
Shifting Register Windows zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Gordon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARussell

Paul Shaw zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
University of Strathclyde

28 IEEE Micro zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Shifting register windows is a new register windowing method that attempts to overcome
some of the difficulties of traditional fued- and variable-sized schemes. Using fewer register
elements zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthan a seven-window Sparc organjzation, shifting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAregister windows more than bakes
spiwrefd memory trafac, and reduces visible spiwrefill cycles by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan order of magnitude. In
addition, shifting register windows, a scheme based on fast hardware stack and regis--memory
dribbling, has a very short register bus length. It also zeros registers as they are being allo-

cated, making a common initialization unnecessary.

he use of registers has grown consid-
erably since the accumulators of von
Neumann's zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA194 j machine. Index reg-
isters appeared in 1951' as part of the

Manchester University Digitdl Computing Ma-
chine, followed in 1956 by general-purpose reg-
isters (within the Pegasus computer from
Ferranti12 General-purpose registers hold com-
monly accessed data, such as local variables,
pointers, parameters, and return values. They
cannot, however, hold heap-based variables or
other aliased data.3

One problem with the use of general-purpose
registers is in the overhead incurred over sub-
routine calls, where register contents must be
saved to memory and restored on return.
Hennessy and Patterson3 show that this overhead
equates to between 5 and 40 percent of all data
memory references. The common solution is to
use many on-chip registers.

Designers can use either software or hardware
to manage large register files. In architectures
where all general-purpose registers are viewed
as a single register file, software techniques*,j at-
tempt to maintain values in registers over sub-
routine calls by using global program knowledge.
To gain this global knowledge, the software allo-
cates registers at link time.

Hardware management strategies center around
register windows. This approach splits the regis-
ter file into several banks, with a bank allocated
on each call and deallocated on return. The on-

chip banks take the form of a circular buffer:
when requesting a bank that would mean that a
previously allocated bank gets overwritten, the
processor Saves the information the requested
bank contains to memory (window overflow).
On returning to a previously saved register bank,
the processor loads that bank from memory (win-
dow underflow).

Software techniques for maintaining values in
registers help keep the hardware simple.
However:

Linking for a windowed register file is faster,
and dynamic linking is easier to support.
In the software solution, having more directly
addressable registers requires more instruc-
tion bits to identlfy operands.
Adding registers in a windowed architecture
is transparent to the instruction set (and the
user), while adding to a nonwindowed sys-
tem is not.

Note that register windows cannot readily re-
place all processor registers, since globally acces-
sible registers will still be required (such as program
counter, user stack pointer, and window overflow
stack pointer). Although floating-point registers can
be windowed, current architectures typically leave
these registers global.

Register windowing divides itself into two gen-
eral sub-classes: fixed- and variable-sized. In a
fixed-sized register windowing scheme, the hard-

0272-1732/93/0800-0028603.00 0 1993 IEEE

ware designer defines the number of registers per bank,
whereas in a variable-sized scheme, software specifies the
bank's size at allocation time. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fixed-sized register windows. Both the Sparc chip set'
and the RISC 11- use fixed-sized register windows. For these
processors, the active window (that is, the currently acces-
sible block of registers) splits into three parts: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin, local, and
out, with each holding eight registers. The localpart contains
registers accessible only while that window is active, out holds
parameters to be passed to subroutines, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin holds the
current subroutine's parameters as supplied by the parent.
Whenever a new window is created, the out registers of the
current window become the in registers of the new window.
Deallocating the new window undoes this mapping.

Figure 1 shows three fixed-sized windows. Each column
represents the parts accessible from any one window. Parts
lying zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon the same row are directly mapped onto one an-
other. For example, the out part of window 2 is mapped
directly onto the in part of window 3. The underlying regis-
ter file appears on the right.

Increasing the register file size increases internal bus ca-
pacitance. Provided that the number of windows stays small,
this does not appear to affect processor cycle time.' How-
ever, with many on-chip banks, cycle time will certainly be
affected, suggesting an upper limit on design scalability. Fixed-
sized windows offer no flexibility in the number of param-
eters passed or locals declared. If the number of parameters
exceeds the size of the in register part, the remaining param-
eters must be held in memory. Alternatively, if some registers
within a bank are unused within a subroutine, window over-
flowhnderflow will involve redundant memory transfers.

Variable-sized register windows. Figure 2 shows an or-
ganization supporting variable-sized register banks. Here, a
global register stores the current window position. Its value
is added to every register reference, then passed to a de-
coder, which selects the desired register.

The only instruction used in controlling the windows is a
shift, On a subroutine call, the parent shifts the current win-
dow pointer to select the first parameter to be passed (that is,
a position after the parent's local variables). A negative shift
undoes this step on retum from the subroutine. Once called,
a subroutine can access registers from the current window
pointer onwards. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAm29000R provides similar support for
its register file.

Although this scheme supports variable-sized windows, it
includes an overhead of an addition on each register access.
The problem of scalability identified with fixed-sized win-
dows remains unsolved. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Design goals for a better windowing mechanism. Each

of the existing register management systems described offers
comparative advantages. For example, variable-sized windows
promise flexibility at the cost of performance, while the fixed
scheme provides better performance at the expense of flexibility.

Window 2

I In I

1 Local I Window3

r-T-
I Local I

Actual register file

I Local I

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Three fixed-sized register w i n d o w banks.

4 4
I I

Start of 4 I
current window

register

Figure 2. Organizat ion of variable-sized register windows.

A new windowing model, shifting register windows, im-
proves on existing register management schemes,

the new design contains the flexibility of variable-sized
register windows;
currently accessible registers (those contained within the
active window) should be the registers closest to the
arithmetic logic unit, thus minimizing signal propaga-
tion times;
the design should be without register-access overhead,
such as that incurred by the addition in variable-sized
windows;
the return address for a subroutine should be stored on-
chip to support fast call-return cycles;
the design should be scalable; and so adding more on-
chip space for register storage does not adversely affect
access times or logical complexity.

Shifting register windows
Multiple accesses to the same register within a variable-

sized windowing scheme each require an addition, even if
the current window position remains unchanged between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

August 1993 29

Shifting register windows zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
. : Allocate new window

with two registers

Figure 3. Register f i le arranged as a shifter.

Figure 4. The register w i n d o w i n g system. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
accesses. Keeping the 2ctix.e winclolv pointer fixed and in-
stead moving the contents of the register file a\.oids this situ-
ation. We can obtain this functionality by using a shifter.

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 sho\vs a register file AIO.. .(n - 1)I arranged zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA;is an
n cell shifter. It also shows the allocation o f a new nindow
B, which contains two elements. The program allocated this
window by performing two right shifts. and \\.ill later deallocate
it with left shifts (thus losing its contents). After :illoca-
tion. registers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB l0.11 occupy the s;me physical cells a s h [0.11
did hefore allocation. Therefore. the active \vindow al\va!-s
resides in the leftmost cells. Processor designers should place
this area as close t o the ALL; as possible.

When the processor allocates registers by shifting. it loses
information contained within the rightmost register cells. To
avoid this, shifted register contents should be stored in memory.
In Figure 3, registers A[(n- 2),(n- l)] have been saved. On
deallocation, register contents residing in memory should be
returned to the register file. This implies that the processor
performs memory accesses in step with shifting. which re-
quires the processor to stall until the accesses have completed.

Allowing the shifter to expand and contract as necessary
will alleviate this stalling problem. In this way. the shifter's
elasticity can absorb some elements that would have been
spilled. Whenever we enlarge the shifter this way, a second-
ary system migrates those elements that caused the growth
into memory. A similar mechanism operates when the shifter
is not full. (This can occur when the processor has moved
elements to memory and deallocated the registers.) The mi-
gration process stops when the shifter's capacity returns to
normal. or in the case of contraction, when there are no
more elements stored in memory.

An elastic shifter is constructed from n elastic cells. To the
left of each cell lies a shadow cell. Both cells can hold one
register element. The processor injects left or right shifting re-
quests into the leftmost cell of the shifter, where they propa-
gate bemeen elastic cells. Acknowledgments propagate right
to left in response to requests. During a shift, the processor
uses the shadow cells as intermediate storage. Requests persist
until acknowledged or cancelled. Also, at any time both left
and right shlft requests may exist along the length of the shifter
(although only one type of request may exist between any zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m o neighboring elastic cells). Depending on the type of re-
quests. the shifter can appear to contain from 0 (a left shift
persists for every elastic cell in the shifter) to 2n registers (a
right shift persists for evety elastic cell in the shifter). When the
shifter contains no outstanding requests, we consider it stable.

Because requests must propagate from cell to cell. the elastic
shifter takes longer to stabilize than the nonelastic variety.
W'ithout global knowledge of persisting requests, an elastic
shifter must stabilize before the processor can predict the
location of a register. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Overview. Figure 4 shows the organization of shifting reg-
ister windows within a processor. Depicted are the five main
entities:

The control unit inte+act. (CLU takes register allocation/
deallocation instructions from the control unit and converts
these to simple shifting commands. The CUI then transfers
these commands to the active and passive windows.
The active window is a synchronous shifter comprised
of a user-accessible set of registers (accessed by buses
that span its length). Its synchronous nature allows it to
stabilize quickly.
The passive window forms an elastic shifter of non-
user-accessible cells. It receives shifting commands from
the CUI and buffers data transfers between the active
window and spill manager. Because the processor never
accesses the passive window directly, register buses are
limited to those cells in the active window.
The spill manager responds to requests generated by
the rightmost cell of the passive window. When a re- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

30 IEEE Micro

LOUT LIN RIN ROUT

ESH I FT- R ES H I FT- R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0
ES H I FT- L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc, ESH I FT- L

LOUT LIN RIN ROUT 0,
I

Figure 5. An elastic register cell and its neighbors. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
quest to shift right arrives. the spill manager transfers the
data to be shifted into memory. The opposite transfer
occurs on a left shift. The spill manager stores spilled
registers in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa last in, first out manner. To minimize pro-
cessor stalls, the spill manager undertakes memory trans-
fers only when free memory cycles are available. To
promote these free memory cycles, an instruction c:iche
should be included in the processor.
Spill memoly holds register contents transferred by the
spill manager during right shifts. Depending on deci-
sions made during the processor design stage, accesses
to spill memory can be normal cached accesses, o r go
directly to main memory. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The complete shifter. In shifting register windows. the
active window contains a synchronous cells. The passive win-
dow contains b elastic cells, with a shadow cell to the left of
each (thus having a maximum capacity of 2h data items).
The shifter can shift data between the last element of the
active window and the first shadow cell of the passive window.

During a right shift, the CUI instructs the active window t c
shift to the right. Once the active window has finished shift-
ing, the data shifted off the end of the active window resides
in the first shadow cell of the passive window. A right shift
request then goes to the passive window from the CUI. Once
that request is successfully acknowledged, the CUI can de-
liver new commands to the active windom. A request to shift
left goes to the passive window; when that is positively
acknowledged the active window also shifts left.

In both shifting scenarios, the passive window need not
stabilize before the CUI sends it subsequent shift requests.
Previous requests propagate along the passive window inde-
pendently from current requests.

A single register cell. The three types of cell used in
constructing the overall model are known as synchronous,
elastic. ;ind s1i:idon. All hold the same type of information:

A &ita part. which holds either a program-related vari-
able or a subroutine return address, and
A valid hit, indicating whether the data part is currently
in use.

$yric-hmzous cell. l w o global control lines are connected
to each s>-nchronous register cell. SHIFT-R signals a cell to
shift out its contents to its right-hand neighbor, and shift in
the contents of its left-hand neighbor. SHIFT-L signals the
inverse operation.

Elastic aizd shadoui cells. The elastic cell is more complex.
using handshake lines to communicate shifting actions be-
ween itself and neighboring cells in the shifter. Each pair of
neighboring elastic cells shares an intervening shadow cell
through which data to be shifted communicates. Figure 5
shows this organization. Ebergen and Gingras' describe a
similar use of Shadow cells. In the stable state, the shifter
holds all data kvithin elastic cells, with the shadow cells re-
maining empty.

Figure 5 shows mo asynchrono~is handshake channels
(ESHIFT-R and ESHIF'I-L) hetween each pair of elastic cells.
As Figure h (next page) shows, each o f these channels is
comprised o f three wires: a request line (IIEQ) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo ac-
knowledgment lines (OK and FAIL). All requests nmst coine
from the left. On any one channel. :I request inust be ac-
knowledged before the cell can issue a subsequent request.
A request succeeds if OK is acknowledged and fails if FAIL is
acknowledged. Channel ESHIFT-R (elastic shift right) con-
trols right shifts, and ESHIFT-L controls those to the left. A

August 1993 31

Shifting register windows zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
REQ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
OK

FAIL

b

4

4

Figure 6. Composition of a handshake channel. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
request to a cell fails if that cell is currently issuing the same
class of request to its right-hand neighbor. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A pair of elastic cells operates as follows during ESHIFT-R
and ESHIFT-L requests:

An ESHIFT-R request made from C, to C,, instructs C,,
to first move its data to its right shadow cell, then move
the contents of its left shadow cell into itself. The re-
quest succeeds if this can be done, or fails otherwise.
An ESHIFT-L request made from C, to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC , , instructs C , +

to move its data into its left shadow cell. If this can be
done, the request succeeds, and C, moves data from its
right shadow cell into itself; otherwise the request fails.

Four signals control the movement of data between shadow
and elastic cells: ROUT, RIN, LOUT, and LIN. ROUT latches
data from the signalling elastic cell to its right-hand shadow
cell; RIN latches in the opposite direction. LOUT and LIN
control the symmetric operations for the left-hand shadow
cell.

Each elastic cell contains a state variable status that takes
on one of three values: IDLE, DO-ESHIFT-R, or DO-ESHIFT-
L. This defines what the cell should be doing when receiving
no requests from its left neighbor. The state of a cell is de-
fined as the value of its status variable.

In the IDLE state C, does nothing. In the DO-ESHIFT-R
state, C, makes an ESHJFT-R request to C,, If successful, C,
assumes an IDLE state. Otherwise, its state remains unchanged,
and the ESHIFT-R request will be tried again later. A similar
action takes place in the DO-ESHIFT-L state. If previously in
the IDLE state, C, enters state DO-ESHIFTR when an ESHIFT-
R request from C,-, succeeds. Similarly, C, enters state DO-
ESHIFT-L when a ESHIFT-L request from C,_] succeeds.

Requests issued by C, fail when the state of C, + matches
the type of request. That is, if C,,, is in state DO-ESHIFT-R
and receives an ESHIFT-R request from C, , the request fails
and the state of C, remains unchanged. Likewise, ESHIFT-L
requests issued by C, fail when C,, is in state DO-ESHIFT-L.

If the state of C,,, does not match the request from C,,
optimizations occur. For instance, if C,, is in state DO-ESHIFI-
R and an ESHIFT-L request comes from C , , the request suc-
ceeds, the previous register transfers are undone, and C,,,
assumes the IDLE state. Similar actions occur if C,, is in state
DO-ESHIFT-L and an ESHIFT-R request comes from C,. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
32 IEEE Micro

The spill manager. The spill manager is an augmented
elastic cell. The interface to its left cell remains unchanged,
with a shadow cell present between itself and its neighbor.
The cell's right-hand interface is not to another elastic cell,
but to spill memory.

The manager can exist in one of three states: idle, DO-
ESHIFT-R, and DO-ESHIFT-L. During the idle state, the man-
ager waits for requests from its left-hand neighbor.

When in the IDLE state, reception of an ESHIFT-R request
causes the spill manager to examine the valid bit of its inter-
nal data. If the data is invalid, the request succeeds, the state
remains unchanged, and the transfer from shadow cell to
spill manager takes place. If the data is valid, the request
fails, and the spill manager assumes state DO-ESHIFT-R.

ESHIFT-L requests received in the idle state succeed if the
data valid bit is set or the spill memory is empty. (The amount
of information stored in spill memory could be held within a
counter.) Successful ESHIFT-L requests result in the normal
data transfer from manager to shadow cell, and invalidation
of the manager's valid bit. Whether the request succeeds or
not, the spill manager sets the state to DO-ESHIFT-L if the
spill memory is not empty.

State DO-ESHIFT-L indicates that a data item previously
saved in the spill memory should be reloaded (and the valid
bit set). DO-ESHIFT-R indicates the opposite action; data
should be moved from the manager to spill memory (and the
valid bit cleared). The memory transfers are delayed until
both a free memory bus cycle becomes available and a hys-
teresis condition is met. When spilling, having the last h elas-
tic cells of the passive window in state DO-ESHIFT-R creates
the hysteresis condition. Refilling requires that these h cells
be in state DO-ESHIFT-L. The hysteresis reduces thrashing
(continual loading and storing of the same data elements).
When the memory transfer completes, the spill manager re-
mrns to the idle state. During spill-memory transfers, requests
are unsuccessful.

Whenever the spill manager's state matches the input re-
quest, that request will fail. With the state and request oppos-
ing, requests succeed provided the spill-memory transfer has
not started. Receiving ESHIFT-L in state DO-ESHIFT-R places
the manager in state idle. The manager then transfers its in-
ternal data to the shadow cell, and acknowledges the request
as successful. Receiving ESHIFT-R in DO-ESHIFT-L sets the
state to idle, and initiates the required shadow to manage
transfer.

If the spill manager is starved of free bus cycles, the pas-
sive window can become either completely full or completely
empty. In both cases, the processor cycles while it waits for a
positive acknowledgment from the passive window. This
increases the number of free bus cycles, allowing the spill
manager to make the necessary memory transfers. Transfers
made while the processor is stalled are calledforcedmemory
transfers. On a traditional windowed machine (such as Sparc),

~ ._~ ~

all memory transfers to handle register spills and refill are
forced: the processor can do no ~ i ~ e f ~ i l work during this time.

Typically, when the passive window contains zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh data
items or less, the spill manager attempts to pull data from
memory. Likewise, when it contains 6 + h items or more, the
spill manager attempts to store data. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Register interfacing. This proposed interfice to shifting
register windows (ignoring supervisory instructions) consists
of four instructions: ALLOC, DEALLOC. CALL. and KET1:RY.
The ALLOC and DEALLOC instructions allow the michine t o
acquire and relinquish registers, while the CALL and RETI JKN
instructions use the registers to store and restore the program
counter. It should be possible t o allocate and deallocate sev-
eral registers per CPU cycle. If the numlier of registers that
can be allocated/deallocated per cycle exceeds the number
of registers requested, ALLOC and DEALLOC \vi11 complete
within a single cycle. Otherwise these instructions take nvo
or more cycles to complete. Figure 7 describes the operation
of each of these instnictions.

Three primitives are referenced, namely In. Out, and Sig-
nal. The In and Out operations correspond t o right and left
shifts, and Signal corresponds to a hardware trap. Reg is the
register file of a dimension equal to the size o f the visible
window, addressed from 0 upwards. In takes t\vo pxini-
eters: the data to be inserted and the valid hit state. Out
requires only one parameter: where to put the data c4ement
produced by the shift left (which in this case is either t o store
it in the program counter. or to throw it an.;i!;).

Start-up and context switching. In a multitasking sys-
tem, the kernel handles process loading, swing. and initial-
ization. All process registers and selected internal state \ arialdes
must therefore be readable and writable. 'l'he passive \vim
dow does. however, complicate the kernel, hecause the pro-
cessor cannot directly access data items witliin this mindon.
Instead, the contents of the active and passive \vindo\? s niList
be flushed to spill memory on a contest save. mtl restored
again when the task is reloaded.

Turning off hysteresis and performing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM + h + 1 right shifts
flushes the registers to memory. When all elastic cells ancl the
spill manager are in the idle state (as indicated by a glolial
line). the flushing is complete. (To allo\v this glolxil line suf-
ficient time to StdbiliZe, it should he possible to siispend the
operation of all elastic cells. In a synchronous impleliienta-
tion, this could be done by removing their clocks :it the source.
Elastic cells are only stopped and started dui-ing a context
switch.) The processor selects data elements savctl during a
previous context switch by setting the internal vririzlblc that
points to the spill area. Performing a + h + 1 left shifts loads
the new context's data elements into the register file. The
processor then switches hysteresis Ixck on. The I-eloaclecl
process resumes execution as soon as a elements have lieen
reloaded and propagated along the passive \vindow into the
active window. Any remaining transfers \vi11 continue t o oc-

Figure 7. User-level interface.

cur o n free bus cyclcs undei- the control of the spill manager.
If :t process is beginning for the first time, the processor

initializes the register file 17)- setting the spill count to zero.
Glok11 lines then can he used to invalidate all valid bits and
set the states of all elastic cells (and the spill manager) to
IIILE.

With 'I shifting register \vindowing implementation, the
o\wht.ad of c(mtest switching depends on the numlier of
register saves anti restores made by the spill manager during
the s\vitch. This overhead is no larger than that o f a similarly
sized (in terms o f the total number of register holding ele-
ments) traditional fixed- o r variable-sizecl scheme.

Implementation. We have designed an implementation
of shifting register winchvs that is synchronous. thus allou.-
ing siinplc- interfacing to ii synchronous processor. Around
50 gates are required in each elastic cell to control handshak-
ing Analysis suggests allocation/deallocation o f a register
occurs in approxiinately zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA15 gate times. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Performance

The main perfc)rmance lienefit o f shifting register windows
arises from the improved access speed of the register con-
tents. clue to short zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhus lengths. With a 128-element register
file. transferring to a shifting register window implementa-
tion Lvith :t active window of 16 elements could result in an
eightfold decrease in lius length. I'redicting the performance
impact of short buses depencls on a large number of
implementation-spec~ic factors. Howe\w. the amount of spill-
~iienior) accesses and register management related proces-
sor stalls is independent o f implenientation. ancl can lie

August 1993 33

Shifting register windows zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

16 24 32 40 48 56
Passive window size (cells)

Figure 8. Shifting register window's memory accesses.

16 24 28 32 36 40 48 56 60
Passive window size (cells)

Figure 9. Shifting register window's processor stall cycles. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
modeled unambiguously.

To predict memory accesses caused by spilling and restor-
ing registers and processor stalls introduced due to register
management, we constructed a simulator. This simulator traced
Sparc binaries using Shadow,l0 and modelled instruction and
data caches, Sparc fixed-sized windows, and shifting register
windows. This simulation allowed for comparisons between
shifting register windows and the Sparc windowing system,
and demonstrated the effect that shifting register windows
has on memory bus contention. Note that the results are for
one process running to completion, with no context switches.

In the simulation, we used an 8-Kbyte instruction cache
and a write-back, 4-Kbyte data cache. Both caches were di-
rect mapped, with a block size of 16 bytes. The simulation
assumed that the Sparc had seven windows, with a spillhefill

of one window costing 60 cycles.3
For the shifting register windows simulation, we used a

16-cell active window. The spill manager had a hysteresis of
eight elastic cells, and bypassed the data cache when access-
ing spill memory. We assumed that a spillhefill of a single
register required four cycles, and that six registers could be
allocated per CPU cycle.

To reduce contention between cache-miss induced memory
accesses and spill-memory accesses, our simulation used a
pipeline look-ahead. This warns the spill manager of forth-
coming data cache accesses using information gleaned from
the pipeline. Such a warning prevents the spill manager from
initiating spill memory accesses. Our simulation assumed a
look-ahead of two cycles.

The benchmarks used were Tex and Gcc (used through-
out Hennessy and Patterson3), Detex, zoo, and fig2dev. We
varied the passive window size from 16 to 64 elastic cells.
We produced zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo graphs, detailing ratios of shifting register
windows against Sparc windows for spillhefill memory ac-
cesses (Figure 8) and processor stalls (Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9). Processor
stalls include memory collisions between the spill manager
and caches, spills when the passive window is completely
full, and refills when the passive window is completely empty.
Associated with the refill is the time taken for the last register
loaded to propagate to the active window. In practice, we
found this propagation time to be negligible.

From Figure 8, shifting register windows appears to gener-
ate less memory traffic than the Sparc windowing system for
passive window sizes over approximately 24. Maintaining
low memory traffic is a goal in multimaster systems.

Figure 9 shows that, for passive window sizes over 16,
processor stalls for shifting register windows typically are less
than that incurred by the Sparc. Reducing processor stalls
increases instruction throughput.

The hysteresis value chosen in the simulation was a bal-
ance between two performance-related factors: forced spill-
memory accesses and cache collisions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA low hysteresis value
results in fewer forced memory accesses at the expense of
increased cache collisions. The converse situation pertains
for a high hysteresis value. In terms of circuit area and signal
propagation times, a low hysteresis value is desirable. In a
processor design, the exact figure chosen will also depend
on cache miss rates, look-ahead distance, and the speed of
external memory.

THE PROPOSED SHIFIING REGISTER WINDOWING mecha-
nism substantially improves on existing schemes. The main
benefits are minimization of register bus length, a reduction
in spill/fill overhead, and automatic zeroing of local registers.

These improvements come at the cost of added control
circuitry and increased time taken to allocate local registers:

34 IEEEMicm

allocation time is proportional to the number of registers re-
quested. Processor designers should strive to achieve suffi-
cient allocation rates such that their designs can handle the
majority of register allocations in a single cycle. Since the
passive window is the slowest part of the design, using two
passive windows will improve allocation rates, with the ac-
tive window communicating to each in tum. The performance
gain comes at the expense of a more complex, two-port spill
manager.

We hope that the ideas presented in this article will both
increase the performance of register-based processors and
encourage further research into register windowing paradigms.
We are actively investigating the implications zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof shifting reg-
ister windows for architectures based on multiple stacks. Each
stack uses a small shifting register window. Initial analysis
shows that the problems demonstrated with shifting register
windows (such as multicycle allocation times) are avoided
using this approach. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Acknowledgment

ing useful feedback on earlier drafts of this article.
We thank Paul Cockshott and Robert Lambert for provid-

References zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.

2.

3.

4.

5.

6.

7.

8.

9.

10

T. Kilburn, "TheManchester University Digital Computing Machine,"
Charles Babbage institute Reprint Series zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor the History zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof
Computing, Vol. 14, M.R. Williamsand M . Campbell-Kelly, eds.,
MIT Press, Cambridge, Mass., 1989, pp. 138-141
D.P. Seiwiorek, C.G. Bell, and A. Newell, Computer Structures:
Principles and Examples, McGraw-Hill International, Singapore,
Malaysia, 1982.
J.L. Hennessy and D.A. Patterson, Computer Architecture: A
QuantjtativeApproach, Morgan Kaufmann Publishers, Palo Alto,
Calif., 1990.
S. Richardson and M . Ganapathi, "Code Optimization Across
Procedures," Computer, Vol. 22, No. 2, Feb. 1989, pp. 42-50.
D.W. Wall, "Register Windows vs. Register Allocation," froc.
SIGPLAN '88 Conf. on Programming Language Design and
Implementation, ACM Press, New York, Vol. 23, No. 7, June

B. Glass, "Sparc Revealed," Byte, Vol. 16, No. 4, Apr. 1991 pp

D.A. Patterson and C.H. Sequin, "AVLSI RISC," Computer, Vol
15, No. 9, Sept. 1982, pp. 8-21.
Am29000 User's Manual, Advanced Micro Devices, Sunnyvale,
Calif., 1987.
J C. Ebergen and S. Gingras, "An Asynchronous Stack with
Constant Response Time," Tech. Report CS-93-11, Computer
Science Dept., Univ. of Waterloo, Waterloo, Canada, Aug. 1992.
Introduction to Shadow, Sun Microsystems, Mountain View,
Calif., Apr. 1992.

1988, pp. 67-78..

295-302. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Gordon Russell is a PhD research stu-
dent in the Computer Science Department
of Strathclyde University, where he is ex-
amining networked persistent object-
oriented systems. Other interests include
processor design, portable computer sys-
tems, and dynamic recompilation methods.

Russell's first degree was a BSc in computer science and
electronics, also from Strathclyde. Currently, he is a student
member of the IEEE, British Computer Society, and Institu-
tion of Electrical Engineers.

Paul Shaw currently works on the auto-
matic compilation of Occam to digital logic
and on the simulation of physical systems
on field programmable gate arrays. His in-
terests include computer architecture, asyn-
chronous systems. cellular automata, and
highly parallel machines.

Shaw received his BSc degree in computer science and
electronics from the University of Strathclyde in 1990. where
he is now studying as a PhD student.

Direct any comments regarding this article to Gordon Russell,
University of Strathclvde, Department of Computer Science, 26
fichmond Street, Glasgow, Scotland; gor@cs.strath.ac.uk.

Reader Interest Survey
Indicate your interest in the article by circling the appropriate
number on the Reader Service Card

Low 153 Medium 154 High 155 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
August 1993 35

mailto:gor@cs.strath.ac.uk

