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Shifting Inequality and Recovery of Sparse Signals

T. Tony Cai∗ Lie Wang† and Guangwu Xu‡

Abstract

In this paper we present a concise and coherent analysis of the constrained `1

minimization method for stable recovering of high-dimensional sparse signals both in
the noiseless case and noisy case. The analysis is surprisingly simple and elementary,
while leads to strong results. In particular, it is shown that the sparse recovery
problem can be solved via `1 minimization under weaker conditions than what is
known in the literature. A key technical tool is an elementary inequality, called
Shifting Inequality, which, for a given nonnegative decreasing sequence, bounds the
`2 norm of a subsequence in terms of the `1 norm of another subsequence by shifting
the elements to the upper end.

Keywords: `1 minimization, restricted isometry property, Shifting Inequality, sparse re-

covery.

1 Introduction

Reconstructing a high-dimensional sparse signal based on a small number of measurements,

possibly corrupted by noise, is a fundamental problem in signal processing. This and other

related problems in compressed sensing have attracted much recent interest in a number

of fields including applied mathematics, electrical engineering, and statistics. Specifically

one considers the following model:

y = Φβ + z (1)

where the matrix Φ ∈ Rn×p (with n � p) and z ∈ Rn is a vector of measurement errors.

The goal is to reconstruct the unknown vector β ∈ Rp. In this paper, our main interest is
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the case where the signal β is sparse and the noise z is Gaussian, z ∼ N(0, σ2In). We shall

approach the problem by considering first the noiseless case and then the bounded noise

case, both of significant interest in their own right. The results for the Gaussian case will

then follow easily.

It is now well understood that the method of `1 minimization provides an effective way

for reconstructing a sparse signal in many settings. The `1 minimization method in this

context is

(PB) min
γ∈Rp
‖γ‖1 subject to y − Φγ ∈ B (2)

where B is a bounded set determined by the noise structure. For example, B = {0} in the

noiseless case and B is the feasible set of the noise in the case of bounded error.

The sparse recovery problem has now been well studied in the framework of the Re-

stricted Isometry Property (RIP) introduced by Candes and Tao [7]. A vector v = (vi) ∈ Rp

is k-sparse if |supp(v)| ≤ k, where supp(v) = {i : vi 6= 0} is the support of v. For an n× p
matrix Φ and an integer k, 1 ≤ k ≤ p, the k-restricted isometry constant δk(Φ) is the

smallest constant such that√
1− δk(Φ)‖c‖2 ≤ ‖Φc‖2 ≤

√
1 + δk(Φ)‖c‖2 (3)

for every k-sparse vector c. If k+k′ ≤ p, the k, k′-restricted orthogonality constant θk,k′(Φ),

is the smallest number that satisfies

|〈Φc,Φc′〉| ≤ θk,k′(Φ)‖c‖2‖c′‖2, (4)

for all c and c′ such that c and c′ are k-sparse and k′-sparse respectively, and have disjoint

supports. For notational simplicity we shall write δk for δk(Φ) and θk,k′ for θk,k′(Φ) hereafter.

It has been shown that `1 minimization can recover a sparse signal with a small or

zero error under various conditions on δk and θk,k′ . See, for example, Candes and Tao

[7, 8], and Candes, Romberg and Tao [6]. These conditions essentially require that every

set of columns of Φ with certain cardinality approximately behaves like an orthonormal

system. For example, the condition δk + θk,k + θk,2k < 1 was used in Candes and Tao [7],

δ3k + 3δ4k < 2 in Candes, Romberg and Tao [6], and δ2k + θk,2k < 1 in Candes and Tao [8].

Simple conditions involving only δ have also been used in the literature on sparse recovery,

for example, δ2k <
1
3

was used in Cohen, Dahmen and DeVore [9], and δ2k <
√

2 − 1 was

used in Candes [5]. In a recent paper, Cai, Xu and Zhang [4] sharpened the previous results

by showing that stable recovery can be achieved under the condition δ1.5k + θk,1.5k < 1 (or

a stronger but simpler condition δ1.75k <
√

2− 1).

2



In the present paper we provide a concise and coherent analysis of the constrained `1

minimization method for stable recovery of sparse signals. The analysis, which yields strong

results, is surprisingly simple and elementary. At the heart of our simplified analysis of the

`1 minimization method for stable recovery is an elementary, yet highly useful, inequality.

This inequality, called Shifting Inequality, shows that, given a finite decreasing sequence

of nonnegative numbers, the `2 norm of a subsequence can be bounded in terms of the `1

norm of another subsequence by “shifting” the terms involved in the `2 norm to the upper

end.

The main contribution of the present paper is two-fold: firstly it is shown that the

sparse recovery problem can be solved under weaker conditions and secondly the analysis

of the `1 minimization method can be very elementary and much simplified. In particular,

we show that stable recovery of k-sparse signals can be achieved if

δ1.25k + θk,1.25k < 1.

This condition is weaker than the ones known in the literature. In particular, the results

in Candes and Tao [7, 8], Cai, Xu and Zhang [4] and Candes [5] are extended. In fact,

our general treatment of this problem produces a family of sparse recovery conditions.

Interesting conditions include

δ1.625k <
√

2− 1 and δ3k < 4− 2
√

3 ≈ 0.535.

In the case of Gaussian noise, one of the main results is the following.

Theorem 1 Consider the model (1) with z ∼ N(0, σ2In). If β is k-sparse and

δ1.25k + θk,1.25k < 1,

then, the `1 minimizer β̂DS = arg min{‖γ‖1 : ‖ΦT
(
y − Φγ

)
‖∞ ≤ σ

√
2 log p} satisfies, with

high probability,

‖β̂DS − β‖2 ≤
√

10

1− δ1.25k − θk,1.25k

√
kσ
√

2 log p, (5)

and the `1 minimizer β̂`2 = arg min{‖γ‖1 : ‖y − Φγ‖2 ≤ σ
√
n+ 2

√
n log n} satisfies, with

high probability,

‖β̂`2 − β‖2 ≤
2
√

2(1 + δ1.25k)

1− δ1.25 − θk,1.25k

σ

√
n+ 2

√
n log n. (6)
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In comparison to Theorem 1.1 in Candes and Tao (2007), the result given in (5) for β̂DS

weakens the condition from δ2k + θk,2k < 1 to δ1.25k + θk,1.25k < 1 and improves the constant

in the bound from 4/(1− δ2k − θk,2k) to
√

10/(1− δ1.25k − θk,1.25k). Although our primary

interest in this paper is to recovery sparse signals, all the main results in the subsequent

sections are given for general signals that are not necessarily k-sparse.

Weakening the RIP condition also has direct implications to the construction of com-

pressed sensing (CS) matrices. It is important to note that it is computationally difficult

to verify the RIP for a given design matrix Φ when p is large and the sparsity k is not

too small. It is required to bound the condition numbers of
(
p
k

)
submatrices. The spectral

norm of a matrix is often difficult to compute and the combinatorial complexity makes

it infeasible to check the RIP for reasonable values of p and k. A general technique for

avoiding checking the RIP directly is to generate the entries of the matrix Φ randomly and

to show that the resulting random matrix satisfies the RIP with high probability using the

well-known Johnson-Lindenstrauss Lemma. See, for example, Baraniuk, et al. [2]. Weak-

ening the RIP condition makes it easier to prove that the resulting random matrix satisfies

the CS properties.

The paper is organized as follows. After Section 2, in which basic notation and defini-

tions are reviewed, we introduce in Section 3.1 the elementary Shifting Inequality, which

enables us to make finer analysis of the sparse recovery problem. We then consider the

problem of exact recovery in the noiseless case in Section 3.2 and stable recovery of sparse

signals in Section 3.3. The Gaussian noise case is treated in Section 4. Section 5 discusses

various conditions on RIP and effects of the improvement of the RIP condition on the

construction of CS matrices. The proofs of some technical results are relegated to the

Appendix.

2 Preliminaries

We begin by introducing basic notation and definitions related to the RIP. We also collect

a few elementary results needed for the later sections.

For a vector v = (vi) ∈ Rp, we shall denote by vmax(k) the vector v with all but the

k-largest entries (in absolute value) set to zero and define v−max(k) = v− vmax(k), the vector

v with the k-largest entries (in absolute value) set to zero. We use the standard notation

‖v‖q = (
∑q

i=1 |vi|q)1/q to denote the `q-norm of the vector v. We shall also treat a vector

v = (vi) as a function v : {1, 2, · · · , p} → R by assigning v(i) = vi.

For a subset T of {1, · · · , p}, we use ΦT to denote the submatrix obtained by extracting
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the columns of Φ according to the indices in T . Let SSVT = {λ : λ an eigenvalue of Φ′TΦT},
and Λmin(k) = min{∪|T |≤kSSVT}, Λmax(k) = max{∪|T |≤kSSVT}. It can be seen that

1− δk ≤ Λmin(k) ≤ Λmax(k) ≤ 1 + δk.

Hence the condition (3) can be viewed as a condition on Λmin(k) and Λmax(k).

The following relations can be easily checked.

δk ≤ δk1 , if k ≤ k1 ≤ p (7)

θk,k′ ≤ θk1,k′1 , if k ≤ k1, k
′ ≤ k′1, and k1 + k′1 ≤ p. (8)

Candes and Tao [7] showed that the constants δk and θk,k′ are related by the following

inequalities,

θk,k′ ≤ δk+k′ ≤ θk,k′ + max(δk, δk′). (9)

Cai, Xu and Zhang obtained the following properties for δ and θ in [4], which are

especially useful in producing simplified recovery conditions:

θk,∑l
i=1 ki

≤

√√√√ l∑
i=1

θ2
k,ki
≤

√√√√ l∑
i=1

δ2
k+ki

. (10)

Consider the `1 minimization problem (PB). Let β be a feasible solution to (PB), i.e.,

y − Φβ ∈ B. Without loss of generality we assume that supp(βmax(k)) = {1, 2, · · · , k}. Let

β̂ be a solution to the minimization problem (PB). Then it is clear that ‖β̂‖1 ≤ ‖β‖1.
Let h = β̂ − β and h0 = hI{1,2,··· ,k} for some positive integer k ≤ p. Here IA denotes the

indicator function of a set A ⊆ {1, 2, · · · , p}, i.e., IA(j) = 1 if j ∈ A and 0 if j /∈ A.

The following is a widely used fact. See, for example, [4, 6, 8, 13].

Lemma 1

‖h− h0‖1 ≤ ‖h0‖1 + 2‖β−max(k)‖1.

This follows from the fact that ‖β‖1 ≥ ‖β̂‖1 = ‖βmax(k) + h0‖1 + ‖h − h0 + β−max(k)‖1 ≥
‖βmax(k)‖1 − ‖h0‖1 +

∑
i≥1 ‖hi‖1 − ‖β−max(k)‖1.

Note also that the Cauchy-Schwarz Inequality yields that for u ∈ Rk

‖u‖1 ≤
√
k ‖u‖2. (11)
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3 Shifting Inequality, Exact and Stable Recovery

In this section, we consider exact recovery of high-dimensional sparse signals in the noiseless

case and stable recovery in the bounded noise case. Recovery of sparse signals with Gaussian

noise will be discussed in Section 4. We begin by introducing an elementary inequality

which we call the Shifting Inequality. This useful inequality plays a key role in our analysis

of the properties of the solution to the `1 minimization problem.

3.1 The Shifting Inequality

The following elementary inequality enables us to perform finer estimation involving `1 and

`2 norms as can be seen from the proofs of Theorem 2 in Section 3.2 and other main results.

Lemma 2 (Shifting Inequality) Let q, r be positive integers satisfying r ≤ q ≤ 3r. Then

any descending chain of real numbers

a1 ≥ a2 ≥ · · · ar ≥ b1 ≥ · · · bq ≥ c1 ≥ · · · ≥ cr ≥ 0

satisfies √√√√ q∑
i=1

b2i +
r∑
i=1

c2i ≤
∑r

i=1 ai +
∑q

i=1 bi√
q + r

. (12)

In particular, any descending chain of real numbers

b1 ≥ · · · ≥ bq ≥ 0

satisfies √√√√ q∑
i=1

b2i + rb2q ≤
rb1 +

∑q
i=1 bi√

q + r
.

Proof of this lemma is presented in the Appendix.

Remark 1 A particularly useful case is q = 3r. Let

d1 ≥ · · · ≥ dr ≥ dr+1 ≥ · · · ≥ d4r ≥ · · · ≥ d5r ≥ 0.

Then Lemma 2 yields
5r∑

j=r+1

d2
j ≤

1

4r

(
4r∑
j=1

dj

)2

.

We will see that the Shifting Inequality, albeit very elementary, not only simplifies the

analysis of `1 minimization method but also weakens the required condition on the RIP.
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3.2 Exact Recovery of Sparse Signals

We shall start with the simple setting where no noise is present. In this case the goal is

to recover the signal β exactly when it is sparse. This case is of significant interest in its

own right as it is also closely connected to the problem of decoding of linear codes. See,

for example, Candes and Tao [7]. The ideas used in treating this special case can be easily

extended to treat the general case where noise is present.

Suppose y = Φβ. Based on (Φ, y), we wish to reconstruct the vector β exactly when

it is sparse. Equivalently, we wish to find the sparest representation of the signal y in

the dictionary consisting of the columns of the matrix Φ. Let β̂ be the minimizer to the

problem

(Exact) min
γ∈Rp
‖γ‖1 subject to Φγ = y. (13)

Note that this is a special case of the `1 minimization problem (PB) with B = {0}. We

have the following result.

Theorem 2 Suppose that β is k-sparse and that

δk+a +

√
k

b
θk+a,b < 1 (14)

holds for some positive integers a and b satisfying 2a ≤ b ≤ 4a. Then the solution β̂ to

the `1 minimization problem (Exact) recovers β exactly. In general, if (14) holds, then β̂

satisfies

‖β̂ − β‖2 ≤
1− δk+a + θk+a,b

1− δk+a −
√

k
b
θk+a,b

2√
b
‖β−max(k)‖1.

Remark 2 We should note that in this and following main theorems, we use the general

condition δk+a +
√

k
b
θk+a,b < 1, which involves two positive intergers a and b, in addition

to the sparsity parameter k. The flexibility in the choice of a and b in the condition allows

one to derive interesting conditions for compressed sensing matrices. More discussions on

special cases and comparisons with the existing conditions used in the current literature

are given in Section 5.

Remark 3 A particularly interesting choice is b = k and a = k/4. Theorem 2 shows that

if β is k-sparse and

δ1.25k + θk,1.25k < 1, (15)

then the `1 minimization method recovers β exactly. This condition is weaker than other

conditions on RIP currently available in the literature. Compare, for example, Candes and
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Tao [7, 8], Candes, Romberg and Tao [6], Candes [5], and Cai, Xu and Zhang [4]. See more

discussions in Section 5.

Proof. The proof of Theorem 2 is elementary. The key to the proof is the Shifting

Inequality. Again, set h = β̂ − β. We shall cut the error vector h into pieces and then

apply the Shifting Inequality to subvectors.

Without loss of generality, we assume the first k coordinates of β are the largest in

magnitude. Making rearrangement if necessary, we may also assume that

|h(k + 1)| ≥ |h(k + 2)| ≥ · · · .

Set T0 = {1, 2, · · · , k}, T∗ = {k+ 1, k+ 2, · · · , k+a} and Ti = {k+a+ (i−1)b+ 1, · · · , k+

a + ib}, i = 1, 2, ..., with the last subset of size less than or equal to b. Let h0 = hIT0 ,

h∗ = hIT∗ and hi = hITi for i ≥ 1.

h = β̂ − β: h0 h∗ h1 h2 h3 · · ·
Support Size: k a b b b · · ·

To apply the Shifting Inequality, we shall first divide each vector hi into two pieces. Set

Ti1 = {k + a + (i − 1)b + 1, · · · , k + ib} and Ti2 = Ti \ Ti1 = {k + 1 + ib, · · · , k + a + ib}.
We note that |Ti1| = b− a and |Ti2| = a for all i ≥ 1. Let hi1 = hiITi1 and hi2 = hiITi2 .

· · · h(i−1)1 h(i−1)2 hi1 hi2 · · ·
length a b− a a · · ·

Note that a ≤ b − a ≤ 3a. Applying the Shifting Inequality (12) to the vectors

{h∗, h11, h12} and {h(i−1)2, hi1, hi2} for i = 2, 3, ... yields

‖h1‖2 ≤
‖h∗‖1 + ‖h11‖1√

b
, ‖h2‖2 ≤

‖h12‖1 + ‖h21‖1√
b

, · · · , ‖hi‖2 ≤
‖h(i−1)2‖1 + ‖hi1‖1√

b
, · · · .

It then follows from Lemma 1 and the inequality (11) that

∑
i≥1

‖hi‖2 ≤
‖h∗‖1 +

∑
i≥1 ‖hi‖1√
b

=
‖h− h0‖1√

b

≤
‖h0‖1 + 2‖β−max(k)‖1√

b
≤
√
k

b
‖h0‖2 +

2‖β−max(k)‖1√
b

≤
√
k

b
‖h0 + h∗‖2 +

2‖β−max(k)‖1√
b

.
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Now the fact that Φh = 0 yields

0 = |〈Φh,Φ(h0 + h∗)〉| = |〈Φ(h0 + h∗),Φ(h0 + h∗)〉+
∑
i≥1

〈Φhi,Φ(h0 + h∗)〉|

≥ (1− δk+a)‖h0 + h∗‖22 −
∑
i≥1

θk+a,b‖h0 + h∗‖2‖hi‖2

≥ ‖h0 + h∗‖2

((
1− δk+a −

√
k

b
θk+a,b

)
‖h0 + h∗‖2 − θk+a,b

2‖β−max(k)‖1√
b

)

This implies

‖h0 + h∗‖2 ≤
θk+a,b

1− δk+a −
√

k
b
θk+a,b

2‖β−max(k)‖1√
b

.

Therefore,

‖h‖2 ≤ ‖h0 + h∗‖2 +
∑
i≥1

‖hi‖2 ≤
(
1 +

√
k

b

)
‖h0 + h∗‖2 +

2‖β−max(k)‖1√
b

≤ 1− δk+a + θk+a,b

1− δk+a −
√

k
b
θk+a,b

2√
b
‖β−max(k)‖1.

If β is k-sparse, then β−max(k) = 0, which implies β = β̂.

The key argument used in the proof of Theorem 2 is the Shifting Inequality. This simply

analysis requires a condition on the RIP that is weaker than other conditions on the RIP

used in the literature.

In addition to Theorem 2, we also have the following result under s simpler condition.

Theorem 3 Let k be a positive integer and suppose

δk +
√
kθk,1 < 1. (16)

Then β̂ satisfies

‖β̂ − β‖2 ≤
2(1− δk + θk,1)

1− δk −
√
kθk,1

‖β−max(k)‖1.

In particular, if β is k-sparse, the `1 minimization recovers β exactly.

Proof. The proof is similar to that of Theorem 2. For each i ≥ 1, let Ti = {k + i} and

9



hi = hITi . We note

|〈Φh,Φh0〉| = |〈Φh0,Φh0〉+
∑
i≥1

〈Φhi,Φh0〉|

≥ (1− δk)‖h0‖22 −
∑
i≥1

θk,1‖h0‖2‖hi‖2

= ‖h0‖2

(
(1− δk)‖h0‖2 − θk,1

∑
i≥1

‖hi‖2

)

= ‖h0‖2

(
(1− δk)‖h0‖2 − θk,1

∑
i≥1

‖hi‖1

)
≥ ‖h0‖2

(
(1− δk)‖h0‖2 − θk,1(‖h0‖1 + 2‖β−max(k)‖1)

)
≥ ‖h0‖2

(
(1− δk)‖h0‖2 − θk,1

(√
k‖h0‖2 + 2‖β−max(k)‖1

))
≥ ‖h0‖2

((
1− δk −

√
kθk,1

)
‖h0‖2 − 2θk,1‖β−max(k)‖1

)
.

The remaining steps are the same as those in the proof of Theorem 2.

3.3 Recovery in the Presence of Errors

We now consider reconstruction of high dimensional sparse signals in the presence of

bounded noise. Let B ⊂ IRn be a bounded set. Suppose we observe (Φ, y) where y = Φβ+z

with the error vector z ∈ B, and we wish to reconstruct β by solving the `1 minimiza-

tion problem (PB). Specifically, we consider two types of bounded errors: B1(η) = {z :

‖Φ′z‖∞ ≤ η} and B2(η) = {z : ‖z‖2 ≤ η}. We shall use β̂DS to denote the solution of the

`1 minimization problem (PB) with B = B1(η) and use β̂`2 to denote the solution of (PB)

with B = B2(η).

The Shifting Inequality again plays a key role in our analysis in this case. In addition,

the analysis of the Gaussian noise case follows easily from that of the bounded noise case.

Theorem 4 Suppose

δk+a +

√
k

b
θk+a,b < 1 (17)

holds for positive integers k, a and b where 2a ≤ b ≤ 4a. Then the minimizers β̂DS and

β̂`2 satisfy

‖β̂DS − β‖2 ≤ Aη +B‖β−max(k)‖1,

and

‖β̂`2 − β‖2 ≤ Cη +B‖β−max(k)‖1

10



where

A = 2

√
1 +

k

b

√
k + a

1− δk+a −
√

k
b
θk+a,b

, (18)

B =
2√
b

1 +
θk+a,b

√
1 + k/b

1− δk+a −
√

k
b
θk+a,b

 , (19)

C = 2

√
1 +

k

b

√
1 + δk+a

1− δk+a −
√

k
b
θk+a,b

. (20)

A proof of Theorem 4 based on the ideas of that for Theorem 2 is given in the appendix.

Remark 4 As in the noiseless setting, an especially interesting case is b = k and a = k/4.

In this case, Theorem 4 yields that if β is k-sparse and

δ1.25k + θk,1.25k < 1 (21)

holds, then the `1 minimizers β̂DS and β̂`2 satisfy

‖β̂DS − β‖2 ≤
√

10

1− δ1.25k − θk,1.25k

·
√
kη, (22)

and

‖β̂`2 − β‖2 ≤
2
√

2(1 + δ1.25k)

1− δ1.25k − θk,1.25k

· η. (23)

Again, the condition (21) for stable recovery in the noisy case is weaker than the existing

RIP conditions in the literature. See, for example, Candes and Tao [7, 8], Candes, Romberg

and Tao [6], Candes [5]), and Cai, Xu and Zhang [4].

Remark 5 A generalization of Theorem 3 can also be obtained for the bounded noise case.

Suppose β is k-sparse and

δk +
√
kθk,1 < 1.

holds. Then the `1 minimizers β̂DS and β̂`2 satisfy

‖β̂DS − β‖2 ≤
2
√
k2 + k

1− δk −
√
kθk,1

· η and ‖β̂`2 − β‖2 ≤
2
√

1 + δk
√

1 + k

1− δk −
√
kθk,1

· η.

11



4 Gaussian Noise

The Gaussian noise case is of particular interest in statistics and several methods have

been developed. See, for example, Tibshirani [19], Efron, et al. [14], and Candes and Tao

[8]. The results presented in Section 3.3 on the bounded noise case are directly applicable

to the case where the noise is Gaussian. This is due to the fact that Gaussian noise is

“essentially bounded”. Suppose we observe

y = Φβ + z, z ∼ N(0, σ2In) (24)

and wish to recover the signal β based on (Φ, y). We assume that σ is known and that

the columns of Φ are standardized to have unit `2 norm. Define two bounded sets

B3 = {z : ‖ΦT z‖∞ ≤ σ
√

2 log p} and B4 = {z : ‖z‖2 ≤ σ

√
n+ 2

√
n log n} (25)

The following result, which follows from standard probability calculations, shows that

the Gaussian noise z is essentially bounded. The readers are referred to Cai, Xu and Zhang

[4] for a proof.

Lemma 3 The Gaussian error z ∼ N(0, σ2In) satisfies

P (z ∈ B3) ≥ 1− 1

2
√
π log p

and P (z ∈ B4) ≥ 1− 1

n
. (26)

Lemma 3 indicates that the Gaussian variable z is in the bounded sets B3 and B4 with

high probability. The results obtained in the previous sections for bounded errors can thus

be applied directly to treat Gaussian noise. In this case, we shall consider two particular

constrained `1 minimization problems. Let β̂DS be the minimizer of

min
γ∈Rp
‖γ‖1 subject to y − Φγ ∈ B3 (27)

and let β̂`2 be the minimizer of

min
γ∈Rp
‖γ‖1 subject to y − Φγ ∈ B4. (28)

The following theorem is a direct consequence of Lemma 3 and Theorem 4.

Theorem 5 Suppose

δk+a +

√
k

b
θk+a,b < 1 (29)

12



holds for some positive integers k, a and b with 2a ≤ b ≤ 4a. Then with probability at least

1− 1
2
√
π log p

the minimizer β̂DS satisfies

‖β̂DS − β‖2 ≤ Aσ
√

2 log p+B‖β−max(k)‖1,

and with probability at least 1− 1
n

, the minimizer β̂`2 satisfies

‖β̂`2 − β‖2 ≤ Cσ

√
n+ 2

√
n log n+B‖β−max(k)‖1,

where the constants A, B and C are given as in Theorem 4.

Remark: Again, a special case is b = k and a = k/4. In this case, if β is k-sparse and

δ1.25k + θk,1.25k < 1,

then, with high probability, the `1 minimizers β̂DS and β̂`2 satisfy

‖β̂DS − β‖2 ≤
√

10

1− δ1.25k − θk,1.25k

√
kσ
√

2 log p (30)

‖β̂`2 − β‖2 ≤
2
√

2(1 + δ1.25k)

1− δ1.25 − θk,1.25k

σ

√
n+ 2

√
n log n. (31)

The result given in (30) for β̂DS improves Theorem 1.1 of Candes and Tao [8] by weakening

the condition from δ2k + θk,2k < 1 to δ1.25k + θk,1.25k < 1 and reducing the constant in the

bound from 4/(1− δ2k− θk,2k) to
√

10/(1− δ1.25k− θk,1.25k). The improvement on the error

bound is minor. The improvement on the condition is more significant as it shows signals

with larger support can be recovered accurately for fixed n and p.

Candes and Tao [8] also derived an oracle inequality for β̂DS in the Gaussian noise setting

under the condition δ2k + θk,2k < 1. Our method can also be used to improve Theorems

1.2 and 1.3 in Candes and Tao [8] by weakening the condition to δ1.25k + θk,1.25k < 1.

5 Discussions

The flexibility in the choice of a and b in the condition δk+a+
√

k
b
θk+a,b < 1 used in Theorems

2, 4 and 5 enables us to deduce interesting conditions for compressed sensing matrices. We

shall highlight several of them here and compare with the existing conditions used in the

current literature. As mentioned in the introduction, it is sometimes more convenient to

use conditions only involving the restricted isometry constant δ and for this reason we shall

mainly focus on δ. By choosing different values of a and b and using equation (10), it is

easy to show that each of the following conditions is sufficient for the exact recovery of

k-sparse signals in the noiseless case and stable recovery in the noisy case:

13



1. δ1.25k + θk,1.25k < 1

2. δ1.625k <
√

2− 1 ≈ 0.414

3. δ2k <
√

6− 2 ≈ 0.449

4. δ3k < 2(2−
√

3) ≈ 0.535

5. δ4k < 2−
√

2 ≈ 0.585

For instance, Condition 2 follows from Condition 1 and equation (10). In fact, if δ1.625k <√
2− 1, then

δ1.25k + θk,1.25k ≤ δ1.625k +
√
δk+0.625k + δk+0.625k < 1.

These conditions for stable recovery improve the conditions used in the literature, e.g., the

conditions δ3k + 3δ4k < 2 in [6], δ2k + θk,2k < 1 in [8], δ1.5k + θ1.5k,k < 1 in [4], δ2k <
√

2− 1

in [5], and δ1.75k <
√

2− 1 in [4]. It is also interesting to note that Condition 4 allows δ3k

to be large than 0.5.

The flexibility in the condition δk+a +
√

k
b
θk+a,b < 1 also enables us to discuss the

asymptotic properties of the RIP conditions. Letting a = tk, b = 4tk and using the

equations (7), (8), and (10), it is easy to see that each of the following conditions is

sufficient for stable recovery of k-sparse signals:

1. δ(3t+1)k <
√

2t
1+
√

2t
, t ≥ 1

3

2. δ 9t+1
2
k <

√
2t

1+
√

2t
, t ∈ (1

7
, 1

3
)

3. δ(1+t)k <
√

2t
1+
√

2t
, t ∈ (0, 1

7
]

These conditions reveal two asymptotic properties of the restricted isometry constant

δ. The first is that δ can be close to 1 (as t gets large), provided that checking the RIP for

Φ must be done for sets of columns whose cardinality is much bigger than k, the sparsity

for recovery. The second is that if δ is allowed to be small, then checking the RIP for Φ

can be done for sets of columns whose cardinality is close to k (as t gets small).

It is clear that with weaker RIP conditions, more matrices can be verified to be com-

pressed sensing matrices. As mentioned in the introduction, for a given n× p matrix, it is

computationally difficult to check its restrictive isometry property. However, it has been

very successful in constructing random compressed sensing matrices using δr and θr,r′ , see

[1, 2, 6, 7, 8, 18].

14



For example, Baraniuk et al [2] showed that if Φ is an n × p matrix whose entries are

drawn independently according to Gaussian or Bernoulli, then Φ fails to have RIP

δr < α

with probability less than

τα = 2e−
α2(3−α)

48
n
( cp
rα

)r
,

where c is a constant.

It is not hard to see that the probability of failing drops at a considerable rate as

the bound α increases and/or the index r decreases. In fact, with a weaker condition

δr < α + ε < 1, this rate is

τα
τα+ε

=
2e−

α2(3−α)
48

n
(
cp
rα

)r
2e−

(α+ε)2(3−α−ε)
48

n
(

cp
r(α+ε)

)r ≥ e
αε
12
n
(
1 +

ε

α

)r
.

This rate is very large if n is large.

On the other hand, the improvement of RIP conditions can be interpreted as enlarging

the sparsity of the signals to be recovered. For example, one of the previous results showed

that the condition δ2k <
√

2 − 1 ensures the recovery of a k-sparse signal. Replacing the

condition by δ1.625k <
√

2 − 1, we see that the sparsity of the signals to be recovered is

relaxed
2

1.625
≈ 1.23 times.
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APPENDIX

A-1 Proof of the Shifting Inequality (Lemma 2)

Let bi = bi+1 + di for i = 1, 2, · · · , q − 1. Then

(q + r)(

q∑
i=1

b2i + rb2q) = (q + r)

(
(q + r)b2q + 2bq

q−1∑
i=1

q−1∑
j=i

dj +

q−1∑
i=1

(

q−1∑
j=i

dj)
2

)

= (q + r)2b2q + 2(q + r)bq

q−1∑
i=1

idi + (q + r)

q−1∑
i=1

(

q−1∑
j=i

dj)
2

And

(rb1 +

q∑
i=1

bi)
2 =

(
(q + r)bq +

q−1∑
i=1

(r + i)di

)2

= (q + r)2b2q + 2(q + r)bq

q−1∑
i=1

(r + i)di +

(
q−1∑
i=1

(r + i)di

)2

Note that di is nonnegative for all i, so 2(q + r)
∑q−1

i=1 (r + i)di ≥ 2(q + r)
∑q−1

i=1 idi. Also,

it can be seen that for any 1 ≤ i ≤ j ≤ q − 1, the coefficient of didj in
(∑q−1

i=1 (r + i)di
)2

is (1 + I(i 6= j))(r + i)(r + j)1. And the coefficient of didj in (q + r)
∑q−1

i=1 (
∑q−1

j=i dj)
2 is

(1 + I(i 6= j))(q + r)i. Since q ≤ 3r, we know that

(r + i)(r + j) ≥ (r + i)2 = (r − i)2 + 4ri ≥ (q + r)i.

This means (
q−1∑
i=1

(r + i)di

)2

≥ (q + r)

q−1∑
i=1

(

q−1∑
j=i

dj)
2.

Hence the inequality is proved.

1The number I(i 6= j) is 1 unless i = j, in which case it is 0
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A-2 Proof of Theorem 4

Similar to the proof of theorem 2, we have

|〈Φh,Φ(h0 + h∗)〉| ≥ ‖h0 + h∗‖2

((
1− δk+a −

√
k

b
θk+a,b

)
‖h0 + h∗‖2 − θk+a,b

2‖β−max(k)‖1√
b

)
Case I. B = {z : ‖z‖2 ≤ η}. It is easy to see that

|〈Φh,Φ(h0 + h∗)〉| ≤ ‖Φh‖2‖Φ(h0 + h∗)‖2 ≤ 2η
√

1 + δk+a‖h0 + h∗‖2

Therefore,

‖h0 + h∗‖2 ≤
2η
√

1 + δk+a +
2θk+a,b√

b
‖β−max(k)‖1

1− δk+a −
√

k
b
θk+a,b

Now

‖h‖22 = ‖h0 + h∗‖22 +
∑
i≥1

‖hi‖22 ≤ ‖h0 + h∗‖22 +
(∑
i≥1

‖hi‖2
)2

≤ ‖h0 + h∗‖22 +

(√
k

b
‖h0 + h∗‖2 +

2‖β−max(k)‖1√
b

)2

=

(√
1 +

k

b
‖h0 + h∗‖2 +

2‖β−max(k)‖1√
b

)2

≤
(
Cη +B‖β−max(k)‖1

)2
.

Case II. B = {z : ‖Φ′z‖∞ ≤ η}.
By assumption, there is a z ∈ B such that Φβ = y − z. So

|〈Φh,Φ(h0 + h∗)〉| = |〈Φβ̂ − y + z,ΦT0∪T∗(h0 + h∗)〉|
= |〈Φ′T0∪T∗

(
Φβ̂ − y + z

)
, (h0 + h∗)〉|

≤ ‖Φ′T0∪T∗

(
Φβ̂ − y + z

)
‖2‖h0 + h∗‖2

≤ 2
√
k + aη‖h0 + h∗‖2.

This implies

‖h0 + h∗‖2 ≤
2η
√
k + a+

2θk+a,b√
b
‖β−max(k)‖1

1− δk+a −
√

k
b
θk+a,b

Similar to Case I, we have

‖h‖22 ≤

(√
1 +

k

b
‖h0 + h∗‖2 +

2‖β−max(k)‖1√
b

)2

≤
(
Aη +B‖β−max(k)‖1

)2
.
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