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Abstract 
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Previous experimental and theoretical work on both longitudinal and transverse shifts of light beams 

at totally reflecting interfaces is briefly reviewed and the discrepancy between the predictions of the 

two principal theoretical approaches is discussed. A theoretical treatment, valid for an interface 

between any two media, is presented. The intensity profile of the reflected beam is the same as that 

of the incident beam (albeit shifted in the reflecting interface) only for certain polarization states 

of the incident beam and provided that the reflection parameters of the interface meet certain 

conditions. If these conditions are not met the reflected beam profile suffers distortion and, possibly, 

deviation from its expected direction. Because the polarization state of a beam is, in general, altered 

by reflection, measurements of the shifts over a large range of angles of incidence at a single 

reflection are needed in order to verify the predictions. 

Introduction 

Although the first observations of a shift, along the reflecting surface, of a light 

beam undergoing total internal reflection were made in 1947 (Goos and Hanchen 

1947), it was predicted much earlier (Picht 1929). Later observations and measure

ments of the shift have been made by Goos and Hanchen (1949), Mazet et al. (1971), 

Levy and Imbert (1972) and Green et al. (1973). The shift is longitudinal (in the 

plane of incidence). Subsequently, an additional transverse shift (perpendicular to 

the plane of incidence) was predicted (Fedorov 1955) and observed (Imbert 1969, 

1970, 1972; Levy and Imbert 1975). In each case the shifts are generally small (of 

the order of a wavelength or less) and their magnitudes depend on the angle of 

incidence, the refractive indices of the media and the polarization state of the beam. 

The topic has been developed theoretically by a number of authors and a compre

hensive review of early work has been given by Lotsch (1970/71). 

Because the beam shifts (particularly the longitudinal shift) are largest at or 

close to the critical angle for total internal reflection (and have only been measured 

at such angles) attention has been concentrated on the magnitudes of the shifts over 

a small range of angles of incidence in this region. As has been pointed out by 

Pavageau (1969), because of abrupt changes in certain reflection parameters at the 

critical angle, the profile of the reflected beam is distorted when the incident beam 

is at or very close to this angle, and the magnitude of a shift needs careful definition. 

(Studies of the magnitudes of the shifts close to the critical angle have been made by 

Horowitz and Tamir (1971, 1973), Ricard (1973, 1974) and Horowitz (1974).) 
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The complication just mentioned, however, can be avoided by supposing the 

angular spread of the incident beam to be more and more restricted as the critical 

angle is approached and, in this paper, we shall only consider the reflection of 

incident beams for which this supposition is valid. In these circumstances, expressions 

for the shifts can be developed which are independent of the profile and angular 

spread of the incident beam. Among authors dealing with the topic in this way, 

theoretical investigations have fallen generally into two classes, here called energy

flux conservation treatments and stationary-phase treatments. Both treatments yield 

similar results for the longitudinal shift at angles of incidence close to the critical angle 

and because, as mentioned earlier, interest has been concentrated on such angles, 

little attention has been paid to the fact that they yield different results at other angles 

of incidence. For the transverse shift, the two treatments yield different results at all 

angles of incidence. Unfortunately, in addition to the fact that measurements of both 

shifts have only been made at angles of incidence close to the critical angle, the 

interpretation of the principal experimental measurements of transverse shifts so far 

made (Imbert 1969, 1970, 1972) has been called into question (Julia and Neveu 1973; 

Boulware 1973; Ashby and Miller 1973, 1976). It is clear that more experimental 

work on both shifts over a large range of angles of incidence is needed. 

It is the purpose of this paper to review the bases of the two classes of theoretical 

treatment and to discuss their validity. It will be pointed out that, whereas the 

assumptions made in stationary-phase treatments are unobjectionable, energy-flux 

conservation treatments, as given by previous authors, have involved inappropriate 

simplifications. 

All previous experimental work and most theoretical work has been concerned with 

the special case of total internal reflection in all-dielectric systems, and there is need 

for a more general treatment. Such a treatment, valid for all plane reflecting surfaces, 

will be given here. It will be based on arguments which are extensions of those used 

in stationary-phase analyses and will yield expressions for both longitudinal and 

transverse shifts. It will be shown that the reflected beam profile is free of distortion 

(to a first order) only for particular polarization states of the incident beam. 

Previous Work 

In this section the application by previous authors of energy-flux conservation and 

stationary-phase arguments to the evaluation of both longitudinal and transverse 

shifts will be reviewed and comparisons made between their predictions (they do not, 

in general, agree). It will be pointed out that energy-flux conservation treatments 

have involved gross simplifications and have, in any event, only treated the case of 

total internal reflection at interfaces between dielectrics. While stationary-phase 

treatments do appear to be valid for the special case of total internal reflection, they 

are not applicable to the general case of reflection. The possibility of extending the 

basic ideas involved in stationary-phase treatments to the treatment of reflection at 

general interfaces will be pointed out. 

Longitudinal Shifts 

Although the first predictions of the shift of a light beam on total reflection were 

made about 50 years ago by Picht (1929) using energy-flux conservation arguments, 

specific expressions for its magnitude were not obtained until about 20 years later by 



.. _. -' -----, 

Shifts of Coherent Light Beams 321 

Artmann (1948), who used a stationary-phase approach, and by von Fragstein 

(1949), who used energy-flux conservation principles. 

Energy-flux conservation arguments depend on the fact that the time-averaged 

Poynting vector in the evanescent wave above a totally reflecting interface is not 

zero. The standard energy-flux conservation approach may be taken as that given 

by Renard (1964) and may be outlined as follows. 

A 

Incident beam 

18 
I 

I 

I 

I 

Reflected beam 

Fig. 1. Energy-conservation requirements can only be met if the reflected beam is displaced so that 

the average energy flow through OA equals that through OB. 

Fig. 1 shows an incident beam and the totally reflected beam; the point 0 is at 

the centre of the reflected beam. This latter beam is shown as displaced from its 

expected position by the distance d for the following reason. There is an energy-flux 

crossing the plane OB from left to right. If energy is to be conserved, there must be 

an equal net average energy flux upward through the plane OA. Since the incident 

and reflected beams have the same intensity, this can only occur if the reflected beam 

is displaced as shown, leaving an upward energy flux at the left-hand side of the 

incident beam which is not compensated by a downward flux due to the reflected beam. 

It is argued that the difference between the upward energy flux due to the incident 

beam and the downward energy flux due to the reflected beam through the plane OA 

is equal to the flux carried in a strip of width d near to the centre of the incident 

beam and so this must equal the total flux over the plane OB due to the evanescent 

wave. Expressions for these are written, assuming the electric and magnetic fields 

near to the beam centre, both above and below the interface, are approximated 

sufficiently closely by those in a plane wave. 

The results obtained show that the components of the incident beam linearly 

polarized perpendicular and parallel to the plane of incidence undergo different 
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shifts d1. and d ll , which are given by 

d _ A sin f) cos2f) 

1. - n (1- n2)(sin2f) _ n2}t' 

A sinf)cos2f) n2 

n (1- n2)(sin2f) - n2}t sin2f) - n2 cos2f) , 

where A is the wavelength in the medium containing the incident and reflected waves, 

f) is the angle of incidence and n is the refractive index of the second medium relative 

to the first (thus n < 1). 

A stationary-phase treatment of the problem was first given by Artmann (1948) 

who was primarily interested in the magnitude of the shift at angles of incidence 

close to the critical angle. A treatment applicable to other angles of incidence was 

subsequently given by Schilling (1965). In this approach the incident beam is looked 

upon as a superposition of plane waves whose propagation vectors cover a range of 

directions and which, accordingly, undergo different phase changes at reflection. 

Consequently, at any point P on the reflecting interface, the phase relationships in 

the reflected ensemble of plane waves are not the same as those in the incident 

ensemble. Another point on the reflecting interface can be found, however, at which 

the phase relationships in the reflected ensemble are, at least to a first order, the 

same as those in the incident ensemble at P. The distance between these two points 

is the beam shift. 

The results of the stationary-phase arguments again show that the components of 

the incident beam linearly polarized perpendicular and parallel to the plane of 

incidence undergo different shifts: 

d _ A sinf) 
1. - - ( . 20 2)' , n S111 - n ,,-

A sin f) n2 

d ll = n (sin2f) _ n2}t sin20 _ n2 cos2f)' 

In each case these are different from the expressions resulting from energy-flux 

conservation treatments by the factor (1-n2)/cos2 f). 

Transverse Shifts 

It was pointed out by Fedorov (1955) that, since the time-averaged Poynting 

vector in the evanescent wave in the low-index medium during total internal reflection 

has, in general, a component perpendicular to the plane of incidence, a transverse 

shift of the beam is also to be expected. Such shifts were subsequently observed 

(Imbert 1969, 1970, 1972; Levy and Imbert 1975). An expression for the magnitude 

of the shift has been developed by Imbert (1968) using energy-flux conservation 

arguments. It involves the same assumptions as those used in the energy-flux conser

vation treatment of longitudinal shifts. The magnitude of the transverse shift is found 

to depend on the polarization state of the incident beam. For the simple case of a 

circularly polarized incident beam, the transverse shift yC is given by 

where A, f) and n are as defined above. The plus and minus signs apply to right-handed 

and left-handed circularly polarized incident waves. 
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Stationary-phase analyses of the situation in most of the experimental work, 

in which the beam undergoes many reflections inside a prism, have been given by 

Julia and Neveu (1973), Boulware (1973) and Ashby and Miller (1973, 1976). These 

authors conclude that the measured shift in an experiment of this type is not due to 

the addition of transverse shifts at each reflection. Indeed, it has been claimed 

(Canals-Frau 1975) that stationary-phase arguments do not predict any transverse 

shift at a single reflection. This, however, is at variance with the findings of several 

other authors (Schilling 1965; Ricard 1974, 1976; Hugonin and Petit 1977). This 

latter group of authors show that the magnitude of the shift depends on the 

polarization state of the incident beam and on the angle of incidence and that it 

occurs at angles of incidence both above and below the critical angle for total internal 

reflection. They obtain essentially identical results and give expressions for the 

shifts which are generally applicable to all polarization states of the incident beam 

and all angles of incidence. For the purpose of illustrating the difference between 

their results and those provided by energy-flux conservation arguments it will suffice 

to quote the result for the case of a circularly-polarized incident beam undergoing 

total internal reflection. It is 

which differs from the energy-flux conservation expression by the factor (1- n2 ). 

Comparison of Bases of Energy-flux Conservation and Stationary-phase Treatments 

There is disagreement between the predictions of energy-flux conservation and 

stationary-phase treatments, and consequently the bases of each will now be 

examined more closely. The possibility of a treatment that is more general than any 

previously given will then be discussed. 

In the standard energy-flux conservation treatments the Poynting vector, in the 

region of overlap of the incident and reflected beams, is thought of as simply the sUm 

of the Poynting vectors in the two beams taken separately. This is not in general 

true; there is no principle of superposition for Poynting vectors. The only valid 

procedure is to evaluate the integral of the time-averaged Poynting vector over the 

whole plane OA in Fig. 1. Obviously, the beams cannot then be thought of as 

simple plane waves; indeed the concept of a shift for such a wave has no meaning. 

This same criticism of the standard energy-flux conservation treatment has recently 

been made by Agudin and Platzeck (1978). 

By contrast, stationary-phase arguments involve no assumptions other than the 

validity of the procedure of resolving the beam into an ensemble of plane waves and 

the linearity of the electromagnetic wave equation and of the boundary condition on 

the electric and magnetic fields at the interface. 

While a stationary-phase condition is adequate to treat the case of total internal 

reflection at an all-dielectric interface, the general case of reflection at any interface 

requires a further condition; in addition to the phase relationships, the amplitude 

ratios in the incident and reflected plane-wave ensembles must also be constant. A 

treatment incorporating both of these conditions may be termed a stationary

amplitude treatment (complex amplitude). Such a treatment for the reflection, at 

any single plane interface, of a beam in any fully polarized spatially coherent state 
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will be given in the next section, and will yield expressions for both the longitudinal 

and transverse shifts. The longitudinal shift is due essentially to the dispersion of the 

phase change at reflection. The transverse shift is essentially a geometrical effect and 

results from a mixing of the linearly polarized components of the plane waves con

stituting the beam, due to their different planes of incidence. The results will show 

that the profile of the reflected beam is, in general, undistorted only if the range of 

angles of incidence covered by the incident plane-wave ensemble is small enough for 

both real and imaginary parts of the reflection coefficient to be regarded as varying 

linearly with angle of incidence; and, further, that the conditions on the polarization 

state of the incident beam for undistorted shifts, even of the principal linearly 

polarized components of the beam are, in general, much more stringent than has 

been pointed out previously. 

Reflecting 

surface 

Fig. 2. Planes containing the propagation vectors of the principal group (A) and three 

minor groups (B, C, D) of the plane-wave components of an incident beam. 

Stationary-amplitude Analysis 

In this section, the conditions will be sought under which the profile of a light 

beam reflected from a plane interface between any two media is the same as that of 

the incident beam. It will be shown that, in general, this does not occur but that 

within a first-order approximation (ignoring effects dependent on higher powers of 

the beam's angular divergence) the two components of the reflected beam polarized 

perpendicular and parallel to the plane of incidence may individually retain the 

profile of the incident beam (although each is shifted by a different distance along 

the interface), provided that the reflection parameters of the interface and the 

polarization of the incident beam fulfil certain conditions. The approach will be to 
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consider the incident beam as an ensemble of plane waves and to seek a point in the 

interface at which the amplitude ratios and phase differences between pairs of plane 

waves in the reflected ensemble are the same as those between all corresponding pairs 

in the incident ensemble. 

The incident light beam is considered as a superposition of plane waves whose 

propagation vectors occupy only a small angular range, and one of these, whose 

propagation-vector direction is approximately central within the ensemble, is 

nominated as the principal wave. If the beam shape is symmetrical it is of course 

possible to define a principal wave more precisely but, in general, more exact 

definition is unnecessary. The plane of incidence of the principal wave will be called 

the principal plane of incidence and the group of plane waves which have this plane 

as their plane of incidence will be called the principal group. A group of plane 

waves whose propagation vectors are parallel to any given plane perpendicular to 

the principal plane of incidence will be called a minor group. 

Fig. 2 illustrates the meaning of the terms 'principal group' and 'minor group'. 

Plane A is the principal plane of incidence and contains the propagation vectors of 

the principal group. Planes B, C and D are perpendicular to plane A and each 

contains the propagation vectors of a minor group. 

If the intensity profile of the reflected beam is to be identical with that of the 

incident beam except for an inversion with respect to the reflecting surface (and a 

possible uniform reduction in intensity), the relative phases and amplitudes and the 

angular relationships between the field vectors of the plane waves constituting the 

beam must be unchanged by reflection. This condition cannot be met in the most 

general sense because the sand p (TE and TM) components of a plane wave undergo 

different phase changes at reflection (resulting in the polarization state of the 

reflected wave differing, in general, from that of the incident wave). As will be shown, 

however, it can be met (at least within a first-order approximation) separately for the 

components of the plane waves whose magnetic vectors are parallel to the principal 

plane of incidence and the components whose electric vectors are parallel to this 

plane. The electric vectors of these two components will be called E1- and Ell 

respectively. For the plane waves of the principal group, E1- and Ell are sand p 

components respectively at reflection. For waves not in the principal group, however, 

this will not be so. 

The cartesian coordinate system to be used is shown in Fig. 3. The x and y axes 

lie in the reflecting surface. The incident plane-wave ensemble is represented by the 

cone of propagation-vector directions at the approximate centre of which is the 

propagation vector of the principal wave. The angle of incidence of the principal 

wave is e. The axes are oriented so as to make the z-x plane the principal plane of 

incidence. 

Expressions for E 1- and Ell for a typical plane wave of the ensemble have the form 

(omitting the factor e- iwt which plays no part in the analysis) 

E1- = Eo exp(i {k(ax+ py+ yz) + ¢}) , Ell = REoexp(i{k(ax+py+yz)+¢+I/t}) , 

(1) 

where k is the wave number (21[/).), a, {3, yare the direction cosines of the propagation 

vector (sin e, 0, cos e for the principal wave), ¢ is the phase of the wave relative to 

that of the principal wave at the origin, I/t is the phase difference between the two 
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orthogonally polarized components, and Eo and R are real. Any fully polarized plane 

wave can be expressed in this form by suitable choices of Rand t/!. 

Fig. 3. Cone of propagation-vector directions of the plane-wave components of a beam 

incident at a principal angle of incidence 8 on a reflecting surface. 

As stated above, the two components (1) are not, in general, sand p components 

at the reflecting surface. Suppose E1- makes an angle e with the plane of the surface. 

The electric vectors of the sand p components are then 

Es = E 1- cos e + Ell sin e 

= Eo exp(i{k(ocx + j3y + yz)+¢}) (cose +Rexp(it/!) sine) , 

= Eo exp(i {k(ocx+ j3y+ yz)+ ¢}) (R exp(it/!) cos e -sine) . 

Introducing reflection coefficients Ps exp(ibs) and Pp exp(ibp), where p is real and b 

is the phase delay at the reflection, we find that the electric vectors of the sand p 

components of the plane wave after reflection are 

E~ = Eoexp(i{k(ocx+j3y-yz)+¢}) (cose +Rexp(it/!)sin e)psexp(ibs) , 

E~ = Eo exp(i {k(ocx + j3y- yz) + ¢}) (Rexp(it/!) cos e -sin e)ppexp(ibp). 
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In order to compare the structures of the inCident and reflected beams, expressions 

are needed for the magnitudes E~ and Ell of the electric vectors of the components 

of the reflected wave whose magnetic and electric vectors respectively are parallel 

to the principal plane of incidence. These expressions are 

E~ = E~COS8 +E~sin8, 

and so, defining the quantities r 1 and '11 by 

'1. = E~/E1.o, 

Ell = E~COS8 -E~sin8 

where E1.o and E llo are the magnitudes of the electric-vector components of the 

incident wave at the origin, we fmd 

'1. = exp(ik(ax+ py- yz) ){ (cos 8 + R exp(it/!) sin 8 )Ps exp(ic5s) cos 8 

+ (R exp(it/!) cos 8 - sin 8 )pp exp(ic5p ) sin 8}, (2a) 

'11 = exp(ik(ax+ py- yz)) { (cos 8 - R- 1 exp( -it/!) sin 8 )pp exp(ic5p ) cos 8 

- R- 1 exp( - it/!)(cos 8 + sin 8)Ps exp(ic5s) sin 8}. (2b) 

The quantities, 1. and '11 can be looked upon as effective reflection coefficients for the 

plane waves. 

If the relative phases and amplitudes of the perpendicular and parallel components 

of the plane waves in the reflected ensemble are to be the same as those in the incident 

ensemble, '1. and, II must be independent of the propagation-vector direction. This· 

is ensured by requiring the constancy of, 1. and '11 : 

(i) for the waves of the principal group; 

(ii) for the waves of a minor group. 

It will be shown that these two conditions yield expressions for the longitudinal and 

transverse shifts respectively of the beam. 

Longitudinal Shift 

For the planes waves constituting the principal group, we have p = 0 (and 8 = 0) 

and so '1. and '11 can be expressed as functions of a only by putting y = (1- ( 2)t 

and 8 = 0 in equations (2a) and (2b). Writing ao, '1.0 and '110 for the values of a, 

'1. and '11 for the principal wave, we can expand, 1. and '11 as a Taylor series in a - ao: 

(3a) 

(3b) 

For the expressions (3) to vanish exactly, all derivatives of,1. and '11 with respect 

to a must vanish. However, provided a - ao is always sufficiently small (i.e. the angular 

plane-wave spectrum of the beam is sufficiently narrow) all terms except the first 

may be ignored. Then, for the wave components with magnetic vectors parallel to 

the principal plane of incidence, dr l./da vanishes when 

'{k( az) dc5s} 1 dps 0 
1 • X+ (1-a2}t + da + Ps da = , (4a) 
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and, for the components with electric vectors parallel to the principal plane of 

incidence, drll/doc vanishes when 

(4b) 

The shifts along the reflecting surface of the reflected beam are found by putting 

Z = ° (a comment on this will be made in the Discussion below): 

Transverse Shift 

1 dbp i dpp 

xII = ---+--k doc kpp doc . 
(5) 

For plane waves of a minor group, r.1 and rll can be expressed as functions of 

[3 only by putting oc = oco(l- [32)1" and y = yo(l- [32)1" into equations (2a) and (2b), 

where oco, 0, Yo are now the direction cosines of the propagation vector of the wave 

of this minor group which is also a member of the principal group. The symbols 

r.1O and rll o are now used to denote the values of r.1 and rll for this latter wave. The 

quantities r.1 and rll can be expanded as a Taylor series in f3 as 

r.1 -r.1O = [3dr.1/d[3 +1:[32 d2r.1/d[32 + ... , 

rll-rll o = [3drll/d[3 +1:[32 d2rll/d[32 + ... . 

(6a) 

(6b) 

Assuming again that the angular plane-wave spectrum is sufficiently narrow that only 

the first terms of the series need be retained, we find that the expressions (6) vanish 

when, for the wave components with magnetic vectors parallel to the principal plane 

of incidence, 

(7a) 

and, for the components with electric vectors parallel to the principal plane of 

incidence, 

(7b) 

It can be shown that cos e = oco(oc~ + [32y~)-1" and so 

de/d[3 = yo/oco. 

As long as the angular width of the beam's plane-wave spectrum is small, oco and Yo 

can be taken as the values of oc and y for the principal wave and so de/d[3 ~ cot e. 
The conditions (7a) and (7b) then become 

Y.1 = i: ( exp(iljJ) + ~: exp(iljJ') ) cot e , (8a) 

YII = - k~(eXp(-iljJ)+ ;;eXP(-iljJ'))cote, (8b) 
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where t/I ' has been written for t/I+op-os' the phase difference between the orthogonal 

components of the waves after reflection. 

Application to Dielectric Media 

Equations (5) and (8) are generally applicable to reflection at a plane interface 

between any two media. Since, however, previous authors have dealt exclusively 

with the case of total internal reflection in all-dielectric systems, it is appropriate 

for purposes of comparison to examine the form taken by equations (5) and (8) in 

such a situation. Before doing so, however, the simplification resulting from the 

assumption that only the medium containing the incident wave is a dielectric will be 

examined. The simplification results from the fact that k is real. These results are 

applicable to cases of practical interest such as the reflection oflight beams at metallic 

surfaces. 

Incident Waves in Dielectric Medium 

The wave number k is real and, since p and 0 are real by definition, the equations 

(5) yield the pairs of conditions 

dPs/doc = 0; 

dpp/doc = o. 

(9a) 

(9b) 

The second of each pair is the condition for the amplitude ratios between the plane 

waves in the reflected ensemble to be the same as those in the incident ensemble. 

They are, of course, only satisfied if p is stationary with respect to angle of incidence 

at the angle of incidence 8. As has been pointed out by White et al. (1977), if this is 

not so, the reflected beam suffers distortion of its profile and deviation from its 

expected direction. These effects can be reduced to any desired extent (unless p 

undergoes a discontinuity within the angular plane-wave spectrum) by restricting 

the angular width of the beam's plane-wave spectrum (consequently increasing the 

beam's linear width). With the assumption that the second of each pair of conditions 

is satisfied or may be ignored, the first of each pair (the condition for the phase 

relationships between the plane waves to be the same in the incident and reflected 

ensembles) implies a shift, in the plane of incidence, of the reflected beam from its 

expected position. 

Equations (8) yield, when k is real, the pairs of conditions 

YJ. = - ~(sint/l + ~:sint/ll)cot8, 

YII = - ;k(Sint/l + ~;Sint/ll)cot8, 

R(COSt/l + ~:COSt/lI) = 0; (lOa) 

i(cost/l+~;cost/ll) =0. (lOb) 

The second of each pair (the amplitude-ratio condition) determines the value of t/I 

if the profile of the reflected beam is to be undistorted. The first of each pair (the 

phase condition) indicates a shift in the reflected beam in a direction perpendicular 

to the principal plane. Equations (9) and (10) show that, if the centre of the incident 

beam falls at the origin, the centre of the reflected-beam component polarized 
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perpendicular to the plane of incidence will leave the surface at x.1' Y.1 and the com

ponent polarized parallel to the plane of incidence at xlI'YIl' 

Since all experimental work has been performed on plane interfaces between two 

dielectric materials, expressions for the shifts will now be found for this case. 

Plane Interface between Two Dielectric Media 

It is convenient to consider separately two ranges of a: 

Range 1. 0 ~ a ~ sinOe, where Oe is the critical angle. In this range we have 

dDs/da = dDp/da = ° 
(excluding the discontinuity in Dp at the Brewster angle), and 

(1- a2)t _ (n 2 _a2)t 

Ps = (1_a2)t+(n2_a2)t' 

n2(1- a2)t _(n2 _ a2)t 

Pp = n2(1_a2)t+(n2_a2)t' 

where n has been written for the ratio of the refractive indices of the second and first 

media. To facilitate comparison with the results of previous authors, the values of 

x from equations (9) will be converted to shifts, in a direction perpendicular to the 

beam's propagation direction, by multiplying by cos O. Equations (9) and (10) then 

give 

d.1 = d ll = 0, (1Ia) 

(llb) 

(llc) 

the plus or minus signs in equations (lIb) and (lIc) corresponding to ljJ = =+= tn. The 

second of the pairs of conditions in equations (9) is not satisfied and the reflected 

beam is distorted and deviated. 

Range 2. The second range of a (applicable only for n < 1) is sin Oe < a ~ 1 

(the range of total internal reflection). In this range 

Ps = Pp = 1, 

tantDs = - {(a2 -n2 )/(1 _a2)}t, 

Equations (9) and (10) then give 

A sin 0 n2 

d ll - 'it (sin2 0 _n2)t sin2 0 -n2cos20; 

AR sinOcosO 
Y.L = ± - . 2 2 20).1. , n (sm 0 - n cos 2 

A sinOcos 0 

YII = ± Rn (sin20 - n2 cos20)t' 

(12a) 

(12b) 

the plus or minus signs in equations (12b) corresponding to ljJ = =+=tn-t(Dp-Ds). 
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Discussion 

The foregoing analysis, resulting in equations (5) and (8), is applicable to any 

plane reflecting surface. It is a first-order analysis in the sense that all terms except 

the first in the Taylor series of equations (3) and (6) have been assumed negligible. 

In fact, the analysis could have been extended, in the case of the longitudinal shift, 

by requiring both dr/dO( and d2r/d0(2 in equations (3) to vanish. It is easy to show 

that, when p is constant, d2r/d0(2 vanishes when, in addition to equations (4), we have 

z = -k-l(1_0(2)3/2d2c5/d0(2. 

This implies a shift not wholly parallel to the reflecting surface (i.e. a shift of the 

reflected beam along its propagation direction). It does not, of course, affect the 

validity of equations (5) (which give the value of x when z = 0) or of any equations 

derived from them. An effect of this sort has been pointed out previously by Julia and 

Neveu (1973) and by McGuirk and Carniglia (1977). 

In general, terms higher than the second in the series of equations (3) and the 

first in those of equations (6) will not vanish simultaneously. Consequently, if the 

angular plane-wave spectrum of the beam straddles angles of incidence over which 

rapid changes of the reflection parameters or their derivatives occur, it would be 

expected that the profile of the reflected beam would be distorted and that, as shown 

by White et al. (1977), it might be deviated from its expected direction (the results of 

Read et al. (1978), who used microwave beams, appear to be, at least in part, a 

demonstration of this). 

Another fact which the present analysis makes clear is that, even if the distorting 

effects referred to in the previous paragraph are negligible, the profile of the 

reflected beam as a whole is, in general, distorted since the components of the beam 

linearly polarized perpendicular and parallel to the plane of incidence undergo differ~ 

ent shifts. Moreover, even if one such component in the reflected beam is isolated, 

only certain polarization states of the incident beam can result in an undistorted 

reflected beam (in the particular case of total internal reflection, equations (12) show 

that there is a unique angle of incidence, namely arccos{(1-n2)/(1 +n2) }t, at which, 

for two particular elliptically polarized states of the incident beam, all components 

suffer the same shift). The results referred to in this paragraph accord with the 

findings of Hugonin and Petit (1977) in their study of the quality of images formed by 

reflection at totally reflecting surfaces and of Costa de Beauregard and Imbert 

(1972, 1973). 

The results of the present analysis will now be compared with those of previous 

authors. These have mainly treated specifically the special case of total reflection at 

an all-dielectric interface (indeed the energy-flux conservation treatment, in the 

simple form presented by authors using this approach, cannot deal with the case of 

reflection by an absorbing medium). A comparison will therefore be made between 

the equations (12) and the corresponding expressions previously obtained. 

Longitudinal Shifts 

The values of dl. and d ll in equations (12a) are the same as those obtained by 

previous authors using stationary-phase methods. They also agree with those of 

Agudin (1968) who uses Fermat's principle to evaluate the shifts. They are, however, 
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greater by the factor (1 - nZ)jcosZO than expressions obtained using the standard 

energy-flux conservation treatment. The two treatments thus agree in the immediate 

neighbourhood of the critical angle but not at greater angles of incidence. In 

particular, d1- and d ll in equations (12a) approach the values 

as the grazing incidence is approached, whereas the energy-flux conservation treat

ment predicts that d1- and d ll both approach zero. It has been argued (e.g. Renard 

1964) that nonzero values of the shift at grazing incidence are unreasonable on the 

grounds that the incident and reflected beams should be indistinguishable at this 

angle. In fact this is untrue; the reflected beam would be distinguished from the 

incident beam in that its phase would be reversed. More importantly, however, since 

the concept of angle of incidence only has meaning for a plane wave, the notion of 

truly grazing incidence for a beam of finite width is unrealizable because of the range 

of propagation directions of the plane waves into which it must be considered as 

resolved. The beam can never suffer a zero deviation and, consequently, the objection 

is groundless. 

Since the shifts are large at angles of incidence only slightly greater than the 

critical angle, experimental measurements have been confined almost entirely to such 

angles at which, unfortunately, the disagreement between the results from energy-flux 

conservation and stationary-phase treatments is extremely small. Rhodes and 

Carniglia (1977) claim to have evidence for a nonzero shift near to grazing incidence 

from studies of the positions of interference fringes in a Lloyd's-mirror experiment in 

which the mirror was a totally reflecting interface. Care is needed, however, in inter

preting these results as evidence of a longitudinal shift; the position of a fringe depends 

on the phase change at reflection rather than on its derivative, and an alteration in 

fringe position as n alters merely indicates an alteration in this phase change. 

l'ransverse Shij'ts 

Expressions for the transverse shift of a beam suffering total reflection at an 

all-dielectric interface have been derived by several authors (e.g. Imbert 1968; 

Ricard 1970) using what is essentially an energy-flux conservation argument. The 

expression developed by Imbert (1968) for the transverse shift suffered by a circularly 

polarized beam incident at the critical angle is 

yC = ±A/(nsinOcosO), 

the plus and minus signs applying to right and left circularly polarized beams. This 

expression differs from that derived from equations (12) in that it is larger by the 

factor seczO. The view has been expressed (Costa de Beauregard and Imbert 1972, 

1973) that circularly polarized evanescent waves can be regarded as eigenmodes and 

that the totally reflecting interface, in effect, resolves the incident wave into two 

elliptically polarized components which excite these modes. The present analysis 

does not support this view; the polarization states into which the incident beam is 

resolved by the interface are essentially linearly polarized perpendicular and parallel 

to the plane of incidence. An incident beam, for example, linearly polarized either 

perpendicular or parallel to the plane of incidence would, from the eigenmode view-
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point, be expected to excite both modes and the reflected beam would be expected 

to emerge as two components shifted transversely in opposite directions. Equations 

(12), however, show that the shifts for such beams would be purely longitudinal. 

It is true that (except for the linearly polarized beams just mentioned) the whole 

reflected beam will suffer a uniform transverse shift only if the evanescent wave is 

circularly polarized. However, equations (12) show that perpendicular and parallel 

components of the beam separately undergo undistorted shifts (both longitudinal 

and transverse) as long as the evanescent wave is elliptically polarized with a principal 

axis of the ellipse parallel to the: interface (incident waves linearly polarized perpen

dicular and parallel to the plane of incidence are limiting cases of this condition). 

Stationary-phase treatments of the transverse shift at a single reflecting surface 

have been given by Schilling (1965), Ricard (1974, 1976) and Hugonin and Petit 

(1977). Their results differ from those of equations (10) in that, since a stationary

phase and not a stationary-amplitude treatment is used, only the first of each pair 

of conditions in equations (10) is obtained and no restriction is placed on 1/1. In 

addition, separate shifts for the perpendicular and parallel components of the beam 

are not distinguished and the shift for the whole beam is given as an intensity-weighted 

mean of Yl. and YII' valid for all values of 1/1. 

The only experimental measurements of the transverse shift to which the present 

analysis might, at first sight, apply appear to be those of Imbert (1969, 1970, 1972). 

These have involved the use of a prism inside which the beam undergoes many 

reflections while following a helix-like path. In view of the nonplanar path of the 

beam it is difficult to analyse the results in terms of the effect of a single reflection. 

In addition, because the polarization state of the beam is only preserved (approxi

mately) between successive reflections at angles of incidence very close to the critical 

angle, it is impossible to measure the shift over a range of angles of incidence in this 

way. Stationary-phase analyses of this type of experiment have been given by Julia 

and Neveu (1973), Boulware (1973) and Ashby and Miller (1973, 1976). These 

authors consider the propagation of polarization eigenstates through the successive 

reflections and reach the conclusion that the helix-like path gives rise to a resultant 

shift which is composed, at least partIy, of components of the longitudinal shift at 

each reflection. They disagree with the general expressions for the shift given by 

Imbert and claim that the agreement between his theoretical and experimental results 
is fortuitous. 

The transverse and longitudinal shifts at a quasi-single reflection have been 

observed by Levy and Imbert (1972, 1975). For the transverse shift, the 'surface' was 

a four-layer dielectric stack and, for the longitudinal shift, a two-layer stack. The 

layers were deposited on a transparent substrate, and their thicknesses were chosen 

so that the phase change at reflection varied very rapidly (and the energy-flux in the 

evanescent wave became very large) over a small range of angles of incidence 

('" O· 01 0). In view of the large variations in the phase change and its derivatives over 

the range of angles of incidence occupied by the plane waves constituting the beam, 

the approximations used in the present analysis are invalid in this situation. 

Conclusions 

A method has been presented for evaluation of the longitudinal and transverse 

shifts of a light beam on reflection at a plane interface between any two media. The 
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predictions of the longitudinal shifts for the case of total internal reflection at an inter

face between dielectrics agree, as expected, with the predictions of stationary-phase 

treatments; they do not agree with the predictions of the simple energy-flux 

conservation treatments so far presented. The predicted transverse shifts for the 

case of total internal reflection at an interface between dielectrics agree in part with 

those of the previous published stationary-phase treatments but not with the general 

interpretation of those treatments; they do not agree with the predictions of authors 

using energy-flux conservation treatments. 

Energy-flux conservation treatments have involved the simplification of treating 

both the incident and evanescent waves as plane waves. By contrast, the stationary

amplitude treatment depends solely on the validity of the procedure of resolving the 

beam into a set of plane waves and on the linearity of the boundary conditions to 

which the electric and magnetic fields are subject at the interface, and it is difficult 

to see how any error can arise in its application. It is equally difficult, however, to 

believe that either approach is wrong in principle and it is likely that more rigorous 

energy-flux conservation treatments would yield results agreeing with those obtained 

by the stationary-amplitude method. 

For situations involving very rapid changes in the reflection parameters (the 

dielectric stacks of Levy and Imbert (1972, 1975) or a single dielectric interface at the 

critical angle or Brewster angle), analytic treatments fail and resort must be had to 

numerical computation of the intensity distribution in the reflected beam. In such 

cases the beam suffers distortion of its profile and possibly deviation from its expected 

direction and the notion of a 'shift' becomes indistinct. 

Experimental measurements of both types of shift have not, so far, been carried 

out over a range of angles of incidence sufficient to resolve the disagreement between 

the two treatments. It is clear that measurements of the shifts over a large range of 

angles of incidence are needed. Such measurements (at least for transverse shifts) 

must be carried out using single reflecting surfaces because of the change in the 

polarization state of the beam at each reflection. 
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