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Abstract Shifts of finite type and the notion of shadowing, or pseudo-orbit
tracing, are powerful tools in the study of dynamical systems. In this paper
we prove that there is a deep and fundamental relationship between these two
concepts. Let X be a compact totally disconnected space and f : X → X a
continuous map. We demonstrate that f has shadowing if and only if the system
( f, X) is (conjugate to) the inverse limit of a directed system satisfying the
Mittag-Leffler condition and consisting of shifts of finite type. In particular, this
implies that, in the case that X is the Cantor set, f has shadowing if and only if
( f, X) is the inverse limit of a sequence satisfying the Mittag-Leffler condition
and consisting of shifts of finite type. Moreover, in the general compact metric
case, where X is not necessarily totally disconnected, we prove that f has
shadowing if ( f, X) is a factor of the inverse limit of a sequence satisfying the
Mittag-Leffler condition and consisting of shifts of finite type by a quotient
that almost lifts pseudo-orbits.
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1 Introduction

Given a finite set of symbols, a shift of finite type consists of all infinite (or
bi-infinite) symbol sequences, which do not contain any of a finite list of for-
bidden words, under the action of the shift map. Shifts of finite type have
applications across mathematics, for example in Shannon’s theory of infor-
mation [26] and statistical mechanics. In particular, they have proved to be a
powerful and ubiquitous tool in the study of hyperbolic dynamical systems.
Adler and Weiss [1] and Sinai [31], for example, obtain Markov partitions for
hyperbolic automorphisms of the torus and Anosov diffeomorphisms respec-
tively, allowing analysis via shifts of finite type. Generalising the notion of
Anosov diffeomorphisms, Smale [33] isolates subsystems conjugate to shifts
of finite type in certain Axiom A diffeomorphisms. His fundamental example
of a horseshoe, conjugate to the full shift space on two symbols, captures the
chaotic behaviour of the diffeomorphism on the nonwandering set where the
map exhibits hyperbolic behaviour. Bowen [6] then shows that the nonwander-
ing set of any Axiom A diffeomorphism is a factor of a shift of finite type. In
fact, shifts of finite type appear as horseshoes in many systems both hyperbolic
(for example [34,36]) and otherwise [18].

For a map f on a metric space X , a sequence 〈xi 〉i∈ω is a δ-pseudo-orbit if
d( f (xi ), xi+1) < δ. Pseudo-orbits arise naturally in the numerical calculation
of orbits. It turns out that pseudo-orbits can often be tracked within a specified
tolerance by real orbits, in which case f is said to have the shadowing, or
pseudo-orbit tracing, property. Clearly this is of importance when trying to
model a system numerically (for example [9,10,20,21]), especially when the
system is expanding and errors might grow exponentially (indeed shadowing
follows from expansivity for open maps [25], see also [23]). However, shad-
owing is also of theoretical importance and the notion can be traced back to the
analysis of Anosov and Axiom A diffeomorphisms. Sinai [32] isolated sub-
systems of Anosov diffeomorphisms with shadowing and Bowen [5] proved
explicitly that for the larger class of Axiom A diffeomorphisms, the shadowing
property holds on the nonwandering set. However, Bowen [6] had already used
shadowing implicitly as a key step in his proof that the nonwandering set of
an Axiom A diffeomorphism is a factor of a shift of finite type. The notion of
structural stability of a dynamical system was instrumental in the definitions
of both Anosov and Axiom A diffeomorphisms [33] and shadowing plays a
key role in stability theory [22,24,35]. Shadowing is also key to characteriz-
ing omega-limit sets [2,5,19]. Moreover, fundamental to the current paper is
Walters’ result [35] that a shift space has shadowing if and only if it is of finite
type.
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SFTs as fundamental objects in the theory of shadowing

In this paper we prove that there is a deep and fundamental relationship
between shadowing and shifts of finite type. It is known that shadowing is
generic for homeomorphisms of the Cantor set [3] and that the shifts of finite
type form a dense subset of the space of homeomorphisms on the Cantor set
[27]. Hirsch [17] shows that expanding differentiable maps on closed mani-
folds are factors of the full one sided shift. In [6], Bowen considers the induced
dynamics on the shift spaces associated with Markov partitions to show that
the action of an Axiom A diffeomorphism on its non-wandering set is a factor
of a shift of finite type. Here we expand the scope of this type of analysis by
considering the actions induced by f on shift spaces associated with several
arbitrary finite open covers of the state space X , rather than the much more
specific Markov partitions. In doing so, we are able to extend and clarify these
results significantly, proving the following.

Theorem 18 Let X be a compact, totally disconnected Hausdorff space. The

map f : X → X has shadowing if and only if ( f, X) is conjugate to the

inverse limit of an inverse system satisfying the Mittag-Leffler condition and

consisting of shifts of finite type.

Corollary 19 Let X be the Cantor set, or indeed any compact, totally discon-

nected metric space. The map f : X → X has shadowing if and only if ( f, X)

is conjugate to the inverse limit of a sequence satisfying the Mittag-Leffler

condition and consisting of shifts of finite type.

Let X and Y be compact metric spaces and φ : X → Y be a factor map
between the systems f : X → X and g : Y → Y (so that φ

(

f (x)
)

=

g
(

φ(x)
)

). We say that φ almost lifts pseudo-orbits (φ is ALP) if and only if
for all ǫ > 0 and η > 0, there exists δ > 0 such that for any δ-pseudo-orbit
〈yi 〉 in Y , there exists an η-pseudo-orbit 〈xi 〉 in X such that d(φ(xi ), yi ) < ǫ.

This notion is also well defined in general Hausdorff spaces (Definition 24).

Theorem 26 Let X be a compact Hausdorff space. The map f : X → X has

shadowing if ( f, X) lifts via a map which is ALP to the inverse limit of an

inverse system satisfying the Mittag-Leffler condition and consisting of shifts

of finite type.

Corollary 28 Let X be a compact metric space. The map f : X → X has

shadowing only if ( f, X) lifts via a map which is ALP to an inverse limit of a

sequence of shifts of finite type. Additionally, f : X → X has shadowing if

( f, X) lifts via a map which is ALP to the inverse limit of a sequence satisfying

the Mittag-Leffler condition and consisting of shifts of finite type.

The approach we take is topological rather than metric as this seems to
provide the most natural proofs and allows for simple generalizations.

Although we are considering inverse limits of dynamical systems, our tech-
niques are very similar in flavour to the inverse limit of coupled graph covers
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which have been used by a number of authors to study dynamics on Cantor
sets, for example [3,11–13,28–30].

The paper is arranged as follows. In Sect. 2, we formally define shadowing,
shift of finite type and the inverse limit of a direct set of dynamical systems. In
Sect. 3, we characterize shadowing as a topological, rather than metric prop-
erty, and prove that an inverse limit satisfying the Mittag-Leffler condition
which consists of systems with shadowing itself has shadowing (Theorem 8).
Here we also introduce the orbit and pseudo-orbit shift spaces associated with
a finite open cover of a dynamical system and observe in Theorem 12 that these
capture the dynamics of f . Section 4 discusses compact, totally disconnected
Hausdorff, but not necessarily metric, dynamical systems, showing that such
systems have shadowing if and only if they are (conjugate to) the inverse limit
of a directed system satisfying the Mittag-Leffler condition and consisting of
shifts of finite type (Theorem 18). In Sect. 5, we examine the case of sys-
tems on general metric spaces, establishing in Theorem 20 a partial analogue
to Theorem 18 and Corollary 19. In Sect. 6, we discuss factor maps which
preserve shadowing and, in light of this, we are able to partially characterize
compact metric and Hausdorff systems with shadowing in Theorem 26 and
Corollary 28.

2 Preliminaries and definitions

By map, we mean a continuous function. The set of natural numbers, including
0, is denoted by ω. A dynamical system, ( f, X), consists of a topological space
X and a map f : X → X . In what follows, X need not necessarily be metric,
but will typically be compact Hausdorff. Given two dynamical systems ( f, X)

and (g, Y ), a factor map (or semiconjugacy) from ( f, X) to (g, Y ) is a map
φ : X → Y that commutes with the dynamics, i.e. φ ◦ f = g ◦ φ. In this case,
we say that the system (g, Y ) lifts via φ to the system ( f, X). A factor map
which is a homeomorphism is called a conjugacy.

Definition 1 Let X be a compact metric space and let f : X → X be a
continuous function. Let 〈xi 〉i∈ω be a sequence in X . Then 〈xi 〉i∈ω is a δ-
pseudo-orbit provided d(xi+1, f (xi )) < δ for all i ∈ ω and the point z ǫ-
shadows 〈xi 〉i∈ω provided d(xi , f i (z)) < ǫ for all i ∈ ω.

The map f has shadowing (or the pseudo-orbit tracing property) provided
that for all ǫ > 0 there exists δ > 0 such that every δ-pseudo-orbit is ǫ-
shadowed by a point.

A particularly nice characterization of shadowing exists if we restrict our
attention to shift spaces. For a finite set �, the full one-sided shift with alphabet

� consists of the space of infinite sequence in �, i.e. �ω using the product
topology on the discrete space � and the shift map σ , given by
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SFTs as fundamental objects in the theory of shadowing

σ 〈xi 〉 = 〈xi+1〉.

A shift space is a compact invariant subset X of some full-shift. A shift space
X is a shift of finite type over alphabet � if there is a finite collection F of
finite words in � for which 〈xi 〉 ∈ �ω belongs to X if and only if for all i ≤ j ,
the word xi xi+1 · · · x j /∈ F . A shift of finite type is said to be N -step provided
that the length of the longest word in its associated set of forbidden words F

is N + 1. As mentioned above, a shift space has shadowing if and only if it a
shift of finite type [35].

Inverse limit constructions arise in a variety of settings. Many of the results
here hold for arbitrary (non-metric) compact Hausdorff spaces and so we
consider inverse limits of dynamical systems taken along an arbitrary directed
set. (Recall that (	, ≤) is a directed set provided ≤ is a transitive order for
which any pair x, y has an upper bound x, y ≤ z.) The reader, however, will
not miss much by assuming that the space is compact metric in which case the
inverse limit may be indexed by N.

Definition 2 Let (	, ≤) be a directed set. For each λ ∈ 	, let Xλ be a compact
Hausdorff space and, for each pair λ ≤ η, let g

η
λ : Xη → Xλ be a continuous

map. Then (g
η
λ, Xλ) is called an inverse system provided that

(1) gλ
λ is the identity map, and

(2) for λ ≤ η ≤ ν, gν
λ = g

η
λ ◦ gν

η .

The inverse limit of (g
η
λ, Xλ) is the space

lim
←−

{g
η
λ, Xλ} = {〈xλ〉 ∈ �Xλ : ∀λ ≤ η xλ = g

η
λ(xη)}

with topology inherited as a subspace of the Tychonoff product �Xλ.

Since the inverse limit of compact Hausdorff spaces is a closed subset of
the product space, it is itself compact and Hausdorff. The following easily
proved fact is often useful. If U ⊆ lim

←−
{g

η
λ, Xλ} is open, and x ∈ U , then there

exists λ and Uλ ⊆ Xλ open with x ∈ π−1
λ (Uλ) ∩ lim

←−
{g

η
λ, Xλ} ⊆ U . That

is, the collection of sets of the form π−1
λ (Uλ) ∩ lim

←−
{g

η
λ, Xλ} for Uλ open in

Xλ forms a basis for lim
←−

{g
η
λ, Xλ}. Additionally, it is also worth noting that,

in this formulation, if the bonding maps g
η
λ are surjective, then the restricted

projection maps πγ | lim
←−

{g
η
λ, Xλ} : lim

←−
{g

η
λ, Xλ} → Xγ are also surjective.

This is easily observed as follows. Fix γ ∈ 	 and z ∈ Xγ . For μ ≥ γ , define
Aμ = {〈xλ〉 ∈ �Xλ : ∀λ ≤ μ xλ = g

μ
λ (xμ)} ∩ {〈xλ〉 ∈ �Xλ : xγ = z}. Since

each g
η
λ is surjective, this is nonempty and compact. Furthermore, if ν ≥ μ,

it is clear that Aν ⊆ Aμ. Hence, the intersection A =
⋂

Aμ is nonempty,
consists only of points belonging to the inverse limit, and has πγ (A) = z.
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Now, suppose that for each λ in the directed set 	, fλ : Xλ → Xλ is
a continuous function. If the bonding maps g

η
λ commute with the functions

fλ, then we can extend this definition to the family of dynamical systems
{( fλ, Xλ) : λ ∈ 	}. Specifically we make the following definition.

Definition 3 Let (	, ≤) be a directed set. For each λ ∈ 	, let ( fλ, Xλ) be a
dynamical system on a compact Hausdorff space and, for each pair λ ≤ η, let
g

η
λ : Xη → Xλ be a continuous map. Then (g

η
λ, ( fλ, Xλ)) is called an inverse

system provided that

(1) gλ
λ is the identity map, and

(2) for λ ≤ η ≤ ν, gν
λ = g

η
λ ◦ gν

η , and
(3) for λ ≤ η, fλ ◦ g

η
λ = g

η
λ ◦ fη.

The inverse limit of (g
η
λ,( fλ, Xλ)) is the dynamical system(( fλ)∗, lim

←−
{g

η
λ, Xλ}),

where ( fλ)∗ is the induced map given by

( fλ)∗
(

〈xλ〉
)

=
(

fλ(xλ)
)

.

Note that ( fλ)∗ is the restriction of the product map
∏

fλ to the inverse
limit lim

←−
{g

η
λ, Xλ} and is, therefore, continuous. Moreover, it is easy to check

that ( fλ)∗ maps the inverse limit into itself, and thus (( fλ)∗, lim
←−

{g
η
λ, Xλ}) is

indeed a continuous dynamical system.
Given a map f : X → X from a compact metric or Hausdorff space

to itself, one is frequently interested in the inverse limit space lim
←−

(X, f ) =

{(xi ) : f (xi+1) = xi } under the action of the shift map σ 〈xi 〉 = 〈xi+1〉. We
note that such spaces are a special case of Definition 3 applied with 	 = ω,
Xn = X and fn = gn+1

n = f for all n ∈ ω.
An argument similar to that for the surjectivity of the restricted projec-

tion maps demonstrates that if each of the bonding maps g
η
λ and each of the

maps fλ is surjective, then the induced map ( fλ)∗ is also surjective. However,
although many of the inverse limits under consideration in this paper do not
have surjective bonding maps, they do satisfy a less stringent condition.

Definition 4 An inverse system (of spaces or of dynamical systems) satisfies
the Mittag-Leffler condition provided that for all λ ∈ 	, there exists γ ≥ λ

such that for each η ≥ γ , we have g
γ

λ (Xγ ) = g
η
λ(Xη).

For simplicity of notation going forward, we will say that an inverse sys-
tem is an ML inverse system if it satisfies the Mittag-Leffler condition. The
Mittag-Leffler condition for inverse sequences was defined by Grothendieck
[15, Definition 13.1.2] although it is implicit in Bourbaki [4, Chapter II, The-
orem 1] (see, for example, [16] for more on the ML condition).
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SFTs as fundamental objects in the theory of shadowing

We note that an inverse system with surjective bonding maps automatically
satisfies the Mittag-Leffler condition. Moreover, in a system satisfying the
Mittag-Leffler condition, if γ witnesses the condition with respect to μ and
x ∈ g

γ
μ(Xγ ) ⊆ Xμ, then π−1

μ (x) ∩ lim
←−

{g
η
λ, Xλ} �= ∅.

It is well known that for any inverse system there is an inverse system
satisfying the Mittag-Leffler condition (in fact, one with surjective bonding
maps) which has the same inverse limit. To see this, for each factor space Xλ

define X̃λ =
⋂

η>λ g
η
λ(Xη) and define the bonding map g̃

η
λ : X̃η → X̃λ to be

the restriction of g
η
λ . The inclusion maps from X̃λ → Xλ induce a map between

the inverse limits which is easily seen to be a homeomorphism. However, in
making this modification, we lose information about the factor spaces. Indeed,
every system on a compact, totally disconnected Hausdorff space is conjugate
to an inverse limit of shifts of finite type. Thus, by the above argument, every
system on a compact, totally disconnected Hausdorff space is conjugate to the
inverse limit of an inverse system satisfying the Mittag-Leffler condition, but
consisting of subshifts which may or may not be of finite type. As we shall see,
not every such system has the shadowing property—only those systems which
are conjugate to an inverse limit of an inverse system satisfying the Mittag-
Leffler condition and consisting of shifts of finite type have the shadowing
property.

3 Shadowing without metrics

Shadowing is on first inspection a metric property, and indeed the properties
of metrics often play a role in its investigation and application. However,
shadowing can be viewed as a strictly topological property, defined in terms
of finite open covers, provided that we restrict our attention to compact metric
spaces. Similar observations have been made in [8,14].

We assume in what follows that the elements of a cover U are non empty
open sets.

Definition 5 Let X be a space, let f : X → X , and let U be a finite open
cover of X .

(1) The sequence 〈xi 〉i∈ω is a U-pseudo-orbit provided for every i ∈ ω, there
exists Ui+1 ∈ U with xi+1, f (xi ) ∈ Ui+1.

(2) Let 〈Ui 〉 be a sequence of elements of U . We say that 〈Ui 〉 is a U-pseudo-

orbit pattern provided there is a sequence 〈xi 〉 of points in X such that
xi+1, f (xi ) ∈ Ui+1 for each i . We say that 〈Ui 〉 is a U-orbit pattern

provided there is some z such that f i (z) ∈ Ui for all i .
(3) The point z ∈ X U-shadows 〈xi 〉i∈ω provided for each i ∈ ω there exists

Ui ∈ U with xi , f i (z) ∈ Ui .
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Lemma 6 Let X be a compact metric space. Then f : X → X has shadowing

if and only if for every finite open cover U , there exists a finite open cover V ,

such that every V-pseudo-orbit is U-shadowed by some point z ∈ X.

Proof First, suppose that f has the shadowing property and let U be a finite
open cover of X . Fix ǫ > 0 so that for each ǫ-ball B in X , there exists U ∈ U

with B ⊆ U . Now, let δ > 0 witness ǫ-shadowing. Let V be a finite open
cover of X refining U which consists of open sets of diameter less that δ.

Now, Let 〈xi 〉 be a sequence in X as in the statement of the lemma. Then
d(xi , f (xi−1)) < diam(Vi ) < δ for all i ∈ ω \ 0. In particular, 〈xi 〉 is a
δ-pseudo-orbit. Let z ∈ X be an ǫ-shadowing point for this sequence. Then
d(xi , f i (z)) < ǫ for each i ∈ ω, and in particular, {xi , f i (x)} ⊆ Bǫ(xi ).
By construction, there exists Ui ∈ U for which {xi , f i (x)} ⊆ Bǫ(xi ) ⊆ Ui ,
satisfying the conclusion of the lemma.

Conversely, let us suppose that f satisfies the open cover condition of the
lemma. Let ǫ > 0, and consider a finite subcover U of X consisting of ǫ/2-
balls. Let V be the cover that witnesses the satisfaction of the condition, and
choose δ > 0 such that for each δ-ball in X , there is an element of V which
contains it.

Now, fix a δ-pseudo-orbit 〈xi 〉. Then for each i ∈ ω\0, d(xi , f (xi−1)) < δ,
and hence there exists Vi ∈ V such that xi , f (xi−1) ∈ Vi . Let z ∈ X be the
point guaranteed by the open cover condition. Then, for each i ∈ ω, there exists
Ui ∈ U with xi , f i (z) ∈ Ui . But Ui is an ǫ/2-ball and hence d(xi , f i (x)) < ǫ,
i.e. z ǫ-shadows the pseudo-orbit. ⊓⊔

This observation allows the decoupling of shadowing from the metric, and
we can then take the following definition of shadowing, which is valid for
systems with compact Hausdorff (but not necessarily metric) domain, an appli-
cation that has recently seen increased interest [7,8,14].

Definition 7 Let X be a (nonempty) compact Hausdorff topological space.
The map f : X → X has shadowing provided that for every finite open
cover U , there exists a finite open cover V such that every V-pseudo-orbit is
U-shadowed by a point of X .

Clearly if the cover V witnesses U-shadowing, the cover V ′ refines V and
the cover U ′ is refined by U , then V ′ witnesses U ′-shadowing.

With this definition in mind, we can prove the following result which will
be important to the characterization of shadowing in Sect. 4.

Theorem 8 Let f : X → X be conjugate to an ML inverse system consisting

of maps with shadowing on compact spaces. Then f has shadowing.

Proof Without loss, let (	, ≤)be a directed set and ( f, X) = lim
←−

{gλ
γ , ( fλ, Xλ)}

be an ML inverse system where each of ( fλ, Xλ) is a system with shadowing
on a compact space.
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Let U be a finite open cover of X . Since X = lim
←−

{gλ
γ , Xλ}, we can find λ and

a finite open cover Wλ of Xλ so that W = {π−1
λ (W ) ∩ X : W ∈ Wλ} refines

U . There is some γ ≥ λ such that for each η ≥ γ , we have g
γ

λ (Xγ ) = g
η
λ(Xη).

Let Wγ = {(g
γ

λ )−1(W ) : W ∈ Wλ}. Since fγ has shadowing, there is
a finite non-empty open cover Vγ of Xγ such that every Vγ -pseudo orbit is
Wγ -shadowed.

Let V = {π−1
γ (V ) ∩ X : V ∈ Vγ } and let 〈xi 〉 be a V-pseudo-orbit

with pattern 〈π−1
γ (Vi ) ∩ X〉. Then for each i ∈ ω, we have f (xi ) ∈

f (π−1
γ (Vi ) ∩ X) ∩ π−1

γ (Vi+1) ∩ X �= ∅. It follows then, that 〈(xi )γ 〉 is a Vγ -
pseudo-orbit with pattern 〈Vi 〉. Since every Vγ -pseudo orbit is Wγ -shadowed,
there is some zγ ∈ Xγ and a sequence 〈Wi 〉 of elements from Wγ such that
f i
γ (zγ ), (xi )γ ∈ Wi . Note that this means that zγ ∈

⋂

f −i
γ (Wi ) �= ∅.

Now each Wi is the inverse image of some element of Wλ, so equivalently,
we have a sequence 〈W ′

i 〉 ∈ Wλ with (xi )λ ∈ W ′
i and with zλ = g

γ

λ (zγ ) ∈

g
γ

λ (
⋂

f −i
γ (Wi )) ⊆

⋂

f −i
λ (W ′

i ) �= ∅. In particular, since this is an ML inverse

system, there is some z ∈ X with zλ ∈ g
γ

λ (
⋂

f −i
γ (Wi )) ⊆

⋂

f −i
λ (W ′

i ).

It then follows that f i (z), xi ∈ π−1
λ (W ′

i ) ∩ X , so that 〈xi 〉 is W-shadowed,
and hence U-shadowed as required. ⊓⊔

We wish to capture the dynamics of the map f on X via action of the shift
map induced by f on the space of orbit or pseudo-orbit patterns for certain
covers of X . If U is an open cover then one can prove (as in Lemma 11) that
the collection of all U-pseudo orbit patterns forms a closed subspace of the
product space Uω of all sequences of elements from U (where U is given the
discrete topology). This implies that the collection of all pseudo-orbit patterns
of a finite open cover is a subshift of Uω (and is indeed a shift of finite type).
However, the space of all orbit patterns need not even be closed subset of
Uω. To see this consider the period doubling map θ �→ 2θ mod 2π on
the unit circle [0, 2π). Let U1 = (0, π) and U2 = (π − ǫ, 0 + ǫ) for some
suitably small ǫ. For each n, choose zn near to 0 such that f n+1(zn) = π and
f n+2(z) = 0. Then zn generates an orbit pattern 〈Vn,i 〉 such that Vn,i is U1 for
i ≤ n and U2 for i > n. Clearly the sequence of sequences 〈Vn,i 〉 converges
to the constant sequence 〈U1, U1, U1, . . . 〉, which is not an orbit pattern for
the cover {U1, U2}, so that the collection of orbit patterns is not closed in Uω.
With this in mind, we have the following definitions.

Definition 9 Let f : X → X be a map on the space X , let U be a finite open
cover of X , each element of which is nonempty and let Uω be the one-sided
shift space on the alphabet U with shift map σ .

(1) The U-orbit space is the set O(U) ⊆ Uω which is the closure of the set
consisting of all sequences 〈Ui 〉 in U for which there exists z ∈ X with
f i (z) ∈ Ui .
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(2) The U-pseudo-orbit space is the set PO(U) ⊆ Uω consisting of
all sequences 〈Ui 〉 in U for which there exists a sequence 〈xi 〉 with
xi+1, f (xi ) ∈ Ui+1.

Additionally, for U ∈ U and i ∈ ω, define πi : Uω → U to be projection onto
the i-th coordinate.

The following lemma is immediate and provides an alternate description of
O(U) and PO(U).

Lemma 10 Let f : X → X be a map on X and let U be a finite open cover.

Then

O(U) = {〈Ui 〉 ∈ Uω :
⋂

f −i (Ui ) �= ∅}

=
⋂

n∈ω

{〈Ui 〉 ∈ U
ω :

⋂

i≤n

f −i (Ui ) �= ∅}

and

PO(U) = {〈Ui 〉 ∈ U
ω : f (Ui ) ∩ Ui+1 �= ∅}.

As consequence, we have the following relations between O(U), PO(U)

and Uω.

Lemma 11 Let f : X → X be a map on X and let U be a finite open cover.

Then, O(U) is a subset of PO(U) and both spaces are subshifts of Uω. In

particular, PO(U) is a 1-step shift of finite type.

Proof That O(U) ⊆ PO(C) ⊆ Uω is immediate. It is also clear that each of
these spaces is shift invariant. Hence, since O(U) is closed by definition, it is
a subshift.

That PO(U) is a 1-step subshift of finite type follows by observing that if
〈Ui 〉 is not a pseudo-orbit pattern, then for some i , there f (Ui )∩Ui+1 = ∅, and
so we can forbid 〈Ui 〉 from PO(U) by forbidding the word UiUi+1. Clearly
there are only finitely many such words. ⊓⊔

If X is compact Hausdorff, then the entire dynamics of a map f are encoded
in the orbit spaces of an appropriate system of covers of X . In particular, let
FOC(X) be the collection of all finite open covers of X . This collection is
naturally partially ordered by refinement and forms a directed set.

Theorem 12 Let f : X → X be a map on the compact Hausdorff space X.

Let {Uλ}λ∈	 be a cofinal directed subset of FOC(X). Then for all x ∈ X there

exists a choice of Uλ(x) ∈ Uλ with {x} =
⋂

Uλ(x) and furthermore for any

such sequence, we have for all n ∈ ω,
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{ f n(x)} =
⋂

π0

(

σ n
(

O(Uλ) ∩ π−1
0 (Uλ(x))

))

.

Proof Let f , 	, and {Uλ} be as described. Fix x ∈ X . For each λ ∈ 	,
choose Uλ(x) ∈ Uλ with x ∈ Uλ(x). Then x ∈

⋂

Uλ(x). Furthermore, for all
y ∈ X \ {x}, there exists a cover U of X such that if x ∈ U ∈ U , then y /∈ U .
Then for any λ ∈ 	 with Uλ refining U , y /∈ Uλ(x) regardless of choice of
Uλ(x), hence y /∈

⋂

Uλ(x) and therefore y /∈
⋂

Uλ.

Now, for each λ, it is straightforward to show that π0

(

σ n
(

O(Uλ) ∩ π−1
0

(Uλ(x))

) )

is equal to f n(Uλ(x)). In particular, f n(x) ∈
⋂

π0

(

σ n
(

O(Uλ)

∩π−1
0 (Uλ(x))

))

. Suppose now that z ∈
⋂

π0

(

σ n
(

O(Uλ) ∩ π−1
0 (Uλ(x))

))

.

Then for each λ, there exists xλ ∈ Uλ(x) with z = f n(xλ). But, by con-
struction, x is a limit point of {xλ}, and by continuity, z = f n(x). Hence

{ f n(x)} =
⋂

π0

(

σ n
(

O(Uλ) ∩ π−1
0 (Uλ(x))

))

as claimed. ⊓⊔

It should be noted that for general Hausdorff spaces, the structure of {Uλ}

may be quite complex, but for metric X , it is the case that a sequence of covers
will always suffice and we will make use of this fact in the following sections.
In the metric case, Theorem 12 is equivalent to Theorem 3.9 of [28], although
that result is expressed in terms of graph covers and relations.

4 Characterizing shadowing in totally disconnected spaces

In the sense of Theorem 12, the entire dynamics are encoded by the action of
f on an appropriate collection of refining covers. This is not unlike the way
that the topology is completely encoded as well. In this section we explore this
analogy.

In particular, it is well known that a space X is chainable, i.e. can be encoded
with a sequence of refining chains (i.e. finite covers with Ui ∩ U j �= ∅ if and
only if |i − j | ≤ 1) if and only if X can be written as an inverse limit of
arcs. In a sense, the arc is the fundamental chainable object. In an analogous
fashion we show that shifts of finite type are the fundamental objects among
dynamical systems on totally disconnected spaces with shadowing.

Without loss of generality, in the case that X is totally disconnected compact
Hausdorff, the cofinal directed subset of FOC(X) in Theorem 12 can be taken
to consist of open covers which are each finite collections of pairwise disjoint
open (and hence also closed) sets. For the purposes of the following, we refer
to such finite pairwise disjoint open covers as partitions of X .

Let U and V be arbitrary covers of X with V refining U . Then let ι : V → U

be defined so that V ∩ ι(V ) �= ∅. In the case that U and V are both partitions,
this is equivalent to asking V ⊆ ι(V ), so that ι is a well-defined function.
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In general, if U and V are not partitions, ι is a multifunction and it is this
that creates the obstacle to dealing with non-totally disconnected spaces. We
address this issue in Sect. 5. When considering partitions, the map ι naturally
induces a continuous map ι : Vω → Uω, the domain of which can then
be restricted to O(V) or PO(V) as appropriate. As the intended domain is
typically clear, the symbol ι will be used for all.

Note that if U is a partition of X , its elements are necessarily compact, and
in this case, it is easy to see that the set of orbit sequences is naturally closed,
so that

O(U) = {〈Ui 〉 ∈ U
ω :

⋂

f −i (Ui ) �= ∅}.

Lemma 13 Let f : X → X be a map on the compact, totally disconnected

Hausdorff space X and let U and V be partitions of X with V refining U . Then

σ and ι commute and the following statements hold:

(1) ι(O(V)) = O(U).

(2) O(U) ⊆ ι(PO(V)) ⊆ PO(U).

Proof It is immediate from their definitions that σ and ι commute on their
unrestricted domains.

Towards proving statement (1), consider 〈Vi 〉 ∈ O(V). Then there is x such
that f i (x) ∈ Vi for all i . But then f i (x) ∈ ι(Vi ), so that 〈ι(Vi )〉 ∈ O(U).
Conversely, if 〈Ui 〉 ∈ O(U), then we can choose x ∈

⋂

f −i (Ui ) �= ∅. Now
choose 〈Vi 〉 so that x ∈ f −1(Vi ) for each i . Clearly 〈Vi 〉 ∈ O(V). Since V

refines U and the elements of U are pairwise disjoint and clopen, it follows
that Vi ⊆ Ui , i.e. 〈Ui 〉 = ι〈Vi 〉.

Statement (2) follows similarly. ⊓⊔

The additional structure of totally disconnected spaces allows us to state
the following immediate corollary to Theorem 12. In particular, the collection
Part (X) of partitions of X is a cofinal directed subset of FOC(X). Since
the elements of the covers in Part (X) are closed, the refinement relations
of Part (X) are in fact closure refinements, so all nested intersections are
nonempty.

Corollary 14 Let f : X → X be a map on the compact Hausdorff totally

disconnected space X. Let {Uλ}λ∈	 be a cofinal directed suborder of Part (X).

Then the system ( f, X) is conjugate to (σ∗, lim
←−

{ι, O(Uλ)}) by the map

〈wλ〉 �→
⋂

π0(wλ).

It is important to note that the maps ι in the inverse system depend very much
on their domain and range. However, if W refines V which in turn refines U ,
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then the composition of ι : W → V and ι : V → U is precisely the same as
ι : W → U , and as such the inverse system is indeed well-defined.

The existence of partitions also allows us to state the following alternative
characterization of shadowing.

Lemma 15 Let f : X → X be a map on the compact Hausdorff totally

disconnected space X. Then f has shadowing if and only if for each U ∈

Part (X), there exists V ∈ Part (X) which refines U such that for all W ∈

Part (X) which refine V , ι(PO(W)) = O(U).

Proof Let f have shadowing and let U ∈ Part (X). Let V be the cover wit-
nessing shadowing. Without loss of generality, V ∈ Part (X) and V refines U .
Now, let 〈xi 〉 be a V-pseudo-orbit with 〈Vi 〉 its V-pseudo-orbit pattern, and let
z ∈ X be a shadowing point with 〈Ui 〉 its shadowing pattern. By definition, xi

and f i (z) belong to Ui , and hence Vi ∩ Ui �= ∅, and since V refines U and
the elements of U are disjoint, we have Vi ⊆ Ui , i.e. ι(Vi ) = Ui and hence
ι〈Vi 〉 = 〈Ui 〉. Thus ι(PO(V)) ⊆ O(U), and the reverse inclusion is given by
Lemma 13, and thus the two sets are equal. Now, for any W ∈ Part (X) which
refines V , observe that O(U) ⊆ ι(PO(W)) ⊆ ι(PO(V)) = O(U),

Conversely, suppose that f has the stated property regarding open covers.
Let U be a finite open cover of X . Since X is totally disconnected, let U ′ ∈

Part (X) which refines U . Let V be the cover witnessing the property with
respect to U ′. Now, let 〈xi 〉 be a V-pseudo-orbit and let 〈Vi 〉 be its V-pseudo-
orbit pattern. By the property, there exists 〈U ′

i 〉 ∈ O(U ′) with ι〈Vi 〉 = 〈U ′
i 〉.

Now, let z ∈
⋂

f −i (U ′
i ). Then xi , f i (z) ∈ U ′

i which in turn is a subset of
some Ui ∈ U . In particular, z U-shadows the V-pseudo-orbit 〈xi 〉. ⊓⊔

In light of this, we have the following theorem.

Theorem 16 Let f : X → X be a map with shadowing on the compact totally

disconnected Hausdorff space X. Let {Uλ}λ∈	 be a cofinal directed subset of

Part (X).

Then the system (σ∗, lim
←−

{ι, O(Uλ)}) is conjugate to (σ∗, lim
←−

{ι, PO(Uλ)})

and both systems satisfy the Mittag-Leffler condition.

Proof First, observe that for each λ, O(Uλ) is a subset of PO(Uλ). It is a
standard result in inverse limit theory that the map j∗ : lim

←−
{ι, O(Uλ)} →

lim
←−

{ι, PO(Uλ)}} induced by inclusion is a continuous injection, and clearly

commutes with σ∗. In fact, this is a surjection, and hence demonstrates the
desired conjugacy. This is easily proven by considering the following.

Define a monotone function p : 	 → 	 such that for each λ ∈ 	,
we have p(λ) ≥ λ and ι(PO(Up(λ))) = O(Uλ). Then, define the map
φ : lim

←−
{ι, PO(Uλ)} → lim

←−
{ι, O(Uλ)} as follows.

φ(〈wγ 〉)λ = ι(wp(λ))
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That this is well-defined and continuous is a standard result in inverse limit
theory. As this is induced by the maps ι, it will commute with σ∗.

Now, consider j∗ ◦ φ : lim
←−

{ι, PO(Uλ)} → lim
←−

{ι, PO(Uλ)}. Consider

〈wγ 〉 ∈ lim
←−

{ι, PO(Uλ)}. We see that

(

j∗ ◦ φ(〈wγ 〉)
)

λ
= jλ(ι(wp(λ))) = jλ(wλ) = wλ

In particular, j∗ ◦ φ is the identity on lim
←−

{ι, PO(Uλ)}, and since j∗ is injec-

tive, it follows that both j∗ and φ are conjugacies.
It remains to be shown that these systems satisfy the Mittag-Leffler con-

dition. For the system O(Uλ), note that the inclusion maps are surjective
by Lemma 13, and hence the system has the condition. For the system
PO(Uλ), we proceed as follows. Let λ ∈ 	 and choose γ ≥ λ so that
Uγ witnesses Uλ shadowing. Then for all η ≥ γ , by Lemma 15, we have
ι
η
λ(PO(Uη)) = O(Uλ) = ι

γ

λ (PO(Uγ )). ⊓⊔

This theorem complements Corollary 14, and by applying Lemma 11, and
the well-known fact that shifts of finite type have shadowing [35], we have the
following result.

Corollary 17 Let f : X → X be a map with shadowing on the compact totally

disconnected Hausdorff space X. Then ( f, X) is conjugate to an inverse limit

of an ML inverse system of shifts of finite type.

In fact, this is a complete characterization of totally disconnected systems
with shadowing; the following is an immediate consequence of Corollary 17
and Theorem 8.

Theorem 18 Let X be a compact, totally disconnected Hausdorff space. The

map f : X → X has shadowing if and only if ( f, X) is conjugate to the

inverse limit of an ML inverse system of shifts of finite typ.

Of course, Theorem 18 includes metric systems. However, if X is metric,
we may easily find sequences {Un}n∈N of partitions which are cofinal directed
suborders of Part (X). In particular, we can let U0 = {X}, and for each Ui ,
let Ui+1 be a partition of X with mesh less than 2−1 which refines Ui and
which witnesses shadowing for Ui . Then the function p from the proof of
Theorem 16 simply increments its input. The conjugacy then follows from the
induced diagonal map ι∗ on the inverse systems as seen in Fig. 1.

This observation immediately implies the following.

Corollary 19 Let X be the Cantor set, or indeed any compact, totally discon-

nected metric space. The map f : X → X has shadowing if and only if ( f, X)

is conjugate to the inverse limit of an ML sequence of shifts of finite type.
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O(U0) O(U1) O(U2) O(U3) · · ·lim
←−

{ι, O(Ui)}
ι ι ι ι

PO(U0) PO(U1) PO(U2) PO(U3) · · ·lim
←−

{ι,PO(Ui)}
ι ι ι ι

ι ι ι ι
j j j jι∗ ≃

Fig. 1 Diagram for the metric case of Theorem 18

This ad hoc construction of an appropriate sequence of covers can be modi-
fied into a technique that will apply to general compact metric spaces in Sect. 5.

5 Shadowing in general metric systems

Theorem 12 applies equally well to systems in which there are non-trivial con-
nected components, and as such, one might hope for analogue to Corollary 14.

However, as mentioned, the principal obstruction to a direct application of
the methods of Sect. 4 is that the intersection relation ι is no longer necessarily
single-valued, so that the induced map on the pseudo-orbit space is not only set-
valued, but also not finitely determined. However, by modifiying the approach
illustrated in Fig. 1, we are obtain the following. Recall that for a cover C of
X and A ⊆ X , the star of A in C is the set st (A, C) which is the union of all
elements of C which meet A.

Theorem 20 Let X be a compact metric space and f : X → X be a contin-

uous map with shadowing. Then there is an inverse sequence (gn+1
n , Xn) of

shifts of finite type such that ( f, X) is a factor of (σ∗, lim
←−

{gn+1
n , Xn}).

Proof First, observe that since X is compact metric and f has shadowing, we
can easily find a sequence 〈Ui 〉 of finite open covers satisfying the following
properties:

(1) Un+1 witnesses Un shadowing,
(2) {Ui } is cofinal in FOC(X), and
(3) for all U ∈ Un+2, there exists W ∈ Un such that st (U, Un+1) ⊆ W .

This is easily accomplished by taking U0 = {X}, and inductively letting
Un+1 be a cover witnessing Un-shadowing with mesh less than one third the
Lebesgue number of the cover Un . Conditions (1) and (2) are immediately met.
To verify that condition (3) is satisfied, fix n ∈ N and U ∈ Un+2. Then U is a
subset of V for some V ∈ Un+1, and so st (U, Un+1) is a subset of st (V, Un+1).
But the diameter of st (V, Un+1) is at most three times the mesh of Un+1, and
hence has diameter less than the Lebesgue number for Un . Hence there is some
W ∈ Un for which W ⊇ st (V, Un+1) ⊇ st (V, Un+1) as required.
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O(U0) O(U1) O(U2) O(U3) O(U4)

PO(U0) PO(U1) PO(U2) PO(U3) PO(U4)

w w

Fig. 2 Diagram for the proof of Theorem 20

O(U0) O(U2) O(U4) O(U6) · · ·lim
←−

{ι′, O(U2i)}
ι′ ι′ ι′ ι′

PO(U0) PO(U2) PO(U4) PO(U6) · · ·lim
←−

{ι′, PO(Ui)}
ι′ ι′ ι′ ι′

w w w w
w∗ ≃

Fig. 3 Diagram for the proof of Theorem 20

Let f : X → X and covers 〈Ui 〉 be as stated. For each U ∈ Un+2, fix
W (U ) ∈ Un with st (U, Un+1) ⊆ W (U ), and define w : PO(Un+2) →

∏

Un

by w(〈U j 〉) = 〈W (U j )〉. Note that, as this is a single letter substitution map
on a shift space, it is a continuous map and commutes with the shift map by
definition.

We claim that w(PO(Un+2)) is a subset of O(Un). Indeed, let 〈U j 〉 ∈

PO(Un+2) and 〈x j 〉 a pseudo-orbit with this pattern. Since Un+2 witnesses
Un+1-shadowing, there exists z ∈ X and sequence 〈V j 〉 ∈ O(Un+1) with
f j (z), x j ∈ V j . In particular, for any such z and choices of 〈V j 〉, V j ⊆

st (U j , Un+1) ⊆ W (U j ). Indeed, this establishes that 〈W (U j )〉 ∈ O(Un). It
should be noted that while w is not necessarily surjective, for every x ∈ X ,
there is some 〈U j 〉 in w(PO(Un+2)) with f j (x) ∈ U j for all j . We can observe
this by noting that 〈 f j (x)〉 is itself a Un+2-pseudo-orbit, and in particular, we
have f j (x) ∈ W (U j ), and so 〈W (U j )〉 is a Un orbit pattern for x .

Since O(Un) ⊆ PO(Un), we have the following diagram (Fig. 2).
So, while the ‘natural’ map from PO(Un+2) is set-valued, the composition

of inclusion and w gives a single-valued continuous map from O(Un+2) to
O(Un), and by reversing the order of composition, from PO(Un+2) to PO(Un).
We will denote these maps by ι′. Figure 3 then establishes the existence of a
map w∗ from the inverse limit of the pseudo-orbit spaces to the inverse limit
of the orbit spaces which commutes with the induced maps σ∗.

All that remains is to establish that the inverse limit of orbit space is a factor
of the system ( f, X) and that the composition of this factor map with the map
w∗ is a surjection. For the former, Let φ : lim

←−
{ι′, O(U2i )} → X be given by

φ〈ui 〉 =
⋂

π0(ui ). Note that, by construction, πk(ui+1) ⊆ πk(ui ) for all k and
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i , so in particular φ(〈ui 〉) is a nested intersection of the closures of elements of
the open covers, and hence is well-defined. That φ is continuous and commutes
with σ∗ follows from similar reasoning as Theorem 12 and Corollary 14. That
φ is surjective follows from the same logic as Theorem 12–observe that that
for all x ∈ X , and all k, there exists a nonempty subset O2k(x) of U2k-orbit
patterns for x in O(U2k), and that

O(x) =
⋂

π−1
2k (O2k)

⋂

lim
←−

{ι′, O(U2i )}

is nonempty and satisfies φ(O(x)) = {x}. This same observation coupled with
the fact that O(U2k) is mapped into PO(U2k) by inclusion demonstrates that
φ ◦ w∗ is indeed surjective, and is thus a factor map. ⊓⊔

Clearly, the existence of the sequence of covers satisfying conditions (2)
and (3) in this proof is a strong condition. In particular, this implies that there
is such a cofinal sequence in FOC(X), which in turn implies that the space X

is metrizable.
While it seems that this might be straightforward to generalize, a direct

generalization of this argument fails due to the complexity of the partial order
on the class of open covers of a general compact Hausdorff space. In particular,
given any pair U and V of finite open covers of a compact Hausdorff space
X , there is some cover W which mutually star-refines U and V and also a
cover T which is star-refined by both. To follow the argument from before,
we would need to be able to establish maps from W to U and to V as well
as maps from U and V into T all of which respect star-refinement and such
that the compositions agree. This is generally not possible due to the inherent
‘drift’ of stars of sets in covers.

6 Factor maps which preserve shadowing

We have now established that for a metric system to exhibit shadowing, it is
necessary for there to exist an inverse limit of an inverse sequence of shifts of
finite type of which the original system is a factor. However, it is worth noting
that this is by no means sufficient, even with the added hypothesis that the
inverse sequence is an ML inverse sequence. In particular, every sofic shift is
a factor of such an inverse limit, but only those that are shifts of finite type
exhibit shadowing.

Example 21 Let X be the subshift of {0, 1}Z consisting of those bi-infinite
words containing at most one 1. The system (σ, X) fails to have shadowing,
but is a factor of the inverse limit of an inverse sequence of shifts of finite type.
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Proof (σ, X) is a standard example of a system which does not have shadow-
ing; it has only one non-constant full orbit, namely the orbit passing through
· · · 0001000 · · · , but uncountably many distinct pseudo-orbits containing the
fixed point 〈0〉. Now let Y be the subshift of {0, 1, 2}Z consisting of those
sequences in which the words 02, 10, 21 and 20 do not appear, i.e. Y is the
subshift of all sequences of the form · · · 0000001222222 · · · along with the
constant sequences 〈0〉 and 〈2〉. Y is a shift of finite type. Then Y is (trivially)
an inverse limit of an ML system of shifts of finite type. However, the map
from Y to X induced by substituting the symbol 0 for 2 witnesses that X is a
factor of Y . ⊓⊔

It is then natural to ask which factors of inverse limits of ML inverse systems
consisting of shifts of finite type exhibit shadowing, i.e. is there a class of maps
P such that if ( f, X) is a factor by a map in P of an inverse limit of an ML
inverse system of shifts of finite type, then ( f, X) has shadowing? Of course,
it is clear that there is such a class, and in fact the class of homeomorphisms
have this property, but we wish to find, if possible, the maximal such class.
Towards this end, we define the following.

Definition 22 Let ( f, X) and (g, Y ) be dynamical systems with X and Y

compact Hausdorff spaces. A factor map φ : ( f, X) → (g, Y ) lifts pseudo-

orbits provided that for every VX ∈ FOC(X), there exists VY ∈ FOC(Y )

such that if 〈yi 〉 is a VY -pseudo-orbit in Y , then there is a VX -pseudo-orbit 〈xi 〉

in X with 〈yi 〉 = 〈φ(xi )〉.

Theorem 23 Let ( f, X) and (g, Y ) be dynamical systems with X and Y com-

pact Hausdorff. If ( f, X) has shadowing and φ : ( f, X) → (g, Y ) is a factor

map that lifts pseudo-orbits, then (g, Y ) has shadowing.

Proof Fix an open cover UY ∈ FOC(Y ), and let UX ∈ FOC(X) such that
φ(UX ) refines UY . Since ( f, X) has shadowing, let VX ∈ FOC(X) witness
shadowing with respect to UX .

Since φ lifts pseudo-orbits, let VY witness this with respect to VX . Finally,
let 〈yi 〉 be a VY -pseudo-orbit.

Pick 〈xi 〉 to be a VX -pseudo-orbit with 〈φ(xi )〉 = 〈yi 〉. As every VX -pseudo-
orbit is UX -shadowed, fix zX ∈ X to witness this and let zY = φ(zX ). It then
follows that for each i , we have φi (zX ), φ(xi ) ∈ φ(UX,i ) for some Ui ∈ UX .
As φ(UX ) refines UY , it follows that there exists UY,i ∈ UY with φi (zY ), yi ∈

φ(UY,i ), i.e. zY = φ(zX ) UY -shadows 〈yi 〉. ⊓⊔

Notwithstanding Theorem 23, a more general concept of lifting pseudo-
orbits provides a much sharper insight into the relation between shadowing
and shifts of finite type in compact metric systems.
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Definition 24 Let ( f, X) and (g, Y ) be dynamical systems with X and Y

compact Hausdorff spaces. A factor map φ : ( f, X) → (g, Y ) almost lifts

pseudo-orbits (or f is an ALP map) provided that for every VX ∈ FOC(X)

and WY ∈ FOC(Y ), there exists VY ∈ FOC(Y ) such that if 〈yi 〉 is a VY -
pseudo-orbit in Y , then there is a VX -pseudo-orbit 〈xi 〉 in X such that for each
i ∈ N there exists Wi ∈ WY with φ(xi ), yi ∈ Wi .

Theorem 25 Let ( f, X) and (g, Y ) be dynamical systems with X and Y com-

pact Hausdorff and let φ : ( f, X) → (g, Y ) be a factor map. Then the

following statements hold:

(1) if ( f, X) has shadowing and φ is an ALP map, then (g, Y ) has shadowing,

and

(2) if (g, Y ) has shadowing then φ is an ALP map.

Proof First, we prove statement (1). Let ( f, X) have shadowing and let φ be
an ALP map. Fix an open cover UY ∈ FOC(Y ). Let WY ∈ FOC(Y ) such
that if W, W ′ ∈ WY with W ∩ W ′ �= ∅, then there exists U ∈ UY with
W ∪ W ′ ⊆ U , and let UX ∈ FOC(X) such that φ(UX ) refines WY . Since
( f, X) has shadowing, let VX ∈ FOC(X) witness shadowing with respect to
UX .

Since φ is ALP, let VY witness this with respect to WY and VX . Finally, let
〈yi 〉 be a VY -pseudo-orbit.

Pick 〈xi 〉 to be a VX -pseudo-orbit so that 〈φ(xi )〉 WY -shadows 〈yi 〉. As
every VX -pseudo-orbit is UX -shadowed, fix zX ∈ X to witness this and let
zY = φ(zX ). It then follows that for each i , we have φi (zX ), φ(xi ) ∈ φ(UX,i )

for some Ui ∈ UX . As φ(UX ) refines WY , it follows that there exists Wi ∈ WY

withφi (zY ), φ(xi ) ∈ Wi . Additionally, as pseudo-orbits are almost lifted, there
exists W ′

i ∈ WY with φ(xi ), yi ∈ W ′
i . In particular, φ(xi ) ∈ Wi ∩ W ′

i , so we
have that there exists UY,i ∈ UY with φi (zY ), φ(xi ), yi ∈ Wi ∪ W ′

i ⊆ UY,i ∈

UY , i.e zY UY -shadows 〈yi 〉.
Now, to prove statement (2), assume that (g, Y ) has shadowing. let VX ∈

FOC(X) and WY ∈ FOC(Y ). Let VY ∈ FOC(Y ) witness shadowing with
respect to WY . Now, let 〈yi 〉 be a VY pseudo-orbit in Y . Then there is some
z ∈ Y with z WY -shadowing 〈yi 〉. Now, choose x ∈ φ−1(z) and observe that
〈 f i (x)〉 is a VX -pseudo-orbit (as it is in fact an orbit), and φ( f i (x)) = gi (z),
so there exists Wi ∈ WY with φ( f i (z)), yi ∈ Wi (as given by the shadowing
pattern of z and 〈yi 〉). Thus φ is an ALP map. ⊓⊔

One consequence of the above is that the conjugacies (factor maps) in The-
orems 18 and 20 are ALP maps. This is not terribly surprising in the case of
Theorem 18, as the map in question is a homeomorphism, but in the case of
Theorem 20, this is interesting, and allows us to refine the characterization. It
should be also be noted that, as a result of this theorem, we see that the factor
maps constructed by Bowen in [6] are ALP.
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Theorem 26 Let X be a compact Hausdorff space. The map f : X → X has

shadowing if ( f, X) lifts via a map which is ALP to the inverse limit of an ML

inverse system of shifts of finite type.

Proof This follows immediately from Theorems 8 and 25. ⊓⊔

In the metric case, we can say a bit more, but first we first translate the notion
of almost lifting pseudo-orbits from the language of covers into the language
of metric spaces. This is not completely necessary, but allows for a different
perspective on the property. As this is a direct translation and application of
Theorems 20 and 26, we state the following results without proof.

Lemma 27 Let ( f, X) and (g, Y ) be dynamical systems with X and Y compact

metric spaces. A factor map φ : ( f, X) → (g, Y ) is an ALP map if and only if

for all ǫ > 0 and η > 0, there exists δ > 0 such that if 〈yi 〉 is a δ-pseudo-orbit

in Y , there exists an η-pseudo-orbit 〈xi 〉 in X with d(φ(xi ), yi ) < ǫ.

Corollary 28 Let X be a compact metric space. The map f : X → X has

shadowing only if ( f, X) is a factor of an inverse limit of a sequence of shifts

of finite type by a map which is ALP. Additionally, f : X → X has shadowing

if ( f, X) lifts via a map which is ALP to the inverse limit of an ML sequence

of shifts of finite type.

Of course, it would be of significant benefit if ALP maps had an alternate
characterization. In particular, it is clear that homeomorphisms and covering
maps lift pseudo-orbits. However, there are maps which are neither covering
maps nor homemorphisms which almost lift pseudo-orbits, in particular, the
factor maps given in Theorem 20 are not typically open, much less covering
maps.
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