
Journal of Functional Programming
http://journals.cambridge.org/JFP

Additional services for Journal of Functional Programming:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

Shifting the stage

YUKIYOSHI KAMEYAMA, OLEG KISELYOV and CHUNG­CHIEH SHAN

Journal of Functional Programming / Volume 21 / Issue 06 / November 2011, pp 617 ­ 662
DOI: 10.1017/S0956796811000256, Published online: 23 November 2011

Link to this article: http://journals.cambridge.org/abstract_S0956796811000256

How to cite this article:
YUKIYOSHI KAMEYAMA, OLEG KISELYOV and CHUNG­CHIEH SHAN (2011). Shifting the
stage. Journal of Functional Programming, 21, pp 617­662 doi:10.1017/S0956796811000256

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/JFP, IP address: 130.158.56.101 on 20 Nov 2012

JFP 21 (6): 617–662, 2011. c© Cambridge University Press 2011

doi:10.1017/S0956796811000256

617

Shifting the stage

Staging with delimited control

YUKIYOSHI KAMEYAMA

Department of Computer Science, University of Tsukuba

(e-mail:)kameyama@acm.org)

OLEG KISELYOV

Monterey, CA, USA

(e-mail:)oleg@okmij.org)

CHUNG-CHIEH SHAN

Cornell University

(e-mail:)ccshan@post.harvard.edu)

Abstract

It is often hard to write programs that are efficient yet reusable. For example, an efficient
implementation of Gaussian elimination should be specialized to the structure and known
static properties of the input matrix. The most profitable optimizations, such as choosing the
best pivoting or memoization, cannot be expected of even an advanced compiler because they
are specific to the domain, but expressing these optimizations directly makes for ungainly
source code. Instead, a promising and popular way to reconcile efficiency with reusability is
for a domain expert to write code generators.

Two pillars of this approach are types and effects. Typed multilevel languages such as
MetaOCaml ensure safety and early error reporting: a well-typed code generator neither
goes wrong nor generates code that goes wrong. Side effects such as state and control ease
correctness and expressivity: An effectful generator can resemble the textbook presentation
of an algorithm, as is familiar to domain experts, yet insert let for memoization and if for
bounds checking, as is necessary for efficiency. Together, types and effects enable structuring
code generators as compositions of modules with well-defined interfaces, and hence scaling
to large programs. However, blindly adding effects renders multilevel types unsound.

We introduce the first multilevel calculus with control effects and a sound type system.
We give small-step operational semantics as well as a one-pass continuation-passing-style
translation. For soundness, our calculus restricts the code generator’s effects to the scope of
generated binders. Even with this restriction, we can finally write efficient code generators for
dynamic programming and numerical methods in direct style, like in algorithm textbooks,
rather than in continuation-passing or monadic style.

1 Introduction

High-performance computing and high-assurance embedded computing often call

for programs that are specialized for particular inputs, usages, or processors.

Examples include specializing matrix multiplication to the target computer system

(Whaley & Petitet, 2005; Cohen et al., 2006), specializing Fast Fourier Transform to

618 Y. Kameyama et al.

the length of the transformed sequence (Frigo & Johnson, 2005; Püschel et al., 2005),

and specializing signal processing algorithms to the architecture of a particular Field

Programmable Gate Array (Püschel et al., 2005). As another example, Carette (2006)

found 35 variously specialized implementations of the same Gaussian elimination

algorithm in the industrial computer algebra system Maple.

Specializations like these go well beyond inlining and constant propagation, de-

manding domain-specific knowledge (such as symmetry groups of the roots of unity,

in the case of Fast Fourier Transform). A good illustration is the powerful special-

ization of 0 * x as 0, which predicts the result of multiplication even for unknown x

and leads to further simplifications. For floating-point numbers, this specialization

is invalid – unless one knows that in no program run can x be NaN or Infinity.

General-purpose compilers cannot be counted on for optimizations so complex

and particular; in fact, optimizing compilers are lagging further behind experts in

producing the highest performance code (Cohen et al., 2006). That is why writing

specialized programs by hand – however labor-intensive and error-prone – is com-

monplace: All the versions of Gaussian eliminations in Maple were written by hand.

The leading approach to automating these specializations is code generation, also

called generative programming (Cohen et al., 2006). In this approach, domain experts

versed in the desired optimizations express their knowledge by building a custom

code generator or specializer. The generated or specialized code is then compiled

by a general-purpose compiler. This division of labor avoids the dilemma that

either a compiler writer has to acquire application-specific knowledge or a domain

expert has to learn the intimate internals of a compiler (such as closure conversion,

frame structure, instruction scheduling, and register allocation). The division of labor

may go further: Ideally, one expert on computational geometry, another on linear

algebra, and a third on loop transformations can work on separate modules of the

same custom code generator, pooling their expertise to produce high-performance

programs with a variety of optimizations.

Custom code generators today are built on top of a variety of substrates, including

general-purpose programming languages (Kamin, 1996) as well as preprocessors

(such as m4) and macro processors (Lisp macros, camlp4), template systems (C++

templates), partial evaluators and supercompilers, and multilevel languages. To

support the division of labor just described and enable modular reasoning about

the specialization process, a language for custom code generators needs to be high-

level: It ought to let domain experts express algorithms clearly, specify abstract

interfaces between modules, and establish basic prerequisites to correctness, such

as type safety. Most languages fall short in this regard. For example, the popular

strategy of generating code using printf is described by one practitioner Whaley

(Whaley & Petitet, 2005) as “spending time in hell.”1 After all, domain experts

who use the language are not professional metaprogrammers, so it is paramount to

detect and report errors early. At the very least, we demand that if the source of

a code generator is well-formed and well-typed, so must be its result. On the other

hand, although many partial evaluators have been proven correct (e.g., Bondorf,

1 http://math-atlas.sourceforge.net/devel/atlas_contrib/

Shifting the stage 619

1992; Dussart & Thiemann, 1996), they make it difficult to express domain-specific

optimizations.

This paper presents a language for code generation that is high level in the sense

that it features an unprecedented combination of expressivity, modularity, and type

safety. Our starting point is multilevel languages such as MetaOCaml (Nielson and

Nielson, 1988; Gomard and Jones, 1991; Calcagno et al., 2004; Lengauer and Taha,

2006; MetaOCaml, 2006), which extend a high-level language with code-generation

constructs. These languages already offer attractive support for modular, type-safe

programming. To start with, they treat generated code fragments – and functions

that transform them – as first-class values that can be built and composed. Moreover,

they guarantee that the generated code is syntactically well-formed, even well-typed

and well-scoped, so that it shall always compile. Multilevel languages are thus

popular in applications of code generation such as partial evaluation (Gomard &

Jones, 1991), continuation-passing style (CPS) translation (Danvy & Filinski, 1992),

embedding domain-specific languages (Pašalić et al., 2002; Czarnecki et al., 2004),

and controlling special processors (Elliott, 2004; Taha, 2005).

Unfortunately, the type safety that current multilevel languages offer comes at

a stiff price of inexpressivity: many optimizations cannot be implemented in a

module that encapsulates domain-specific knowledge reusably, or even states them

clearly. For example, many textbook numerical algorithms are typically expressed

as computations over mutable arrays. When specializing such algorithms, we may

be able to perform some of the computations on arrays at specialization time and

so produce faster code (see Section 5.3 for an example; Sumii & Kobayashi (2001)

extensively discuss mutation in specialization). Alas, current multilevel languages

either prohibit mutations when it comes to code fragments or rescind their guarantees

of always generating well-formed code (see Section 2.1). Another example is a

common optimization called let-insertion or scalar promotion, which means to bind

the result of a complex expression such as array lookup to a temporary variable so

as to avoid recomputing it. Expressing this optimization in a clear and modular way

requires control effects (Bondorf, 1992; Lawall & Danvy, 1994; Carette & Kiselyov,

2011); again, current multilevel languages either prohibit control effects when it

comes to code fragments or rescind their safety guarantees (see Section 2.4).

This tension between expressivity and safety is the main challenge that we address

in this paper. We draw our notion of expressivity from Felleisen (1991): Informally,

it is the ability to define an operation without requiring a global, unmodular

transformation of the code that uses the operation. Just as it is possible to implement

mutable state in a call-by-value lambda-calculus by a state-passing transformation,

it is possible to implement both mutable array references and let-insertion in current

multilevel languages without voiding their safety guarantees. However, these features

are not expressible in current multilevel languages: We would have to program

in CPS (Danvy & Filinski, 1990; Bondorf, 1992; Danvy & Filinski, 1992) or,

equivalently, monadic style (Swadi et al. 2006; Carette and Kiselyov, 2011). Hence,

although let-insertion is implementable, it is not implementable as a library function.

An expert on let-insertion cannot offer it as a function that other experts can use

whenever they need it. To use let-insertion, the experts must write all of their code

in CPS or monadic style. The pervasive use of CPS or monadic style is prohibitively

620 Y. Kameyama et al.

unpalatable, especially by domain experts who are not programming-language

researchers and especially in languages where first-class functions are awkward

to express. CPS and monadic style also distort the expression of the algorithm

beyond its textbook-familiar style, as evident from the (moderately large) body of

code developed by Carette & Kiselyov (2011). In theoretical terms, the inexpressivity

of let-insertion in existing type-safe multilevel languages is troubling.

Contributions. This paper2 introduces λ⊘, the first multilevel language that allows

expressing a form of let-insertion – in general, a form of effectful operations

on potentially open code values – while ensuring in its type system that all

generated code is well-typed and well-scoped. The language λ⊘ is the first type-

sound calculus that combines code generation and delimited control. (Delimited

control in turn expresses any representable computational effect (Filinski, 1994).)

The main innovation of the language is to maintain type soundness by restricting

side effects incurred during code generation to the scope of generated binders. On

one hand, the language λ⊘ extends the multilevel calculus λ© (Davies, 1996) with

delimited control operators. On the other hand, the language simplifies a variant of

λα1v (Kameyama et al., 2008), and the restriction on effects is also simple.

We have embedded the language in MetaOCaml, where the restriction has to be

checked manually, and implemented it fully in Twelf. The latter implementation also

mechanizes the proofs of type soundness. Another way to implement our language

is to translate it into any existing multilevel language using the one-pass CPS

translation we present in Section 6.

Our restriction means that let-bindings and if- and other statements are inserted

under the closest generated binder. Likewise, mutable cells and arrays created under

a generated binder are not accessible beyond the scope of the binder or within

nested generated binders. In other words, no control, mutation, or other effect can

cross any generated binder. Exactly the same restriction holds if we implement

let-insertion or mutable cells in existing multilevel languages by means of CPS or

monadic style. Thus, any code that cannot be written in our λ⊘ (such as inserting

let-bindings across future-stage binders) cannot be written at all in any existing

type-safe multilevel language, irrespective of the style.

We demonstrate that our restriction is not severe: It does permit writing code

generators and specialization libraries that encapsulate useful high-level abstractions

such as dynamic programming. We are also able to write a framework for special-

ized Gaussian elimination, this time preserving the textbook-familiar style of the

algorithm. We can thus use our new language to create frameworks and embedded

domain-specific languages for program generation that application programmers

and domain experts can use.

Our implementations of λ⊘ and direct-style code generators, including the exam-

ples of the dynamic-programming specialization benchmark (Swadi et al., 2005), are

2 The present paper is the expanded version of our PEPM 2009 paper (Kameyama et al., 2009). The
major changes are as follows: We expanded Section 5 to discuss three larger examples of our system in
use. We revised Section 6 to present a one-pass CPS translation and prove that it preserves reductions.
We added Section 7 to extend our language to an arbitrary number of levels.

Shifting the stage 621

all available as supplementary material online at http://dx.doi.org/10.1017/

S0956796811000256 and also at http://okmij.org/ftp/Computation/staging/

README.dr

Organization. Section 2 illustrates the challenges of specialization on a simple

example of staging the memoizing fixpoint combinator in MetaOCaml. For clarity,

the bulk of the paper deals with a two-level version λ⊘
1 of our language. Section 3

introduces our new language and shows how its combination of delimited control

and staging meets the challenges. Section 4 explains the type system of our language

and proves that it is sound and delivers principal types. Section 5 gives larger

programming examples, found in the MetaOCaml literature. Section 6 presents a

CPS translation for the language. Section 7 generalizes λ⊘
1 to the full language λ⊘

with an arbitrary number of levels. Section 8 discusses related work, and Section 9

concludes.

2 Running example

Our running example is to generate specialized code using a memoizing fixpoint

combinator. The combinator underpins a simple library for dynamic programming

that lets domain experts program their tasks without worrying about avoiding

repeated computations. Our memoizing fixpoint combinator for code generation

lets these domain experts generate specialized versions of their programs. The

running example illustrates both how to use the combinator to generate specialized

code and how to build the combinator to provide a useful abstraction.

We borrow the running example, quirks and all, from the dynamic-programming

specialization benchmark (Swadi et al., 2005). The benchmark had to use monadic

style to implement specialization. We use the language enriched with delimited

continuations to demonstrate the benefits of expressivity, the difference between

just implementing let-insertion and expressing it. The example also illustrates the

dangers of the unrestricted use of control effects, motivating our restriction. We

focus on adjusting an existing library for dynamic programming and its open-

recursion coding style to permit generation of specialized programs. Whether open

recursion coupled with the memoizing fixpoint combinator is the best way to express

dynamic-programming algorithms is beyond the scope of this paper, and so is a

general discussion of dynamic programming, its domain-specific languages, and

implementation strategies.

As a toy dynamic-programming problem we take computing the Gibonacci

function, which generalizes the Fibonacci function and can be written in OCaml as

follows:

let rec gib x y n =

if n = 0 then x else

if n = 1 then y else

gib x y (n-1) + gib x y (n-2)

There are better ways of computing Gibonacci – after all, there exists a closed

formula. The code above, however, is only slightly simpler than the serious examples

622 Y. Kameyama et al.

of dynamic programming found in the benchmark (Swadi et al., 2005), such as

longest common subsequence, binary knapsack, and optimal matrix-multiplication

ordering. We discuss such larger examples in Section 5.

To generate specialized versions of gib when the argument n is statically known,

we can write the following MetaOCaml code.

(* val gibgen: int code -> int code -> int -> int code *)

let rec gibgen x y n =

if n = 0 then x else

if n = 1 then y else

.<.~(gibgen x y (n-1)) + .~(gibgen x y (n-2))>.

let test_gibgen n =

.<fun x y -> .~(gibgen .<x>. .<y>. n)>.

A pair of brackets .<e>. encloses a future-stage expression e, which is a fragment of

generated code. Whereas 1 + 2 is a present-stage expression of type int, .<1 + 2>.

is a present-stage value of type int code, containing the code to add two integers.3

To combine code values, we use escapes .~e within brackets. The escaped expression

e is evaluated at the present stage; its result, which must be a code value, is spliced

into the enclosing bracket. The inferred type of gibgen above describes it as a code

generator that takes two code values as arguments (even open code values such as

.<x>. and .<y>.). Brackets and escapes in MetaOCaml are thus equivalent to next

and prev in λ© (Davies, 1996). They are similar to quasiquote and unquote in

Lisp, except a future-stage binder such as fun x above generates a new name and

binds it in a single operation, so no generator (even if ill-typed) ever produces ill-

scoped code. To specialize gib to the case of n being 5, we evaluate test_gibgen 5

to yield the value

.<fun x_1 -> fun y_2 ->

((((y_2 + x_1) + y_2) + (y_2 + x_1)) + ((y_2 + x_1) + y_2))>.

in which MetaOCaml generates the names x_1 and y_2 fresh. This code value has

the type (int -> int -> int) code. Besides printing it, MetaOCaml can compile

it into independently usable C or Fortran code (Eckhardt et al., 2005) or run it.

2.1 Memoization

The naively specialized gib code is patently inefficient like gib itself: the computation

y_2 + x_1 is repeated thrice. Gibonacci, as with dynamic-programming algorithms,

can be greatly sped up by memoization (Michie, 1968), a form of information

propagation (Sørensen et al., 1994).

The most appealing memoization method (and the one used by Swadi et al. (2006),

whom we follow) is to use the abstraction that has been developed for that purpose.

3 This expression actually has the type (’a,int) code in MetaOCaml, where the type variable ’a is an
environment classifier (Taha & Nielsen, 2003). Classifiers are not needed in this paper (see Section 3.1),
so we elide them.

Shifting the stage 623

The method requires minimal changes in the code. The programmer only needs to

rewrite the code to “open up the recursion”:

let gib x y self n =

if n = 0 then x else

if n = 1 then y else

self (n-1) + self (n-2)

The function gib is no longer recursive. It receives an extra argument self for the

recursive instance of itself. We “tie the knot” with the explicit fixpoint combinator

y_simple:

let rec y_simple f n = f (y_simple f) n

Evaluating y_simple (gib 1 1) 5 yields 8 in the same inefficient way as before.

To add memoization, we switch to a different fixpoint combinator y_memo_m, but

keep the same gib code (McAdam, 2001):

let y_memo_m f n =

let tableref = ref (empty ()) in

let rec memo n =

match (lookup n !tableref) with

| None -> let v = f memo n in (tableref := ext !tableref n v; v)

| Some v -> v

in f memo n

Just as the definition of gib closely follows how a textbook might describe the

Gibonacci function, the definition of y_memo_m closely follows how a textbook

might describe memoization. We assume a finite-map data-type with the operations

empty () to create the empty table, lookup n table to locate a value associated

with the integer key n, and ext table n v to return a new map extending table by

associating the key n to the value v. Now we can evaluate y_memo_m (gib 1 1) 30,

which finishes much faster than y_simple (gib 1 1) 30.

This memoization method is appealing because it relegates memoization to a

library of fixpoint combinators and does not distort the code of the algorithm (gib

in our case). In a support library for dynamic programming (which was the goal of

Swadi et al. (2006)) this method allows application programmers to write natural

and modular code, implementing memoization strategies separately from functions

to memoize. We refer the reader to Swadi et al. (2006) for further justification and

discussion of this memoization method. Once again, our goal is to add staging to

an already developed framework rather than to introduce our own.

However, this simple method does not work when specializing gib, for two

reasons. First, the memoizing combinator y_memo_m must use mutation so that the

two sibling calls to self in gib, with no explicit data flow between them, could reuse

each other’s computation by sharing the same memoization table. When specializing

memoized gib, the table stores code values. Alas, blindly combining mutation and

staging leads to scope extrusion, a form of type unsoundness. For example, evaluating

the expression

624 Y. Kameyama et al.

let r = ref .<1>. in

.<fun y -> .~(r := .<y>.; .<()>.)>.; !r

in MetaOCaml yields .<y_1>., a code fragment that contains an unbound variable

and is thus ill-formed. (MetaOCaml implicitly α-converts the names of all future-

stage bound-variables into fresh names like y_1, y_2 etc.) This example illustrates

that mutation and other effects, such as exceptions and control, defeat MetaOCaml’s

guarantee that the generated code is well-formed and well-typed. Therefore, Meta-

OCaml does not assure that y_memo_m is safe to use, even though in this case it

is.

In different domains, the most profitable optimizations often involve a different set

of combinators – for memoizing results, pivoting matrices, simplifying arithmetic, and

so on (Cohen et al., 2006). Therefore, a language for code generation should empower

not just a programming-language researcher but also an application programmer

to create combinator libraries, including those using mutation. For such wide use

of side effects, the language should assure type soundness, especially the absence of

scope extrusion.

2.2 Let-insertion

Besides the risk of scope extrusion, there is a second, deeper problem: code

duplication. Suppose we stage gib with open recursion:

let sgib x y self n =

if n = 0 then x else

if n = 1 then y else

.<.~(self (n-1)) + .~(self (n-2))>.

Now .<fun x y -> .~(y_memo_m (sgib .<x>. .<y>.) 5)>. produces the same

inefficient specialized gib as before, with the computation y_2 + x_1 repeated

thrice. Thus, whereas code generation is memoized, the generated code does not

memoize (Bondorf & Danvy, 1991). For example, we want y_memo_m (sgib .<x>.

.<y>.) 4 to return .<let t = y + x in let u = t + y in u + t>., where no

computation is duplicated. In this desired output, self 2 should contribute the

binding and use of u, and self 3 those of t, but these contributions are not code

fragments – subexpressions – that can be spliced in by escapes.

One way to insert let as desired is to write the code generator in CPS or monadic

style (Danvy & Filinski, 1990; Bondorf, 1992; Danvy & Filinski, 1992; Swadi et al.,

2006). The memoized calls to the code generator can then share the memoization

table and insert let-bindings as necessary, without risking scope extrusion. In

monadic style, the function gib takes the following form (Swadi et al., 2005):

let sgib_c x y self n =

if n = 0 then ret x else

if n = 1 then ret y else

bind (self (n-2)) (fun r1 ->

bind (self (n-1)) (fun r2 ->

ret .<.~r2 + .~r1>.))

Shifting the stage 625

We omit the definitions of the monad operations ret and bind and of the memoizing

combinator that applies to sgib_c. All this code no longer resembles textbook

algorithms, so it has lost its appeal of simplicity. Syntactic sugar for monadic

code (Wadler, 1992; Peyton Jones, 2003; Minsky, 2008; Carette & Kiselyov, 2011)

reduces the clutter but not the need to name intermediate results such as r1 and r2

above. In practice (for example, to generate Gaussian-elimination code), monadic

style imposes a severe notational overhead (Carette & Kiselyov, 2011) that alienates

application programmers and obstructs our quest to help end users specialize their

code. Theoretically, the problem is of expressivity (Felleisen, 1991): The direct-style

specialized sgib differs from the unspecialized code gib only in staging annotations

for parts of the code; erasing annotations from sgib recovers the original sgib. The

relation of sgib_c to sgib is quite more involved, including not only the placement

of local staging annotations but also the global rewriting of the whole code to the

monadic style. Therefore, in order to use the staging memoizing fixpoint combinator

of (Swadi et al., 2006), the end user has to first rewrite the code in the monadic

style – indicating that the memoizing fixpoint combinator is inexpressive in pure

MetaOCaml.

2.3 If-insertion

We have seen that let-insertion is necessary to avoid code duplication in practical

code generators and requires the unappealing use of CPS or monadic style. A similar

pattern is if-insertion (or assertion insertion), illustrated below. The code generator

gen invokes an auxiliary generator retrieve to extract the result of a complex

computation on a working array:

let gen retrieve =

.<fun array n -> (complex computation on array);

.~(retrieve .<array>. .<n>.)>.

The auxiliary generator retrieve receives two code values from gen, which represent

an array and an index into it. The code generated by retrieve could just read the

n-th element of array:

let retrieve array n = .< (.~array) . (.~n) >.

We would like, however, to check that n is in the bounds of array. We could insert

the bounds check right before the array access:

let retrieve array n =

.<assert (.~n >= 0 && .~n < Array.length .~array);

(.~array) . (.~n)>.

Such a check is too late: We want the check right after the array and the index are

determined, before any complex computations commence. We wish the generator

gen to yield

.<fun array_1 -> fun n_2 ->

assert (n_2 >= 0 && n_2 < Array.length array_1);

626 Y. Kameyama et al.

(complex computation on array_1);

array_1.(n_2)>.

Again, it seems impossible for retrieve to splice in the assert far from the

escape in gen. Again, this difficulty can be overcome by writing generators in CPS

or monadic style, which looks foreign to the application programmer. Again, the

rewriting of the code in CPS or monadic style indicates that if-insertion is not

expressible in pure MetaOCaml (without resorting to effects).

2.4 Delimited control and its risk of scope extrusion

Lawall & Danvy (1994) show how to use Danvy and Filinski’s delimited control

operators shift and reset (Danvy & Filinski, 1989, 1990, 1992) to perform let-

and if-insertion in the familiar direct style by effectively hiding trivial uses of

continuations as in sgib_c above. Since delimited control operators are available in

MetaOCaml (Kiselyov, 2010), we can build a memoizing staged fixpoint combinator

y_ms with this technique so that evaluating

.<fun x y -> .~(top_fn (fun _ -> y_ms (sgib .<x>. .<y>.) 5))>.

– using the same direct-style sgib in Section 2.2 – gives the ideal code

.<fun x_1 -> fun y_2 ->

let z_3 = y_2 in

let z_4 = x_1 in

let z_5 = (z_3 + z_4) in

let z_6 = (z_5 + z_3) in

let z_7 = (z_6 + z_5) in (z_7 + z_6)>.

without duplicating computations. (We describe the memoizing staged fixpoint

combinator y_ms and the let-insertion locus specifier top_fn in Section 3.4.) The

same delimited control operators let us accomplish if-insertion using the intuitive

way to write gen in Section 2.3.

Delimited control, however, is a side effect whose unrestricted use poses the risk

of scope extrusion. For example, the expression

top_fn (fun _ -> .<fun x y -> .~(y_ms (sgib .<x>. .<y>.) 5)>.)

is well-typed in MetaOCaml with shift and reset added, but it evaluates to the

following code value, which disturbingly uses the variables y_2 and x_1 unbound.

.<let z_3 = y_2 in

let z_4 = x_1 in

let z_5 = (z_3 + z_4) in

let z_6 = (z_5 + z_3) in

let z_7 = (z_6 + z_5) in

fun x_1 -> fun y_2 -> (z_7 + z_6)>.

Shifting the stage 627

Fig. 1. Syntax of λ⊘
1 .

3 Combining staging and control safely

To eliminate the risk of scope extrusion just demonstrated, we propose a simple

restriction: Informally, we place an implicit present-stage reset under each future-

stage binder. Any escape under a future-stage binder thus incurs no effect observable

outside the binder’s scope. This restriction turns out to permit many practical

forms of memoization, let-insertion, and if-insertion – in particular, all of the

cases described by Carette and Kiselyov (2011) and Swadi et al. (2005, 2006) –

so application programmers can now implement such optimizations safely (without

risking scope extrusion) and naturally (in direct style). Theoretically, let- and if-

insertion become expressible.

In this section, we detail our proposal by introducing a language with staging

and control effects that builds in this restriction and, as we prove, prevents scope

extrusion. For clarity, until Section 7 we restrict our attention to a two-level version of

the language, called λ⊘
1 . The language models a subset of MetaOCaml extended with

delimited control operators. (Delimited control operators may appear in both stages.

Just as we defer dealing with staging forms in the future-stage code until Section 7, we

could have likewise deferred future-stage delimited control. Doing so however makes

the type system, Section 4, less uniform and harder to understand.) Figure 1 shows the

syntax: It features integer literals n and their arithmetic +, λ-abstractions and their

applications, and pairs (e1, e2) and their projections fst and snd. We write let x1 = e1

and . . . and xn = en in e as shorthand for (λx1. . . . λxn. e)e1 . . . en. The conditional

ifz e then e1 else e2 reduces to e1 if e is zero, and to e2 if e is a nonzero integer literal.

The constant fix is the applicative fixpoint combinator. In λ⊘
1 , λ-abstractions are the

only binding forms, which simplifies the Twelf implementation and the mechanization

of type soundness. (The same motivation explains our implementation choice for

pair projections, as higher-order constants rather than syntactic forms.) As usual,

we identify α-equivalent terms and assume Barendregt’s variable convention. The

operational semantics of these constructs is standard and call-by-value, as defined

in Figures 2 and 3 in terms of small steps � and evaluation contexts C0. In the

subsections below, we explain the staging forms 〈e〉 and �e, the level superscripts 0

and 1, the delimited control forms � and {e}, and their interaction.

We have implemented the language in Twelf, where the efficient Gibonacci

generator can run. Unlike our Twelf implementation, MetaOCaml does not currently

build in our restriction, so we must manually examine each escape under a future-

stage binder and check that it has no observable control effect, inserting reset

otherwise. It is possible to automate this check, either by extending MetaOCaml’s

type checker or by building a separate tool like Leroy and Pessaux’s exception

checker (Leroy & Pessaux 2000). It may be simpler however to add staging to a

628 Y. Kameyama et al.

Fig. 2. Values and contexts.

dialect of ML that has delimited control with the (superset of the) type system

described in the present paper (Masuko & Asai, 2009).

3.1 Staging

As described in Section 2, our staging facility consists of brackets 〈e〉 and escapes

�e. These constructs are written .< >. and .~ in actual MetaOCaml code. The

staging level of an expression affects whether it is a value and how a non-value is

decomposed into a context and a redex (Taha, 2000). So far, our calculus has only two

levels, present stage and future stage (more levels are introduced in Section 7). They

correspond to two evaluation “modes,” reduction and code-building (Igarashi &

Iwaki, 2007). To notate these levels, we put the superscripts 0 and 1 on metavariables,

such as values and contexts in Figure 2.4 Brackets enclose a future-stage expression

to form a present-stage expression, whereas escapes do the opposite. In particular,

present-stage values v0 include code fragments 〈v1〉, which are bracketed expressions

containing no escapes.

A present-stage context C0 can be plugged (that is, have its hole � replaced)

with a present-stage expression e to form a complete program C0[e], whereas

a future-stage context C1 can be plugged with a future-stage expression. As is

usual in a multilevel language, these contexts may contain future-stage bindings

introduced by λ, so present-stage evaluation can occur in the body of a future-stage

abstraction. Contexts C i are defined by composing delimited contexts Dij , which can

be plugged with a level-j expression to form a level-i expression. Delimited contexts

are in turn defined by composing frames F i, which are the smallest, with respect

to decomposition, non-empty contexts. A frame F i can be plugged with a level-i

expression to form a slightly larger level-i expression. In a degenerate language

4 Our Twelf formalization marks each expression as well with its level, but we suppress those superscripts
in this paper.

Shifting the stage 629

Fig. 3. Operational semantics: small-step reduction e � e′.

with neither staging nor delimited control, the superscripts would all be 0, and a

context C0 and a delimited context D00 would both be just a sequence of frames F0.

If for a moment we disregard delimited control operators (to be explained

in Section 3.2), then the language λ⊘
1 is almost the same as our earlier two-level

staged calculus λα1v (Kameyama et al., 2008), but without cross-stage persistence and

without the operation run to execute generated code. It can thus be regarded as

Davies’s λ© (1996) restricted to two levels. It is also similar to Nielson and Nielson’s

(1988) and Gomard and Jones’s (1991) two-level λ-calculi (though the latter does

not type-check the generated code).

Excluding run from our language makes it simpler to implement: otherwise,

either the run-time system has to include a compiler and a dynamic linker, or our

compiler should be capable of producing target code that produces target code

at run-time (see Leone & Lee, 1998 for the example of the latter). Excluding run

makes the language simpler to prove sound, because the type system need not

include environment classifiers (Taha & Nielsen, 2003) to prevent attempts to run

open code. The inability to run generated code in the language may appear severe,

but it is no different from the inability of the typical compiler (especially cross-

compiler) to load and run any generated code in the compiler process itself. A code

generator written in λ⊘
1 cannot run any generated code on the fly to test it, but the

generated code is guaranteed to be well-typed and can be saved to a source file to

be compiled and run in a separate process. That already supports the intended use

for λ⊘
1 , namely to build domain-specific language “compilers” that generate families

of optimized library routines – such as Gaussian elimination (Carette & Kiselyov,

2011), Fast Fourier Transform (Frigo & Johnson, 2005; Kiselyov & Taha, 2005),

linear signal processing (Püschel et al., 2005), and embedded code (Hammond &

Michaelson, 2003) – to be used in applications other than the generator itself.

The lack of cross-stage persistence in λ⊘
1 means that there is no “polymorphic

lift” operation to uniformly convert a present-stage value of any type to some

future-stage code that evaluates to that value. However, λ⊘
1 can express lifting at

630 Y. Kameyama et al.

Fig. 4. Bubble-up reductions for delimited control, replacing rules �
0

and �
1

in Figure 3.

specific data types – integers, pairs of integers, and so on, as discussed by Davies

and Pfenning (2001). Whereas cross-stage persistence is important when using run

(Taha & Nielsen, 2003), it is unnecessary for mere code generation. It can even

be harmful if unrestricted because a generated library routine ought to be usable

without the generator being present.

3.2 Delimited control

Delimited control is realized by the control delimiter { } (pronounced “reset”) and

the constant � (pronounced “shift”).

When� is not used, the expression {e} (pronounced “reset e”) is evaluated like e,

as if {e} were just shorthand for (λx. x)e. We specify this behavior by allowing

contexts C0 to include resets { }.
The constant� is supposed to be applied to a function value, say v0. When�v0 is

evaluated, it captures the part of the current evaluation context C0 up to the nearest

dynamically enclosing delimiter. We call this part a delimited context D00; unlike

C0, it does not include reset. As the �0 rule in Figure 3 shows, the subexpression

D00[�v0] reduces to the application v0(λx. {D00[x]}), reifying the captured delimited

context D00 as the abstraction λx. {D00[x]}.
The single step�0 reduction (and its companion�1, discussed in Section 3.3) can

be decomposed into a sequence of finer grain reductions in which the�-application

bubbles up and builds up the delimited context by local rewriting (Felleisen et al.,

1986; Parigot, 1992). More specifically, we can replace the rules �0 and �1 in

Figure 3 by the rules in Figure 4. The bubble-up reductions are truly small-step in

that they do not require examining an arbitrarily long part of the context looking

for the delimiter (such as reset). The bubble-up reductions are therefore insightful,

and easier to mechanize, especially in our case where future-stage binders also act as

control delimiters (see Kameyama et al., 2010 for more details on mechanization).

The attraction of delimited control is the ability to express any representable

computational effect (Filinski, 1994). We illustrate this ability by using delimited

control to simulate mutable state (Filinski, 1994; Kiselyov et al., 2006). We define

the terms

const = λy. λz. y, get =�(λk. λz. kzz), put = λz′.�(λk. λz. kz′z′). (1)

Shifting the stage 631

The reduction sequence below illustrates how const and get work:

{const (get + 40)} 2 ��0 {(λk. λz. kzz)(λx. {const(x + 40)})} 2

�βv {λz. (λx. {const(x + 40)})zz} 2

�{} (λz. (λx. {const(x + 40)})zz) 2

�βv (λx. {const(x + 40)}) 2 2

�βv {const(2 + 40)} 2

(2)

The first step replaces get and its delimited context const(� + 40) by an application

of λk. λz. kzz to the function λx. {const(x + 40)}. The latter function is precisely the

captured delimited context, enclosed in reset and reified as a function.

Comparing the initial and final programs in this reduction sequence shows that

its net result is to replace the expression get with 2. It is as if number 2 were stored

in a cell and accessed by get in the program get + 40. The reductions continue to a

value:

{const 42} 2 �βv {λz. 42} 2 �{} (λz. 42) 2 �βv 42 (3)

The reader may be reminded of the standard state-passing emulation of mutable

state, in which every expression receives the current state as the argument. The

just shown reductions have also occurred in the context of the application to the

current state, 2. To be precise, the program like get + 40 is evaluated in the context

{const �} 2 that when plugged with a state-invariant expression e will ignore the

current state, delivering e’s value. (One can easily see that if a program e contains

no �, then {e} is observationally equivalent to e.) The expressions like get “reach

out and grab” the current state from the context.

We can also mutate the state: the term put(get + 1) increments the number in the

cell and returns the new number.

{const (put(get + 1) + get)} 2 �+ {const (put(2 + 1) + get)} 2

�+ {const (put 3 + get)} 2

�+ (λx. {const (x + get)}) 3 3

�βv {const (3 + get)} 3

(4)

This sequence of reductions replaces the term put(get + 1) with 3 and at the same

time puts the new value 3 outside the reset. The result reduces to {const(3 + 3)} 3

and eventually 6. In general, the term {const e}v0 behaves as if the expression e were

executed in the “context” of a mutable cell initialized to v0. Inside e, occurrences of

get retrieve the current value of the cell, and calls to put mutate the cell.

Although our language has no mutable state, we have just emulated it using

delimited control. We can therefore treat a memoization table as a piece of mutable

state, express the memoizing fixpoint combinator y_memo_m (for details, see the

accompanying code in circle-shift-1.elf), and use it to transparently memoize

gib or another dynamic-programming algorithm in λ⊘
1 .

For the purpose of code generation, emulating mutable state by delimited control

brings two benefits. First, our core calculus is smaller and its soundness is simpler

to prove. Second, the delimited nature of our control operations lets us limit the

632 Y. Kameyama et al.

lifetime (or dynamic extent, Moreau 1998) of mutable state. In other words, we can

make sure that a mutable cell is only accessed or updated during the evaluation of a

particular subexpression. To prevent scope extrusion, it is crucial that our language

provides this assurance both in the operational semantics (described in Section 3.3)

and in the type system (described in Section 4). Although optimizing compilers of

imperative languages can determine the extent of mutation by control-flow analyses,

the results of the analyses are not expressed in the language or exposed to the

programmer.

3.3 Staging and delimited control without scope extrusion

At first glance, it appears straightforward to combine staging and delimited control.

For example, the emulation of mutable state by delimited control appears to work

as explained in Section 3.2 even if we store code values rather than integers in the

mutable state and access them within escapes. For example, the following example

reuses a code value using const, get, and put:

{const 〈�(put〈8 + 5〉) + �get〉} 〈0〉

�βv {const 〈�(�(λk. λz. k〈8 + 5〉〈8 + 5〉)) + �get〉} 〈0〉

��0 {(λk. λz. k〈8 + 5〉〈8 + 5〉)(λx. {const〈�x + �get〉})} 〈0〉

�+ {const 〈�〈8 + 5〉+ �get〉} 〈8 + 5〉

�
�

{const 〈(8 + 5) + �get〉} 〈8 + 5〉�+ 〈(8 + 5) + (8 + 5)〉

(5)

Like in Section 3.2, put〈8 + 5〉 assigns 〈8 + 5〉 to the mutable cell, so get is later

replaced by 〈8+5〉. The final result is a piece of generated code that, when evaluated

in the future stage, will add 5 to 8 twice. The only apparent difference between

this emulation of mutable state and the examples in Section 3.2 is that captured

delimited contexts, such as λx. {const〈�x + �get〉} in the second reduction above,

may span across brackets and escapes.

We now confront the two problems described in Section 2 that arise when

memoizing code generators. The first problem is the risk of scope extrusion, which

can happen when we store a code value that uses a bound variable then splice the

code value outside the scope of the variable. Let us try to trigger scope extrusion

in λ⊘
1 :

{const (let x = 〈λy.�(put〈y〉)〉 in get)} 〈0〉 (6)

If put〈y〉 above were to assign the code value 〈y〉 to the mutable cell and get were to

retrieve that code value, then this program would generate the ill-scoped code 〈y〉.

Fortunately, put cannot reach the mutable cell because the future-stage binder λy

stands in the way. In Figure 2, this restriction is built into the definition of delimited

contexts, which excludes not only present-stage resets but also future-stage binders.

Our attempt at scope extrusion thus fails; in fact, the type system in Section 4 rejects

it statically. We prove that scope extrusion is impossible in Section 4.2.

The�1 rule in Figure 3 shows that a future-stage binder acts as a control delimiter

just as a present-stage reset does: a future-stage abstraction λx. e implicitly expands

to λx.�{〈e〉}. In this regard, staging and delimited control are not orthogonal:

Shifting the stage 633

whenever staging brings evaluation under λ, any side effect (in particular the lifetime

of mutable state) must also stay under λ. Our language prevents different future-stage

scopes from sharing a memoization table because doing so risks scope extrusion.

The second problem with memoizing code, described in Section 2.2, is that the

generated code duplicates computations such as 8 + 5 above. Armed with delimited

control operators, we can now solve this problem by inserting let in the generated

code without writing our code generator in CPS or monadic style. To illustrate

this key idea (due to Lawall & Danvy 1994 in an untyped setting), we define the

following alternative to put:

put′ = λz′.�(λk. λz. 〈let x = �z′ in �(k〈x〉〈x〉)〉) (7)

Using this put′ instead of put, it is easy to insert let in the generated code to avoid

duplicating computations:

{const 〈�(put′〈8 + 5〉) + �get〉} 〈0〉

�βv {const 〈�(�(λk. λz. 〈let x = �〈8 + 5〉 in �(k〈x〉〈x〉)〉)) + �get〉} 〈0〉

��0 {(λk. λz. 〈let x = �〈8 + 5〉 in �(k〈x〉〈x〉)〉)(λy. {const〈�y + �get〉})} 〈0〉

�+ 〈let x = 8 + 5 in �({const 〈x + �get〉} 〈x〉)〉

�+ 〈let x = 8 + 5 in x + x〉
(8)

Instead of storing any code for reuse that may contain a complex computation, put′

inserts a let to bind the result of the computation to a new variable (x = 8 + 5

above) that takes scope over the entire generated expression, then stores just the

variable. The generated code performs the computation only once and can reuse the

result.

3.4 Payoff: safe and efficient code generation in direct style

We have shown how to simulate mutable state and perform let-insertion using

delimited control. Using these techniques, we have built the desired memoizing

staged fixpoint combinator y ms (see circle-shift-1.elf for the complete code

and tests). Roughly,5 y ms has the type ((int → 〈int〉) → int → 〈int〉) → int → 〈int〉.

As this type suggests, this combinator should be applied to a code generator with

open recursion whose first argument is the recursive instance of itself, and second

argument is a present-stage integer on which to specialize and recur. For example,

recall the sgib function in Section 2.2:

sgib = λx. λy. λself . λn. ifz n then x else

ifz n − 1 then y else

〈�(self (n − 1)) + �(self (n − 2))〉

(9)

To specialize the Gibonacci function to n = 5, we evaluate6

〈λx. λy.�({const (y ms (sgib 〈x〉〈y〉) 5)} empty)〉 (10)

5 We suppress effect annotations in types until Section 4, where we introduce the type system formally.
6 This example reveals that top fn in Section 2.4 is λz. {const (z 0)} empty.

634 Y. Kameyama et al.

Fig. 5. The memoizing staged fixpoint combinator y ms.

(where empty is the empty memoization table) to obtain

〈λx. λy. let z3 = y in let z4 = x in let z5 = z3 + z4 in

let z6 = z5 + z3 in let z7 = z6 + z5 in z7 + z6〉.
(11)

This result is the ideal promised in Section 2.4 – a linear sequence of operations

without any code duplication.

Figure 5 shows our definition of y ms. (The reset on the last line of the code

compensates for the lack of impredicative answer-type polymorphism in our system

as Section 4.1 explains in detail.) This fixpoint combinator simulates mutable state

to maintain a memoization table that maps integer keys to previously generated

code values. Therefore, it uses the table operations empty, lookup, and ext specified

in Section 2.1, which are pure functions and trivial to implement. Whereas lookup

in Section 2.1 returns a value of type int option, our language λ⊘
1 does not include

option, so we emulate the sum type τ option by a product type (int , int → τ): the

variant None is represented as (0,fix λf. f) and the variant Some x as (1, λz. x).

When y ms is applied to a user function f and that function invokes self on an

integer argument n, our combinator retrieves the current state of the memoization

table to check if code has been already generated for n. The lookup result (a pair)

is bound to the variable x in Figure 5. If fst x is zero, meaning n is new, then

the combinator invokes f to generate an expression y for n, binds y to a new

future-stage variable z, and updates the memoization table to map n to 〈z〉. If the

lookup succeeds (the last line of the code), then the combinator returns the found

value without invoking f.

In this way, we have successfully specialized the Gibonacci function in direct style

as well as Gaussian elimination and Swadi et al.’s (2005) other examples. These

successes show that our language is expressive enough for practical applications

despite not allowing delimited control to reach beyond any binder. We discuss these

larger examples in Section 5.

If-insertion is also within reach. To use a simpler example than in Section 2.3,

suppose that gen is a code generator in λ⊘
1 of the form λf. 〈λn. e+ �(f〈n〉)〉, where e

is some complex computation. The argument f is an auxiliary generator, a function

from code to code. Suppose the code produced by f only makes sense if the future-

stage argument n is nonzero – perhaps f〈n〉 computes the inverse of n. We would

like the generated code to check if n is nonzero before evaluating e. To achieve this

goal, we can define f to be

λn.�(λk. 〈ifz �n then fail else �(k〈inverse �n〉)〉). (12)

Shifting the stage 635

Passing this auxiliary generator to gen produces the desired code

〈λn. ifz n then fail else e + inverse n〉. (13)

The complex expression e will not be evaluated if n turns out to be zero.

Our language is too restrictive when a code generator needs to reach beyond the

nearest generated binder to insert a let, if, or assert, or access a piece of mutable

state. For example, if the code generated by f above takes a second argument m

after n, then the test on n would be inserted under λm, even though it may save

more computation to insert the test above λm. This situation can arise in Section

2.3 if the order of the arguments array and n is reversed in gen: we want to insert

assertions as in

.<fun n_2 -> assert (n_2 >= 0);

fun array_1 -> assert (n_2 < Array.length array_1);

(complex computation on array_1);

array_1.(n_2)>.

but we can only achieve

.<fun n_2 -> fun array_1 -> assert (n_2 >= 0);

assert (n_2 < Array.length array_1);

(complex computation on array_1);

array_1.(n_2)>.

even though the assertion n_2 >= 0 does not mention array_1. Similarly, for

let-insertion: while generating the body of a loop that binds an index variable,

we cannot insert a let-binding outside the loop even if the right-hand side of

the let-binding does not mention the index variable. In other words, we cannot

express loop-invariant code motion. Balat et al.’s (2004) use of control effects for

normalization-by-evaluation of sums also needs to reach beyond generated binders

and is unsupported by our language.

4 Type system

We have seen in Section 3.3 that attempting to generate code with scope extrusion in

λ⊘
1 causes the generator to get stuck. We now describe the type system that statically

prevents such a dynamic error. A well-typed generator shall not get stuck; an

attempt at scope extrusion will be reported early, when type checking the generator

rather than when running it. Figure 6 displays the type system of our language λ⊘
1 .

It combines a simplification of Danvy and Filinski’s (1989) type system for delimited

control and a simplification of Davies’s (1996) type system for staging in a sound

but not orthogonal way.

The types τ of λ⊘
1 are the base type int, arrow types τ → τ′/τ0, product types

(τ, τ′), and code types 〈υ/υ0〉. The type system is monomorphic like the simply typed

λ-calculus; we include type variables α only to state that our language has principal

typings.

636 Y. Kameyama et al.

Fig. 6. The type system of λ⊘
1 .

As a two-level language, λ⊘
1 operates on code values in the present stage only.

Hence, the type of a future-stage expression never contains any code type. Terms

such as 〈〈42〉〉 are thus disallowed, and types such as 〈〈int / int〉/ int〉 are uninhabited

by any closed value. We reserve the metavariable υ for a type that contains no code

type. A type environment Γ is a set of associations x : τ of present-stage variables x

with types τ and associations 〈x : υ〉 of future-stage variables x with types υ.

There are two judgment forms, one for present-stage expressions and another

for future-stage expressions. Both forms include answer types to track the control

effects that may occur: in a present judgment Γ ⊢ e : τ ; τ0, the answer type is

τ0 at the present stage; in a future judgment Γ ⊢ e : υ ; τ0 ; υ0, the answer types

are τ0 at the present stage and υ0 at the future stage.7 The future answer type υ0

is needed to ensure that the generated code, which may incur control effects in

the future stage, never goes wrong. Those type metavariables in Figure 6 with

7 For simplicity, we equate the two answer types distinguished by Danvy and Filinski (1989). It is easy
but not necessary to restore the distinction. The distinction is useful – for example, to express typed
printf (Danvy, 1998) in direct style with staging (Asai, 2009, personal communication).

Shifting the stage 637

numeric subscripts (such as τ0) are answer types that can be ignored on the first

reading. Because constructs such as addition that have nothing to do with staging

or delimited control are type-checked in the same way at both stages, we write

Γ ⊢ e : τ ; τ0 [; υ0] to mean either a present judgment (without “; υ0”) or a future

judgment (with “; υ0”).

An answer type is the type of the result of plugging an expression into a delimited

context. In other words, an answer type is the type of an expression surrounded

by a control delimiter. To take an example from Section 3.2, in the program

{const (get+40)} 2, the answer type of the expression get plugged into the delimited

context const(� + 40) is the type of a function from int to int, even though the

whole program has the type int instead. In terms of CPS, an answer type is just the

codomain type of a continuation or computation. In fact, our type system is just a

“pullback” of the staged type system of our CPS target language in Section 6.

Since answer types are effect annotations, they appear not only in judgments but

also in function types and code types (“/τ0” and “/υ0”), where effects are delayed.

The typing rules for λx. e show that the effect of e (represented by the answer types

τ1 and υ1) is incurred only when the function is invoked. The typing rules for 〈e〉

and �e show that the future effect of a code value (represented by the answer

type υ0) will be incurred only where the code value is spliced in (and never in the

present stage).

As an example, the following derivation shows that the program {const (get +

40)} 2 in Section 3.2 is well-typed. (Let T = int → int /τ0 and S = ((int → T/τ0) →
T/T) → int /T .)

[] ⊢� : S ; T

....
k : (int → T/τ0) ⊢ λz. kzz : T ; T

[] ⊢ λk. λz. kzz : (int → T/τ0) → T/T ; T

[] ⊢ get : int ; T

[] ⊢ get + 40 : int ; T

[] ⊢ const (get + 40) : T ; T

[] ⊢ {const (get + 40)} : T ; τ0

[] ⊢ {const (get + 40)} 2 : int ; τ0 (14)

The accompanying file circle-shift-1.elf type-checks many tests in Twelf. For

example, the fixpoint combinator y ms in Section 3.3 has the type

((int → 〈υ/υ1〉) → int → 〈υ/υ0〉) → int → 〈υ/υ0〉, (15)

in which the present-stage answer types are all

(int → T/T) → 〈υ′/υ0〉/〈υ
′/υ0〉, (16)

in which int → T/T is the type of the memoization table, and the type T =

(int , int → 〈υ/υ0〉/〈υ/υ0〉) encodes the lookup result type 〈υ/υ0〉 option as explained

in Section 3.4.

638 Y. Kameyama et al.

4.1 Purity and answer-type polymorphism

Our type system has no polymorphism and hence is unable to straightforwardly

represent answer-type polymorphism that is characteristic of pure expressions. The

answer-type polymorphism is required in practice, even for our examples. Fortunately

(somewhat inconvenient) roundabout ways of representing answer-type polymor-

phism are possible, which we discuss in this section. The inconvenience of emulating

answer-type polymorphism is the drawback we share with the CPS/monadic style

of encoding effectful generators in a system without impredicative polymorphism.

An expression is pure if it incurs no observable control effect; a pure expression is

polymorphic in the answer type (Thielecke, 2003). For example, it is easy to derive

the judgment Γ ⊢ (2 + 40) : int ; τ0 for an arbitrary answer type τ0. In words,

since the expression 2 + 40 incurs no observable control effect, it is safe to plug

it into any delimited context that expects an int, no matter what type τ0 results

from the plugging. In contrast, the expression get + 40 incurs a control effect, as

observed in Section 3.2. Our type system detects this effect: It derives the judgment

Γ ⊢ (get+40) : int ; τ0 if and only if the answer type τ0 has the form int → τ′/τ1 for

some τ′ and τ1. In words, it is safe to plug the expression get + 40 into a delimited

context that expects an int if and only if a function from int results from the plugging.

Our use of answer types to track control effects, like any effect system, exacerbates

the need for polymorphism. To start with, all values are pure, and the soundness of

our type system relies on their polymorphism in the answer type.

Lemma 1 If e is a value and Γ ⊢ e : τ ; τ1 [; υ0], then Γ ⊢ e : τ ; τ2 [; υ0].

Proof By induction on e and inversion on the derivation of Γ ⊢ e : τ ; τ1 [; υ0].

(In our Twelf code circle-shift-1.elf, the constructive proof of the lemma is

represented by total type families val-new-at and val-new-at+.) �

For example, each occurrence of a bound variable x : τ must have the same type τ

but may have a different answer type τ0, so subject reduction for our βv and {} rules

relies on Lemma 1.

Values are just one particularly easy-to-identify class of pure expressions. Control

delimiters also make an expression pure by masking its effect: In the typing rules for

present-stage {e} and future-stage λx. e in Figure 6, the answer type τ0 is arbitrary.

The latter rule reflects how future-stage binders delimit present-stage control in the

operational semantics: The present-stage answer type is the code type 〈υ′/υ1〉 in the

premise but arbitrary in the conclusion.

It is also pure to apply a pure function, but our type system does not represent

the purity of functions except by hard-coding the answer-type polymorphism of

“built-in functions” such as fix, fst, snd, and ifz into their typing rules (witness the

type metavariables τ0 and τ1 in those rules). For example, each occurrence of fix v0

must have the same function type τ → τ′/τ2 but may have a different answer type τ1,

so subject reduction for our fix rule relies on the trivial variant of Lemma 1 where

e is replaced by fix v0.

Without impredicative answer-type polymorphism (Asai & Kameyama, 2007), our

system never infers the purity of a user-defined function. Consequently, in order to

Shifting the stage 639

write the desired code as in Section 3.4, we are forced to build product types and

int into the language rather than Church-encode them. (This task is not difficult; we

could have introduced the desired option data type.) Furthermore, we sometimes

need to annotate programs with additional resets. For example, the last line in

Figure 5 contains a rather mysterious reset, without which the code would not

type-check. The reason is that the lookup result x must have a type of the form

(int , int → 〈υ/υ0〉/τ0), where τ0 is some answer type. Without the reset, τ0 would be

unified with the answer type of the overall memoizing computation, which contains

the type of the memoization table, which in turn contains the type of x, which

causes an occurs-check failure. With the reset, the answer type τ0 is unified with

the return type 〈υ/υ0〉, which passes the occurs check. In general, we can always

emulate a pure function type τ → τ′ by an impure function type τ → τ′/τ′, at the

cost of additional resets. (We could take advantage of let-polymorphism, were it

present in our calculus, to infer the answer-type polymorphic type for pure functions.

Let-polymorphism does not help in the above case since the pure function is stored

in a data structure.)

The need to insert resets is a drawback – which is not however specific to our

direct-style approach; exactly the same issue arises if we program in CPS/monadic

style. We observe the problem even for the unstaged state-passing memoizing fixpoint

combinator in OCaml, if we implement the memo table, with keys ’a and values ’b as

we did in our calculus, with the type (’a -> bool * (unit -> ’s -> (’s,’b))).

The function of type unit -> ’s -> (’s,’b), essentially from Some, is written in

state-passing style, for state of type ’s. The memo table is the state of the overall

computation, thus ’s must be the type of the whole table – hence the occurs-check

failure. The solution is to note that the projection function must be pure, that is,

does not affect the state; to indicate the purity, we wrap the projection function

into “reset,” defined in our case as fun m -> fun s -> (s,snd (m empty)). The

problem does not arise if we avail ourselves to the built-in option type; the projection

function from Some is manifestly pure. In our extensive practical experience of

programming in both CPS/monadic style and direct style, the problem of lack of

polymorphism and the need to introduce reset is exceedingly rare.

4.2 Formal properties

We are ready to formalize the safety assurances provided by our type system. The

formal properties of λ⊘
1 and their proofs have been mechanized in the accompanying

Twelf code; see the file circle-shift-1.elf. In the present section, we restate these

properties in mathematical notation and draw their corollaries.

Lemma 2 (type substitution) Let θ be a substitution on type variables. If the

judgment Γ ⊢ e : τ ; τ0 [; υ0] is derivable and Γ′ ⊇ Γθ, then the judgment

Γ′ ⊢ e : τθ ; τ0θ [; υ0θ] is derivable.

Proof By induction on the derivation of Γ ⊢ e : τ ; τ0 [; υ0]. For example, suppose

Γ ⊢ x : τ ; τ0. By inversion, (x :τ) ∈ Γ. Thus, (x :τθ) ∈ Γθ ⊆ Γ′, so Γ′ ⊢ x : τθ ; τ0θ. �

640 Y. Kameyama et al.

Proposition 3 (principal typing) If some judgment Γ ⊢ e : τ ; τ0 [; υ0] is derivable,

then some judgment Γ̂ ⊢ e : τ̂ ; τ̂0 [; υ̂0] is derivable such that, for any derivable

judgment Γ′ ⊢ e : τ′ ; τ′
0 [; υ′

0], there exists a substitution θ for type variables so that

Γ′ ⊇ Γ̂θ, τ′ = τ̂θ, and τ′
0 = τ̂0θ [and υ′

0 = υ̂0θ].

Proof By induction on e, essentially reading our syntax-directed type system as a

bottom-up logic program that infers the principal typing using unification. We show

two cases.

Case e = x at the present stage: Set τ̂ and τ̂0 to fresh type variables, and Γ̂ to x : τ̂.

Case e = λx. e1 at the present stage: We want to prove that, given Γ ⊢ λx. e1 :

(τ1 → τ2/τ3) ; τ0 is derivable, some judgment Γ̂ ⊢ λx. e1 : (τ̂1 → τ̂2/τ̂3) ; τ̂0 is

derivable such that, for any derivable Γ′ ⊢ λx. e1 : (τ′
1 → τ′

2/τ
′
3) ; τ′

0, there is a

substitution θ such that Γ′ ⊇ Γ̂θ and τ′
i = τ̂iθ (i = 0, 1, 2, 3). By inversion, we get

Γ, x : τ1 ⊢ e1 : τ2 ; τ3 is derivable. By induction hypothesis, we have a principal

derivation Γ̌ ⊢ e1 : τ̌2 ; τ̌3. We have the following two subcases:

Subcase (x : τ̌1) ∈ Γ̌ for some τ̌1: Set Γ̂ = Γ̌ − (x : τ̌1) and τ̂i = τ̌i (i = 1, 2, 3). Let τ̂0

be a fresh type variable, then Γ̂ ⊢ λx. e1 : τ̂1 → τ̂2/τ̂3 ; τ̂0 is derivable. We also have

that for each derivable judgment Γ′ ⊢ λx. e1 : τ′
1 → τ′

2/τ
′
3 ; τ′

0 there exists a derivable

judgment Γ′, x : τ′
1 ⊢ e1 : τ′

2 ; τ′
3. By induction hypothesis, there exists a substitution

θ′ such that (Γ′, x : τ′
1) ⊇ Γ̌θ′ and τ′

i = τ̌iθ
′ (i = 2, 3). The former implies τ′

1 = τ̌1θ
′.

By setting θ = θ′[τ̂0
→ τ′
0], we have Γ′ ⊇ Γ̂θ and τ′

i = τ̂iθ (i = 0, 1, 2, 3).

Subcase (x : τ̌1) �∈ Γ̌ for any τ̌1: Set Γ̂ = Γ̌, τ̂i = τ̌i (for i = 2, 3), and let τ̂0 and

τ̂1 be fresh type variables. Then we can prove this subcase in the same way as the

previous one. �

The proof of subject reduction relies on the following three lemmas.

Lemma 4 (value substitution) If Γ, x : τ ⊢ e : τ′ ; τ0 [; υ0] and Γ ⊢ v0 : τ ; τ1, then

Γ ⊢ e[x := v0] : τ′ ; τ0 [; υ0].

The proof is routine, relying on Lemma 1.

Lemma 5 (weakening) If Γ ⊢ e : τ ; τ0 [; υ0], then Γ,∆ ⊢ e : τ ; τ0 [; υ0].

The proof is also routine.

Lemma 6 (abstraction) If Γ ⊢ e : τ1 ; τ0 and Γ ⊢ D00[e] : τ2 ; τ0 are derivable, then

so is Γ, x : τ1 ⊢ D00[x] : τ2 ; τ0 for a fresh variable x.

Proof A straightforward induction on the context D00. �

Proposition 7 (subject reduction) If Γ ⊢ e : τ ; τ0 is derivable and e � e′, then

Γ ⊢ e′ : τ ; τ0 is derivable.

Proof Because our typing rules are all compositional, we can assume without loss

of generality that C0 and C1 in Figure 3 are just �. We prove the proposition by

case analysis on the reduction. We show a couple of interesting cases.

Case βv: Suppose Γ ⊢ (λx. e)v0 : τ′ ; τ0. By inversion, we have Γ, x:τ ⊢ e : τ′ ; τ0 and

Γ ⊢ v0 : τ ; τ0 for some τ. Then the substitution lemma gives Γ ⊢ e[x := v0] : τ′ ; τ0.

Shifting the stage 641

Case �0: We have the derivation

Γ ⊢� : T → τ/τ′ ; τ′

....
Γ ⊢ v0 : T ; τ′

Γ ⊢�v0 : τ ; τ′
....

Γ ⊢ D00[�v0] : τ′ ; τ′

Γ ⊢ {D00[�v0]} : τ′ ; τ0 (17)

where T = (τ → τ′/τ1) → τ′/τ′ and the derivation from �v0 to D00[�v0] does not

change the answer type τ′. Then we can use the weakening and abstraction lemmas

to derive

....
Γ ⊢ v0 : T ; τ′

Γ, x : τ ⊢ x : τ ; τ′
....

Γ, x : τ ⊢ D00[x] : τ′ ; τ′

Γ, x : τ ⊢ {D00[x]} : τ′ ; τ1

Γ ⊢ λx. {D00[x]} : τ → τ′/τ1 ; τ′

Γ ⊢ v0(λx. {D00[x]}) : τ′ ; τ′

Γ ⊢ {v0(λx. {D00[x]})} : τ′ ; τ0 (18)

The �1 case is similar. �

Corollary 8 (absence of scope extrusion) If [] ⊢ e : τ ; τ0 is derivable and e �∗ e′,

then e′ does not contain free variables.

Proof By induction on the number of steps from e to e′. �

To state the next two propositions, we define the future-stage type environment

〈Γ〉 = 〈x1 : υ1〉, . . . , 〈xn : υn〉 whenever Γ = x1 : υ1, . . . , xn : υn.

Proposition 9 (progress) If 〈Γ〉 ⊢ e : τ ; τ is derivable, then there exists a term e′

such that {e} � e′.

Proof Define a pre-redex pi to be an expression of the following form:

p0 ::= v0 + v0 | v0v0 | ifz v0 then e else e | {v0}, p1 ::= �v0. (19)

We slightly generalize the assumption to 〈Γ〉 ⊢ e : τ ; τ1. By induction on its

derivation, either e is already a value (e = v0), or e can be decomposed into a

context plugged with a pre-redex (e = C i[pi]).

If e is already a value, then {e} � e. Otherwise, the reduction required follows from

case analysis on the typing derivation of the pre-redex. For example, if e = C1[�v0],

then v0 must be of the form 〈v1〉, so {e} � {C1[v1]}. In the case where e = C0[�v0],

we choose between the �0 and �1 reduction rules by case analysis on C0. �

The statement of this proposition differs from the ordinary form in two respects.

First, we consider terms in the form {e} only, since a term like �v0 by itself,

without an enclosing control delimiter, cannot be reduced. Second, we allow a

potentially non-empty future-stage environment 〈Γ〉, in order for the induction on

642 Y. Kameyama et al.

the typing derivation of e to go through. This strengthening corresponds to the

world declaration bl-ev in the accompanying Twelf code.

Propositions 7 and 9 together show that well-typed programs never go wrong in λ⊘
1 .

In particular, well-typed code generators never go wrong. Moreover, by the following

argument any code they generate never goes wrong either. If [] ⊢ {e} : 〈υ/υ0〉 ; τ0

is derivable, then the program {e} either fails to terminate or evaluates to a code

value 〈v1〉 such that [] ⊢ v1 : υ ; τ0 ; υ0. The next proposition then assures us that v1

is well-typed at the present stage.

Proposition 10 If 〈Γ〉 ⊢ v1 : υ ; τ0 ; υ0, then Γ ⊢ v1 : υ ; υ0.

Proof By induction on the derivation of 〈Γ〉 ⊢ v1 : υ ; τ0 ; υ0. �

As a corollary of the previous proposition, we obtain the following result, which

is similar to the binding-time correctness theorem of Davies (1996).

Corollary 11 If [] ⊢ {e} : 〈υ/υ0〉 ; τ0 and {e} �∗ v0 for a value v0, then v0 has the

form 〈v1〉 such that [] ⊢ v1 : υ ; υ0.

Proof By subject reduction, [] ⊢ v0 : 〈υ/υ0〉 ; τ0. By inversion, we have v0 = 〈v1〉

for some v1 such that [] ⊢ v1 : υ ; τ0 ; υ0. Then by the previous proposition,

[] ⊢ v1 : υ ; υ0. �

5 Larger examples of program specialization

In this section, we give larger examples to demonstrate the applicability of our

combination of side effects and code generation. These examples show that our

approach does not require the open-recursion style and its utility goes far beyond

dynamic programming and even let-insertion.

5.1 Longest common subsequence

The longest common subsequence is one of the textbook dynamic-programming

algorithms in Swadi et al.’s (2005) benchmark. The problem is, given two sequences,

to find (the length of) the longest subsequence of elements that occur in both

sequences in the same order, though not necessarily contiguously. The naive

implementation of the algorithm

let rec lcs x y (i,j) =

if i = 0 || j = 0 then 0

else if x.(i) = y.(j) then 1 + lcs x y (i-1,j-1)

else max (lcs x y (i,j-1)) (lcs x y (i-1,j))

takes two arrays x and y as input and computes the length of the longest common

subsequence of x[1..i] and y[1..j]. The input arrays can be emulated with

functions in λ⊘
1 . This program is very inefficient. To make it efficient, the programmer

only needs to rewrite it in the open-recursion style:

let lcs x y self (i,j) =

if i = 0 || j = 0 then 0

else if x.(i) = y.(j) then 1 + self (i-1,j-1)

else max (self (i,j-1)) (self (i-1,j))

Shifting the stage 643

The rewriting keeps the algorithm clear. Applying the memoizing fixpoint combina-

tor y_memo_m (described in Sections 2.1 and 3.2) gives the efficient implementation.

To specialize the algorithm when the lengths of the inputs are statically known

(although their contents are not), we merely need to add brackets and escapes to

this lcs code:

let slcs x y self (i,j) =

if i = 0 || j = 0 then .<0>.

else .<if (.~x).(i) = (.~y).(j) then 1 + .~(self (i-1,j-1))

else max .~(self (i,j-1)) .~(self (i-1,j))>.

Applying the memoizing staged fixpoint combinator y_ms described in Sections 2.4

and 3.4

.<fun x y -> .~(top_fn (fun _ -> y_ms (slcs .<x>. .<y>.) (3,4)))>.

produces the ideal code

.<fun x_1 -> fun y_2 ->

let t_3 = 0 in let t_4 = 0 in let t_5 = 0 in

let t_6 = 0 in let t_7 = 0 in let t_8 = 0 in

let t_9 = if x_1.(1) = y_2.(1) then 1 + t_8 else max t_7 t_6 in

let t_10 = if x_1.(1) = y_2.(2) then 1 + t_6 else max t_9 t_5 in

let t_11 = if x_1.(1) = y_2.(3) then 1 + t_5 else max t_10 t_4 in

let t_12 = if x_1.(1) = y_2.(4) then 1 + t_4 else max t_11 t_3 in

...

let t_19 = if x_1.(3) = y_2.(1) then 1 + t_13 else max t_18 t_14 in

let t_20 = if x_1.(3) = y_2.(2) then 1 + t_14 else max t_19 t_15 in

let t_21 = if x_1.(3) = y_2.(3) then 1 + t_15 else max t_20 t_16 in

if x_1.(3) = y_2.(4) then 1 + t_16 else max t_21 t_17>.

The complexity is the optimal O(n×m), where n and m are the lengths of the inputs.

For comparison, to use Swadi et al.’s (2006) dynamic-programming specialization

framework, Swadi et al. (2005) have to write the staged lcs code in a less direct

monadic style:

let lcs_mks x y self (i,j) =

if i = 0 || j = 0 then ret .<0>.

else bind (self (i-1,j-1)) (fun r1 ->

bind (self (i ,j-1)) (fun r2 ->

bind (self (i-1,j)) (fun r3 ->

ret .<if (.~x).(i) = (.~y).(j) then 1 + .~r1

else max .~r2 .~r3>.)))

Other dynamic-programming algorithms can be specialized in the same way. For

example, to compute the product of a sequence of matrices while minimizing the

number of multiplications, we have specialized the minimization when the number

of matrices is known (although their dimensions and contents are not).

644 Y. Kameyama et al.

5.2 Gaussian elimination

Let-insertion is useful not just for dynamic programming. Carette and Kiselyov

(2011) implemented Gaussian elimination as a code generator that produces a

routine specialized to a particular choice of numeric representation and matrix

pivoting. Among the many parameters of this code generator is whether to compute

the determinant. If the determinant is desired, the generated code should include

determinant accumulation, and, more importantly, let-bindings for mutable cells in

which to accumulate the determinant’s sign and magnitude. Carette and Kiselyov

(2011) achieved this let-insertion by writing the entire generator in monadic style.

We briefly describe writing the generator for a family of Gaussian eliminations in

our approach, highlighting the modularity and the close similarity of the generator

to the textbook, unstaged code (written, for example, by an expert in linear algebra).

We start with the unstaged OCaml code for Gaussian elimination, whose fragment

is shown below. (See ge_unstaged.ml in the accompanying code for the complete

implementation and tests.) The code implements the standard textbook pseudo-code

description of the algorithm in the most straightforward way. In the loop, we search

for the pivot, exchange the current row and column with the pivot’s row and column

to bring the pivot to the matrix diagonal, and then perform the row reduction.

Swapping rows or columns in a matrix changes the sign of its determinant; we keep

track of the sign in the mutable cell det_sign.

let ge = fun a_orig ->

let r = ref 0 in (* current row index *)

let c = ref 0 in (* current column index *)

let a = Array.copy (a_orig.arr) in (* save input matrix A *)

let m = a_orig.m in (* the number of cols *)

let n = a_orig.n in (* the number of rows *)

let det_sign = ref 1 in (* Accumulate sign and *)

let det_magn = ref 1.0 in (* magnitude of det *)

while !c < m && !r < n do

let pivot = find_pivot_row a (n,m) !r !c in

let piv_val = (match pivot with

| Some ((piv_r, piv_c),piv_val) ->

if piv_c <> !c then begin

swap_cols a (n,m) !c piv_c;

det_sign := - !det_sign

end;

if piv_r <> !r then ...;

Some piv_val

| None -> None) in

(* do the row-reduction over the (r,c)-(n,m) block *)

...

The following is our generator for Gaussian elimination, which generates the

unstaged code above, among many other variants. (The complete generator code is

Shifting the stage 645

in the file ge_gen.ml.)

let gge outchoice = .<fun a_orig ->

let r = ref 0 in (* current row index *)

let c = ref 0 in (* current column index *)

let a = Array.copy (a_orig.arr) in (* save input matrix A *)

let m = a_orig.m in (* the number of cols *)

let n = a_orig.n in (* the number of rows *)

.~(let p = new_prompt () in

push_prompt p (fun () ->

let env = {env_p = p; env_a = .<a>.; env_n = .<n>.;

env_m = .<m>.; env_r = .<r>.;

env_pivot = gfind_pivot_row;

env_det = make_det_nodet p} in

let env = outchoice.oc_init env in

.<begin

while !c < m && !r < n do

let pivot = .~(env.env_pivot env .<!r>. .<!c>.) in

let piv_val = (match pivot with

| Some ((piv_r, piv_c),piv_val) ->

if piv_c <> !c then begin

.~(gswap_cols env .<!c>. .<piv_c>.);

.~(env.env_det.det_flip_sign)

end;

if piv_r <> !r then ...;

Some piv_val

| None -> None) in

(* do the row-reduction over the (r,c)-(n,m) block *)

... >.

The generator is strikingly similar to the unstaged code; in fact, it was written

by wrapping the unstaged code into a pair of brackets and placing a few escapes

at places where inlining (e.g., of the row swapping) or variant implementations were

desired. The main difference between the generator and the unstaged code is the

factoring-out of pivoting and determinant computations. The unstaged code used

row pivoting, implemented by a function find_pivot_row. The generator inlines the

result of the pivoting generator env.env_pivot, which defaults to the row-pivoting

generator but can be changed to a full-pivoting generator, for example. Textbooks

on Gaussian elimination describe several pivoting strategies and conditions for using

them. The user specifies the desired variant of Gaussian elimination by passing gge

a value of the data type

type (’c,’result,’out) outchoice =

{oc_init : (’c,’result) env -> (’c,’result) env;

oc_fin : (’c,’result) env -> (’c,’out) code;

}

646 Y. Kameyama et al.

that sets the generation environment env and specifies the generation of the

final result. The generator gge may produce code that returns the complete LU

decomposition, just the U factor, the U factor and the determinant, the U factor

and the rank, etc. (The result type of the generated code varies accordingly.) Carette

and Kiselyov (2011) thoroughly discuss various aspects and parametrizations of

Gaussian elimination.

Of interest to us here is how the determinant is computed. That computation

is spread throughout the Gaussian elimination code: defining mutable cells to be

used; flipping the sign upon an exchange of rows or columns; and accumulating

the magnitude during row reductions. When we converted the unstaged code

to the generator, we abstracted determinant computations away, replacing, for

example, det_sign := - !det_sign in the unstaged code with the invocation

of the corresponding generator env.env_det.det_flip_sign. The generators for

flipping the sign etc. are collected in a data structure ’c det:

type ’c det = {det_computes : bool;

det_flip_sign : (’c,unit) code;

...}

The field env.env_det of the generation environment holds an instance of ’c det

to be used when generating a particular version of Gaussian elimination.

There are two instances of the ’c det data structure. One generates no determi-

nant computation:

let make_det_nodet p =

{det_computes = false;

det_flip_sign = .<()>.; ...}

The generator det_flip_sign generates () then, effectively no code. More interest-

ing is the instance that does generate determinant computation:

let genlet p e =

shift p (fun k -> .<let t = .~e in .~(k .<t>.)>.);;

let make_det_compute_det p =

let det_sign = genlet p .<ref 1>. in

let det_magn = genlet p .<ref 1.0>. in

{det_computes = true;

det_flip_sign = .<.~det_sign := - !(.~det_sign)>.;

...}

Here, det_flip_sign generates the code that we have abstracted away from the

unstaged original. To use that code however, we have to first generate definitions

of the variables det_sign and det_magn. The genlet combinator lets us generate

let-bindings for these mutable cells at the place indicated at push_prompt (or, reset).

In our case that place is after all the other let-bindings at the beginning of the

Gaussian elimination code.

The determinant aspect is an example of the modularity and expressivity that is

required for real-world generators and is afforded in our approach. We abstracted

Shifting the stage 647

not only expressions (such as flipping the sign) but also definitions of (private)

variables used within the abstracted expressions. The abstractions carry no run-time

penalty for the generated code. Our approach, despite its restriction, does allow

writing useful modular generators.

5.3 Markov models

Delimited control is not just useful for let-insertion. Taha8 used MetaOCaml to

specialize the execution of, and thus speed up the search for, Markov models of a

given form – whose number of states is known and many transition probabilities are

known to be zero. The Markov model is expressed using mutable state to initialize

and multiply matrices.

Whereas naively adding mutable state to MetaOCaml risks scope extrusion, our

system allows this use of mutable state and assures it safe because all of the matrix

operations take place in the same generated scope. Our MetaOCaml implementation

relying on delimited control operators can be found in the file band_markov_lc.ml

of the accompanying code.

6 CPS translation

In this section, we define a CPS translation for λ⊘
1 . The translation maps terms

and types from λ⊘
1 to a multilevel calculus without control effects. We show that

the translation simulates λ⊘
1 – in other words, it preserves operational semantics.

We can thus understand the reduction semantics in Section 3 and the type system

in Section 4 in terms of pure staging: For example, the �0 and �1 reductions in

Figure 3 correspond to the translation ��� in Figure 8; and the types of λ⊘
1 pull

back those of the target language. The translation also lets us implement λ⊘
1 by

implementing the target language.

The target language of our CPS translation is λ⊘
1 without present-stage control

effects. In other words, the terms of the target are as in λ⊘
1 but without the control

operators� and { } at the present stage. The type system of the target is as in λ⊘
1 but

with all present-stage answer types removed from types and judgments, for instance,

Γ ⊢ e : υ ;; υ0 for a future-stage judgment. We equate any level-0 expression e of

code type with 〈�e〉, and any level-1 expression e with �〈e〉.9 These equations bring

our treatment of level switching closer to that in the two-level λ-calculus (Nielson

8 http://metaocaml.org/examples/band-markov.ml
9 The first equation e = 〈�e〉 is crucial in Equation (43). It forces us to turn the � reduction in

Figure 3 into the second equation e = �〈e〉 in order to avoid the infinite loop 〈�〈3〉〉� 〈3〉 = 〈�〈3〉〉.
Besides, to prove Proposition 15, we need to reduce the target term �〈v1〉 in zero or more steps to v1

everywhere – even under a present-stage λ, because k̄ @̄ �〈v1〉 in Equation (41) may put �〈v1〉 under
a present-stage λ. For example, we need to translate the second step in

{〈�(let x = 0 in 〈3〉) + �(�λf. . . .)〉} �βv {〈�〈3〉+ �(�λf. . . .)〉}

�
�

{〈3 + �(�λf. . . .)〉}

��0 {let f = λy. {〈3 + �y〉} in . . . }

to zero or more steps from �〈3〉 to 3 under a present-stage λ (namely λy, essentially).

648 Y. Kameyama et al.

uses of the reduction (20) to

Fig. 7. An example of applying the one-pass CPS translation to perform let-insertion.

& Nielson, 1988). We also consider �v0 (including �x) a value. The reductions of

the target are

• the reductions of λ⊘
1 (Figure 3) restricted to these terms,

• minus the now-superfluous � reduction,

• plus the reduction

(λx. e) v0 → e[x := v0] where x occurs at most once in e (20)

everywhere – even under a present-stage λ. This additional reduction does not

affect the set of terminating terms.

Since the sets of values, frames, delimited contexts, and contexts (Figure 2) are

invariant up to the equations e = 〈�e〉 and e = �〈e〉 just introduced, these reductions

are well-defined over equivalence classes of target terms.

Before presenting our CPS translation in detail, we first show an example of it at

work. Take the source program

〈 (�(�λf. 〈let x = 1 + 1 in �(f〈x〉)〉), �(�λf. 〈let x = 1 + 1 in �(f〈x〉)〉)) 〉 (21)

in λ⊘
1 . This program performs two let-insertions in a row. When placed inside a

top-level reset, it evaluates to

〈let x = 1 + 1 in let y = 1 + 1 in (x, y)〉 (22)

as specified in Figure 3. As detailed in Figure 7, our CPS translation maps the

Shifting the stage 649

program (21) to a target term that reduces to

let z = 〈λx.�((λx′. x′)(

let z = 〈λy.�((λx′. x′)(

〈(x, y)〉

))〉 in 〈�z(1 + 1)〉

))〉 in 〈�z(1 + 1)〉

(23)

using the reduction (20). This term does not use any delimited control operators,

but rather uses ordinary abstractions over 〈x〉 and 〈y〉 to represent the continuations

of the two �-applications in the source program (21). This term eventually reduces

to the value (22) just as the source program does.

Figure 8 shows the formal rules of our CPS translation. It is a one-pass translation

(that is, it produces no administrative redexes), which makes it simpler to state and

prove that it simulates the source language. Like Danvy and Filinski (1992), we

express it in a higher-order metalanguage and regard it as the result of analyzing

the binding times in a CPS translation that does produce administrative redexes.

We write x̄, λ̄, and @̄ to denote variables, abstraction, and application at the level

of this metalanguage.

Figure 8 defines the translation �e�0 of a present-stage expression e and the

translation �e�1 of a future-stage expression e. Given a present-stage value v0, the

figure also defines its value translation �v0�, which is itself a value in the target

language. For example, �λx. e� is a target term of the form λx. λk. . . .where x and k

are fresh variable names; in particular, k is a dynamic continuation. In contrast,

�e�0 and �e�1 are meta-level functions that map a term-to-term function k̄ (a static

continuation) to a term. More precisely,

• the meta-level function �e�0 returns a present-stage term when given a meta-

level function mapping a present-stage value to a present-stage term;

• the meta-level function �e�1 returns a present-stage term when given a meta-

level function mapping a future-stage value to a present-stage term.

The definition of �e�0 uses the static continuation ↑k (pronounced “reflect k”) and

the dynamic continuation ↓k̄ (pronounced “reify k̄”). If we ignore the difference of

object language and metalanguage, then reflection and reification do not change

the continuation at all. We make the distinction and use the metalanguage level to

avoid producing administrative redexes and simplify the proof of simulation.

The output of the translation is in tail form except in �{e}�0, ���, and �λx. e�1.

If we naively define �λx. e�1 = λ̄k̄. �e�1 @̄ λ̄z̄. k̄ @̄ λx. z̄ in tail form, then occurrences

of x in e would translate to unbound future-stage variables. The CPS translation

thus relies on our treating future-stage binders as present-stage control delimiters.

To make this description precise and to show that the translation preserves types

in λ⊘
1 , we define a CPS translation τ∗ of present-stage types τ.

int∗ = int 〈υ/υ0〉
∗ = 〈υ/υ0〉 (τ1, τ2)

∗ = (τ∗
1, τ

∗
2)

(τ1 → τ2/τ3)
∗ = τ∗

1 → (τ∗
2 → τ∗

3) → τ∗
3 α∗ = α

(24)

650 Y. Kameyama et al.

Fig. 8. One-pass CPS translation for λ⊘
1 .

(Future-stage types do not change.) We also translate environments:

[]∗ = [] (Γ, x : τ)∗ = Γ∗, x : τ∗ (Γ, 〈x : υ〉)∗ = Γ∗, 〈x : υ〉 (25)

Proposition 12 (translation preserves typing) We have the following three proper-

ties.

(1) If Γ ⊢ v0 : τ ; τ0, then Γ∗ ⊢ �v0� : τ∗.

(2) Suppose Γ ⊢ e : τ ; τ0. Let Φ be a type environment in the target language

and k̄ be a meta-level function such that, for any type environment ∆ and

term t of the target language, if Γ∗,∆ ⊢ t : τ∗, then Γ∗,∆,Φ ⊢ k̄ @̄ t : τ∗
0. Then

Γ∗,Φ ⊢ �e�0 @̄ k̄ : τ∗
0.

Shifting the stage 651

(3) Suppose Γ ⊢ e : υ ; τ0 ; υ0. Let Φ be a type environment in the target language

and k̄ be a meta-level function such that, for any type environment ∆ and

term t of the target language, if Γ∗,∆ ⊢ t : υ ;; υ0 then Γ∗,∆,Φ ⊢ k̄ @̄ t : τ∗
0.

Then Γ∗,Φ ⊢ �e�1 @̄ k̄ : τ∗
0.

If we ignore the difference of object language and metalanguage, the proposition can

be stated in a much simpler way. For instance, part 2 is stated as: if Γ ⊢ e : τ ; τ0,

then Γ∗ ⊢ �e�0 : (τ∗ → τ∗
0) → τ∗

0. In our one-pass CPS translation, k̄ represents a

meta-level function that (roughly) has type τ∗ → τ∗
0, and the assumption on k̄ in the

proposition is a precise statement for this intuition.

Proof The definitions in Figure 8 are mutually inductive, and �v0�0 is defined in

terms of �v0�. Accordingly, we proceed by mutual induction on typing derivations,

allowing part 2 to appeal to part 1 in the case where e = v0.

For part 1, the interesting case is when v0 = λx. e. By inversion, let Γ, x : τ′ ⊢
e : τ′′ ; τ1. Recall from Figure 8 that the translation in this case binds the

dynamic continuation variable k. Note that ↑k is a meta-level function such that

Γ∗, x : τ′∗,∆, k : τ′′∗ → τ∗
1 ⊢ ↑k @̄ t : τ∗

1 whenever Γ∗, x : τ′∗,∆ ⊢ t : τ′′∗. By the induction

hypothesis (choosing Φ = k :τ′′∗ → τ∗
1), we have Γ∗, x :τ′∗, k :τ′′∗ → τ∗

1 ⊢ �e�0 @̄↑k : τ∗
1.

Hence, Γ∗ ⊢ λx. λk. �e�0 @̄ ↑k : (τ′ → τ′′/τ1)
∗, in which λx. λk. �e�0 @̄ ↑k is �λx. e� by

definition, as desired.

For part 2, the interesting cases are as follows:

Case e = v0: By the induction hypothesis for part 1, we have Γ∗ ⊢ �v0� : τ∗. Thus,

by the assumption on k̄, we have Γ∗,Φ ⊢ k̄ @̄ �v0� : τ∗
0, in which k̄ @̄ �v0� is �v0�0 @̄ k̄

by definition, as desired.

Case e = e1e2: By inversion, let Γ ⊢ e1 : τ′ → τ/τ0 ; τ0 and Γ ⊢ e2 : τ′ ; τ0 and k̄

be a meta-level function such that Γ∗,∆,Φ ⊢ k̄ @̄ t : τ∗
0 whenever Γ∗,∆ ⊢ t : τ∗. By

the definition of �e1e2�0 and the induction hypothesis for e1 (choosing the same Φ),

we need only show

Γ∗,∆1,Φ ⊢ �e2�0 @̄ λ̄x̄. t1x̄↓k̄ : τ∗
0 (26)

given Γ∗,∆1 ⊢ t1 : (τ′ → τ/τ0)
∗. By the induction hypothesis for e2 (choosing Φ to

be ∆1,Φ), we need only show

Γ∗,∆2,∆1,Φ ⊢ t1t2↓k̄ : τ∗
0 (27)

given Γ∗,∆2 ⊢ t2 : τ′∗. Finally, given that ↓k̄ is defined to be λx. k̄ @̄ x, we choose ∆

to be x : τ∗,∆2,∆1 and t to be x.

Case e = 〈e′〉: By inversion, let Γ ⊢ e′ : υ ; τ0 ; υ0 and k̄ be a meta-level function

such that Γ∗,∆,Φ ⊢ k̄ @̄ t : τ∗
0 whenever Γ∗,∆ ⊢ t : 〈υ/υ0〉. Then Γ∗,∆,Φ ⊢ k̄ @̄ 〈t〉 : τ∗

0

whenever Γ∗,∆ ⊢ t : υ ;; υ0. By the induction hypothesis for part 3 (choosing the

same Φ), we have Γ∗,Φ ⊢ �e′�1 @̄ λ̄x̄. k̄ @̄ 〈x̄〉 : τ∗
0, in which �e′�1 @̄ λ̄x̄. k̄ @̄ 〈x̄〉 is

�〈e′〉�0 @̄ k̄ by definition, as desired.

For part 3, the interesting cases are as follows:

Case e = x: By inversion, let Γ ⊢ x : υ ; τ0 ; υ0 and k̄ be a meta-level function

such that Γ∗,∆,Φ ⊢ k̄ @̄ t : τ∗
0 whenever Γ∗,∆ ⊢ t : υ ;; υ0. Then (〈x : υ〉) ∈ Γ, so

(〈x : υ〉) ∈ Γ∗ and so Γ∗ ⊢ x : υ ;; υ0. We thus choose ∆ to be [] and t to be x and

conclude Γ∗,Φ ⊢ k̄ @̄ x : τ∗
0, in which k̄ @̄ x is �x�1 @̄ k̄ by definition, as desired.

652 Y. Kameyama et al.

Case e = λx. e′ where e′ is not a value: By inversion, let Γ, 〈x : υ〉 ⊢ e′ :

υ′ ; 〈υ′/υ1〉 ; υ1 and k̄ be a meta-level function such that Γ∗,∆,Φ ⊢ k̄ @̄ t : τ∗
0

whenever Γ∗,∆ ⊢ t : υ → υ′/υ1 ;; υ0. By the induction hypothesis (choosing the

same Φ), because Γ∗, 〈x : υ〉,∆,Φ ⊢ 〈t〉 : 〈υ′/υ1〉 whenever Γ∗, 〈x : υ〉,∆ ⊢ t : υ′ ;; υ1,

we have Γ∗, 〈x : υ〉,Φ ⊢ �e′�1 @̄ λ̄z̄. 〈z̄〉 : 〈υ′/υ1〉. So, Γ∗,Φ ⊢ 〈λx.�(�e′�1 @̄ λ̄z̄. 〈z̄〉)〉 :

〈(υ → υ′/υ1)/υ0〉. Finally, choose ∆ = z : 〈(υ → υ′/υ1)/υ0〉 and t = �z to show that

Γ∗,Φ ⊢ λz. k̄ @̄ �z : 〈(υ → υ′/υ1)/υ0〉→ τ∗
0.

Case e = {e′}: By inversion, let Γ ⊢ e′ : υ ; τ0 ; υ and k̄ be a meta-level function

such that Γ∗,∆,Φ ⊢ k̄@̄ t : τ∗
0 whenever Γ∗,∆ ⊢ t : υ ;; υ0. Then Γ∗,∆,Φ ⊢ k̄@̄{t} : τ∗

0

whenever Γ∗,∆ ⊢ t : υ ;; υ. By the induction hypothesis (choosing the same Φ), we

have Γ∗,Φ ⊢ �e′�1 @̄ λ̄x̄. k̄ @̄ {x̄} : τ∗
0, in which �e′�1 @̄ λ̄x̄. k̄ @̄ {x̄} is �e�1 @̄ k̄ by

definition, as desired. �

We move on to show that our translation also preserves the dynamic semantics

of λ⊘
1 . To do so, we need a crucial lemma that relates the translations of a delimited

context Dij and of it plugged with a term e. Intuitively, this lemma says that the

translation of Dij[e] puts e “in control” by applying the translation of e to the

translation of Dij[x]. After all, Dij is a delimited evaluation context. The subsequent

corollary then extends the lemma from delimited contexts to all contexts C i.

Lemma 13 Let k̄ be a meta-function from level-i target values to level-0 target

terms, and let x be a fresh object variable at level j (so �x� = x in case j = 0). Then

�Dij[e]�i @̄ k̄ = �e�j @̄ λ̄z̄. (�Dij[x]�i @̄ k̄)[x := z̄]. (28)

(That is, the target terms on the two sides are related by canceling 〈 〉 against � as

described at the beginning of this section.)

Proof By induction and case analysis on Dij .

Case �: By definition of �x�i, then β and η reductions at the metalanguage level.

Case Di1[��]: We have

LHS = �Di1[�e]�i @̄ k̄

= ��e�1 @̄ λ̄z̄. (�Di1[x]�i @̄ k̄)[x := z̄] by induction hypothesis

= �e�0 @̄ λ̄z̄. (�Di1[x]�i @̄ k̄)[x := �z̄] by definition of ��e�1,

(29)

so

RHS = �e�0 @̄ λ̄z̄. (�Di1[�x]�i @̄ k̄)[x := z̄]

= �e�0 @̄ λ̄z̄. (�Di1[x]�i @̄ k̄)[x := �z̄] by Equation (29) with e = x,

and definition of �x�0

= LHS by Equation (29).

(30)

Cases Di0[〈�〉], Di1[{�}] and Di0[ifz � then e1 else e2] are similar.

Case Di0[v0�]: We have

LHS = �Di0[v0e]�i @̄ k̄

= �v0e�0 @̄ λ̄z̄. (�Di0[x]�i @̄ k̄)[x := z̄] by induction hypothesis

= �e�0 @̄ λ̄z̄. �v0�z̄(λx. �Di0[x]�i @̄ k̄) by def. of �v0e�0 and �v0�0,

(31)

Shifting the stage 653

so

RHS = �e�0 @̄ λ̄z̄. (�Di0[v0x]�i @̄ k̄)[x := z̄]

= �e�0 @̄ λ̄z̄. �v0�z̄(λx. �Di0[x]�i @̄ k̄) by Equation (31) with e = x,

and definition of �x�0

= LHS by Equation (31).

(32)

Cases Di0[v0 + �], Di0[(v0,�)], Di1[v1 + �], Di1[v1�], Di1[(v1,�)], and Di1[ifz v1 then

v1
1 else �] are similar.

Case Di0[�e2]: We have

LHS = �Di0[ee2]�i @̄ k̄

= �ee2�0 @̄ λ̄z̄. (�Di0[x]�i @̄ k̄)[x := z̄] by induction hypothesis

= �e�0 @̄ λ̄ȳ. �e2�0 @̄ λ̄z̄. ȳz̄(λx. �Di0[x]�i @̄ k̄) by definition of �ee2�0

= �e�0 @̄ λ̄ȳ. (�Di0[fe2]�i @̄ k̄)[f := ȳ] by Equation (31) with v0 = f

= RHS.
(33)

Cases Di0[� + e2], Di0[(�, e2)], Di1[� + e2], Di1[�e2], Di1[(�, e2)], Di1[ifz v1 then

� else e2], and Di1[ifz � then e1 else e2] are similar. �

Corollary 14 Let x be an object variable at level 0 that does not occur in expressions

C0[{e}] and C1[λy. e] mentioned below.

If C0 is a context and e is a present-stage expression, then

�C0[{e}]�0 @̄ λ̄z̄. z̄ = (�C0[{x}]�0 @̄ λ̄z̄. z̄)[x := �e�0 @̄ λ̄z̄. z̄], (34)

in which the target term �C0[{x}]�0 @̄ λ̄z̄. z̄ is equal to the result of plugging x into

some evaluation context.

If C1 is a context and e is a future-stage expression that is not a value, then

�C1[λy. e]�0 @̄ λ̄z̄. z̄ = (�C1[λy.�x]�0 @̄ λ̄z̄. z̄)[x := �e�1 @̄ λ̄z̄. 〈z̄〉], (35)

in which the target term �C1[λy.�x]�0 @̄ λ̄z̄. z̄ is equal to the result of plugging x

into some evaluation context.

Proof By mutual induction on C0 and C1, using Lemma 13 at each step. �

Proposition 15 (reduction preservation) Let e and e′ be present-stage expressions. If

{e} � {e′}, then �e�0 @̄ λ̄z̄. z̄ �∗ �e′�0 @̄ λ̄z̄. z̄. (Moreover, �e�0 @̄ λ̄z̄. z̄ = �e′�0 @̄ λ̄z̄. z̄

only if e = C1[�〈v1〉] and e′ = C1[v1].)

Proof By case analysis on �.

Case +: We have {C0[n1 +n2]} � {C0[n]} where n = n1+̇n2, and we need to show

�C0[n1 + n2]�0 @̄ λ̄z̄. z̄ �+ �C0[n]�0 @̄ λ̄z̄. z̄. We perform case analysis on C0:

• If C0 = D00, then what we need is �D00[n1 + n2]�0 @̄ λ̄z̄. z̄ �+ �D00[n1+̇n2]�0 @̄

λ̄z̄. z̄.

• If C0 = C0′[{D00}], then the first half of Corollary 14 gives us an evaluation

context C in the target language (namely, C[x] = �C0′[{x}]�0 @̄ λ̄z̄. z̄) such

that what we need is C[�D00[n1 + n2]�0 @̄ λ̄z̄. z̄] �+ C[�D00[n1+̇n2]�0 @̄ λ̄z̄. z̄].

654 Y. Kameyama et al.

So we just need to show �D00[n1 + n2]�0 @̄ λ̄z̄. z̄ �+ �D00[n1+̇n2]�0 @̄ λ̄z̄. z̄ as

in the previous case.

• If C0 = C1[λx. D10], then the second half of Corollary 14 gives us an evaluation

context C in the target language (namely, C[x] = �C1[λy.�x]�0 @̄ λ̄z̄. z̄) such

that what we need is C[�D10[n1+n2]�1@̄λ̄z̄. 〈z̄〉] �+ C[�D10[n1+̇n2]�1@̄λ̄z̄. 〈z̄〉].

So we just need to show �D10[n1 + n2]�1 @̄ λ̄z̄. 〈z̄〉�+ �D10[n1+̇n2]�1 @̄ λ̄z̄. 〈z̄〉.

To sum up this case analysis, we just need to show

�Di0[n1 + n2]�i @̄ k̄′
�

+ �Di0[n1+̇n2]�i @̄ k̄′ (36)

where either i = 0 and k̄′ = λ̄z̄. z̄ or i = 1 and k̄′ = λ̄z̄. 〈z̄〉. We apply Lemma 13 to

both sides, letting k̄ = λ̄z̄. (�Di0[x]�i @̄ k̄′)[x := z̄]:

�n1 + n2�0 @̄ k̄ = ↓k̄(n1 + n2) �+ ↓k̄(n1+̇n2) �βv k̄ @̄ (n1+̇n2) = �n1+̇n2�0 @̄ k̄. (37)

The fix, fst, and snd cases are similar.

Case βv: Again by Corollary 14 and Lemma 13, we just need to show

�(λx. e) v0�0 @̄ k̄ �
∗ �e[x := v0]�0 @̄ k̄. (38)

We have

�(λx. e) v0�0 @̄ k̄ = (λx. λk. �e�0 @̄ ↑k)�v0�↓k̄ �
2
βv

(�e�0 @̄ ↑↓k̄)[x := �v0�]. (39)

The last term reduces to (�e�0 @̄ k̄)[x := �v0�] using the reduction (20) zero or more

times, because our translation always applies the static continuation to a value, and

the static continuation always uses its argument at most once. The two ifz cases use

the same reasoning to reduce �e1�0 @̄↑↓k̄ and �e2�0 @̄↑↓k̄ to �e1�0 @̄ k̄ and �e2�0 @̄ k̄.

Case {}: Again we use Corollary 14 and Lemma 13:

�{v0}�0 @̄ k̄ = ↓k̄�v0� �βv k̄ @̄ �v0� = �v0�0 @̄ k̄. (40)

Case �: Again we use Corollary 14 and Lemma 13 (letting j be 1 rather than 0

this time):

��〈v1〉�1 @̄ k̄ = k̄ @̄ �〈v1〉 = k̄ @̄ v1 = �v1� @̄ k̄. (41)

If the source reduction turns a future-stage λ-abstraction into a value, then one

βv-reduction per future-stage λ-abstraction is needed to match the CPS translation

of the value.

Case �0: Letting k̄ = λ̄z̄. (�D00[x]�0 @̄ λ̄z̄. z̄)[x := z̄], we compute

�D00[�v0]�0 @̄ λ̄z̄. z̄ = ����v0�↓k̄ �2
βv

�v0�(λx. λk′. (λx′. k′x′)((↓k̄)x))(λx. x)

� �v0�(λx. λk′. (λx′. k′x′)(k̄ @̄ x))(λx. x)

= �v0(λx. {D00[x]})�0 @̄ λ̄z̄. z̄.

(42)

Case �1: Letting k̄ = λ̄z̄. (�〈D10[x]〉�0 @̄ λ̄z̄. z̄)[x := z̄], we compute

�D10[�v0]�1 @̄ λ̄z̄. 〈z̄〉 = ����v0�↓k̄ �2
βv

�v0�(λx. λk′. (λx′. k′x′)((↓k̄)x))(λx. x)

� �v0�(λx. λk′. (λx′. k′x′)(k̄ @̄ x))(λx. x)

= �v0(λx. {〈D10[x]〉})�0 @̄ λ̄z̄. z̄

= ��(v0(λx. {〈D10[x]〉}))�1 @̄ λ̄z̄. 〈z̄〉.

(43)

The last equality is why we equate 〈�e〉 with e in the target language. �

Shifting the stage 655

Fig. 9. Values and contexts of λ⊘. We write += to add alternatives to a preceding BNF
rule.

Fig. 10. Operational semantics: small-step reduction e � e′ particular to λ⊘. Other reduction
rules are the same as those in λ⊘

1 . Here 〈 〉i and �
i stand for i levels of brackets and escapes;

i � 1.

7 Multilevel calculus with control effects

This section generalizes λ⊘
1 to the full language λ⊘ with an arbitrary number of

levels, removing the restriction on nesting of brackets and escapes and making the

language, its type system in particular, more uniform. The generalization only affects

the number of levels for expressions; the syntax of expressions remains the same, see

Section 3 and Figure 1. Level 0 still refers to the present stage, at which reductions

may occur. The language λ⊘ permits more than one future-stage level by allowing

brackets and escapes to nest. Brackets increase the level of the expression and escape

decreases it. The language λ⊘ thus can express not only code generators but also

generators of code generators, and so on. The level superscripts are now arbitrary

natural numbers. Figure 9 defines values and contexts of λ⊘, generalizing those of

λ⊘
1 to multiple future levels.

For example, according to the definition of delimited contexts in Figure 9, � is

a D22, so �� is a D21 and so ��� is a D20. Similarly, because � is a D00 as well as

a D11, we have that 〈�〉 is a D01 as well as a D12. Putting these derivations together,

the parse tree below shows that 〈λx. 〈λy.���〉〉 is an evaluation context C0:

D00 ::= �

D01 ::= 〈�〉

C1 ::= 〈�〉

D11 ::= �

D12 ::= 〈�〉

C2 ::= 〈λx. 〈�〉〉

D22 ::= �

D21 ::= ��

D20 ::= ���

C0 ::= 〈λx. 〈λy.���〉〉

(44)

The operational semantics of λ⊘ is, with one exception, identical to that of λ⊘
1 .

After all, in both calculi, reductions are only performed at level 0. The sole exception

is to generalize the �1 reduction of λ⊘
1 to the �i reduction as shown in Figure 10.

656 Y. Kameyama et al.

Fig. 11. The type system of λ⊘ and selected typing rules. The notation τ〈n〉 is explained in the
text.

The type system of λ⊘ is essentially the same as that of λ⊘
1 ; Figure 11 shows the

crucial parts. Terms like 〈〈42〉〉 with nested brackets are now allowed and inhabit

types with nested brackets like 〈〈int / int〉/ int〉. In type environments, the notation

〈x : τ〉i (or just x : τ if i = 0) associates the level-i variable x with the type τ. We

generalize answer types to sequences of types Ti = τ0, . . . , τi; each type τj in a

sequence tracks the control effects that may occur at the level j. A typing judgment

Γ ⊢ e : τ ; Ti for a level-i expression e includes the answer-type sequence Ti. The

typing rules of λ⊘ simply generalize those of λ⊘
1 ; Figure 11 shows a sample. The

type system of λ⊘ is more uniform however: There is only one form of judgment,

which works for the present and the future stages. We no longer have to employ

the judgment schema Γ ⊢ e : τ ; τ0 [; υ0]; strictly speaking, λ⊘ has roughly half the

number of typing rules compared to λ⊘
1 .

The rule for future-stage abstraction is the only one with nontrivial generalization,

giving more insight into our restriction of effects within the closest future-stage

binder. (This restriction is similar to that in the region-based type-and-effect system

(Talpin & Jouvelot, 1992).) Recall that, to prevent scope extrusion, we put an implicit

present-stage reset under each future-stage binder. In the case of many future stages,

we place many implicit resets, for levels 0 through i−1 (inclusive), under each level-i

binder. For example, the body e of a level-1 abstraction is implicitly delimited as

�{〈e〉}; the body e of a level-2 abstraction is implicitly delimited as �{�{〈〈e〉〉}}.
These implicit resets explain the answer-type sequence for the body of the level-i λ. In

the first rule in Figure 11, the sequence is written 〈τ′/τ′
i〉
〈i〉, 〈τ′/τ′

i〉
〈i−1〉, . . . , 〈τ′/τ′

i〉
〈1〉, τ′

i

using the notation τ〈i〉 inductively defined as follows:

τ〈1〉 = τ, τ〈i+1〉 = 〈τ〈i〉/τ〈i〉〉. (45)

For example, at level 2, we can conclude Γ ⊢ (λx. e) : τ → τ′/τ′
2 ; τ0, τ1, τ2 provided

that Γ, 〈〈x : τ〉〉 ⊢ e : τ′ ; 〈〈τ′/τ′
2〉/〈τ

′/τ′
2〉〉, 〈τ

′/τ′
2〉, τ

′
2.

The formal properties of the multilevel calculus λ⊘ straightforwardly generalize

those of λ⊘
1 stated in Sections 4.2 and 6 – and so do their proofs. To be certain,

we have mechanized the type soundness proofs for λ⊘ in Twelf. Therefore, we

omit the proofs, referring the reader for details to the well-commented code

circle-shift-n.elf accompanying the paper.

Shifting the stage 657

8 Related work

Our work draws from two strands of research on partial evaluation and code

generation, namely, side effects and custom generators.

8.1 Side effects in code generators

There is a long tradition of using CPS to write program generators such as pattern-

match compilers. Danvy and Filinski (1990, 1992) first applied delimited control to

program generation: They showed how to fuse a CPS translation and administrative

reductions into one pass by writing the translation either in CPS or using shift

and reset. Similarly in partial-evaluation research, Bondorf (1992) showed how to

improve binding times by writing the specializer rather than source programs in CPS.

This move helps because the specializer is a fixed program that a programming-

language expert can write and prove correct once and for all, whereas many source

programs are written and fed to the specializer over time, by domain experts who

may be unfamiliar with CPS. (Dussart and Thiemann (1996) in their Section 1.1

also criticized the approach of expanding source programs monadically.)

Danvy and Filinski’s (1990, 1992) CPS translations and Bondorf’s (1992) special-

izer are sound, in the sense that their continuations are well-behaved and do not lead

to scope extrusion. Given that these code generators were fixed, it was sensible for

their authors to prove their soundness as part of specific proofs of their correctness

rather than as a corollary of some type system that assures that every well-typed

generator is sound. Lawall and Danvy (1994) did not rely on such a type system

either when they used shift and reset to reduce Bondorf’s specializer to direct

style. Our type system accepts these generators not as they are but reformulated as

combinators (Thiemann, 1999). It thus assures them sound; in particular, it is the

first to accept Danvy and Filinski’s (1990, 1992) and Lawall and Danvy’s (1994)

uses of delimited control.

In contrast, we are not aware of any sound type system for code generators that

accepts Sumii and Kobayashi’s (2001) specializer, which performs let-insertion using

mutable state rather than delimited control to speed up specialization, or Dussart and

Thiemann’s (1996) specializer, which uses first-class mutable state (Morrisett, 1993)

as well as first-class continuations. For both of those specializers, code generation is

preceded by a sophisticated type-based binding-time analysis.

8.2 Domain-specific optimizations

Programs in particular domains often need to be optimized or specialized using

specific techniques that experts of the domains can implement more readily than

compiler or specializer writers. Examples include memoization for Gibonacci and

dynamic programming (Swadi et al., 2006), pivoting for Gaussian elimination

(Carette & Kiselyov, 2011), and simplifying complex arithmetic for Fast Fourier

Transform (Frigo & Johnson, 2005; Kiselyov & Taha, 2005). To better support

these domain-specific optimizations, two approaches have been developed in the

literature.

658 Y. Kameyama et al.

Side effects in specializer input. The first approach is to specialize a source language

that has features (such as state) that help express custom optimizations. Along

this line, Thiemann and Dussart (1999) built an offline specializer for a higher-order

language with mutable references. The example source programs in their paper show

how application programmers can persuade the specializer to produce efficient code:

by expressing unspecialized optimizations (such as memoization) and by improving

binding times manually (for instance, writing a recursive coercion to transform static

data into dynamic data).

As usual, Thiemann and Dussart’s (1999) specializer uses continuations to perform

let-insertion. What is less usual is that it is written in a store-passing style so as

to manage mutable references at specialization time. These static references are

organized by a binding-time analysis into regions (Talpin & Jouvelot, 1992; Tofte

et al., 2004). Regions limit the references’ lifetimes statically, much as our answer

types do in the simulation of state by delimited control in Section 3.2. However, our

simulation is relatively simplistic in that it allows access to only one mutable cell at a

time, namely the cell at the nearest delimiter. To prevent scope extrusion, Thiemann

and Dussart’s (1999) binding-time analysis ensures that a static reference is used in

the scope of a dynamic binder only if the reference’s lifetime is local to the binder.

This constraint is analogous to our restriction of static effects (not just mutation) to

the scope of dynamic binders. In general, the use of regions to encapsulate monadic

effects is a large and productive research area (Kagawa, 2001; Fluet & Morrisett,

2006; Ganz, 2006).

Optimizing compilers of imperative languages can determine the extent of possible

mutations by control-flow analyses, but typically do not express the results of analysis

in the language or make them available to the programmer for inspection or control,

as our type system does. In particular, whereas Thiemann and Dussart’s (1999)

specializer infers binding-time annotations and performs let-insertion automatically

and safely, our type system (akin to their constraints on annotations) ensures the

safety of code generators written by application programmers.

Custom code generators. The last difference brings us to the second way to support

domain-specific optimizations: letting domain experts write code generators. This

approach has the advantage that the behavior of a code generator on a static

input tends to be more predictable than the behavior of a specializer (especially its

binding-time analysis) on a source program. Swadi et al.’s (2006) and Carette and

Kiselyov’s (2011) uses of CPS and monadic style in domain-specific code generators

raise the need for a multilevel language to provide the convenience of effects without

the risk of scope extrusion. Such a language is needed to ease the development and

assure the safety of a variety of domain-specific code generators, not just a fixed

specializer.

This paper addresses this need, following two previous papers. To prevent scope

extrusion in a multilevel language with references, Calcagno et al. (2000) proposed

to store only values of closed types in mutable cells. This (unimplemented) proposal

is too restrictive for our purposes, because we want to store future-stage variables

in memoization tables (as in our Gibonacci example).

Shifting the stage 659

We previously (Kameyama et al., 2008) introduced a typed two-level language λα1v
and translated it to System F. That translation fails in the presence of effects (due

to scope extrusion, manifest as a lack of type coercions), yet it is more complex

than our CPS translation in Section 6 here. (Choi et al. 2011 present another

unstaging translation.) So far, then, it seems simpler to combine staging and effects

by translating effects rather than staging away.

9 Conclusions

We have presented the first multilevel language for writing code generators that

provides delimited control operators while assuring statically that all generated code

is well-formed. This language thus strikes a balance between clarity and safety

that helps application programmers implement domain-specific optimizations in

practical and reusable generators of specialized programs. The key idea that enables

this balance is to restrict control effects to the scope of generated binders, that is, to

treat generated binders as control delimiters.

As the examples illustrate, our language is expressive enough in many practical

settings that we have encountered. Nevertheless, it would be useful to find a sound

way to relax our restriction on control effects so as to perform let- and if-insertion

outside the closest generated binder. As discussed in Section 3.4, we could then

express loop-invariant code motion and generate assertions to be checked as early

as possible. It might also help us to simultaneously access multiple pieces of state

at different generated scopes, not just one piece as in Section 3.2. At the very least,

we would be able to throw exceptions as we generate code, for example, when

attempting to specialize Gibonacci (Section 2) to a negative n. (We can add an

ad hoc extension to our system permitting effects to propagate beyond the closest

binder provided the answer type is a base type.)

Another good way to enrich our language is to add delimited control to a richer

language (like the language of Taha and Nielsen 2003) with run and cross-stage

persistence. Finally, as discussed in Section 4.1, our language can be made much more

comfortable to use by adding polymorphism over answer types (Asai & Kameyama,

2007).

Supplementary material

For supplementary material for this article, please visit http://dx.doi.org/10.

1017/S0956796811000256

Acknowledgments

We thank Kenichi Asai, Olivier Danvy, and Atsushi Igarashi for helpful discussions,

and the reviewers for their many helpful comments.

References

Asai, K. (2009) On typing delimited continuations: Three new solutions to the printf problem.
Higher-Order Symb. Comput. 22(3), 275–291.

660 Y. Kameyama et al.

Asai, K. & Kameyama, Y. (2007) Polymorphic delimited continuations. In Proceedings of

APLAS’07, LNCS, vol. 4807, pp. 239–254.
Balat, V., Di Cosmo, R. & Fiore, M. P. (2004) Extensional normalisation and type-directed

partial evaluation for typed lambda calculus with sums. In Proceedings of Annual Symposium

on Principles of Programming Languages (POPL), pp. 64–76.
Bondorf, A. (1992). Improving binding times without explicit CPS-conversion. In Proceedings

of LISP & Functional Programming, pp. 1–10.
Bondorf, A. & Danvy, O. (1991) Automatic autoprojection of recursive equations with global

variables and abstract data types. Sci. Comput. Program. 16(2), 151–195.
Calcagno, C., Moggi, E. & Taha, W. (2000) Closed types as a simple approach to safe

imperative multi-stage programming. In Proceedings of ICALP, LNCS, vol. 1853, pp. 25–
36.

Calcagno, C., Moggi, E. & Taha, W. (2004) ML-like inference for classifiers. In Proceedings

of ESOP, LNCS, vol. 2986, pp. 79–93.
Carette, J. (2006) Gaussian Elimination: A case study in efficient genericity with MetaOCaml.

Sci. Comput. Program. 62(1), 3–24 (special issue on the First MetaOCaml Workshop 2004).
Carette, J. & Kiselyov, O. (2011) Multi-stage programming with functors and monads:

Eliminating abstraction overhead from generic code. Sci. Comput. Program. 76(5), 349–
375.

Choi, W., Aktemur, B., Yi, K. & Tatsuta, M. (2011) Static analysis of multi-staged programs
via unstaging translation. In Proceedings of POPL ’11: Conference Record of the Annual

ACM Symposium on Principles of Programming Languages, Ball, T. & Sagiv, M. (eds). New
York: ACM Press, pp. 81–92.

Cohen, A., Donadio, S., Garzarán, M. J., Herrmann, C. A., Kiselyov, O. & Padua, D. A.
(2006) In search of a program generator to implement generic transformations for high-
performance computing. Sci. Comput. Program. 62(1), 25–46.

Czarnecki, K., O’Donnell, J. T., Striegnitz, J. & Taha, W. (2004) DSL implementation in
MetaOCaml, Template Haskell, and C++. In Proceedings of DSPG 2003, LNCS, vol.
3016, pp. 51–72.

Danvy, O. (1998) Functional unparsing. J. Funct. Program. 8(6), 621–625.
Danvy, O. & Filinski, A. (1989) A Functional Abstraction of Typed Contexts. Tech. Rep.

89/12, DIKU, University of Copenhagen, Denmark. Available at: http://www.daimi.au.
dk/~danvy/Papers/fatc.ps.gz Accessed 8 November 2011.

Danvy, O. & Filinski, A. (1990) Abstracting control. In Proceedings of LISP & Functional

Programming, Nice, France, June 1990, pp. 151–160.
Danvy, O. & Filinski, A. (1992) Representing control: A study of the CPS transformation.

Math. Struct. Comput. Sci. 2(4), 361–391.
Davies, R. (1996) A temporal logic approach to binding-time analysis. In Proceedings of

LICS, New Brunswick, New Jersey, July 27–30, pp. 184–195.
Davies, R. & Pfenning, F. (2001) A modal analysis of staged computation. J. ACM 48(3),

555–604.
Dussart, D. & Thiemann, P. (1996). Imperative Functional Specialization. Tech. Rep. WSI-96-

28. Universität Tübingen.
Eckhardt, J., Kaiabachev, R., Pašalić, E., Swadi, K. N. & Taha, W. (2005) Implicitly

heterogeneous multi-stage programming. In Proceedings of GPCE, LNCS, vol. 3676,
pp. 275–292.

Elliott, C. (2004) Programming graphics processors functionally. In Proceedings of Haskell

Workshop, Snowbird, UT, USA, September 22, pp. 45–56.
Felleisen, M. (1991) On the expressive power of programming languages. Sci. Comput. Program.

17(1–3), 35–75.
Felleisen, M., Friedman, D. P., Kohlbecker, E. E. & Duba, B. F.. (1986) Reasoning with

continuations. In Proceedings of the 1st Symposium on Logic in Computer Science,
Cambridge, MA, USA, June 16–18, pp. 131–141.

Shifting the stage 661

Filinski, A. (1994) Representing monads. In Proceedings of POPL, Portland, Oregon, USA,
January 17–21, pp. 446–457.

Fluet, M. & Morrisett, J. G. (2006) Monadic regions. J. Funct. Program. 16(4–5), 485–545.
Frigo, M. & Johnson, S. G. (2005) The design and implementation of FFTW3. Proc. IEEE

93(2), 216–231.
Ganz, S. E. (2006). Encapsulation of State with Monad Transformers. Ph.D. thesis, Computer

Science Department, Indiana University.
Gomard, C. K. & Jones, N. D. (1991) A partial evaluator for the untyped lambda calculus.

J. Funct. Program. 1(1), 21–69.
Hammond, K. & Michaelson, G. (2003) Hume: A domain-specific language for real-time

embedded systems. In Proceedings of GPCE, LNCS, vol. 2830, pp. 37–56.
Igarashi, A. & Iwaki, M. (2007) Deriving compilers and virtual machines for a multi-level

language. In Proceedings of APLAS, LNCS, vol. 4807, pp. 206–221.
Kagawa, K. (2001) Monadic encapsulation with stack of regions. In Proceedings of FLOPS,

LNCS, vol. 2024, pp. 264–279.
Kameyama, Y., Kiselyov, O. & Shan, C.-c. (2008) Closing the stage: From staged code to

typed closures. In Proceedings of PEPM, San Francisco, CA, USA, pp. 147–157.
Kameyama, Y., Kiselyov, O. & Shan, C.-c. (2009) Shifting the stage: Staging with delimited

control. In Proceedings of PEPM. New York: ACM Press, pp. 111–120.
Kameyama, Y., Kiselyov, O. & Shan, C.-c. (2010) Mechanizing multilevel metatheory

with control effects. In Proceedings of 5th ACM SIGPLAN Workshop on Mechanizing

Metatheory. Available at: http://www.cis.upenn.edu/~bcpierce/wmm/wmm10-program.
html Accessed 8 November 2011.

Kamin, S. (1996) Standard ML as a meta-programming language. Available at: http:

//loome.cs.uiuc.edu/pubs.html Accessed 8 November 2011.
Kiselyov, O. (2010) Delimited control in OCaml, abstractly and concretely: System description.

In Proceedings of FLOPS, LNCS, vol. 6009, pp. 304–320. Extended version to appear in
Theor. Comput. Sci.

Kiselyov, O., Shan, C.-c. & Sabry, A. (2006) Delimited dynamic binding. In Proceedings of

ICFP, Portland, OR, USA, pp. 26–37.
Kiselyov, O. & Taha, W. (2005) Relating FFTW and split-radix. In Proceedings of ICESS,

LNCS, vol. 3605, pp. 488–493.
Lawall, J. L. & Danvy, O. (1994) Continuation-based partial evaluation. In Proceedings of

LISP & Functional Programming, Austin, TX, USA, August 5–8, pp. 227–238.
Lengauer, C. & Taha, W. (eds). (2006) Special issue on the 1st MetaOCaml workshop (2004),

Sci. Comput. Program. 62(1).
Leone, M. & Lee, P. (1998) Dynamic specialization in the Fabius system. ACM Comput. Surv,

30(3es), article 23:1–23:6.
Leroy, X. & Pessaux, F. (2000) Type-based analysis of uncaught exceptions. ACM Tran. Prog.

Lang. Syst. 22(2), 340–377.
Masuko, M. & Asai, K. (2009) Direct implementation of shift and reset in the MinCaml

compiler. In Proceedings of ACM SIGPLAN Workshop on ML. New York: ACM Press,
pp. 49–60.

McAdam, B. J. (2001) Y in practical programs. Proceedings of Workshop on Fixed Points in

Computer Science. Available at: http://www.dsi.uniroma1.it/~labella/absMcAdam.ps
Accessed 8 November 2011.

MetaOCaml. (2006) MetaOCaml. Available at: http://www.metaocaml.org Accessed 8
November 2011.

Michie, D. (1968) “Memo” functions and machine learning. Nature 218: 19–22.
Minsky, Y. (2008) Bind without tears. Available at: http://ocaml.janestreet.com/?q=

node/23 Accessed 8 November 2011.
Moreau, L. (1998) A syntactic theory of dynamic binding. Higher-Order Symb. Comput. 11(3),

233–279.

662 Y. Kameyama et al.

Morrisett, J. G. (1993) Refining first-class stores. In Proceedings of the ACM SIGPLAN

Workshop on State in Programming Languages, pp. 73–87.
Nielson, F. & Nielson, H. R. (1988) Automatic binding time analysis for a typed λ-calculus.

In Proceedings of POPL, San Diego, CA, USA, pp. 98–106.
Parigot, M. (1992) λµ-calculus: An algorithmic interpretation of classical natural deduction.

In Proceedings of LPAR, LNAI, vol. 624, pp. 190–201.
Pašalić, E., Taha, W. & Sheard, T. (2002) Tagless staged interpreters for typed languages. In

Proceedings of ICFP, pp. 157–166.
Peyton Jones, S. L. (2003) The Haskell 98 language and libraries. J. Funct. Program. 13(1),

1–255.
Püschel, M., Moura, J. M. F., Johnson, J., Padua, D., Veloso, M., Singer, B. W., Xiong, J.,

Franchetti, F., Gačić, A., Voronenko, Y., Chen, K., Johnson, R. W. & Rizzolo, N. (2005)
SPIRAL: Code generation for DSP transforms. Proc. IEEE 93(2), 232–275.

Sørensen, M. H. B., Glück, R. & Jones, N. D. (1994) Towards unifying deforestation,
supercompilation, partial evaluation, and generalized partial computation. In Proceedings

of ESOP, LNCS, vol. 788, pp. 485–500.
Sumii, E. and Kobayashi, N. (2001) A hybrid approach to online and offline partial evaluation.

Higher-Order Symb. Comput. 14(2–3), 101–142.
Swadi, K., Taha, W. & Kiselyov, O. (2005) Dynamic programming benchmark. Available at:

http://www.metaocaml.org/examples/dp/ Accessed 8 November 2011.
Swadi, K., Taha, W., Kiselyov, O. & Pašalić, E. (2006) A monadic approach for avoiding

code duplication when staging memoized functions. In Proceedings of PEPM, Charleston,
SC, USA, January 9–10, pp. 160–169.

Taha, W. (2000). A sound reduction semantics for untyped CBN multi-stage computation. In
Proceedings of PEPM, Boston, MA, USA, pp. 34–43.

Taha, W. (2005) Resource-aware programming. In Proceedings of ICESS, LNCS, vol. 3605,
pp. 38–43.

Taha, W. & Nielsen, M. F. (2003) Environment classifiers. In Proceedings of POPL, New
Orleans, LA, USA, January 15–17, pp. 26–37.

Talpin, J.-P. & Jouvelot, P. (1992) Polymorphic type, region and effect inference. J. Funct.

Program. 2(3), 245–271.
Thielecke, H. (2003) From control effects to typed continuation passing. In Proceedings of

POPL, New Orleans, LA, USA, January 15–17, pp. 139–149.
Thiemann, P. (1999) Combinators for program generation. J. Funct. Program. 9(5), 483–525.
Thiemann, P. & Dussart, D. (1999) Partial evaluation for higher-order languages with state.

Available at: http://www.informatik.uni-freiburg.de/~thiemann/papers/mlpe.ps.
gz Accessed 8 November 2011.

Tofte, M., Birkedal, L., Elsman, M. & Hallenberg, N. (2004) A retrospective on region-based
memory management. Higher-Order Symb. Comput. 17(3), 245–265.

Wadler, P. L. (1992) Comprehending monads. Math. Struct. Comput. Sci. 2(4), 461–493.
Whaley, R. C. & Petitet, A. (2005) Minimizing development and maintenance costs in

supporting persistently optimized BLAS. Softw. Pract. Exp. 35(2), 101–121.

