22 1.0954
15 0.8893
12 0.8169
4 0.6694
16 0.5629
9 0.3633
20 0.0451
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(a) α = 2. (b) α = −
√
2(1 + i) (2 failures).

Figure 8: For A ∈ R
[4,3] from Example 3.5, final λ values (indicated by red asterisks) for 100 runs of complex

SS-HOPM. The green lines denote the eigenrings.
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6 Conclusions

We have developed a new method, SS-HOPM, for finding tensor eigenvalues. The method can be considered
as a higher-order analogue to the power method for matrices. Just as in the matrix case, it cannot find all
possible eigenvalues, but it is guaranteed to be able to find the largest-magnitude eigenvalue. Unlike the
matrix case, it can find multiple eigenvalues; multiple starting points are typically needed to find the largest
eigenvalue.

We extend the analysis of Kofidis and Regalia [9] to show that SS-HOPM will always converge to a real
eigenpair for appropriate choice of α. Moreover, using fixed point analysis, we characterize exactly which
real eigenpairs can be found by the method, i.e., those that are positive or negative stable. Alternative
methods will need to be developed for finding the unstable real eigenpairs, i.e., eigenpairs for which C(λ,x)
is indefinite. A topic for future investigation is that the boundaries of the basins of attraction seem to be
defined by the non-attracting eigenvectors.

We present a complex version of SS-HOPM and limited experimental results that indicate it finds eigen-
pairs, including complex eigenpairs. Analysis of the complex version is a topic for future study.

Much is still unknown about tensor eigenpairs. For example, how do the eigenpairs change with small
perturbations of the tensor entries? Is there an eigendecomposition of a tensor? Can the convergence rate of
the current method be accelerated? How does one numerically compute unstable eigenpairs? For computing
efficiency, what is the optimal storage for symmetric tensors? These are all potential topics of future research.
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