Shifting processes with cyclically exchangeable increments at random

Gerónimo URIBE BRAVO (Collaboration with Loïc CHAUMONT)

Instituto de Matemáticas
UNAM
Universidad Nacional Autónoma de México
www.matem.unam.mx/geronimo
geronimo@matem.unam.mx

Combinatorial Stochastic Processes
A conference in celebration of Jim Pitman's work
UC San Diego, June 21, 2014

A question of Jim regarding the Vervaat transformation

Question

Is a general framework allowing to interpret the Vervaat transformation as conditioning a process with to remain positive (or above a line)?

- J. Abramson, J. Pitman, N. Ross, and G. Uribe Bravo, Convex minorants of random walks and Lévy processes, Electronic Communications in Probability 16 (2011), 423-434

The normalized Brownian excursion and Vervaat's theorem

Let X be a Brownian bridge from 0 to 0 of length 1 .
Definition
There exists a unique weakly continuous family of laws $\left\{\mathbb{P}_{y}^{1}: y \in \mathbb{R}\right\}$ which is a version of the conditional law of a Brownian motion on $[0,1]$ given that it ends at y.

The normalized Brownian excursion and Vervaat's theorem

Let X be a Brownian bridge from 0 to 0 of length 1 .

Theorem [DIM77] and [Ver79]

The law of X conditioned to remain above $-\varepsilon$ converges weakly as $\varepsilon \rightarrow 0$ toward law of the normalized Brownian excursion. Furthermore, the weak limit can also be constructed as follows: if ρ is the unique instant at which X attains its minimum, then the weak limit has the same law as

$$
\theta_{\rho}(X)_{t}=X_{\{\rho+t\}}-X_{\rho} .
$$

(Interchanges the paths $\left(X_{s}, s \leq \rho\right)$ and $\left(X_{s}, s \geq \rho\right)$. Starts and ends at zero.)

- Richard T. Durrett, Donald L. Iglehart, and Douglas R. Miller, Weak convergence to Brownian meander and Brownian excursion, Ann. Probability 5 (1977), no. 1, 117-129. MR 0436353
- Wim Vervaat, A relation between Brownian bridge and Brownian excursion, Ann. Probab. 7 (1979), no. 1, 143-149. MR 515820

Idea of proof

$\theta_{t} X(s)=X_{s+t}-X_{t} \quad \underline{X}=\min _{s \leq 1} X_{s} \quad X_{\rho}=\underline{X} \quad \underline{X} \circ \theta_{t}=\underline{X}-X_{t}$.

Idea of proof

$\theta_{t} X(s)=X_{s+t}-X_{t} \quad \underline{X}=\min _{s \leq 1} X_{s} \quad X_{\rho}=\underline{X} \quad \underline{X} \circ \theta_{t}=\underline{X}-X_{t}$.

Choose η uniformly on $\left\{\underline{X} \circ \theta_{t} \in(-\varepsilon, 0)\right\}$.

Idea of proof

$\theta_{t} X(s)=X_{s+t}-X_{t} \quad \underline{X}=\min _{s \leq 1} X_{s} \quad X_{\rho}=\underline{X} \quad \underline{X} \circ \theta_{t}=\underline{X}-X_{t}$.
Let F^{ε} be the random distribution

Choose η uniformly on $\left\{\underline{X} \circ \theta_{t} \in(-\varepsilon, 0)\right\}$.

$$
F_{t}^{\varepsilon}=\frac{\int_{0}^{t} \mathbf{1}_{X_{s}-\underline{X}<\varepsilon} d s}{\int_{0}^{1} \mathbf{1}_{X_{s}-\underline{X}<\varepsilon} d s} .
$$

$U \perp X$: uniform

$$
\tau_{t}=\inf \left\{s \geq 0: F_{s}^{\varepsilon}>t\right\} \quad \text { and } \quad \eta=\tau_{U} .
$$

Idea of proof

$$
\theta_{t} X(s)=X_{s+t}-X_{t} \quad \underline{X}=\min _{s \leq 1} X_{s} \quad X_{\rho}=\underline{X} \quad \underline{X} \circ \theta_{t}=\underline{X}-X_{t} .
$$

Let F^{ε} be the random distribution

Choose η uniformly on $\left\{\underline{X} \circ \theta_{t} \in(-\varepsilon, 0)\right\}$.
Then:

- the law of $\theta_{\eta} X$ equals the law of X conditioned on $\underline{X} \in(-\varepsilon, 0)$.
- $\eta \rightarrow \rho$ as $\varepsilon \rightarrow 0$.

$$
F_{t}^{\varepsilon}=\frac{\int_{0}^{t} \mathbf{1}_{X_{s}-\underline{X}<\varepsilon} d s}{\int_{0}^{1} \mathbf{1}_{X_{s}-\underline{X}<\varepsilon} d s} .
$$

$U \perp X$: uniform

$$
\tau_{t}=\inf \left\{s \geq 0: F_{s}^{\varepsilon}>t\right\} \quad \text { and } \quad \eta=\tau_{u} .
$$

Conditioning the minimum of a CEI process

Definition: CEI process

A càdlàg process has cyclically exchangeable increments (CEI) if:

$$
\theta_{t} X \stackrel{d}{=} X \text { for every } t \in[0,1] .
$$

Shift of a CEI process:

$$
\theta_{t} X(s)=X_{\{s+t\}}-X_{t}+X_{\lfloor s+t\rfloor}
$$

(Interchanges the paths $\left(X_{s}, s \leq t\right)$ and $\left(X_{s}, s \geq t\right)$ with same starting and ending points.)

Conditioning the minimum of a CEI process

Let $I \subset(-\infty, 0]$.
To condition on $\{\underline{X} \in I\}$, choose t uniformly on $\left\{t: \underline{X} \circ \theta_{t} \in I\right\}$ using

$$
A_{t}^{\prime}=\int_{0}^{t} \mathbf{1}_{\underline{x} \circ \theta_{s} \in I} d s
$$

Theorem
Let (X, \mathbb{P}) be any non trivial CEI process.
$X_{0}=0, X_{1} \geq 0$ and $\mathbb{P}(\underline{X} \in I)>0$.
Let $U \perp X$ be uniform and define:

$$
\begin{equation*}
\nu=\inf \left\{t: A_{t}^{\prime}=U A_{1}^{\prime}\right\} . \tag{1}
\end{equation*}
$$

Conditionally on $A_{1}^{\prime}>0, \theta_{\nu}(X)$ is independent of ν and has the same law as X conditionally on $\underline{X} \in I$. Moreover the time ν is uniformly distributed over $[0,1]$.

Conditioning the minimum of a CEI process

Let $I \subset(-\infty, 0]$.
To condition on $\{\underline{X} \in I\}$, choose t uniformly on $\left\{t: \underline{X} \circ \theta_{t} \in I\right\}$ using

$$
A_{t}^{\prime}=\int_{0}^{t} \mathbf{1}_{\underline{X} \circ \theta_{s} \in I} d s
$$

Theorem

Let (X, \mathbb{P}) be any non trivial CEI process. $X_{0}=0, X_{1} \geq 0$ and $\mathbb{P}(\underline{X} \in I)>0$.
Let $U \perp X$ be uniform and define:

$$
\begin{equation*}
\nu=\inf \left\{t: A_{t}^{\prime}=U A_{1}^{\prime}\right\} . \tag{1}
\end{equation*}
$$

Conversely, if Y has the law of X conditioned on $\underline{X} \in I$ and U is uniform and independent of Y then $\theta_{U}(Y)$ has the same law as X conditioned on $A_{1}^{\prime}>0$.

Conditioning the minimum of a CEI process

Corollary

Let (X, \mathbb{P}) be any non trivial CEI process such that $X_{0}=0=X_{1}$.
Assume that there exists a unique $\rho \in(0,1)$ such that $X_{\rho}=\underline{X}$ and that $X_{\rho-}=X_{\rho}$. Then, the law of X conditioned to remain above $-\varepsilon$ converges weakly in the Skorohod J_{1} topology as $\varepsilon \rightarrow 0$. Furthermore, the weak limit is the law of $\theta_{\rho} X$.

Loïc Chaumont and Gerónimo Uribe Bravo, Shifting processes with cyclically exchangeable increments at random, 2014, arXiv:1405.1335

Conditioning on the minimum of an El process

Definition

A càdlàg stochastic process has exchangeable increments (EI) if

$$
X_{k / n}-X_{(k-1) / n}, 1 \leq k \leq n
$$

are exchangeable for any $n \geq 1$.

$$
X_{t}=\alpha t+\sigma b_{t}+\sum_{i} \beta_{i}\left[\mathbf{1}_{U_{i} \leq t}-t\right]
$$

1. α, σ and $\beta_{i}, i \geq 1$ are (possibly dependent) rv and $\sum_{i} \beta_{i}^{2}<\infty$.
2. b is a Brownian bridge
3. $\left(U_{i}, i \geq 1\right)$ are iid uniform random variables on $(0,1)$.
(α, β, σ) are its canonical parameters.
Olav Kallenberg, Canonical representations and convergence criteria for processes with interchangeable increments, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 27 (1973), 23-36. MR 0394842

Conditioning on the minimum of an El process

Application to El processes

Let X be an El process with canonical parameters (α, β, σ). On the set
$\left\{\sum_{i}\left|\beta_{i}\right|=\infty\right.$, and $\sum_{i} \beta_{i}^{2}|\log | \beta_{i} \|^{c}<\infty$ for some $\left.c>1\right\} \cup\{\sigma \neq 0\}$,
X reaches its minimum continuously at a unique $\rho \in(0,1)$.

The case of Lévy processes

If X is a Lévy process and neither X nor $-X$ is a subordinator: then X achieves its minimum continuously if and only if 0 is regular for $(0, \infty)$ and $(-\infty, 0)$.
To reach the minimum continuously, we assume
H1 0 is regular for $(-\infty, 0)$ and $(0, \infty)$.

The case of Lévy processes

To reach the minimum continuously, we assume H 10 is regular for $(-\infty, 0)$ and $(0, \infty)$.
To build bridges, we use transition densities:
H2 For any $t>0, \int\left|\mathbb{E}\left(e^{i u X_{t}}\right)\right| d u<\infty$.

Definition

Under \mathbf{H}, there is an unique weakly continuous family $\left(\mathbb{P}_{0, y}^{1}, y \in \mathbb{R}\right)$ which is a version of the law of X on $[0,1]$ given X_{1}.
The Lévy bridge from 0 to 0 of length 1 has the law $\mathbb{P}_{0,0}^{1}$.

The case of Lévy processes

To reach the minimum continuously, we assume H 10 is regular for $(-\infty, 0)$ and $(0, \infty)$.
To build bridges, we use transition densities:
H2 For any $t>0, \int\left|\mathbb{E}\left(e^{i u X_{t}}\right)\right| d u<\infty$.
Proposition

Assume \mathbf{H}.

The law $\mathbb{P}_{0,0}^{1}$ has the El property.
Under $\mathbb{P}_{0,0}^{1}$, the minimum is achieved at a unique place $\rho \in(0,1)$ and X is continuous at ρ.

The case of Lévy processes

To reach the minimum continuously, we assume
H1 0 is regular for $(-\infty, 0)$ and $(0, \infty)$.
To build bridges, we use transition densities:
H2 For any $t>0, \int\left|\mathbb{E}\left(e^{i u X_{t}}\right)\right| d u<\infty$.

Proposition

Assume \mathbf{H}.
The law $\mathbb{P}_{0,0}^{1}$ has the El property.
Under $\mathbb{P}_{0,0}^{1}$, the minimum is achieved at a unique place $\rho \in(0,1)$ and X is continuous at ρ.

Remark

The finite-dimensional distributions of $\theta_{\rho} X$ are identified with those of the bridge of length 1 from 0 to 0 of the Lévy process conditioned to stay positive in

Gerónimo Uribe Bravo, Bridges of Lévy processes conditioned to stay positive, Bernoulli 20 (2014), no. 1, 190-206. MR 3160578

Remarks on the Brownian case

Corollary (Theorem 7 in [BCP03])

Let \mathbb{P} be the law of a Brownian bridge from 0 to 0 of length 1 and let U be uniform and independent of X. Let $\nu=\inf \left\{t \geq 0: X_{t}>U[x+\underline{X}]\right\}$. Then $\theta_{\nu} X$ has the same law as the three-dimensional Bessel bridge from 0 to x of length 1 .

Corollary

Let \mathbb{P} be the law of the Brownian bridge from 0 to 0 of length 1 , let $\left(L_{t}^{y}, y \in \mathbb{R}, t \in[0,1]\right)$ be its continuous family of local times and let U be uniform and independent of X. For $y \leq 0$, let

$$
\eta_{y}=\inf \left\{t \geq 0: L_{t}^{\frac{X}{t}-y}>U L_{1}^{\frac{X}{1}-y}\right\}
$$

Then the laws of $X \circ \theta_{\eta_{y}}$ provide a weakly continuous disintegration of \mathbb{P} given $\underline{X}=y$.

Jean Bertoin, Loïc Chaumont, and Jim Pitman, Path transformations of first passage bridges, Electron. Comm. Probab. 8 (2003), 155-166 (electronic). MR 2042754

嗇 J．Abramson，J．Pitman，N．Ross，and G．Uribe Bravo，Convex minorants of random walks and Lévy processes，Electronic Communications in Probability 16 （2011），423－434．
围 Jean Bertoin，Loïc Chaumont，and Jim Pitman，Path transformations of first passage bridges，Electron．Comm．Probab． 8 （2003），155－166（electronic）．MR 2042754
國 Jean Bertoin，Regularity of the half－line for Lévy processes，Bull．Sci． Math． 121 （1997），no．5，345－354．MR 1465812
Loï Chaumont and Gerónimo Uribe Bravo，Shifting processes with cyclically exchangeable increments at random，2014， arXiv：1405．1335．
围 Richard T．Durrett，Donald L．Iglehart，and Douglas R．Miller，Weak convergence to Brownian meander and Brownian excursion，Ann． Probability 5 （1977），no．1，117－129．MR 0436353
Olav Kallenberg，Canonical representations and convergence criteria for processes with interchangeable increments，Z．
Wahrscheinlichkeitstheorie und Verw．Gebiete 27 （1973），23－36．MR 0394842
P. W. Millar, Zero-one laws and the minimum of a Markov process, Trans. Amer. Math. Soc. 226 (1977), 365-391. MR 0433606
R B. A. Rogozin, The local behavior of processes with independent increments, Teor. Verojatnost. i Primenen. 13 (1968), 507-512. MR MR0242261
R Michael Sharpe, Zeroes of infinitely divisible densities, Ann. Math. Statist. 40 (1969), 1503-1505. MR 0240850
嗇 Gerónimo Uribe Bravo, Bridges of Lévy processes conditioned to stay positive, Bernoulli 20 (2014), no. 1, 190-206. MR 3160578

Wim Vervaat, A relation between Brownian bridge and Brownian excursion, Ann. Probab. 7 (1979), no. 1, 143-149. MR 515820

