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Abstract. Let S be a numerical monoid with minimal generating set 〈n1, . . . , nt〉. For m ∈ S,

if m =
∑t

i=1 xini, then
∑t

i=1 xi is called a factorization length of m. We denote by L(m) =

{m1, . . . , mk} (where mi < mi+1 for each 1 ≤ i < k) the set of all possible factorization lengths

of m. The Delta set of m is defined by ∆(m) = {mi+1 − mi | 1 ≤ i < k } and the Delta set
of S by ∆(S) = ∪m∈S∆(m). In this paper, we expand on the study of ∆(S) begun in [3]

in the following manner. Let r1, r2, . . . , rt be an increasing sequence of positive integers and

Mn = 〈n, n + r1, n + r2, . . . , n + rt〉 a numerical monoid where n is some positive integer. We
prove that there exists a positive integer N such that if n > N then |∆(Mn)| = 1. If t = 2 and r1

and r2 are relatively prime, then we determine a value for N which is sharp.

1. Introduction

Problems involving non-unique factorizations into irreducible elements in an integral domain or
monoid continue to be a popular topic in the recent mathematical literature (see the monograph [6]
and the references cited therein). In this paper, we continue the study of factorization properties of
numerical monoids which was begun in [3] and [1]. Before proceeding we will require some definitions.
Let N represent the natural numbers and N0 = N∪{0}. A numerical monoid S is a submonoid of N0

under regular addition. Each such S has a unique minimal generating set. When given a generating
set {n1, . . . , nk}, we will assume that it is minimal unless otherwise stated. If gcd{n1, . . . , nt} = 1,
then S = 〈n1, . . . , nk〉 is called primitive. It is easy to see that every numerical monoid is isomorphic
to a primitive numerical monoid. A good general reference on numerical monoids is [4, Chapter
10]. It is known that for any primitive numerical monoid S there exists a positive integer k such
that every n > k is contained in S. The smallest such k is called the Frobenius number of S and is
denoted F (S). The problem of computing the Frobenius number has interested mathematicians for
at least 100 years (the computation of the Frobenius number for a two generated numerical monoid
first appeared in [8]) and the recent monograph [7] is an excellent reference on the status of the
Diophatine Frobenius Problem.

We will follow the basic notation for the theory of non-unique factorizations as outlined in [6].
Let M be a commutative cancellative atomic monoid with set A(M) of irreducible elements and set
M× of units. For m ∈M\M×, set

L(m) = { t ∈ N | ∃ x1, . . . , xt ∈ A(M) with m = x1 · · ·xt }.

The set L(m) is called the set of lengths of m. For any m ∈ M\M×, we define L(m) = supL(m)
and `(m) = inf L(m). Moreover, if m ∈M\M× and L(m) = {x1, . . . , xn} with x1 < x2 < · · · < xn,
then the delta set of m is

∆(m) = {xi − xi−1|2 ≤ i ≤ n},
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and the delta set of M is
∆(M) =

⋃
m∈M\M×

∆(m).

By a fundamental result of Geroldinger [5, Lemma 3], if d = gcd ∆(M) and |∆(M)| <∞, then

{d} ⊆ ∆(M) ⊆ {d, 2d, . . . , kd}

for some k ∈ N. A summary of known results involving delta sets can be found in [6, Section 6.7].
Of particular interest from [3] in our current work are the following results.

Proposition 1.1. Let S = 〈n1, . . . , nk〉 be a primitive numerical monoid.

(1) min ∆(S) = gcd{ni − ni−1 | 2 ≤ i ≤ k } [3, Proposition 2.9].
(2) If S = 〈n, n+ k, n+ 2k,. . . , n+ bk〉, then ∆(S) = {k} [3, Theorem 3.9].
(3) For any k and v in N there exists a three generated numerical monoid S with ∆(S) =
{k, 2k, . . . , vk} [3, Corollary 4.8].

As an example, by [3, Corollary 4.8] it follows that S = 〈s, s + 1, 2s − 1〉 for s ≥ 3 has delta
set

{
1, 2, . . . ,

⌊
s
3

⌋}
. However, if we fix the successive differences between the generators and set

Mn = 〈n, n + 1, n + (s − 1)〉, computer observations based on programming in [2] indicate that
increasing n will cause the size of the delta set to diminish. For instance, if s = 21 we obtain the
following.

n Mn ∆(Mn)
21 〈21, 22, 41〉 {1, 2, 3, 4, 5, 6, 7}
22 〈22, 23, 42〉 {1, 2, 3, 4, 5}
53 〈53, 54, 73〉 {1, 2, 3}
321 〈321, 322, 341〉 {1, 2}

n ≥ 322 〈n, n+ 1, n+ 20〉 {1}

We are able to prove in Section 4 the assertion made in the last line of the table and in Section 2
that similar behavior occurs for all numerical monoids in the following sense. Let r1, r2, . . . , rt be an
increasing sequence of positive integers and Mn = 〈n, n+ r1, n+ r2, . . . , n+ rt〉 a numerical monoid
where n is some positive integer. We prove in Theorem 2.2 that there exists a positive integer N
such that if n > N then | ∆(Mn)) |= 1. In fact, if gcd(r1, . . . , rt) = z, then ∆(Mn) = { z

gcd(n,z)} for
n > N . Using a significant improvement of [3, Proposition 4.3] derived in Section 3, we are able to
prove in Section 4 a stronger version of Theorem 2.2 when t = 2 and gcd(r1, r2) = 1. Under these
hypotheses, Theorem 4.1 significantly improves the bound N from Theorem 2.2 and then Proposition
4.6 shows that this value is sharp. In keeping with the spirit of the previous emphasis in the study
of numerical monoids, the use of the Frobenius number is critical to several of our arguments.

2. Proof for the General Case

Given any numerical monoid M , for any y ∈ N, we define

WM (y) = {x ∈M | x has a factorization of length y}.

A closed form for WM (y) when M is a numerical monoid generated by an arithmetic sequence can
be found in [1, Lemma 2.4]. Let S = 〈r1, . . . , rt〉 and Mn = 〈n, n + r1, n + r2, . . . , n + rt〉. We
observe that x ∈ WMn(y) if and only if x = yn + d for some d ∈ S with `S(d) ≤ y. To see this, if
x ∈WMn(y), we can write

x = a0n+ a1(n+ r1) + · · ·+ at(n+ rt) = yn+
t∑

i=1

airi = yn+ d,
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so `S(d) ≤
∑t

i=1 ai ≤ y. Conversely, if x = yn + d where `S(d) ≤ y, then d =
∑t

i=1 airi, where∑t
i=1 ai ≤ y. Letting a0 = y −

∑t
i=1 ai, we have

x = a0n+ a1(n+ r1) + · · ·+ at(n+ rt).

Since
∑t

i=0 ai = y, we have x ∈WMn
(y).

We begin our work with a brief lemma.

Lemma 2.1. Let S = 〈r1, . . . , rt〉 be primitive. If n ≥ rt(rt − 1)(t − 1), and x ≥ n, then `S(x) ≤
`S(x+ n).

Proof. Suppose n ≥ rt(rt − 1)(t − 1) and x ≥ n. Note that by [6, Proposition 2.9.4], F (S) ≤
(r1 − 1)(r2 + . . . + rt) − r1 < rt(rt − 1)(t − 1). Since n > F (S), we have n ∈ S and x ∈ S. Then
x =

∑t
i=1 airi, with ai ∈ N0 and

∑
ai minimal. Note that at ≤ x

rt
, and for all 1 ≤ i ≤ (t − 1) we

have ai < rt; otherwise, we could make a trade to obtain a shorter factorization. Thus

`S(x) ≤ x

rt
+ (rt − 1)(t− 1) =

x+ rt(rt − 1)(t− 1)
rt

≤ x+ n

rt
≤ `S(x+ n). �

We proceed to the main result of this section.

Theorem 2.2. Let Mn = 〈n, n + r1, . . . , n + rt〉, where gcd(r1, . . . , rt) = z and S = 〈r1, . . . , rt〉.
Then there exists N ∈ N such that for all n > N , ∆(Mn) =

{
z

gcd(n,z)

}
. Specifically, the statement

is true for N = rt(rt − 1)(t− 1)− 1.

Proof. We begin by proving the result when S is primitive. If S is primitive, then Mn is primitive,
and by Proposition 1.1 (1), 1 ∈ ∆(Mn). Assume n > rt(rt − 1)(t − 1) − 1. Let y1, y2 ∈ N with
y2 − y1 = c ≥ 2. Suppose m ∈ Mn, with m ∈ W(y1) ∩ W(y2). It is sufficient to show that
m ∈ W(y1 + 1).

Since m ∈ W(y1), we have m = y1n + d1, for some d1 ∈ S with `S(d1) ≤ y1. Similarly, since
m ∈ W(y2), we have m = y2n+ d2, for some d2 ∈ S with `S(d2) ≤ y2. Observe that

m = y1n+ d1 = (y1 + 1)n+ d1 − n,

so if d1 − n ∈ S and `S(d1 − n) ≤ y1 + 1, then m ∈ W(y1 + 1). Since y1n + d1 = y2n + d2, as
y2 − y1 = c it easily follows that d2 = d1 − cn, so d1 − cn ∈ S. Since n ∈ S, it trivially follows that
d1 − n ∈ S.

Now since d1−cn ∈ S, d1 ≥ cn ≥ 2n, and thus d1−n ≥ n. By Lemma 2.1, `S(d1−n) ≤ `S(d1) ≤
y1. Therefore `S(d1 − n) ≤ y1 + 1. Hence, if m has a non-maximal factorization of length y1, it has
a factorization of length y1 + 1. It follows that ∆(Mn) = {1}, completing the argument for z = 1.

So suppose z > 1. Let S′ =
〈

r1
z , . . . ,

rt

z

〉
. Assume n > rt(rt−1)(t−1)−1. We will examine three

cases.
Case 1: Suppose gcd(n, z) = 1. Then Mn is primitive and z ∈ ∆(Mn) by Proposition 1.1 (1). Let
y1, y2 ∈ N with y2 − y1 = cz ≥ 2z. Suppose further that m ∈ Mn, with m ∈ W(y1) ∩W(y2). It is
sufficient to show that m ∈ W(y1 + z).

Since m ∈ W(y1), we have m = y1n + d1, for some d1 ∈ S with `S(d1) ≤ y1. Similarly, since
m ∈ W(y2), we have m = y2n+ d2, for some d2 ∈ S with `S(d2) ≤ y2. Observe that

m = y1n+ d1 = (y1 + z)n+ d1 − zn,

so if d1 − zn ∈ S and `S(d1 − zn) ≤ y1 + z, then m ∈ W(y1 + z). Since y1n + d1 = y2n + d2, as
y2 − y1 = cz it easily follows that d2 = d1 − czn, so d1 − czn ∈ S. By methods similar to those in
the proof of Lemma 2.1, F (S′) < n, implying zn ∈ S. It trivially follows that d1 − zn ∈ S.
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Now since d1 − czn ∈ S, d1 ≥ czn ≥ 2zn, and thus d1 − zn ≥ zn. By Lemma 2.1, `S(d1 − zn) ≤
`S(d1) ≤ y1. Therefore `S(d1− zn) ≤ y1 + z. Hence, if m has a non-maximal factorization of length
y1, it has a factorization of length y1 + z. It follows that ∆(Mn) = {z}.
Case 2: Suppose gcd(n, z) = z. In this case, Mn is not primitive, but is isomorphic to the primitive
monoid M ′n =

〈
n
z ,

n+r1
z , . . . , n+rt

z

〉
. Since n > rt

z

(
rt

z − 1
)

(t − 1) − 1, it follows from our previous
argument that ∆(M ′n) = {1}, which implies that ∆(Mn) = {1}.
Case 3: Suppose gcd(n, z) 6∈ {1, z}. In this case, Mn is not primitive, but is isomorphic to the
primitive monoid M ′n =

〈
n

gcd(n,z) ,
n+r1

gcd(n,z) , . . . ,
n+rt

gcd(n,z)

〉
. Since n ≥ rt

gcd(n,z)

(
rt

gcd(n,z) − 1
)

(t−1)−1,

it follows from Case 1 that ∆(M ′n) =
{

z
gcd(n,z)

}
, which completes the argument. �

The next corollary now follows immediately.

Corollary 2.3. Let S and Mn be as above with S primitive. If n > rt(rt − 1)(t − 1) − 1, then
∆(Mn) = {1}.

3. An Improved Upper Bound on ∆(M) in the Three Generator Case

Our aim in this section is to show that the maximum of the delta set of a primitive three-generated
numerical monoid can be calculated from the delta sets of only two of its elements; specifically, a
multiple of the smallest generator and a multiple of the largest generator. Theorem 3.1 below
improves [3, Proposition 4.3 (2)], which was instrumental in proving the main results of [3, Section
4]. Throughout this section, let S = 〈n1, n2, n3〉. We will assume that S is primitive and minimally
generated and that n1 < n2 < n3.

We will first require some notation and terminology. Suppose that

(1) m = x1n1 + x2n2 + x3n3 = y1n1 + y2n2 + y3n3

are factorizations of m ∈ S of different lengths. Let v = (x1, x2, x3, y1, y2, y3) and set δ(v) =
x1 + x2 + x3 − (y1 + y2 + y3). We may suppose (after flipping the coordinates if necessary) that
xi ≥ yi for exactly one i. After canceling like factors, the vector v reduces to a new vector v′ of one
of the following three forms:

(i) v′ = (x′1, 0, 0, 0, y
′
2, y
′
3),

(ii) v′ = (0, x′2, 0, y
′
1, 0, y

′
3),

(iii) v′ = (0, 0, x′3, y
′
1, y
′
2, 0).

In any of these cases, we can write δ(v) = δ(v′) = x′i − (y′j + y′k), for pairwise distinct i, j and
k. If i = 1 then x′1n1 = y′2n2 + y′3n3, which implies x′1 > y′2 + y′3 and δ(v) > 0. If i = 3, then
x′3n3 = y′1n1 + y′2n2, which implies x′3 < y′1 + y′2 and δ(v) < 0.

Now, let k1 be the minimal positive integer such that k1n1 ∈ 〈n2, n3〉. We have k1n1 = a2n2+a3n3

for some positive integers a2, a3. Assume that a2 and a3 are chosen so their sum is maximal.
Similarly, let k3 be the minimal positive integer such that k3n3 ∈ 〈n2, n3〉. We have k3n3 =
c1n1 + c2n2 for some positive integers c2, c3. Assume that c2 and c3 are chosen so their sum is
minimal. Let K1 = k1 − (a2 + a3) and K3 = c1 + c2 − k3, so K1,K3 > 0. By [3, Proposition 4.3],
we have that K1,K3 ∈ ∆(S). We will show the following.

Theorem 3.1. For a primitive and minimally generated S = 〈n1, n2, n3〉, max(∆(S)) = max{K1,K3}.

The proof of Theorem 3.1 will follow from Propositions 3.2, 3.3 and 3.4 in the following manner.
Given a nonunique factorization of m in S of the form (1) with associated vector v, we will argue
that its difference in length, |δ(v)|, is either less than or equal to max{K1,K3} or there is another
factorization of m into irreducibles of length strictly between |x1 +x2 +x3| and |y1 +y2 +y3|. Notice
that it is sufficient to argue this for the vectors of the form v′ constructed above. We begin by
showing this for vectors of the form (i) and (iii).
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Proposition 3.2. Let S be as in Theorem 3.1.

1. If (a, 0, 0) and (0, b, c) are two factorizations of an1 in S, then either a− (b+ c) ≤ K1 or there
exists another factorization of an1 = x1n1 + x2n2 + x3n3 such that a > x1 + x2 + x3 > b+ c.

2. If (0, 0, c) and (a, b, 0) are two factorizations of cn3 in S, then either |c − (a + b)| ≤ K3 or
there exists another factorization of cn3 = x1n1 + x2n2 + x3n3 such that c < x1 + x2 + x3 < a+ b.

Proof. We prove 1. since the proof of 2. is similar. By the minimality of k1 we have a ≥ k1. Suppose
a − (b + c) > K1. We have an1 = (a − k1)n1 + a2n2 + a3n3. So we have a factorization of an1 of
length a and one of length a − k1 + a2 + a3 = a −K1. Then we have a factorization of length in
between a and b+ c, completing our proof. �

The proof for vectors of the form (ii) will require two propositions.

Proposition 3.3. Let m ∈ S with m = xn2 = b1n1 + b3n3 and b1 + b3 − x > 0. Then either
b1 + b3 − x ≤ K1 or there exists another factorization of xn2 = y1n1 + y2n2 + y3n3 such that
x < y1 + y2 + y3 < b1 + b3.

Proof. Suppose b1 + b3 − x > K1. If b1 = 0 then we have xn2 = b3n3 and x < b3. Since n3 > n2

this is a contradiction. Suppose b1 ≥ k1. Then we have xn2 = (b1 − k1)n1 + a2n2 + a3n3. Either
we have x < b1 − k1 + a2 + a3 < b1 + b3, and we have a factorization of intermediate length, or
b1 − k1 + a2 + a3 ≤ x < b1 + b3 and b1 + b3 − x ≤ K1.

So we have 0 < b1 < k1. Consider the element

(k1 − b1)n1 + xn2 = k1n1 + b3n3 = a2n2 + (a3 + b3)n3.

We have three factorization lengths: k1 − b1 + x, k1 + b3, a2 + a3 + b3. We have two cases. First
suppose that a2 +a3 +b3 ≤ x+k1−b1. Since k1 +b3−(a2+a3 +b3) = K1 and k1 +b3−(x+k1−b1) =
b1 +b3−x, we have b1 +b3−x ≤ K1 which is a contradiction. So x+k1−b1 < a2 +a3 +b3 < k1 +b3.
If a2 ≥ x we have (k1 − b1)n1 = (a2 − x)n2 + (a3 + b3)n3 and k1 − b1 < a2 − x + a3 + b3. Since
n1 < n2 < n3 this is a contradiction. So a2 < x and we have (k1 − b1)n1 + (x− a2)n2 = (a3 + b3)n3

with k1 − b1 + x− a2 < a3 + b3. Since n1 < n2 < n3 this is a contradiction. �

We will now prove a very similar statement which involves K3.

Proposition 3.4. Let m ∈ S with m = xn2 = b1n1 + b3n3 and b1 + b3 − x < 0. Then either
x − (b1 + b3) ≤ K3 or there exists another factorization of xn2 = y1n1 + y2n2 + y3n3 such that
x > y1 + y2 + y3 > b1 + b3.

Proof. Suppose that x − (b1 + b3) > K3. If b3 = 0 we have b1n1 = xn2 and x > b1. Since
n1 < n2 this is a contradiction. Now suppose that b3 ≥ k3. Then we have xn2 = b1n1 + b3n3 =
(c1 + b1)n1 + c2n2 + (b3 − k3)n3. We either have b1 + b3 < c1 + b1 + c2 + b3 − k3 < x, in which
case we have a factorization of xn2 of intermediate length, or b1 + b3 < x ≤ c1 + b1 + c2 + b3 − k3,
contradicting x− (b1 + b3) > K3.

Therefore we have 0 < b3 < k3. Consider the element

xn2 + (k3 − b3)n3 = b1n1 + k3n3 = (c1 + b1)n1 + c2n2.

We have three factorization lengths: x + k3 − b3, b1 + k3, c1 + b1 + c2. We have two cases. First
suppose that x+k3−b3 ≤ b1 +c1 +c2. Since b1 +c1 +c2−(b1 +k3) = K3 and x+k3−b3−(b1 +k3) =
x−(b1+b3), we have x−(b1+b3) ≤ K3 which is a contradiction. So b1+k3 < b1+c1+c2 < x+k3−b3.
If c2 ≥ x we have (b1 + c1)n1 + (c2 − x)n2 = (k3 − b3)n3 and k3 − b3 > b1 + c1 + c2 − x. Since
n1 < n2 < n3 this is a contradiction. So c2 < x and we have (b1 + c1)n1 = (x− c2)n2 + (k3 − b3)n3

and b1 + c1 < x− c2 + k3 − b3. Since n1 < n2 < n3, this is a contradiction. �
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Therefore given any factorization (0, b, 0, a, 0, c) of bn2 in S, then either |b−(a+c)| ≤ max{K1,K3}
or there is another factorization of bn2 with length between b and a + c. This completes the proof
of Theorem 3.1.

4. A Sharp Bound on N in the Three Generator Case

We now focus on the case where S = 〈n, n+ r, n+ s〉 and gcd(r, s) = 1 and find the sharp value
of the constant N from Theorem 2.2.

Theorem 4.1. Let r, s ∈ N, gcd(r, s) = 1, 0 < r < s. Suppose Mn = 〈n, n+ r, n+ s〉 where n ∈ N.
Then ∆(Mn) = {1} for all n > max{rs− r − s, s2 − rs+ r − 3s}.

The proof of this theorem will follow immediately from Theorem 3.1 and Lemmas 4.2, 4.3, 4.4
and 4.5.

Lemma 4.2. If s ≤ 2r + 1, then K1 = {1} for Mn when n > rs− r − s.

Proof. Let S = 〈r, s〉. Suppose that n = rs − r − s + C, where C ≥ 1. We first observe that the
Frobenius number F (S) of S is equal to rs−r−s, as shown by [8]. Then for any A ∈ N, An > F (S)
and hence there exist x, y ∈ N0 such that An = xr + ys. For every A ∈ N, choose x, y such that
their sum is minimal; denote these xA and yA. Note that xA < s, because if it were not, we could
trade s r’s for r s’s, yielding a smaller factorization length. Clearly,

(2) An = xAr + yAs

is equivalent to
(xA + yA +A)n = xA(n+ r) + yA(n+ s).

Thus (xA + yA +A)n ∈ 〈n+ r, n+ s〉.

Claim: k1 = x1 + y1 + 1.

By our construction, k1 = min {xA + yA +A | A ∈ N}. For x1 + y1 + 1 to be minimal, we must
show that x1 + y1 + 1 ≤ xA + yA +A for all A. Now when A = 1 we have n = x1r+ y1s ≥ x1r+ y1r,
so

n

r
≥ x1 + y1.(3)

Also, for any A, An = xAr + yAs ≤ xAs+ yAs, so
An

s
≤ xA + yA.(4)

Next we consider several different cases.
(I) Suppose s ≤ 2r, and hence s ≤ Ar for all A ≥ 2. It follows that 1

r ≤
A
s , and thus n

r ≤
An
s . By (3)

and (4), x1 +y1 ≤ xA +yA. Adding 1 to each side, we have x1 +y1 +1 ≤ xA +yA +1 ≤ xA +yA +A.
Thus k1 = x1 + y1 + 1 for s ≤ 2r.
(II) Suppose s = 2r + 1. If A ≥ 3, then s ≤ Ar, so the argument from the previous case holds.
Suppose A = 2, and for ease of notation let x1 = x and y1 = y. We know n = xr + y(2r + 1). Let
r ≥ 3; we will later address cases with r < 3.

Assume for the sake of contradiction that x+ y+ 1 is not minimal. That is there exists c, d ∈ N0

such that 2n = cr + d(2r + 1) with c+ d < x+ y. Then

2xr + 2y(2r + 1) = cr + d(2r + 1).

If 2x < 2r + 1, then we are done for we cannot make the factorization smaller; the factorization on
the left is of minimal length, but is longer than x + y. If 2x ≥ 2r + 1, we trade 2r + 1 r’s for 2r
(2r + 1)’s to get

(2x− 2r − 1)r + (2y + r)(2r + 1) = cr + ds.
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We can be certain that c+ d = 2x− 2r− 1 + 2y+ r because x < 2r+ 1, so 2x < 4r+ 2 and another
trade to a smaller factorization cannot be made. Knowing this, 2x− 2r− 1 + 2y+ r < x+ y, which
simplifies to x+ y < r + 1. Now, since c+ d is the minimum factorization length of 2n in S, by [3,
Proposition 3.7] we have

c+ d = `S(2n) ≥
⌈

2n
2r + 1

⌉
≥
⌈

2r(2r + 1)− 2(2r + 1)− 2r
2r + 1

⌉
=
⌈

2r − 2− 2r
2r + 1

⌉
= 2r − 2.

Thus, 2r − 2 ≤ c+ d < x+ y < r + 1 implies that r < 3, a contradiction. Thus k1 = x1 + y1 + 1 for
s = 2r + 1 and r ≥ 3.
(III) It remains to prove the claim for s = 2r + 1 when r = 1 or 2. Suppose r = 1 and hence s = 3
and n = −1 + C. Observe that if C = 1, n = 0; since we are only concerned with positive values of
n, it is sufficient to prove the claim for C ≥ 2. If A ≥ 3, then it follows that A(−1+C)

3 ≥ −1 + C.
Combining this with our previous results (3) and (4), we have

x1 + y1 ≤ −1 + C ≤ A(−1 + C)
3

≤ xA + yA.

Now suppose A = 2. Since x2 ≤ 2 and since y2 =
2C − 2− x2

3
, we have

x2 + y2 + 1 =
2C + 1 + 2x2

3
≥ 2C + 1

3
.

Similarly, since x1 ≤ 2 and y1 =
C − 1− x1

3
, we have

x1 + y1 =
C − 1 + 2x1

3
≤ C + 3

3
.

Finally, since C ≥ 2, C + 3 ≤ 2C + 1 for all C. Thus we have

x1 + y1 ≤
C + 3

3
≤ 2C + 1

3
≤ x2 + y2 + 1.

Now suppose r = 2 and hence s = 5 and n = 3 + C. If A ≥ 3, then 2A ≥ 5, so A(3+C)
5 ≥ 3+C

2 .
Again combining this with our previous results (3) and (4), we have

x1 + y1 ≤
3 + C

2
≤ A(3 + C)

5
≤ xA + yA.

If A = 2, we know that 2x2 + 5y2 = 2(3 + C) = 2n. Since 2n is even, y2 must obviously be even. If
x2 is also even, x1 + y1 ≤ x2 + y2 because x1 = x2

2 and y1 = y2
2 .

However, if x2 is odd, then x2 = 1 or 3 (since x2 < 5). As C ≥ 2 and x2 ≥ 1, 2(3 + C) > 10,
implying y2 ≥ 2. Suppose x2 = 1, giving us a factorization length of y2 + 1. Since y2 ≥ 2, we can
trade two 5’s for five 2’s, yielding a new factorization 2n = 2x′2 + 5y′2. So x′2 = x2 + 5 = 6 and
y′2 = y2 − 2 and this factorization has length x′2 + y′2 = x2 + y2 + 3 = y2 + 4. Now x′2 and y′2 are
even, so we can divide by 2 to obtain a factorization of n:

n = 2
x′2
2

+ 5
y′2
2

= 2 · 3 + 5
(y2 − 2)

2
.

Since x1 + y1 is the minimum factorization length of n, we have x1 + y1 ≤ 3 + y2−2
2 = y2

2 + 2. So
it is sufficient to show that y2

2 + 2 ≤ y2 + x2 = y2 + 1. Knowing y2 ≥ 2, we have y2 + 4 ≤ 2y2 + 2,
and hence y2

2 + 2 ≤ y2 + 1. A similar argument with x2 = 3 leads to the same conclusion assuming
y2 ≥ 4. If x2 = 3 and y2 = 2, 2n = 16 = 2 · 5 + 3 · 2, and n = 8 = 0 · 5 + 4 · 2, finishing the argument
when x2 is odd. This completes not only the proof of (III), but also the proof that k1 = x1 +y1 +1.

If v = (k1, 0, 0, , 0, x1, y1) it now clearly follows that δ(v) = 1 and hence K1 = 1, completing the
proof. �

Lemma 4.3. If s > 2r + 1, then K1 = {1} for Mn when n > s2 − rs+ r − 3s.
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Proof. Let S = 〈r, s〉 and suppose that n ≥ s2− rs+ r− 3s+ 1. We proceed using the notation and
terminology of the proof of Lemma 4.2. We again claim that k1 = x1 + y1 + 1 and will show this by

arguing that x1 + y1 + 1 ≤ xA + yA + A for all A. Solving for yA in (2), we have yA =
An− xAr

s
,

and so

xA + yA +A =
xAs+An− xAr +As

s
=
A(n+ s) + xA(s− r)

s
.

Clearly, we now only need to show that n + s + x1(s − r) ≤ A(n + s) + xA(s − r), or equivalently
(A − 1)(n + s) ≥ (x1 − xA)(s − r). If xA ≥ x1, then x1 − xA ≤ 0, so clearly (A − 1)(n + s) ≥
(x1−xA)(s−r). If x1 > xA, then x1−xA ≤ s−1, since x1 < s. Thus, (x1−xA)(s−r) ≤ (s−1)(s−r).
Now if A ≥ 3, then

(A− 1)(n+ s) ≥ 2(n+ s) ≥ 2s2 − 2rs+ 2r − 4s+ 2 ≥ (s− 1)(s− r) ≥ (x1 − xA)(s− r),
and we’re done.

Now suppose A = 2 and s− r ≥ 5. Suppose for the sake of contradiction that x2 + y2 < x1 + y1.
Then 2x1r+ 2y1s = x2r+ y2s. If 2x1 < s, then we are done, since a trade to a smaller factorization
cannot be made, and 2x1 + 2y1 > x1 + y1. Suppose 2x1 ≥ s; then we can make a trade to
obtain (2x1 − s)r + (2y1 + r)s = x2r + y2s. Since x1 < s, 2x1 < 2s, we cannot make another trade.
Considering the factorization lengths, we have 2x1−s+2y1 +r < x1 +y1 implies that x1 +y1 < s−r.
Recall from [3, Proposition 3.7] that

x2 + y2 = `S(2n) ≥
⌈

2n
s

⌉
≥
⌈

2s2 − 2rs+ 2r − 6s+ 2
s

⌉
=
⌈

2s− 2r − 6 +
2r + 2
s

⌉
= 2s− 2r − 5.

Since by assumption x2+y2 < x1+y1, it follows now that 2s−2r−5 ≤ x2+y2 < x1+y1 < s−r which
implies that s− r < 5, a contradiction. Thus x1 + y1 ≤ x2 + y2, implying x1 + y1 + 1 ≤ x2 + y2 + 2.

Finally, suppose A = 2 and s− r < 5. There are two cases:
(A) If r = 1 and s = 4, then n = x1 · 1 + y1 · 4 implies that 2n = 2x1 · 1 + 2y1 · 4. If n ≡ 0 or 1
(mod 4), then x1 = 0 or 1, respectively. This means that x2 = 2x1 < 4 so we cannot make a trade
that yields a smaller factorization. Thus y2 = 2y1, so x1 + y1 + 1 < x2 + y2 + 2. If n ≡ 2 (mod 4),
then x1 = 2, and 2x1 = 4. This implies that we can make a trade:

2n = 2x1 · 1 + 2y1 · 4 = (2x1 − 4) · 1 + (2y1 + 1) · 4.
Since 2x1 − 4 = 0 we cannot trade further, so y2 = 2y1 + 1, and the length of the factorization is
2y1 + 1. Thus x2 + y2 + 2 = 2y1 + 3 ≥ 2 + y1 + 1 = x1 +y1 + 1. If n ≡ 3 (mod 4), a similar argument
leads to x2 = 2 and y2 = 2y1 + 2. Thus x2 + y2 + 2 = 2 + 2y1 + 2 + 2 > 3 + y1 + 1 = x1 + y1 + 1.
(B) If r = 1 and s = 5, then by considering cases of n (mod 5) in a similar fashion, it easily follows
that no trade can be made for n ≡ 0, 1, 2 (mod 5) and the trades in cases of n ≡ 3, 4 (mod 5) do not
make the factorization small enough to contradict x1 + y1 + 1 ≤ x2 + y2 + 2. Hence, for all A ≥ 1,
and for s > 2r + 1, we have x1 + y1 + 1 ≤ xA + yA +A, and the claim is proven.

As at the end of the proof of Lemma 4.2, it now easily follows that K1 = 1, completing the
proof. �

Lemma 4.4. If s ≤ 2r + 1, then K3 = {1} for Mn when n > rs− r − s.

Proof. Let S = 〈s, s− r〉. Suppose that n = rs− r− s+C, where C ≥ 1. Observe that in this case,
F (S) = s2 − rs + r − 2s. Then for any A ∈ N, A(n + s) ≥ n + s ≥ rs − r + 1 ≥ F (S) and hence
there exist x, y ∈ N0 such that A(n + s) = xs + y(s − r). For every A ∈ N, choose x, y such that
their sum is minimal; denote these xA and yA. Similar to our previous arguments, we have yA < s.
Now A(n+ s) = xAs+ yA(s− r) is equivalent to

(xA + yA −A)(n+ s) = xAn+ yA(n+ r).

Thus (xA + yA −A)(n+ s) ∈ 〈n, n+ r〉.
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Claim: k3 = x1 + y1 − 1.

By our construction, k3 = min {xA + yA −A | A ∈ N}. For x1 + y1 − 1 to be minimal, we must
show that x1 + y1 − 1 ≤ xA + yA −A for all A. Since we easily have

xA =
A(n+ s)− yA(s− r)

s

for all A, it follows that xA + yA − A =
An+ yAr

s
. So we want to show n + y1r ≤ An + yAr, or

equivalently, (y1 − yA)r ≤ (A− 1)n, for all A.
Let A ≥ 3. First suppose r ≥ 2. Then

rs− r − 2s+ 2 = (s− 1)(r − 2) ≥ 0,

so adding rs− r to both sides of this inequality, we obtain

rs− r ≤ 2rs− 2r − 2s+ 2 ≤ 2n ≤ (A− 1)n

since A ≥ 3. Since 0 ≤ yA ≤ s− 1 for all yA,

(y1 − yA)r ≤ (s− 1)r = rs− r.
Thus if r ≥ 2, (y1−yA)r ≤ rs− r ≤ (A−1)n for all A ≥ 3. If r = 1, then by our initial assumptions
we must have s = 3, so yA ≤ 2 for all A. Since we are assuming A ≥ 3 and n ≥ 1, we have

x1 + y1 − 1 =
n+ y1

3
≤ n+ 2

3
≤ An+ yA

3
= xA + yA −A,

completing our argument for A ≥ 3.
It remains to prove x1 + y1 − 1 ≤ x2 + y2 − 2 (equivalently, (y1 − y2)r ≤ n), which we prove in

two cases.
(I) Let r ≥ 3. Note that y2 ≡ 2y1 (mod s). If y1 < s

2 then y2 = 2y1, in which case (y1 − y2)r =
−y1r ≤ 0 < n, so we are done. So assume y1 ≥ s

2 , in which case y2 = 2y1 − s. We have

(y1 − y2)r = (s− y1)r ≤ rs

2
.

If s ≥ 6, we have:

n ≥ rs− r − s+ 1 ≥ rs

2
+ (2r − s) + 1 ≥ rs

2
+ (2r − 2r − 1) + 1 =

rs

2
,

so (y1− y2)r ≤ n. If s < 6, then given our initial assumptions and still keeping r ≥ 3, there are only
three possibilities for r and s: (1) r = 3 and s = 4; (2) r = 3 and s = 5; or (3) r = 4 and s = 5. In
each of these cases, it is easily verifiable that if n ≥ rs− r − s+ 1, then n ≥ rs

2 ; so in each of these
cases, (y1 − y2)r ≤ n, completing the proof for r ≥ 3.
(II) Let r < 3. Given our initial assumptions, there are only three possible combinations for r and
s: r = 1 and s = 3, r = 2 and s = 3, and r = 2 and s = 5.

• Let r = 1 and s = 3. Since xA + yA − A =
An+ yAr

s
for all A, we have x1 + y1 − 1 ≤ n+2

3

(as yA ≤ 2 for all A) and x2 + y2 − 2 ≥ 2n
3 . If n ≥ 2, then n+2

3 ≤ 2n
3 and we are done. If n = 1

then n + s = 4, and simple calculations yield x1 = 0, y1 = 2, x2 = 2, and y2 = 1, which satisfy
x1 + y1 − 1 = x2 + y2 − 2. Thus for all n ≥ 1, x1 + y1 − 1 ≤ x2 + y2 − 2.
• Let r = 2 and s = 3. Note that n ≥ rs− r − s+ 1 = 2. Since x1 + y1 − 1 ≤ n+4

3 (as r = 2 and
yA ≤ 2 for all A) and x2+y2−2 ≥ 2n

3 , if n ≥ 4 we immediately have x1+y1−1 ≤ x2+y2−2. If n = 3,
n+s = 6, and we have x1 = 2, y1 = 0, x2 = 4, and y2 = 0, which satisfy x1 +y1−1 < x2 +y2−2. If
n = 2, n+s = 5, and we have x1 = 1, y1 = 2, x2 = 2, and y2 = 2, which satisfy x1+y1−1 = x2+y2−2,
completing the proof for all n ≥ 2.
• Let r = 2 and s = 5. Note that n ≥ rs− r − s+ 1 = 4. Since x1 + y1 − 1 ≤ n+8

5 (as r = 2 and
yA ≤ 4 for all A) and x2 + y2 − 2 ≥ 2n

5 , if n ≥ 8 we immediately have x1 + y1 − 1 ≤ x2 + y2 − 2.
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If n = 7, n + s = 12, and we have x1 = 0, y1 = 4, x2 = 4, and y2 = 2. If n = 6, n + s = 11, and
we have x1 = 1, y1 = 3, x2 = 4, and y2 = 1. If n = 5, n + s = 10, and we have x1 = 2, y1 = 0,
x2 = 4, and y2 = 0. Finally, if n = 4, n + s = 9, and we have x1 = 2, y1 = 2, x2 = 2, and y2 = 4.
Simple calculations verify that all of these satisfy x1 + y1 − 1 ≤ x2 + y2 − 2. Thus for all n ≥ 4,
x1 + y1 − 1 ≤ x2 + y2 − 2.

Thus the claim is proved. Finally, if v = (0, 0, k3, x1, y1, 0), then |δ(v)| = 1 and thus K3 = 1,
completing the proof. �

Lemma 4.5. If s > 2r + 1, then K3 = {1} for Mn when n > s2 − rs+ r − 3s.

Proof. Let S = 〈s, s − r〉 and suppose that n = s2 − rs + r − 3s + C, where C ≥ 1. We proceed
using the notation and terminology of Lemma 4.4 and again claim that k3 = x1 + y1 − 1. We will
again argue that x1 + y1 − 1 ≤ xA + yA −A for all A.

First we consider the case where s > 2r+ 2. Since n = s2− rs+ r− 3s+C and C ≥ 1, and since
r < s−2

2 , we have

n ≥ s2 − rs+ r − 3s+ 1 > 2r(s− 1)− rs+ r − 1 = rs− r − 1,

and so n ≥ rs− r. Adding n to both sides of this inequality we obtain
n− r
s

+ r ≤ 2n
s
.

Since n + s = x1s + y1(s − r), we have x1 =
n+ s− y1(s− r)

s
. Combining this with our previous

observation that y1 ≤ s− 1, we have

x1 + y1 − 1 =
n+ s− y1(s− r) + y1s− s

s
=
n+ y1r

s
≤ n− r

s
+ r.

Similarly, for A ≥ 2 we have

xA + yA −A =
An+ yAr

s
≥ An

s
≥ 2n

s
,

which yields

x1 + y1 − 1 ≤ n− r
s

+ r ≤ 2n
s
≤ xA + yA −A

for all A. Thus if s > 2r + 2, k3 = x1 + y1 − 1.

Now we address the case where s = 2r+2. First suppose y2 6= 0. Then xA+yA−A =
An+ yAr

s
≥

2n+ 1
s

for all A ≥ 2. We now have:

n ≥ s2 − rs+ r − 3s+ 1 = (s− 2)(s− 1)− rs+ r − 1 = 2r(s− 1)− rs+ r − 1 = rs− r − 1,

so n− r+ rs ≤ 2n+ 1, or equivalently, n−r
s + r ≤ 2n+1

s . A similar argument to that of our first case
above yields x1 + y1 − 1 ≤ xA + yA − A for all A. Now suppose y2 = 0. Then 2(n + s) = x2s is a
multiple of s, so we must have y1 = 0 or s

2 . If y1 = 0, x1 + y1 − 1 = n
s ≤

2n
s ≤ xA + yA − A for

all A ≥ 2. If y1 = s
2 , then after solving for x1 we have x1 + y1 − 1 = n

s + r
2 . Since s = 2r + 2 and

C ≥ 2− r2 (as C ≥ 1 and r ≥ 1), we have:

n = s2 − rs+ r − 3s+ C = 2r2 + r − 2 + C ≥ 2r2 + r − 2 + 2− r2 = r2 + r = r(r + 1) =
rs

2
.

Therefore, n ≥ rs
2 . That is, r

2 ≤
n
s and so n

s + r
2 ≤

2n
s . The result now immediately follows. This

allows us to conclude that if s = 2r + 2, k3 = x1 + y1 − 1.
Thus the claim is proved. We have shown that k1 = x1 + y1 − 1, and that v = (0, 0, k3, x1, y1, 0)

is the minimum trade. Now |δ(v)| = 1, and since K3 > 0, we have K3 = 1, finishing the proof. �
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This completes the proof of Theorem 4.1. To show the optimality of these bounds, we have the
following proposition:

Proposition 4.6. Suppose r, s ∈ N, gcd(r, s) = 1, and 0 < r < s. Let n = max{rs− r− s, s2− rs+
r − 3s}, and Mn = 〈n, n+ r, n+ s〉. Then ∆(Mn) 6= {1}.

Proof. First suppose n = rs− r − s. Let m = n(n+ r)(n+ s). Clearly the maximum factorization
length of m in Mn is (n+r)(n+s), and since we trivially also have factorizations of lengths n(n+r)
and n(n+ s), we know the delta set of m is nonempty. So consider any non-maximal factorization
of m, say m = ((n+ r)(n+ s)− a)n+ x(n+ r) + y(n+ s). Then we have an = x(n+ r) + y(n+ s)
which implies (a − (x + y))n = xr + ys. Since n = rs − r − s, n /∈ 〈r, s〉, so a − (x + y) 6= 1; as
a− (x+y) > 0, we have a− (x+y) ≥ 2. Thus, the difference between the length of our non-maximal
factorization and our maximal factorization is simply a− (x+y), so there is no factorization of m of
length (n+ r)(n+ s)− 1. Therefore there is an integer t > 1 with t ∈ ∆(n(n+ r)(n+ s)) ⊂ ∆(Mn).

Now suppose n = s2 − rs + r − 3s. Again let m = n(n + r)(n + s). Clearly the minimum
factorization length of m in Mn is n(n+ r), and since we trivially also have factorizations of lengths
n(n+ s) and (n+ r)(n+ s), we know the delta set of m is nonempty. So consider any non-minimal
factorization of m, say m = xn+y(n+r)+(n(n+r)−a)(n+s). Then we have a(n+s) = xn+y(n+r).
That is, (x + y − a)(n + s) = xs + y(s − r). Since n + s = s2 − rs + r − 2s, n + s /∈ 〈s− r, s〉 and
(x + y) − a > 0, we have (x + y) − a ≥ 2. The difference between the length of our non-minimal
factorization and our minimal factorization is simply (x+ y)− a, so there is no factorization of m of
length n(n+ r) + 1. Therefore there is an integer t > 1 with t ∈ ∆(n(n+ r)(n+ s)) ⊂ ∆(Mn). �
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