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Shifting the optimal stiffness for cell migration
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Cell migration, which is central to many biological processes including wound healing and

cancer progression, is sensitive to environmental stiffness, and many cell types exhibit a

stiffness optimum, at which migration is maximal. Here we present a cell migration simulator

that predicts a stiffness optimum that can be shifted by altering the number of active

molecular motors and clutches. This prediction is verified experimentally by comparing cell

traction and F-actin retrograde flow for two cell types with differing amounts of active motors

and clutches: embryonic chick forebrain neurons (ECFNs; optimum B1 kPa) and U251 glioma

cells (optimumB100 kPa). In addition, the model predicts, and experiments confirm, that the

stiffness optimum of U251 glioma cell migration, morphology and F-actin retrograde flow rate

can be shifted to lower stiffness by simultaneous drug inhibition of myosin II motors and

integrin-mediated adhesions.
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S
everal models have been proposed to describe optimality in
cell migration, beginning with the adhesion strength model
of cell migration of DiMilla et al.1. This model provided a

theoretical framework for understanding the experimental
observation that cells migrate fastest at intermediate adhesion
strength2. However, it did not consider migration in compliant
environments that is presumably the norm for migration in vivo.
In addition, cell migration in vitro is highly sensitive to the
mechanical stiffness of the environment, but the theoretical basis
for these effects remains to be established. Since the observation
of stiffness-sensitive cell migration by Lo et al.3, other cell
migration models have provided some basis for stiffness sensitive
cell migration by incorporating stiffness-dependent functions
for force transmission4,5. However, such approaches introduce
stiffness dependence as an assumption a priori, as opposed to
having it naturally emerge as an output of the model. Therefore,
we currently lack a theoretical explanation for how cell migration
depends on the mechanochemical environment and how cells
determine the optimal stiffness of their environment.

We and others have previously presented a model of cellular
force transmission based on the motor–clutch hypothesis6 that
naturally predicts biphasic stiffness dependence as an outcome of
the model7–9. In this model, intracellular molecular motors, such
as myosin II, transmit force to the external environment through
rigid actin filament bundles and compliant transmembrane
molecular ‘clutches’, such as integrins (Fig. 1a). In addition, the
motor–clutch-based modelling was used to study the effect of
substrate stress relaxation on cell spreading, collective cell
durotaxis and ex vivo cell migration as a function of adhesion
molecule expression10–12. Our messenger RNA (mRNA) analysis
of U251 human glioma cells has identified the most likely
candidates for components of the motor–clutch model based on a
previously published list13 of cell migration genes (Supplementary
Table 1). We previously performed a detailed sensitivity analysis
on this model and determined that dual parameter changes were
needed to account for the broad range of stiffness optima
seen experimentally14. Specifically, coordinately increasing the
expression of molecular motors and clutches shifted the stiffness
optimum for maximal force transmission to higher stiffness14,15.
However, our previous study only modelled a single
F-actin-based protrusion, and therefore it is not clear whether
the optimum shifting predicted by the motor–clutch model would
occur in a simulation of an entire cell. Also, the motor–clutch
model does not directly predict cellular level features, including
cell area, shape and migration, the last being functionally
important in nervous system development, immune response
and cancer progression.

To address these issues, we developed a stochastic whole
cell migration simulator built from the motor–clutch model to
simulate cell migration in compliant microenvironments while
enforcing force and mass balances. The model predicts a stiffness
optimum that can be shifted by altering the number of active
molecular motors and clutches. We then experimentally tested
the model predictions under conditions of varying mechanical
stiffness and coordinate shifts in the activity of motors and
clutches. Our results confirmed the model predictions and
illustrated the ability to shift the optimal stiffness by altering
the number of motors and clutches.

Results
Cell migration simulator. While the motor–clutch model set a
foundation for migration sensitivity to stiffness, it did not
describe the direct link between force transmission sensitivity
and cell migration sensitivity. To investigate this link,
we developed a cell migration simulator based on our earlier
motor–clutch model. In this simulator, we linked together

multiple motor–clutch systems, termed ‘modules’, such that the
modules each exert a force on a central cell body (Fig. 1a,b, see
cell migration simulator parameters values in Supplementary
Table 2). The resulting cell migration arises due to a force balance
among the motor–clutch modules and the cell body as motors
build load and clutch bonds to the substrate break stochastically,
thus releasing load.

Our previous theoretical analysis of a single motor–clutch
predicted that the optimal stiffness can be readily shifted by
coordinately changing the numbers of motors and clutches14,15.
To test whether simulated cells exhibit an optimal stiffness for cell
migration, and whether such a shift in the optimal stiffness occurs
in our whole cell migration simulator, we simulated cell migration
at high and low motor and clutch numbers. The cell migration
simulator predicted a stiffness optimum for F-actin retrograde
flow rate that was shifted by altering the numbers of motors and
clutches (Fig. 1c), consistent with the results for the simpler
motor–clutch model that only modelled one protrusion14.
The simulator also predicted a stiffness optimum for cell
traction force that was reduced by altering the numbers of
motors and clutches (Fig. 1d). However, the maximum of the
simulated cell aspect ratio did not show an obvious shift when
changing the number of motors and clutches (Fig. 1e). Finally, the
cell migration simulations exhibited a stiffness optimum that was
shifted to a higher stiffness by increasing the numbers of motors
and clutches (Fig. 1f)—again consistent with our previous motor–
clutch analysis14 (simulation movies depicting cell shape and
migration are provided for 0.1, 10 and 1,000 pNnm� 1 substrates
for low number of motors and clutches; Supplementary Movie 1).
A composite metric was created to mathematically combine all
four metrics that also shows an increase in the stiffness optimum
caused by coordinately increasing the number of motors and
clutches in the cell migration simulator (Fig. 1g).

U251 glioma cell migration and morphology. To experimentally
test the predictions of the cell migration simulator, U251 glioma
cells were cultured on polyacrylamide hydrogel (PAG) substrates
of varying Young’s modulus and surface-immobilized collagen
type I (formulations in Supplementary Fig. 1). Based on our cell
migration simulator, cell migration rate and morphology are
predicted to be substrate stiffness sensitive. As shown in the
representative images in Fig. 2a, cell morphology depended on
the substrate stiffness, such that on a 4.6 kPa gels the cells were
small and round, while on a 100 kPa gel they were larger and
more elongated.

To quantify cell migration and morphology, an image
segmentation algorithm was used to estimate cell position, spread
area and aspect ratio (Supplementary Fig. 2). Figure 2b shows
representative wind-rose plots of cell trajectories on 4.6, 100 and
200 kPa, demonstrating the difference in cell migration. Each plot
shows the trajectories of 10 randomly selected cells over 10 h.
Qualitatively, the cells on 100 kPa migrate further in 10 h than the
cells on either 4.6 or 200 kPa. Cell positions were used to calculate
the mean squared displacement for each cell over time intervals
ranging from 15min to 5 h (Supplementary Fig. 2e) to estimate
cell random motility coefficients. Over a stiffness range of 50 Pa to
200 kPa, the mean cell random motility coefficient had a
maximum at B100 kPa (Fig. 2c). Similarly, mean cell area
increased with increasing stiffness, although it did not exhibit a
clear maximum (Fig. 2d), a feature that we revisit later in the drug
treatment studies. Similar to migration rate, the cell aspect ratio
exhibited a maximum of B20–100 kPa (Fig. 2e). Sample movies
of U251 glioma cells on 4.6, 100 and 200 kPa are presented
in Supplementary Movie 2. In addition, mRNA expression was
quantified for the cells on different stiffnesses to show that the
migration differences were not the effect of changes in genes

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15313

2 NATURE COMMUNICATIONS | 8:15313 | DOI: 10.1038/ncomms15313 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


expression on the different stiffnesses. Few cell migration
genes showed any significant expression difference among the
stiffnesses, and nearly all the expression differences were found
between plastic and the PAGs, rather than among the PAGs
(Supplementary Fig. 3).

F-actin retrograde flow and traction strain energy. Previous
experimental measurements of embryonic chick forebrain neuron
(ECFN) behaviour suggests that they have minimal actin flow and
maximal traction strain energy on a stiffness of B1 kPa7,14.
Because ECFNs have a lower optimum stiffness than the U251
glioma cells (B1 kPa for ECFNs versus B100 kPa for U251
glioma cells), then, based on the cell migration simulator
predictions (Fig. 1c), this suggests the possibility that ECFNs
have fewer motors and clutches than U251 glioma cells.
To experimentally test this prediction, we measured F-actin
retrograde flow in EGFP-actin U251 glioma cells cultured on

varying stiffness substrates. Based on the cell migration simulator,
we expect a shift up in retrograde flow minimum in U251 cells
compared with ECFNs. Expression of EGFP-actin has previously
been shown not to affect F-actin retrograde flow rate in neurons,
a finding that we now also confirm for U251 glioma cells
in Supplementary Fig. 4a–c. Figure 3a shows a representative
fluorescent image of an EGFP-actin U251 cell, and Fig. 3b shows
a representative kymograph of actin flow at the edge of a U251
glioma cell. According to the cell migration simulator (Fig. 1c),
the increase in optimal stiffness from B1 kPa for neurons to
B100 kPa for glioma cells should correspond to an B100-fold
increase in the minimum in F-actin retrograde flow rate. As
shown in Fig. 3c, the actin flow for U251 cells has a minimum
between 20 and 100 kPa that occurs at the Young’s modulus
approximately two orders of magnitude greater than the
minimum for ECFNs as predicted for B100-fold increase in
the number of motors and clutches.

High motors and clutches

Low motors and clutches

a b

0

1

2

3

4
e

C
e

ll 
a

s
p

e
c
t 

ra
ti
o

0

1

2

3

4

5

6
f

R
a

n
d

o
m

 m
o

ti
lit

y
 c

o
e

ff
ic

ie
n

t

(µ
m

2
 m

in
–

1
)

0

20

40

60

80

100c

Spring constant

(pN nm–1)

A
c
ti
n

 f
lo

w
 r

a
te

(n
m

 s
–

1
)

d
T

ra
c
ti
o
n
 f

o
rc

e

m
a
g
n
it
u
d
e
 (

p
N

)

0

1,500

3,000

4,500

6,000 20 µm

X
ref,3

X
s,3

X
m,3

Xm,2

Xm,1

X s,1

X cell

X s,2

X ref,2

K cell

K c

K c

K s

K s

X ref,1

K
s K

C

0

200

400

600

800

0

0.2

0.4

0.6

0.8

1

1.2

0.01 1 100

Spring constant

(pN nm–1)

0.01 1 100

Spring constant

(pN nm–1)

0.01 1 100

Spring constant

(pN nm–1)

0.01 1 100

0.01 0.1 1 10 100 1,000

Spring constant (pN nm–1)

C
o

m
p

o
s
it
e

 m
e

tr
ic

g ∆Ksub,opt = 4-fold

P <0.0001

Clutches

+–

Motors

F-actin
Cell

body

Compliant

substrate

Plasma

membrane

Figure 1 | Cell migration simulator. (a) Schematic of a motor–clutch module attached to the central cell body. Additional modules may also extend from

the cell body but are not shown here for simplicity. (b) Representative schematic of the cell migration simulator overlaid on top of a phase-contrast image

of U251 glioma cell. This image demonstrates how the simulator captures the three main protrusions of the cell. (c–f) Plots of simulator outputs for the

cases of low (1,000 motors and 750 clutches) and high (10,000 motors and 7,500 clutches) are shown. (c) For the low case, the actin retrograde flow

minimum occurs around a spring constant of 0.1 pNnm� 1, and for the high case it occurs at B1 pN nm� 1. (d) For both the low and high number of motor

and clutches cases, the traction force maximum occurs at B0.1 pN nm� 1 and the high case producing B10-fold more force. (e) For both low and high

motors and clutches, cell aspect ratio has a maximum of B10 pN nm� 1. (f) For low motors and clutches, random motility coefficient peaks at

B10 pNnm� 1, whereas for high motors and clutches, it peaks at B1 pN nm� 1. (g) The composite metric, created to mathematically combine all four

metrics, and fit Gaussian curves’ peaks show a statistically significant shift in the optimum stiffness for the low and high motors and clutches cases

(P¼0.0001). All error bars are s.e.m. The number of observations for each condition can be found in Supplementary Table 3.
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If the higher optimal stiffness for glioma cells versus neurons
is due to an B100-fold increase in the numbers of motor and
clutches, then the cell migration simulator predicts that cell
traction forces should be two orders of magnitude larger for U251
cells than for ECFNs. Alternatively, sensitivity analysis of the
motor–clutch showed that the optimal stiffness can be increased
by orders of magnitude via a coordinate increase in the on and off
rate constants for the clutches14 that would predict no change in
traction force between U251 cells and ECFNs. Using Fourier
transform traction cytometry16, we estimated traction strain
energy for both cell types on the same stiffness. As shown in
Fig. 3d, the U251 glioma cells clearly transmit more force, and
when plotted on the same scale, the traction vectors for ECFNs
are barely detectable compared with those for U251 glioma cells.
Consistent with the prediction of increased motors and clutches,
and inconsistent with the prediction of increased on–off clutch
kinetics, the mean U251 glioma cell traction strain energy on
700 Pa modulus gels is B400 times greater than the mean ECFN
traction strain energy (Fig. 3e; measurements validated against
measurement noise in Supplementary Fig. 4d,e). The greater force
transmission for U251 glioma cells suggests that they express at
least two orders of magnitude more motors and clutches than
the ECFNs. We have previously shown that clutches must

approximately balance motors to maintain stiffness sensitivity14.
Therefore, since actin flow is stiffness sensitive for both cell types,
the expression of clutches also likely differs by at least two orders
of magnitude. Finally, if the numbers of motors and clutches is
increasing, then the cell migration simulator predicts an optimal
stiffness for maximal force transmission that will be shifted to
higher stiffness for glioma cells than neurons. As predicted for
increased motors and clutches, the mean traction strain energy
for U251 glioma cells has a maximum of B10 kPa, an order of
magnitude higher than the potential maximum of ECFN strain
energy that is B1 kPa (Fig. 3f; technical details for high stiffness
measurements described in Supplementary Fig. 4e,f). Together,
the experimental measurements of F-actin retrograde flow rate
and cell traction force support a motor–clutch-based model
where U251 glioma cells express B100-fold greater motors and
clutches than ECFNs, and argue against a model where clutch
on–off kinetics are altered. As a result, we conclude that the large
difference in stiffness optima between glioma cells and neurons is
mainly due to glioma cells expressingB100-fold greater numbers
of motors and clutches than neurons.

Simultaneous inhibition of motors and clutches. As shown in
Fig. 1g, the cell migration simulator predicts a decrease in the
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The number of observations for each experiment can be found in Supplementary Table 3.
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optimal stiffness upon coordinate decrease in both motors and
clutches. To further test experimentally the prediction that
coordinate changes in the numbers of active motors and clutches
shift the optimum stiffness for a cell, we partially inhibited
myosin II motors via blebbistatin and partially inhibited
integrin-mediated adhesions to the collagen-coated substrate via
cyclo(RGDfV) competitive binding using the U251 glioma cells.

As predicted by the cell migration simulator, the combined
drug treatment shifted the minimum of actin flow to around
4.6 kPa (Fig. 4a). This occurred due to a decrease in the actin flow
rate on 4.6 kPa, but the actin flow rate on 100 kPa was not
significantly affected. The maximum in traction stain energy did
not shift out of the control range due to the combined treatment,
but the traction strain energy was reduced as shown in Fig. 4b.
On 4.6 kPa, each drug individually decreased the traction strain
energy by about an order of magnitude, but the combined drug
treatment actually increased the traction strain energy compared
with the single drug cases. This indicates that the addition of a
traction-inhibiting drug can actually increase the traction strain
energy in the presence of the other traction-inhibiting drug, an
effect predicted by the model. On 9.3 kPa, the traction strain
energy was reduced by about an order of magnitude in each single
drug case and the combined treatment.

The combined drug treatment showed an optimum for cell
area at B10 kPa, implying that untreated cells’ optimum is
B200 kPa or higher (Fig. 4c). The combined treatment had
opposite effects on 4.6 kPa where it increased cell area and on
100 kPa where it decreased cell area. Furthermore, combined drug
treatment did not shift the optimum for cell aspect ratio (Fig. 4d).
On 4.6 kPa, this treatment increased the cell aspect ratio, but it
had no significant effect on aspect ratio on 100 kPa. Finally,
Fig. 4e shows a potential shift in the maximum of the random
motility coefficient. More importantly, the random motility
coefficient on 4.6 kPa increased in the combined drug case
compared with the cases with no drug or each drug individually.
Conversely, the combined drug treatment decreased random
motility compared with the no drug case on 100 kPa.
Interestingly, the individual drug treatments each decreased the
motility more than the combined treatment on 100 kPa,
indicating that the addition of a motility-inhibiting drug partially
rescues motility in the presence of the other motility-inhibiting
drug.

The combined data of random motility coefficient, cell area,
cell aspect ratio, actin flow rate and traction strain energy indicate
that the coordinate inhibition of motors and clutches reduced the
cell optimum stiffness.

Furthermore, Fig. 4f demonstrates this fact by presenting a
metric that combines all five types of data for U251 glioma cells
with no drug and with the combined drug treatment. These
results are also compared with the composite metric for ECFN
actin flow and traction strain energy. The ECFNs are expected to
have low numbers of motors and clutches, and correspondingly
they have a low optimum stiffness near 1 kPa. The U251 glioma
cells have a higher optimum stiffness near 50 kPa. The
combination drug-treated U251 glioma cells, which are expected
to have about an order of magnitude fewer active motors and
clutches, in turn have an optimum near 20 kPa. Finally, the
number of experimental observations and significance values
for comparisons in Fig. 4 are presented in Supplementary
Tables 3 and 4.

Discussion
Here we confirmed a mechanism by which cells are able to
determine the optimal stiffness of their environment that was
predicted by the cell migration simulator. In addition, the cell
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Figure 4 | Simultaneous inhibition of motors and clutches shifts the optimum stiffness to lower Young’s modulus. (a) Addition of both drugs shifted the

minimum actin flow rate to B4.6 kPa. cylco(RGDfV) alone increased actin flow on both 4.6 and 100 kPa, while blebbistatin alone reduced actin flow on

4.6 kPa but not significantly on 100 kPa. The combined drug treatment reduced actin flow on 4.6 kPa but did not significantly affect actin flow on 100 kPa.

(b) Addition of both drugs decreased traction strain energy by approximately fourfold on all stiffnesses. The maximum traction strain energy maintained its

maximum at B9 kPa. However, the combined drug treatment increased the traction strain energy compared with either individual drug treatment on

4.6 kPa. (c) Addition of both drugs caused the maximum area to beB9 kPa. On 4.6 kPa, the addition of both drugs increased the cell area, while on 100 kPa

they decreased the cell area. (d) Addition of both drugs did not shift the maximum aspect ratio. On 4.6 kPa, blebbistatin individually and both drugs

combined increase the aspect ratio. None of the drugged cases had a significant effect on the aspect ratio on 100 kPa. (e) Simultaneous addition of 6 mM

blebbistatin and 0.6mM cyclo(RGDfV) shifts the potential maximum U251 glioma cell random motility coefficient toB4.6 kPa. On 4.6 kPa, addition of both

drugs increases the random motility coefficient compared with the no drug, blebbistatin and cylco(RGDfV) cases. On 100 kPa, all three drugged cases are

lower than the no drug case, but addition of both drugs increases the random motility coefficient compared with either single drug case. (f) A composite

metric with corresponding Gaussian fit curves demonstrates the shifting in stiffness optimum among U251 glioma cells, U251 glioma cells treated with

blebbistatin and cyclo(RGDfV) and ECFNs. Gaussian fit curves peaks show a statistically significant shift in the optimum stiffness for the untreated and

treated U251 glioma cell composite metric (P¼0.015). (g) Illustration of how same drug treatment may result in opposite effects in different mechanical

environments. P values for all bar chart comparisons are presented in Supplementary Table 4. All error bars are s.e.m. The number of observations for each

experiment can be found in Supplementary Table 3.
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migration simulator presented in this work provided accurate
and unexpected, quantitatively accurate predictions that were
validated experimentally. The values for random motility
coefficient, cell aspect ratio and actin flow rate differed at most
byB25% from the experimental values. This accuracy for each of
the three separate metrics of cell behaviour is especially
remarkable given that many of the parameter values were order
of magnitude estimates taken from broad experimental ranges.
The cell migration simulator could also be used in the future to
simulate a variety of cell migration behaviours in heterogeneous
environments including durotaxis3 and confined migration17.
Although the current version of the simulator acts in two spatial
dimensions, it can be extended to three spatial dimensions by
allowing modules to extend along a third coordinate and solving a
force balance in the third dimension. Perhaps most importantly,
the cell migration simulator could be used as an in silico
diagnostic and treatment tool for diseases such as glioblastoma
for which aberrant cell migration is a major contributor to poor
prognoses18 (Fig. 4g).

Methods
Migration simulator description. The cell migration simulator is based on the
motor–clutch model of cellular force transmission7. In this simulator, the cell is
composed of j motor–clutch modules, each following rules as previously
described7,14. Briefly, nc,j clutches may bind from F-actin within the cell to a
compliant substrate outside of the cell at rate kon. These clutches unbind at a rate,
koff,i, that depends on the clutch force, Fc,i, according to the Bell model19 in
equation (1) where k*off is the unloaded clutch off-rate and Fb is the characteristic
bond rupture force.

koff ;i ¼ k�off exp
Fc;i

Fb

� �

: ð1Þ

The clutches and the compliant substrate are each modelled as Hookean springs
with spring constants kc and ks respectively. The rigid F-actin is retracted by nm,j

molecular motors, each with stall force Fm and unloaded velocity v*m, at rate vm,j as
described by equation (2) in which xs,j is the substrate displacement for the jth

module.

vm;j ¼ v�m 1� ksxs;j

nm;jFm

� �

ð2Þ

Additional rules were added to govern F-actin polymerization and
depolymerization in the module. The polymerization speed, vp, was defined to be
proportional to the ratio of G-actin, AG, to the total amount of actin in the cell,
AT, as in equation (3) where v*p is the maximum F-actin polymerization speed.

vp ¼ v�p
AG

AT

� �

ð3Þ

F-actin was depolymerized when it passed the motor position for its module.
Clutches were also forced to unbind if their F-actin attachment point passed the
motor position. Each module contained a cell spring with spring constant kcell that
connected the module motors to the central cell body. The forces along each
module balance according to equation (4) where xcell,j is the extension of the cell
spring for the jth module, and xc,i is the extension of the ith clutch of the module.

Fj ¼ kcellxcell;j ¼ kc
X

nc;j

i¼1

xc;i ¼ ksxs;j ð4Þ

There were also nc,cell clutches associated with the central cell body that balance a
central substrate displacement as in equation (5) describing the force on the cell
body, Fcell.

Fcell ¼ kc
X

nc;cell

i¼1

xc;i ¼ ksxs;cell ð5Þ

An overall cell force balance was imposed such that the cell force and all module
forces summed to zero as in equation (6) where nmod is the number of modules.

Fcell þ
X

nmod

j¼1

Fj ¼ 0 ð6Þ

Modules of initial length lin were created at rate kmod that was proportional to the
ratio of G-actin to the total actin raised to the fourth power20,21 as in equation (7)
where k*mod is the maximum rate of module formation.

kmod ¼ k�mod

AG

AT

� �4

ð7Þ

When a module was created, it was assigned motors and clutches from a pool of
free motors, nm,free, and a pool of free clutches, nc,free, according to equations (8)
and (9) where nm,tot and nc,tot are the total numbers of motors and clutches in the
cell, and n*m and n*c are the maximum numbers of motors and clutches for a
module.

nm ¼ n�m
nm;free

nm;tot
ð8Þ

nc ¼ n�c
nc;free

nc;tot
ð9Þ

The direction of the module was assigned randomly in the two dimensional plane.
Modules were capped at rate kcap, eliminating further polymerization for the
capped modules, and they were destroyed if their length was less than a minimum
length, lmin. Upon module destruction, all motors, clutches and remaining actin
were returned to their respective pools.

Simulator implementation. The model was implemented using a direct Gillespie
Stochastic Simulation Algorithm (SSA)22 in Matlab (MathWorks). The time to the
next event, tevent, was calculated by equation (10) where URN1 is a uniformly
distributed random number, and ki is the rate of the ith of n possible events
including clutch binding, clutch unbinding, module creation and module capping.

tevent ¼
� lnðURN1Þ

P

n

i¼i

ki

ð10Þ

The event i to execute was then determined using a second random number, URN2,
such that equation (11) was satisfied.

X

i� 1

j¼1

kjoURN2

X

n

j¼1

kjo
X

i

j¼1

kj ð11Þ

This direct method is computationally efficient because only two random numbers
are generated regardless of the number of possible events.

The order of the model algorithm is described below.

(1) Initialize a cell with three equally spaced modules of length lin and no clutches
bound.

(2) Calculate all clutch unbinding rates and module birth rate.
(3) Calculate time to next event.
(4) Determine which event to execute.
(5) Calculate F-actin retrograde flow rate for each module.
(6) Shorten each module by the product of the F-actin flow rate and the event

time.
(7) Advance the clutch, substrate and reference positions for each uncapped

module by the F-actin polymerization length for the event time.
(8) Execute event.
(9) Destroy modules shorter than length lmin.

(10) Evaluate force balance to determine the new cell body position.
(11) Use the force on each module to determine the cell spring extension, clutch

extensions and the substrate spring extension.
(12) Return to step 2.

Simulation analysis. The random motility coefficient (m) for simulated
two-dimensional cell migration was defined similarly to a diffusion coefficient as in
equation (12)23.

m ¼ r2h i
4t

ð12Þ

In this equation, hr2i is the mean squared displacement of the cell centre in a given
time interval, t. From this relation, m can be calculated from the slope of hr2i versus
t. This plot was generated for each simulated cell according to the overlap method
of mean squared displacement calculation24. In this method, all displacements at all
possible time intervals are used to generate the plot. To correspond to our
experimental cell migration experiments, simulation data at 15min intervals was
used to calculate mean squared displacements, and the first hour of each simulation
were excluded from analysis to allow the system to reach steady state
(Supplementary Fig. 5). In addition, large displacements in the simulated cell centre
of 1 mms� 1 were removed. A linear trend line intersecting the origin and inversely
weighted by the uncertainty in each data point was fit to the first half of the hr2i
versus t data for each simulated cell. The random motility coefficient was calculated
from the slope of the trend line and averaged across all simulated cells at a given
condition to obtain the mean random motility coefficient for that condition.

Simulated cell morphology was determined by creating a geometric shape based
on the position outputs of the simulation. First, a 10 mm radius circle was centred at
the cell body position. Then, 10 mm was added to the length of each module to
account for the module starting at the edge of the cell body rather than the central
point. Tangent lines to the cell circle were then drawn to connect the module tips to
the central circle. The resulting shape was then analysed for aspect ratio using
MATLAB ‘regionprops’ function. Simulation movies depicting cell shape and
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migration are provided for 0.1, 10 and 1,000 pNnm� 1 substrates (Supplementary
Movie 1).

Finally, the F-actin flow rate was calculated by taking the mean of the F-actin
flow rates for each module, and the traction force was calculated by summing the
magnitudes of the force on each module as well as the cell body.

Preparation of collagen-coated polyacrylamide substrates. Polyacrylamide gel
substrates were prepared according to a standard method popularized by Wang
and Pelham25. Briefly, No. 0 glass bottom culture dishes (MatTek P35G-0-20-C)
were treated with 0.1M NaOH, 97% (3-aminoproyl)trimethoxysilane (Aldrich
281778) and 0.5% glutaraldehyde (Polysciences 01909) to activate the glass
surface26. Activated culture dishes were stored in a desiccator for up to 2 weeks
until use. A prepolymer mixture of 40% acrylamide solution (Fisher BP1402),
2% bis-acrylamide solution (Fisher BP1404), 1M 4-(2-hydroxyethyl)piperazine-1-
ethanesulfonic acid (HEPES, Sigma H6147) solution and deionized water was
prepared for the desired Young’s modulus (Supplementary Fig. 1). For cell traction
experiments, 1% (v/v) 200 nm crimson fluorospheres (Invitrogen F8806) were
added to the mixture. After degassing, polymerization was initiated by adding 0.6%
(v/v) 1% ammonium persulfate (Bio-Rad 161-0700) solution and 0.4% (v/v)
N,N,N0 ,N0-tetramethylethylenediamine (TEMED, Fisher BP150). Next, 4 ml of
polymer solution was quickly pipetted onto the activated glass culture dishes and
covered with a 12mm No. 1.5 circular cover slip (Fisher 12-545-80) to create a gel
40–100 mm thick7. After removal of the coverslip, type I rat tail collagen (BD
Biosciences 354236) was conjugated to the gel using 0.5mgml� 1 sulfosuccinimidyl
6-(40-azido-20-nitrophenylamino) hexanoate (sulfo-SANPAH, Thermo 22589) and
200mgml� 1 collagen solution.

Characterization of polyacrylamide substrates. The Young’s moduli of
polyacrylamide gels made from different formulations were measured using a bead
indentation technique7 based on Hertzian indentation theory27,28 (Supplementary
Fig. 1). Glass beads (Polysciences) with radii ranging from 0.03 to 5mm were
placed on 700–1,000 mm thick gels created by pipetting 300ml of polymer solution
onto an activated glass culture dish and covered with 25mm No. 1.5 circular
cover slip (Fisher 12-545-102) . The bead contact area was measured using the
gravity-settled 200 nm crimson fluorospheres as a marker for the gel surface. The
bead indentation depth (d) was calculated from the bead radius (R) and the contact
radius (r) according to equation (13).

d ¼ R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � r2
p

ð13Þ
From this indentation depth, the gel Young’s modulus (E) was calculated using the
Poisson ratio of the hydrogel (n), and the buoyancy corrected bead force (f)
according to equation (14).

E ¼ 3ð1� v2Þf
4R1=2d3=2

ð14Þ

For polyacrylamide gels, n¼ 0.3–0.5 (n¼ 0.3 was used here), and the glass bead
density was measured to be B2,600 kgm� 3.

U251 glioma cell culture. Human glioma cell line U251 was originally obtained
from Dr G. Yancey Gillespie (UAB). These cells were authenticated using STR
assay (University of Arizona Genetics Core). U251 cells were cultured in vented
T25 tissue culture flasks (Becton Dickinson, 353108) for 3–4 days in a 37 �C 5%
CO2 incubator in media comprising 45.5% F12þGlutaMAX supplement (Gibco
31765-035), 45.5% high glucose Dulbecco’s modified Eagle’s medium (Gibco
10566-024), 8% heat-inactivated fetal bovine serum (Gibco 10438-026) and 1%
penicillin/streptomycin solution (Cellgro 30-001-CI). Cells were removed from the
flask using 0.05% trypsin with EDTA in Hanks’ balanced salt solution (Gibco
25-052-CI) and transferred to the collagen-coated gels at a density of B5 cells per
mm2. The cultured gels were placed in the 37 �C 5% CO2 incubator overnight
before imaging the next day.

Formation of EGFP-actin expressing U251 glioma cell line. EGFP-actin plasmid
(provided by Paul Letourneau, University of Minnesota) was transfected into U251
glioma cells using a GenePulser XCell electoroporator (Bio-Rad). Approximately
106 cells in 400 ml of antibiotic-free media were placed in a 4mm electroporation
cuvette (Molecular BioProducts 5540) with 10 mg of plasmid. The cells were
electroporated using nine 0.1 s square wave pulses of 480V at 1 s intervals,
achieving 5–10% transfection efficiency. The transfected cells were transferred to
collagen-coated gels at a density of B5 cells per mm2. The cultured gels were
placed in the 37 �C 5% CO2 incubator overnight before imaging the next day.

Live cell imaging. Cells were imaged using a Nikon Eclipse TE200 inverted
microscope and a CoolSnap HQ2 CCD camera (Photometrics) controlled by
MetaMorph v7.1.4 imaging software (Molecular Devices). For all imaging, cell
culture dishes were placed in a Bold Line top stage incubator (Okolab) at 37 �C and
5% CO2. Cell migration images were taken using phase-contrast imaging and a
Plan Fluor 10� /0.30NA objective. Time-lapse movies were taken at 15min
intervals for 16–24 h. Sample movies of U251 glioma cells on 4.6, 100 and 200 kPa

are presented in Supplementary Movie 2. EGFP-actin flow images were taken using
a Plan Fluor ELWD 40� /0.60 NA objective with epifluorescence microscopy
illumination provided by a PhotoFluor II light source (89 North) and EGFP filter
set. Time lapse movies were taken at 2 s intervals for 3min. Additional F-actin flow
movies were taken with phase-contrast imaging to verify that the expression of
EGFP-actin did not alter the actin retrograde flow rate (Supplementary Fig. 4a–c).
Sample movies of EGFP-actin flow and phase-contrast actin flow are presented as
Supplementary Movies 3 and 4,respectively.

Cell traction imaging. Cell traction images were taken with a Plan Fluor ELWD
40� /0.60 NA objective using both phase-contrast imaging and epifluorescence
using mCherry/EGFP filter set. A phase-contrast cell image was taken followed by
an epifluorescent strained gel image. Media were then removed and 0.05% trypsin
with EDTA in Hanks’ balanced salt solution (Gibco 25-052-CI) was added to
remove cellular adhesions to the substrate, relieving the stress in the gel. At 10min
after adding trypsin, another epifluorescent image was taken of the gel in its relaxed
state. For traction measurement on 100 kPa gels, an improved microscope stage
insert with better dish stability was used to reduce measurement noise
(Supplementary Fig. 4).

Cell migration analysis. Individual cells were identified in each frame of the cell
migration movies by using a custom-written image segmentation algorithm in
MATLAB (MathWorks). A Gaussian filter was first applied to remove noise in the
images, and cell edges were identified using Sobel edge detection. The identified
edges were then dilated to bridge any gaps in the edge detection. Regions enclosed
by the edge detection were filled and eroded back to their original size. The user
then selected one of the regions (cells) to track throughout the movie. For each
frame, the region centroid, area and major and minor axis lengths were recorded
(Supplementary Fig. 2a–d). Regions were matched from frame to frame by
identifying a region that contained the recorded centroid from the previous frame.
If no such region existed, the user manually identified the region corresponding to
the cell being tracked, or the user skipped recording for that frame. The algorithm
also requested user input if the area of the tracked region increased by 450%
or decreased by 425% from frame to frame. In these cases, the user manually
confirmed if the region information should be recorded or discarded for that frame.
The random motility coefficient (m) for 2D cell migration was calculated using the
same method as for the simulated cells by fitting a line to the mean squared
displacement versus time plot that is constrained to go through the origin
(Supplementary Fig. 2e).

Actin retrograde flow rate measurement. Actin flow speed was calculated by
taking kymographs (space–time plots) along the axis of moving actin features
(approximately orthogonal to the local leading edge) near the edges of EGFP-actin
U251 cells using the ImageJ multiple kymograph plugin. Actin flow could not be
measured on 50 Pa for U251 cells because there were no protrusions long enough
to make the measurements. The kymographs were analysed using a custom-written
MATLAB (MathWorks) algorithm that cross-correlated each spatial frame along a
specified region of the time axis7. A Gaussian curve was fit to the average
cross-correlation function for the specified region, and the maximum of the
curve was taken as the average displacement of actin from frame to frame.
This displacement was used in conjunction with the frame rate to calculate the
speed.

Traction strain energy measurement. Cell traction stress fields were measured
using a custom-written MATLAB (MathWorks) implementation of Fourier
transform traction cytometry16. First, background signal was removed from
the strained and relaxed gel images using a morphological top hat filter. The
phase-contrast image of the cell was then used to create a mask that was overlaid
on top of the strained and relaxed gel images. This excluded beads displaced by the
cell from the subsequent image registration. The strained and relaxed gel images
were roughly registered by two-dimensional Fourier transform cross-correlation
and then fully registered to subpixel accuracy by optimizing an affine
transformation to maximize the cross-correlation between the two images. In all
steps of the registration, the strained image was left unchanged while the relaxed
image was transformed. This was done because the strained image and the
phase-contrast image were taken at the same time point.

A gel displacement field was calculated by applying particle image velocimetry
to the fluorospheres in the strained and relaxed gel images. A coarse displacement
field was calculated using a 48� 48 pixel (7.8� 7.8 mm) window size with a search
neighbourhood extending 100 pixels (16.3 mm) beyond the window. Window
displacement was calculated by maximizing the cross-correlation between the
strained and relaxed images. A fine displacement field was calculated using a
24� 24 pixel (3.9� 3.9 mm) window size with the coarse displacement field as an
initial guess for the cross-correlation maximization. Windows for the fine
displacement field were overlapped by one half of their length in each dimension
for a final lattice spacing of 12 pixels (2.0 mm).

From the displacement field, the traction stress field was calculated using the
inverse Boussinesq solution29 in Fourier space16. Finally, the traction strain energy
was calculated by integrating the dot products of the traction vectors (~T) with the
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displacement vectors (~u) at each position (~r) over the area of the image as in
equation (15)16.

Ustrain ¼ 1

2

ZZ

~Tð~rÞ �~uð~rÞdxdy ð15Þ

The stain energy calculation provides an advantage over simply summing the
magnitudes of the traction field vectors because the dot product with the
displacement vectors minimizes the effect of noise in the calculation. Traction
vectors that are poorly aligned with their corresponding displacement vectors
contribute weakly to the stain energy. However, given the same traction field, the
strain energy will decrease with Young’s modulus (E) because ~u / 1=E, therefore
Ustrain / 1=E. To correct for this effect, the strain energy was multiplied by the
substrate Young’s modulus to validate that experimental differences in strain
energy corresponded to actual differences in cell traction (Supplementary Fig. 4g-i).

U251 mRNA expression. To collect enough mRNA for expression analysis on
different stiffnesses, U251 cells were cultured on large polyacrylamide gels covering
the surface of a one well chamber glass slide (Lab-Tek 154453). After 1 day of
culture on the gels, mRNA was purified from the cells using an RNeasy Mini Kit
(Qiagen 74104). The mRNA samples were then analysed at the University of
Minnesota Genomics Center using a HumanHT-12 BeadChip microarray
(Illumina BD 103-0204). The mRNA was collected from three U251 glioma
cultures each on 4.6, 20 and 200 kPa PAGs as well as plastic for a total of 12 mRNA
samples. mRNA counts from the BeadChip were compared with a published list13

of cell migration genes to identify the most likely contributors to the motor–clutch
model in U251 glioma cells (Supplementary Table 1). The expression levels on the
different stiffnesses were compared with each other to identify any significant
expression differences among the stiffnesses.

Composite metrics. For both the simulation and experimental results,
a composite metric was created to pool the data of random motility coefficient, cell
area, aspect ratio, actin flow rate and traction. To create this composite metric, each
data set was scaled such that the minimum value was zero and the maximum value
was one. For actin flow rate, the data were reflected with respect to the x axis (that
is, inverted) and then scaled as described because the optimum for actin flow is a
minimum value rather than a maximum. The scaled data sets were then averaged
at each stiffness and again scaled to span from zero to one to create the composite
data. To create that composite data fit curves, a logarithmic Gaussian curve was fit
to the data without constraining the variance. For the ECFNs, only the actin flow
rate and the traction strain energy were used to calculate the composite metric
because the other types of data were not available from our previous study
(Chan and Odde7).

Statistical analysis. For determining confidence in maxima and minima, the
Kruskal–Wallis one-way analysis of variance30 was performed to determine if any
of the sampled conditions originated from a different distribution than the others.
This test was chosen because the sample sizes varied, and the expected shape of the
sampled distributions was unknown a priori. The Kruskal–Wallis analysis allows
for differing sample sizes and makes no assumption as to the shape of the
originating distribution. A subsequent Dunn’s test31 for multiple comparisons was
performed to determine which sample sets, if any, originated from differing
distributions than other sample sets. The same analysis was done for comparing the
no drug, blebbistatin, cyclo(RGDfV) and both drug cases. For figures comparing
only two data sets, the Kruskal–Wallis analysis was performed without Dunn’s test
because there was no need to correct for multiple comparisons.

The null hypothesis that the stiffness optima for the composite data fit curves
are not different from each other was tested using a bootstrapping method. All data
points at a particular stiffness from either the untreated or combined drug-treated
measurements were shuffled together and a set of measurements were randomly
assigned to the untreated case and the remaining measurements were assigned to
the combined drug-treated case. The number of measurements assigned to each
case was determined from the original data while randomly switching the number
of measurements in every shuffle to account to the unequal number of
measurements in each case. This was done for random motility coefficient, cell
area, aspect ratio, actin retrograde flow rate and traction strain energy for U251
glioma cells. New composite metrics were then calculated for each case, and
logarithmic Gaussian curves were fit to the composite data. The logarithmic
distance between the maxima for the two fit curves was recorded. This process was
repeated 10,000 times to generate a probability distribution of potential stiffness
optima differences according to the null hypothesis that there is no difference
between the stiffness optima for the two sets of composite data. The experimental
stiffness optima difference was then compared with the distribution of differences
to determine the confidence to which the two fit optima were significantly different.
The same process was performed to test the null hypothesis that the composite data
fit curve optima for simulations with low and high motor and clutches are not
different from each other.

Code availability. All codes will be available on our laboratory website
(oddelab.umn.edu) or on request from the corresponding author.

Data availability. The microarray data set generated and analysed in this study
from U251 cells cultured on different stiffnesses are available in the National
Center for Biotechnology Information Gene Expression Omnibus (GEO)
repository (https://www.ncbi.nlm.nih.gov/geo) under accession code GSE95680.
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