
56

Shi�sReduce: Minimizing Shi�s in Racetrack Memory 4.0

ASIF ALI KHAN, Chair for Compiler Construction, Technische Universität Dresden, Germany

FAZAL HAMEED, Chair for Compiler Construction, Technische Universitat Dresden, Germany

and Institute of Space Technology, Pakistan

ROBIN BLÄSING and STUART S. P. PARKIN, Max Planck Institute of Microstructure Physics,

Germany

JERONIMO CASTRILLON, Chair for Compiler Construction, Technische Universität Dresden,

Germany

Racetrack memories (RMs) have signi�cantly evolved since their conception in 2008, making them a serious

contender in the �eld of emerging memory technologies. Despite key technological advancements, the access

latency and energy consumption of an RM-based system are still highly in�uenced by the number of shift

operations. These operations are required to move bits to the right positions in the racetracks. This article

presents data-placement techniques for RMs that maximize the likelihood that consecutive references access

nearby memory locations at runtime, thereby minimizing the number of shifts. We present an integer linear

programming (ILP) formulation for optimal data placement in RMs, and we revisit existing o�set assignment

heuristics, originally proposed for random-access memories. We introduce a novel heuristic tailored to a

realistic RM and combine it with a genetic search to further improve the solution. We show a reduction in

the number of shifts of up to 52.5%, outperforming the state of the art by up to 16.1%.

CCS Concepts: • Mathematics of computing → Combinatorial optimization; • Hardware → Emerging

technologies; • Software and its engineering → Compilers;

Additional Key Words and Phrases: Compiler optimization, data placement, racetrack memory, domain wall

memory, shifts minimization, integer linear programming, heuristics

ACM Reference format:

Asif Ali Khan, Fazal Hameed, Robin Bläsing, Stuart S. P. Parkin, and Jeronimo Castrillon. 2019. ShiftsReduce:

Minimizing Shifts in RacetrackMemory 4.0.ACMTrans. Archit. Code Optim. 16, 4, Article 56 (December 2019),

23 pages.

https://doi.org/10.1145/3372489

1 INTRODUCTION

Conventional SRAM/DRAM-based memory systems are unable to conform to the growing de-
mand for low-power, low-cost, large-capacity memories. Increase in the memory size is barred

This is a new article, not an extension of a conference paper.

This work was partially funded by the German Research Council (DFG) through the TraceSymm Project No. CA 1602/4-1

and the Cluster of Excellence “Center for Advancing Electronics Dresden” (CFAED).

Authors’ addresses: A. A. Khan, F. Hameed, and J. Castrillon, Chair for Compiler Construction, Technische Univer-

sität Dresden, Dresden, Germany, emails: {asif_ali.khan, fazal.hameed, jeronimo.castrillon}@tu-dresden.de; R. Bläsing and

S. S. P. Parkin, Max Planck Institute of Microstructure Physics, 06120 Halle (Saale), Germany; emails: {robin.blaesing,

stuart.parkin}@mpi-halle.mpg.de.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and

the full citation on the �rst page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1544-3566/2019/12-ART56

https://doi.org/10.1145/3372489

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 56. Publication date: December 2019.

https://doi.org/10.1145/3372489
mailto:permissions@acm.org
https://doi.org/10.1145/3372489

56:2 A. A. Khan et al.

Table 1. Comparison of RM with Other Memory Technologies [33, 37]

SRAM eDRAM DRAM STT-RAM ReRAM PCM RaceTrack 4.0

Cell Size (F 2) 120–200 30–100 4–8 6–50 4–10 4–12 ≤ 2

Write Endurance ≥ 1016 ≥ 1016 ≥ 1016 4 X 1012 1011 109 1018

Read Time Very Fast Fast Medium Medium Medium Slow Fast

Write Time Very Fast Fast Medium Slow Slow Very Slow Medium

Dynamic Write Energy Low Medium Medium High High High Medium

Dynamic Read Energy Low Medium Medium Low Low Medium Low

Leakage Power High Medium Medium Low Low Low Low

Retention Period As long as 30–100 μs 64–512 ms Variable Years Years Years

volt applied

by technology scalability as well as leakage and refresh power. As a result, multiple non-volatile
memories such as phase change memory (PCM), spin transfer torque (STT-RAM), and resistive RAM
(ReRAM) have emerged and attracted considerable attention [8, 15, 54, 55]. These memory tech-
nologies o�er power, bandwidth and scalability features amenable to processor scaling. However,
they pose new challenges such as imperfect durability and higher write latency. The relatively
new spin-orbitronics-based racetrack memory (RM) represents a promising option to surmount
the aforementioned limitations by o�ering ultra-high capacity, energy e�ciency, lower per bit
cost, and higher durability [36, 37]. Due to these attractive features, RMs have been investigated
at all levels in the memory hierarchy. Table 1 provides a comparison of RM with contemporary
volatile and non-volatile memories.
The diverse memory landscape has motivated research on hardware and software optimizations

for more e�cient utilization of NVMs in the memory subsystem. For instance, intelligent data
placement and other architectural optimizations have been proposed to improve the lifetime of
PCM [6, 16, 17, 64] and the performance of NVM-S/DRAM hybrid memory systems [23, 41, 51,
59]. However, these solutions require additional hardware, which not only increases the design
complexity of thememory system but also incur latency and energy overheads. To avoid the design
complexity added by hardware solutions, software-based data placement has become an important
emerging area for compiler optimization [32]. Even modern-day processors such as Intel’s Knight
Landing Processor o�er means for software-managed on-board memories. Compiler-guided data-
placement techniques have been proposed at various levels in the memory hierarchy, not only
for improving the temporal/spatial locality of the memory objects but also the lifetime and high-
write latency of NVMs [21, 39, 45, 52]. In the context of near data processing (NDP), e�cient data
placement improves the e�ectiveness of NDP cores by allowing more accesses to the local memory
stack and mitigating remote accesses.
In this article, we study data-placement optimizations for the particular case of racetrack mem-

ories. While RMs may not su�er from endurance and latency issues, they pose a signi�cantly dif-
ferent challenge. From the architectural perspective, RMs store multiple bits—1 to 100—per access
point in the form of magnetic domains in a tape-like structure, referred to as track. Each track is
equipped with one or moremagnetic tunnel junction (MTJ) sensors, referred to as access ports, that
are used to perform read/write operations. While a track could be equipped with multiple access
ports, the number of access ports per track are always much smaller than the number of domains.
In the scope of this article, we consider the ideal single access port per track for ultra-high density
of the RM. This implies that the desired bits have to be shifted and aligned to the port positions
prior to their access. The shift operations not only lead to variable access latency but also impact
the energy consumption of a system, since the time and the energy required for an access depend
on the position of the domain relative to the access port.We propose a set of techniques that reduce

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 56. Publication date: December 2019.

Shi�sReduce: Minimizing Shi�s in Racetrack Memory 4.0 56:3

Fig. 1. Racetrack horizontal and vertical placements (Isl and Isr represent le� and right shi� currents, re-
spectively).

the number of shift operations by placing temporally close accesses at nearby locations inside the
RM.
Concretely, we make the following contributions.

(1) An integer linear programming (ILP) formulation of the data-placement problem for RMs.
(2) A thorough analysis of existing o�set assignment heuristics, originally proposed for data

placement in DSP stack frames, for data placement in RM.
(3) ShiftsReduce, a heuristic that computes memory o�sets by exploiting the temporal locality

of accesses.
(4) An improvement in the state-of-the-art RM-placement heuristic [5] to judiciously decide

the next memory o�set in case of multiple contenders.
(5) A �nal re�nement step based on a genetic algorithm to further improve the results.

We compare our approach with existing solutions on the O�setStone benchmarks [18]. Shift-
sReduce diminishes the number of shifts by 28.8%, which is 4.4% and 6.6% better than the best
performing heuristics [18] and [5], respectively.
The rest of the article is organized as follows. Section 2 explains the recently proposed RM 4.0,

provides motivation for this work, and reviews existing data-placement heuristics. Our ILP formu-
lation and the ShiftsReduce heuristic are described in Sections 3 and 4, respectively. Benchmarks
description, evaluation results, and analysis are presented in Section 5. Section 6 discusses state of
the art, and Section 7 concludes the article.

2 BACKGROUND ANDMOTIVATION

This section provides background on the working principle of RMs, current architectural sketches,
and further motivates the data-placement problem (both for RAMs and RMs).

2.1 Racetrack Memory

Memory devices have evolved over the last decades from hard disk drives to novel spin-orbitronics-
based memories. The latter uses spin-polarized currents to manipulate the state of the memory.
The domain walls (DWs) in RMs are moved into a third dimension by an electrical current [36, 38].
The racetracks can be placed vertically (3D) or horizontally (2D) on the surface of a silicon wafer
as shown in Figure 1. This allows for higher density but is constrained by crucial design factors,
such as the shift speed, the DW-to-DW distance, and insensitivity to external in�uences such as
magnetic �elds.
In earlier RM versions, DWswere driven by a current through amagnetic layer, which attained a

DWvelocity of about 100ms−1 [9]. The discovery of even higher DWvelocities in structures where
the magnetic �lm was grown on top of a heavy metal allowed to increase the DW velocity to about
300 ms−1 [31]. The driving mechanism is based on spin-orbit e�ects in the heavy metal, which

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 56. Publication date: December 2019.

56:4 A. A. Khan et al.

Fig. 2. Racetrack memory architecture [48].

lead to spin currents injected into the magnetic layer [44]. However, a major drawback of these
designs was that the magnetic �lm was very sensitive to external magnetic �elds. Furthermore,
they exhibited fringing �elds, which did not allow to pack DWs closely to each other.
The most recent RM 4.0 resolved these issues by adding an additional magnetic layer on top,

which fully compensates the magnetic moment of the bottom layer. As a consequence, the mag-
netic layer does not exhibit fringing �elds and is insensitive to external magnetic �elds. In addi-
tion, due to the exchange coupling of the two magnetic layers, the DWs velocity can reach up to
1,000 ms−1 [37, 58].

2.1.1 Memory Architecture. Figure 2 shows a widespread architectural sketch of an RM based
on Reference [48]. In this architecture, an RM is divided intomultipleDomain Block Clusters (DBCs),
each of which contains M tracks with N DWs each. Each domain wall stores a single bit, and we
assume that each M-bit variable is distributed across M tracks of a DBC. Accessing a bit from a
track requires shifting and aligning the corresponding domain to the track’s port position. We
further assume that the domains of all tracks in a particular DBC move in a lock step fashion so
that all M bits of a variable are aligned to the port position at the same time for simultaneous
access. We consider a single port per track, because adding more ports increases the area. This is
due to the use of additional transistors, decoders, sense ampli�ers and output drivers. As shown
in Figure 2, each DBC can store a maximum of N variables.
Under the above assumptions, the shift cost to access a particular variable may vary from 0

to N − 1. It is worth to mention that worst case shifts can consume more than 50% of the RM
energy [61] and prolong access latency by 26× compared to SRAM [48].

2.2 Motivation Example

To illustrate the problem of data placement consider the set of data items and their access order
from Figure 3(a). We refer to the set of program data items as the set of program variables (V) and
the set of their access order as access sequence (S), where Si ∈ V ∀i ∈ {0, 1, . . . , |S | − 1}, for any
given source code. Note that data items can refer to actual variables placed on a function stack
or to accesses to �elds of a structure or elements of an array. We assume two di�erent, a naive

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 56. Publication date: December 2019.

Shi�sReduce: Minimizing Shi�s in Racetrack Memory 4.0 56:5

Fig. 3. Motivation example.

Fig. 4. Number of shi�s in placements P1 and P2 from Figure 3(b) (encircled numbers show the total shi�
cost).

Fig. 5. Data placement in RMs.

(P1) and a more carefully chosen (P2), memory placements of the program variables as shown in
Figure 3(b).
The number of shifts for the two di�erent placements, P1 and P2 in Figure 3(b), are shown in

Figure 4. The shift cost between any two successive accesses in the access sequence is equivalent to
the absolute di�erence of their memory o�sets (e.g., |2 − 4| for b, c in P1). The naive data placement
P1 incurs 51 shifts in accessing the entire access sequence, while P2 incurs only 21, i.e., 2.4× better.
This leads to an improvement in both latency and energy consumption for the simple illustrative
example.

2.3 Problem Definition

Figure 5 shows a conceptual �ow of the data-placement problem in RMs. The access sequence
corresponds to memory traces, which can be obtained with standard techniques. They can be
obtained via pro�ling and tracing, e.g., using Pin [26], inferred from static analysis, e.g., for Static
Control Parts using polyhedral analysis, or with a hybrid of both as in Reference [43]. In this article,
we assume the traces are given and focus on the data-placement step to produce the memory
layout. We investigate a number of exact/inexact solutions that intelligently decidememory o�sets

of the program variables referred to as memory layout based on the access sequence. The memory
for which the layout is generated could either be a scratchpad memory, a software-managed �at
memory similar to the on-board memory in intel’s Knight Landing Processor or the memory stack
exposed to an NDP core.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 56. Publication date: December 2019.

56:6 A. A. Khan et al.

Fig. 6. Access graph for the access sequence in Figure 3(a).

The shift cost of an access sequence depends on thememory o�sets of the data items.We assume
that each data item is stored in a single memory o�set of the RM (cf. Section 2.1.1). We denote the
memory o�set of a data item u ∈ V as β (u). The shift cost between two data items u andv is then

∆(u,v) = |β (u) − β (v) | ∀u,v ∈ V . (1)

The total shift cost (C) of an access sequence (S) is computed by accumulating the shift costs of
successive accesses:

C =
��
�

|S |−2
∑

i=0

∆(Si , Si+1)
��
�
. (2)

The data-placement problem for RMs can be then de�ned as follows:

De�nition 1. Given a set of variables V = {v0,v1, , . . . ,vn−1} and an access sequence S =

(S0, S1, . . . , Sm−1), Si ∈ V , �nd a data placement β forV such that the total cost C is minimized.

2.4 State-of-the-art Data-placement Solutions

The data-placement problem in RMs is similar to the classical single o�set assignment (SOA) prob-
lem in DSP’s stack frames [2, 3, 18, 25]. The heuristics proposed for SOA assign o�sets to stack
variables; aiming at maximizing the likelihood that two consecutive references at runtime will be
to the same or adjacent stack locations.
Most SOA heuristics work on an access graph and formulate the problem as maximumweighted

Hamiltonian path (MWHP) or maximum weight path covering (MWPC). An access graph G =

(V ,E) represents an access sequence whereV is the set of vertices corresponding to program vari-
ables (V). An edge e = {u,v} ∈ E has weightwuv if variables u,v ∈ V are accessed consecutively
wuv times in S . The assignment is then constructed by solving the MWHP/MWPC problem. The
access graph for the access sequence in Figure 3(a) is shown in Figure 6.
The SOA cost for two consecutive accesses is binary. That is, if the next access cannot be reached

within the auto-increment/decrement range, then an extra instruction is needed to modify the
address register (cost of 1). The cost is 0 otherwise. In contrast, the shift cost in RM is a natural
number. For RM-placement, the SOA heuristics must be revisited, since they only consider edge
weights of successive elements in S . This may produce better results on small access sequences
due to the limited number of vertices and smaller end-to-end distance in S , but might not perform
well on longer access sequences. Chen et al. recently proposed a group-based heuristic for data
placement in RMs, which performs relatively better compared to the SOA heuristics [5]. In this
article, we extend both the SOA heuristics and the Chen heuristic to account for the more general
cost function and e�cient grouping of data objects, respectively.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 56. Publication date: December 2019.

Shi�sReduce: Minimizing Shi�s in Racetrack Memory 4.0 56:7

3 OPTIMAL DATA PLACEMENT: ILP FORMULATION

This section presents an ILP formulation for the data-placement problem in RM. Unlike Chen’s
formulation for multi-port RMs [5], we use realistic single port RMs and develop our formulation
accordingly.
Consider the access graph G and the access sequence S to variables v ∈ V , the edge weight

wvivj between variables vi ,vj can be computed as

wvivj =

{
∑m−2

x=0 ϒix · ϒj,x+1 + ϒjx · ϒi,x+1, i � j,

0, i = j,
(3)

with i, j ∈ {0, 1, . . . ,n − 1},n = |V |,m = |S | and ϒ de�ned as

ϒix =

{

1, if Sx = vi ,
0, otherwise.

(4)

To model unique variable o�sets, we introduce binary variables (Θio):

Θio =

{

1, if vi has memory o�set o, ∀i,o ∈ {0, 1, . . . ,n − 1},
0, otherwise.

(5)

The memory o�set of vi is then computed as

β (vi) =

n−1
∑

o=0

Θio · o. (6)

Since edges in the access graph embodies the access sequence information, we use them to compute
the total shift cost as

C =
��
�

n−1
∑

i=0

n−2
∑

j=i+1

wvivj · ∆(vi ,vj)
��
�
. (7)

The cost function in Equation (7) is not inherently linear due to the absolute function in ∆(vi ,vj)
(cf. Equation (1)). Therefore, we generate new products and perform subsequent linearization. We
introduce two integer variables (pi j ,qi j) ∈ Z to rewrite |β (vi) − β (vj) | as

∆(vi ,vj) = pi j + qi j ∀i, j ∈ {0, 1, . . . ,n − 1}, (8)

such that

β (vi) − β (vj) + pi j − qi j = 0, (C1)

pi j · qi j = 0. (C2)

The second non-linear constraint (C2) implies that one of the two integer variables must be 0.
To linearize it, we use two binary variables ai j ,bi j and a set of constraints:

ai j ≤ pi j ≤ ai j · n, (C3)

bi j ≤ qi j ≤ bi j · n, (C4)

0 ≤ ai j + bi j ≤ 1. (C5)

C5 guarantees that the value of both binary variables ai j and bi j can not be 1 simultaneously for
a given pair i, j. This, in combination with C3–C4, sets one of the two integer variables to 0. We
introduce the following constraint to enforce that the o�sets assigned to data items are unique:

pi j + qi j ≥ 1. (C6)

It ensures uniqueness, because the left-hand side of the constraint is the di�erence of the two
memory locations (cf. Equation (8)).

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 56. Publication date: December 2019.

56:8 A. A. Khan et al.

Fig. 7. Grouping in Chen’s heuristic.

Finally, the linear objective function is

C = min
��
�

n−1
∑

i=0

n−2
∑

j=i+1

wvivj · (pi j + qi j)
��
�
. (9)

The following two constraints are added to ensure that o�sets are within range:

0 ≤ β (vi) ≤ n − 1, (C7)

i=n−1
∑

i=0

β (vi) =
n · (n − 1)

2
. (C8)

4 APPROXIMATE DATA PLACEMENT

In this section, we describe our proposed heuristic and use the insights of our heuristic to extend
the heuristic by Chen [5].

4.1 State-of-the-Art Heuristic

Chen et al. recently proposed a group-based heuristic for data placement in RMs [5]. Based on an
access graph G = (V ,E), it assigns o�sets to vertices by moving them to a group д. The position
of a data item within a group indicates its memory o�set.
Consider the access graph from Figure 6, Chen’s heuristic �rst �nds the vertex that has the

maximum vertex-weight in G and assigns it to the �rst location in д. The vertex-weight is de�ned
as the sum of all edge weights that connect a vertex to other verticesG. In other words, it indicates
the count of successive accesses of a vertex with other vertices in S , i.e., wv =

∑

u :{u,v }∈E wuv .
Figure 7 demonstrates that vertex a has the maximum weight and is assigned to the �rst location
in д. The remaining elements in G are then iteratively added to the group, based on their vertex-
to-group weights (maximum �rst). The vertex-to-group weight of a vertex u is the sum of all edge
weights that connect u to the vertices in д.

De�nition 2. The vertex-to-group weight α (v,д) of a vertex v ∈ V is de�ned as the sum of all
edge weights that connect v to other vertices in д, i.e., α (v,д) =

∑

u ∈д:{u,v }∈E wuv .

Vertex C has the maximum vertex-to-group weight (3) and is assigned to the next o�set. Other
vertices in G are assigned to д in the same fashion as demonstrated in the �gure.

4.2 The Shi�sReduce Heuristic

ShiftsReduce is also a group-based heuristic but unlike Chen’s heuristic, it e�ectively exploits the
locality of accesses in the access sequence and assigns o�sets accordingly. In addition, ShiftsReduce
does not statically assign highest weight vertex to o�set 0, because it seems restrictive. The algo-
rithm starts with the maximum weight vertex in the access graph and iteratively assigns o�sets
to the remaining vertices by considering their vertex-to-group weights. Note that the maximum
weight vertex may not necessarily be the vertex with the highest access frequency, considering
repeated accesses of the same vertex. ShiftsReduce maintains two groups referred to as left-group

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 56. Publication date: December 2019.

Shi�sReduce: Minimizing Shi�s in Racetrack Memory 4.0 56:9

Fig. 8. Grouping in Shi�sReduce.

дl (highlighted in red in Figure 8) and right-group дr (highlighted in green). Both дl and дr are lists
that store the already computed vertices inV . The heuristic assigns o�sets to vertices based on their
global and local adjacencies. The global adjacency of a vertexv ∈ V is de�ned as its vertex-to-group
weight with the global group, i.e., α (v,дl ∪ дr)

1 while the local adjacency is the vertex-to-group
weight with either of the sub-groups, i.e., дl or дr .

For the example in Figure 6, ShiftsReduce �rst selects vertex a, because it has the highest vertex
weight (equal to 3 + 3 + 1 + 1 = 8) and places it at index 0 in both sub-groups. Vertices c and d have
maximum edge weights with a and are added to the right and left groups, respectively (cf. lines 6
and 8). At this point, the two sub-groups contain two elements each. The next vertex e is added to
дl , because it has higher local adjacency with дl compared to дr . In a similar fashion, b and f are
added to дr and дl , respectively. ShiftsReduce ensures that vertices at far ends of the two groups
have least adjacency (i.e., vertex weights) compared to the vertices that are placed in the middle.
Note that the number of elements in дl and дr may not necessarily be equal. Finally, o�sets are
assigned to vertices based on their group positions as highlighted in Figure 8.
Pseudocode for the ShiftsReduce heuristic is shown in Algorithm 1. The sub-groups дl and дr

initially start at index 0, the only shared index between дl and дr , and expand in opposite direc-
tions as new elements are added to them. We represent this with negative and positive indices,
respectively, as shown in Figure 8. The algorithm selects the maximum weight vertex (vmax) and
places it at index 0 in both sub-groups (cf. lines 3 and 4).
The algorithm then determines two more nodes and add them to the right (cf. line 6) and left (cf.

line 8) groups, respectively. These two nodes correspond to the nodes with the highest vertex-to-
group weight (α), which boils down to the maximum edge weight to vmax. Lines 10–25 iteratively
select the next group element based on its global adjacency (maximum �rst) and add it to дl or дr
based on its local adjacency. If the local adjacency of a vertex with the left group is greater than
that of the right group, then it is added to left group (cf. lines 12–14). Otherwise, the vertex is added
to the right group (cf. lines 15–17).
The algorithm prudently breaks both inter-group and intra-group tie situations. In an inter-

group tie situation (cf. line 18), when the vertex-to-group weight of the selected vertex is equal
with both sub-groups, the algorithm compares the edge weight of the selected vertex v∗ with
the last vertices of both groups (vp in дr and vq in дl) and favors the maximum edge weight (cf.
lines 19–24).

To resolve intra-group ties, we introduce the Tie-break function. The intra-group tie arises
when vs and vk have equal vertex-to-group-weights with д (cf. line 2 in Tie-break). Since the
two vertices have equal adjacency with other group elements, they can be placed in any order. We
specify their order by comparing their edge weights with the �xed vertex (vn for дl andvm for дr)
and prioritize the highest edge weight vertex. The algorithm checks the intra-group tie for every
vertex before assigning it to the left-group (cf. line 14) or right-group (cf. line 17).

1We abuse notation, using set operations (∪, \) on lists for better readability.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 56. Publication date: December 2019.

56:10 A. A. Khan et al.

ALGORITHM 1: ShiftsReduce Heuristic

Input : Access graph G = (V ,E) and a DBC with minimum n empty locations
Output : Final data placement β
1: ⊲ vn = �xed element in дl , vm = �xed element in дr
2: ⊲ vq = last element in дl , vp = last element in дr
3: β ← Ø, vmax ← argmaxv ∈Vwv

4: дr .append(vmax), дl .append(vmax), V ← V \ {vmax}

5: v∗ ← argmaxv ∈Vα (v,дr)
6: дr .append(v

∗), V ← V \ {v∗},vp ← v∗

7: v∗ ← argmaxv ∈Vα (v,дr \ {v
∗})

8: дl .prepend(v
∗), V ← V \ {v∗},vq ← v∗

9: vn ← vmax,vm ← vmax

10: while V is not empty do

11: v∗ ← argmaxv ∈Vα (v,дr ∪ дl)
12: if α (v∗,дl) > α (v∗,дr) then

13: дl .prepend(v
∗)

14: (vq ,vn)← Tie-break(v∗,vq ,vn ,дl)
15: else if α (v∗,дl) < α (v∗,дr) then

16: дr .append(v
∗)

17: (vp ,vm)← Tie-break(v∗,vp ,vm ,дr)
18: else ⊲ inter-group tie
19: if wv∗vq > wv∗vp then

20: дl .prepend(v
∗)

21: (vq ,vn)← Tie-break(v∗,vq ,vn ,дl)
22: else

23: дr .append(v
∗)

24: (vp ,vm)← Tie-break(v∗,vp ,vm ,дr)

25: V ← V \ {v∗}

26: Assign-offsets(β,дl .append(дr .tail()))

Tie-break Function

1: function Tie-break(vs ,vk ,v�x,д)
2: if α (vs ,д \ {vk }) = α (vk ,д \ {vk }) then

3: if wvsv�x
> wvkv�x

then

4: v�x ← vs
5: swap(vk ,vs) ⊲ swap positions of vk ,vs
6: else

7: v�x ← vk , vk ← vs

8: else

9: v�x ← vk , vk ← vs
return (vk ,v�x)

10: procedure Assign-offsets(β,д)
11: for i ← 0 to n − 1 do
12: var ← variable represented by vertex дi
13: β = β ∪ {(var , i)}

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 56. Publication date: December 2019.

Shi�sReduce: Minimizing Shi�s in Racetrack Memory 4.0 56:11

Fig. 9. Chen-TB heuristic. The fixed element is underlined. The green element has higher edge weight with
the fixed element and is moved closer to it. (ti shows the iteration.)

Fig. 10. Final data placements and costs of Chen, Chen-TB, and Shi�sReduce. Initial port position marked
in green.

Given that we add vertices to two di�erent groups, there are less occurrences of tie compared to
algorithms such as Chen’s [5], where vertices are always added to the same group. For comparison
reasons, we extend Chen’s heuristic with tie-breaking in the following section.

4.3 The Chen-TB Heuristic

Chen’s heuristic does not specify the casewhenmore than once vertices inG have the equal vertex-
to-group weights. We argue that intelligent tie-breaking in such situations deserves investigation.
Chen-TB is a heuristic that extends Chen’s heuristic with the Tie-break strategy introduced for
ShiftsReduce. As shown in Algorithm 2 (lines 2–11) and Figure 9, Chen-TB initially adds three
vertices fromV referred to as v0, v1, and v2 to the group. The �rst element in the group is v0

= a,

because a has the largest vertex weight (wa = 8) (line 2). Next,v1
= c, because c has the maximum

edge weight (wac = 3) with a (cf. line 4). Note that c and d have equal edge weights with a, but
since there is only one element in the group, Chen-TB randomly picks one of the two (c in this
case). Similarly,v2

= d, because it has the maximum vertex-to-group weight (which is 3) with a ∪ c
(cf. line 6). In contrast to Chen, we intelligently swap the order of the �rst two group elements by
inspecting their edge weights with the third group element. Since the edge weight between a andd
(i.e.,wad = 3) is higher than the edge weight between c and d (i.e.,wcd = 0), we swap the positions
of a and c in the group (cf. lines 8 and 9). At this point, the group elements are c,a,d . The position
of a is �xed while d is the last group element.
The next selected vertex is e due to its highest vertex-to-group weight with д. In this case, the

vertex-to-group weight of d and e is compared with c ∪ a (cf. line 2 in Tie-break). Since d has
higher vertex-to-group weight, e becomes the last element while the position of d is �xed (cf.
line 9 in Tie-break). Following the same argument, the next selected element f becomes the last
element while the position of e is �xed. The next selected vertex b and the last element f have
equal vertex-to-group-weights, i.e., 3 with the �xed elements c,a,d, e . Chen-TB prioritizes f over
b, because it has the higher edge weight with the last �xed element e . Lines 12–16 iteratively decide
the position of the new group elements until V is empty.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 56. Publication date: December 2019.

56:12 A. A. Khan et al.

ALGORITHM 2: Chen-TB Heuristic

Input : Access graph G = (V ,E) and a DBC with minimum n empty locations
Output : Final data placement β
1: ⊲ vm : �xed element in д, vp : last element in д

2: β ← Ø, v0 ← argmaxv ∈Vwv

3: д.append(v0),V ← V \ {v0}

4: v1 ← argmaxv ∈Vα (v,д)
5: д.append(v1),V ← V \ {v1}

6: v2 ← argmaxv ∈Vα (v,д)
7: д.append(v2),V ← V \ {v2}

8: if wv0v2 > wv1v2 then

9: vm ← v0, swap(v0,v1)
10: else

11: vm ← v1

12: while V is not empty do

13: v∗ ← argmaxv ∈Vα (v,д)
14: vp ← д.last(),д.append(v∗)
15: (vp ,vm)← Tie-break(v∗,vp ,vm ,д)
16: V ← V \ {v∗}

17: Assign-offsets(β,д)

The �nal data placements of Chen, Chen-TB and ShiftsReduce are presented in Figure 10. For
the access sequence in Figure 6, Chen-TB reduces the number of shifts to 31 compared to 33 by
Chen, as shown in Figure 10. ShiftsReduce further diminishes the shift cost to 21. Note that the
placement decided by ShiftsReduce is the optimal placement shown in Figure 3(b). We assume 3 or
more vertices in the access graph for our heuristics, because the number of shifts for two vertices,
in either order, remain unchanged.

4.4 Genetic Algorithms

Apart from heuristics, genetic algorithms (GAs) have also been employed to solve the SOA prob-
lem [19] and the data-placement problem in RMs [29]. GAs imitate the biological evolution process
to achieve good solutions by performing the select, crossover and mutate operations on chromo-
somes. The genetic algorithm for SOA represents variables (V) by chromosomes where each gene
in a chromosome represents one variable and its position in the chromosome represents its o�set.
The GA population initially consists of 30 individuals, having both randomly generated and

more carefully selected permutations. The chosen permutations are the output of OFU, Chen-TB,
and ShiftsReduce heuristics provided as seed to the GA to accelerate its convergence. The GA
evaluates the �tness, i.e., the shift cost (cf. Equation (2)) of all individuals in the population in each
iteration and selects the �ttest (those having minimum shift cost) for crossover. The crossover
operation generates new individuals in the GA population to accelerate the GA convergence. Our
GA uses the standard order crossover operation that generates two o�spring individuals from two
parental individuals as explained in Reference [19].
The mutation operation is performed on the o�springs generated by crossover. In order for the

mutation operation to be permutation preserving, we use transpostions to mutate chromosomes.
A transpostion refers to the interchange of contents of two genes in a chromosome. The positions
of the two genes, to be mutated, are randomly selected and the permutation probability of each

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 56. Publication date: December 2019.

Shi�sReduce: Minimizing Shi�s in Racetrack Memory 4.0 56:13

gene is 1/(n − 1). For termination, the GA waits until 5,000 iterations (generation) are completed
or the shift cost does not change for 2,000 iterations.
The improved genetic algorithm (IGA) proposed for data placement in RMs [29] also starts with

carefully selected initial populations. IGA takes the output of three heuristics proposed in Refer-
ence [29] as initial input and carefully selects the crossover andmutation points in each generation.
Our modi�ed genetic algorithm IGA-Ours takes the output of OFU, Chen-TB and ShiftsReduce as
initial population and provide better results compared to IGA (cf. Section 5.4).

5 RESULTS AND DISCUSSION

This section provides evaluation and analysis of the proposed solutions on real-world application
benchmarks. It presents a detailed qualitative and quantitative comparison with state-of-the-art
techniques. Further, it brings a thorough analysis of SOA solutions for RMs.

5.1 Experimental Setup

We perform all experiments on a Linux Ubuntu (16.04) system with Intel core i7-4790 (3.8 GHz)
processor, 32 GB memory, g++ v5.4.0, with −O3 optimization level. We implement our ILP model
using the python interface of the Gurobi optimizer, with Gurobi 8.0.1 [7].
As benchmark, we use O�setStone [18], which contains more than 3,000 realistic sequences

obtained from complex real-world applications (control-dominated as well as signal, image and
video processing). Each application consists of a set of program variables and one or more access
sequences. The number of program variables per sequence varies from 1 to 1,336, while the length
of the access sequences lies in the range of 0 to 3,640. We evaluate and compare the performance
of the following algorithms.

(1) Order of �rst use (OFU): A trivial placement for comparison purposes in which variables
are placed in the order they are used.

(2) O�set assignment heuristics: For thorough comparison, we use Bartley [3], Liao [25], SOA-
TB [20], INC [2], INC-TB [18], and the genetic algorithm (GA-SOA) in Reference [19].

(3) Chen/Chen-TB: The RM data-placement heuristic presented in Reference [5] and our ex-
tended version (cf. Algorithm 2).

(4) ShiftsReduce (cf. Algorithm 1).
(5) IGA (cf. Section 4.4).
(6) GA-Ours/IGA-Ours: Our modi�ed genetic algorithm for RM data placement described

in 4.4.
(7) ILP (cf. Section 3).

5.2 Revisiting SOA Algorithms

We, for the �rst time, reconsider all well-known o�set assignment heuristics. The empirical results
in Figure 11 show that the SOA heuristics can reduce the shift cost in RM by 24.4%. On average,
(Bartley, Liao, SOA-TB, INC, and INC-TB) reduce the number of shifts by (10.9%, 10.9%, 12.2%,
22.9%, 24.4%) compared to OFU, respectively. For brevity, we consider only the best performing
heuristic, i.e., INC-TB for detailed analysis in the following sections.

5.3 Analysis of Shi�sReduce

In the following, we analyze our ShiftsReduce heuristic.

5.3.1 Results Overview. An overview of the results for all heuristics across all benchmarks, nor-
malized to theOFU heuristic, is shown in Figure 12. As illustrated, ShiftsReduce yields considerably

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 56. Publication date: December 2019.

56:14 A. A. Khan et al.

Fig. 11. Comparison of o�set assignment heuristics.

Fig. 12. Individual benchmark results (sorted in the decreasing order of benefit for Shi�sReduce).

better performance on most benchmarks. It outperforms Chen’s heuristic on all benchmarks and
INC-TB on 22 out of 28. The results indicate that INC-TB underperforms on benchmarks such as
mp3, viterbi, gif2asc,dspstone, and h263. On average, ShiftsReduce curtails the number of shifts by
28.8%, which is 4.4% and 6.6% better compared to INC-TB and Chen, respectively.
Closer analysis reveals that Chen signi�cantly reduces the shift cost on benchmarks having

longer access sequences. This is because it considers the global adjacency of a vertex before o�set
assignment. On the contrary, INC-TB maximizes the local adjacencies and favors benchmarks that
consist only of shorter sequences. ShiftsReduce combines the bene�ts of both local and global
adjacencies, providing superior results. None of the algorithms reduce the number of shifts for �t,
since in this benchmark each variable is accessed only once. Therefore, any permutation of the
variables placement results in identical performance.

5.3.2 Impact of Access Sequence Length. As mentioned above, the length of the access sequence
plays a role in the performance of the di�erent heuristics. To further analyze this e�ect, we parti-
tion the sequences from all benchmarks in six bins based on their lengths. The concrete bins and
the results are shown in Figure 13, which reports the average number of shifts (smaller is better)
relative to OFU.
Several conclusions can be drawn from Figure 13. First, INC-TB performs better compared to

other heuristics on short sequences. For the �rst bin (0–70), INC-TB reduces the number of shifts by
26.3% compared to OFU, which is 10.9%, 7.1%, and 2.2% better than Chen, Chen-TB, and ShiftsRe-
duce, respectively. Second, the longer the sequence, the better is the reduction compared to OFU.
Third, the performance of INC-TB aggravates compared to group-based heuristics as the access

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 56. Publication date: December 2019.

Shi�sReduce: Minimizing Shi�s in Racetrack Memory 4.0 56:15

Fig. 13. Impact of sequence length on heuristic performance.

Fig. 14. Evaluation by benchmark categories.

sequence length increases. For bin-5 (501–800), INC-TB reduces the shift cost by 25.2% compared
to OFU while Chen, Chen-TB, and ShiftsReduce reduces it by 38.3%, 38.6%, and 41.2%, respectively.
Beyond 800 (last bin), INC-TB deteriorates performance compared to OFU and even increases the
number of shifts by 97.8%. This is due to the fact that INC-TB maximizes memory accesses to con-
secutive locations (i.e., edge weights) without considering its impact on farther memory accesses
(i.e., global adjacency). Fourth, Chen performs better compared to INC-TB on long sequences (av-
erage 36.6% for bins 3–6) but falls after it by 6.9% on short sequences (bins 1 and 2). Fifth, Chen-TB
consistently outperforms Chen on all sequence lengths, demonstrating the positive impact of the
tie-breaking proposed in this article. Finally, the proposed ShiftsReduce heuristic consistently out-
performs Chen in all six bins. This is due to the fact that ShiftsReduce exploit bi-directional group
expansion and considers both local and global adjacencies for data placement (cf. Section 4.2). On
average, it surpasses (INC-TB, Chen, and Chen-TB) by (39.8%, 3.2%, and 2.8%) and (0.3%, 7.3%, and
4.5%) for long (bins 3–6) and short (bins 1 and 2) sequences, respectively.
Based on the above analysis, we classify all benchmarks into three categories as shown in Ta-

ble 2 and categorize access sequences into three ranges, i.e., short (0–140), long (greater than 140),
and very long (greater than 300). The �rst benchmark category comprises 19 benchmarks; each
containing at least 15% long and 5% very long access sequences. The second and third categories
mostly contain short sequences.
Figure 14 shows that ShiftsReduce provides signi�cant gains on category-I and curtails the

number of shifts by 31.9% (maximum up to 43.9%) compared to OFU. This is 8.1% and 6.4% better
compared to INC-TB and Chen, respectively. Similarly, Chen-TB outperforms both Chen and
INC-TB by 2.3% and 4%, respectively. INC-TB does not produce good results, because the majority
of the benchmarks in category-I are dominated by long and/or very long sequences (cf. Table 2 and

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 56. Publication date: December 2019.

56:16 A. A. Khan et al.

Table 2. Distribution of Short, Long, and Very Long Access Sequences
in O�setStone Benchmarks

Short Long Very Long
Category Benchmarks Seqs (%) Sequences (%) Sequences (%)

category-I
(ShiftsReduce

performs better)

mp3 65.1% 25.6% 9.3%
veterbi 35.0% 40.0% 25.0%
gif2asc 17.7% 50.0% 33.3%
dspstone 63.0% 29.6% 7.4%

gsm 65.1% 21.6% 13.3%
cavity 20.0% 40.0% 40.0%
h263 0.0% 75.0% 25.0%
codecs 59.7% 33.3% 8.0%
�ex 75.8% 16.9% 7.3%

sparse 69.6% 22.8% 7.6%

klt 54.5% 15.9% 29.6%
triangle 75.4% 17.2% 7.4%
f2c 79.5% 15.2% 6.3%

mpeg2 50.7% 32.4% 16.9%
bison 63.8% 26.4% 9.8%
cpp 43.7% 33.3% 13.0%

gzip 50.1% 35.2% 14.7%
lpsolve 44.6% 38.5% 16.9%
jpeg 54.5% 15.9% 29.6%

category-II
(comparable

performance ±2%)

bdd 85.8% 10.8% 3.4%

adpcm 93.2% 3.4% 3.4%
�t 100.0% 0.0% 0.0%

anagram 100.0% 0.0% 0.0%
eqntott 100.0% 0.0% 0.0%

category-III (INC

performs better)

fuzzy 100% 0.0% 0.0%

hmm 79.7% 10.3% 0.0%
8051 80.0% 20.0% 0.0%
cc65 84.6% 13.1% 2.3%

Section 5.3.2). Category-II comprises �ve benchmarks, mostly dominated by short sequences.
INC-TB provides higher shift reduction (19.6%) compared to Chen (13.2%) and Chen-TB (15.3%).
However, it exhibits comparable performance with ShiftsReduce (within ±2% range). On average,
ShiftsReduce outperforms INC-TB by 1.1%. INC-TB outperforms ShiftsReduce only on the four
benchmarks listed in category-III.

5.4 Comparison of Genetic Algorithms

This section leverages four genetic algorithms (namely, GA-SOA, GA-Ours, IGA, and IGA-Ours)
for RM data placement. We analyze the impact on the results of GA using our solutions compared
to solutions obtained with SOA heuristics and heuristics in Reference [29] as initial population. All
algorithms use the same parameters as presented in Reference [18]. The initial populations of GA-
SOA, GA-Ours, IGA, and IGA-Ours are composed of (OFU, Liao [25], INC-TB [18]), (OFU, Chen-TB,
ShiftsReduce), (OFU, MAIM [29], MAF [29]), and (OFU, Chen-TB, ShiftsReduce), respectively.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 56. Publication date: December 2019.

Shi�sReduce: Minimizing Shi�s in Racetrack Memory 4.0 56:17

Fig. 15. Comparison with ILP solution (* mark benchmarks for which an optimal solution was found).

Fig. 16. Results summary.

Experimental results demonstrate that GAs populatedwith our heuristics as initial solution (GA-
Ours, IGA-Ours) are superior compared to others (GA-SOA, IGA) in all benchmarks. The average
reduction in shift cost across all benchmarks (cf. Figure 16) translate to 35.1%, 38.3%, 36.4%, and
39.8% for GA-SOA, GA-Ours, IGA, and IGA-Ours, respectively.

5.5 ILP Results

As expected, the ILP solver could not produce any solution in almost 30% of the instances when
given three hours per instance. In the remaining instances, the solver either provides an opti-
mal solution (on shorter sequences) or an intermediate solution. We evaluate ShiftsReduce and
IGA-Ours on those instances where the ILP solver produces results and show the comparison in
Figure 15.
On average, the ShiftsReduce results deviate by 8.2% from the ILP result. IGA-Ours bridges this

gap and deviates by only 1.7%.

5.6 Summary Performance and Energy Analysis

Recall the results overview from Figure 16. In comparison to OFU, ShiftsReduce and Chen-TB mit-
igate the number of shifts by 28.8% and 24.5%, which is (4.4%, 0.1%) and (6.6%, 2.3%) superior than
INC-TB and Chen, respectively. Compared to the o�set assignment heuristics in Figure 11, the
performance improvement of ShiftsReduce and Chen-TB translate to (17.9%, 17.9%, 16.6%, 5.9%)
and (13.6%, 13.6%, 12.3%, 1.6%) for Bartley, Liao, SOA-TB, and INC, respectively. IGA-Ours further
reduces the number of shifts in ShiftsReduce by 11%. The average runtimes of Chen-TB and Shift-
sReduce are 2.99 ms, which is comparable to other heuristics, i.e., Bartley (0.23 ms), Liao (0.08 ms),

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 56. Publication date: December 2019.

56:18 A. A. Khan et al.

Fig. 17. Impact on performance and energy.

Table 3. Configuration Details for RM

Technology 32 nm
Word/bus size 32 bits (4 B)

Number of banks 4
Leakage power [mW] 19.3

Read/Write/Shift energy [pJ] 19.8/30.6/13.7
Read/Write/Shift latency [ns] 0.95/1.27/1.04

Number of tracks/DBC, DBCs/bank, domains/track 32, 32, 64

SOA-TB (0.11 ms), INC (2.3 s), INC-TB (2.7 s), GA-SOA (4.98 s), GA-Ours (4.96 s), IGA (4.76 s),
IGA-Ours (4.73 s), and Chen (2.98 ms).
To analyze the impact of the shifts reduction on the overall memory system performance and

energy consumption, we run all benchmarks in the RM simulator RTSim [12] and report results in
Figure 17. For evaluation, we take a 32 KiB scratch-pad memory (SPM) with con�guration param-
eters listed in Table 3. The overall performance and energy bene�ts of (Chen, ShiftsReduce, and
IGA-Ours) compared to OFU translate to (22.2%, 25.4%, and 31.7%) and (12.4%, 17.5%, and 26.4%),
respectively. The suitability of RMs compared to other memory technologies such as SRAM, STT-
MRAM, and DRAM has already been established [13, 30, 48].

Using the latest RM 4.0 prototype device in our in-house physics lab facility, a current pulse
of 1 ns, corresponding to a current density of 5 × 1011 Amp/m2, is applied to the nano-wire to
drive the domains. Employing a 50-nm-wide, 4-nm-thick wire, the shift current corresponds to
0.1 mA. With a 5V applied voltage, the power to drive a single domain translates to 0.5 mW (P =
V × I = 5V × 0.1mA = 0.5mW). Therefore, the energy required for a single shift amounts to
0.5 pJ (E = P × t = 0.5mW × 1 ns = 0.5 pJ). Note that this is much smaller compared to the per-
shift energy in Table 3, which also includes the latency/energy of the peripheral circuitry. The
RM 4.0 device characteristics indicate that domains in RM 4.0 shift at a constant velocity without
inertial e�ects. Therefore, for a 32-bit data item size, the total shift energy amounts to 16pJ without
inertia. The overall shift energy saved by a particular solution is calculated as the total number of
shifts for all instances across all benchmark multiplied by per data item shift energy (i.e., 16 pJ).
Using RM 4.0, the shift energy reduction for ShiftsReduce relative to OFU translates to 35%. In
contrast to RM 4.0, the domains in earlier RM prototypes show inertial e�ects when driven by
current. Considering the inertial e�ects in earlier RM prototypes, we expect less energy bene�ts
compared to RM 4.0.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 56. Publication date: December 2019.

Shi�sReduce: Minimizing Shi�s in Racetrack Memory 4.0 56:19

6 RELATEDWORK

Conceptually, the racetrack memory is a one-dimensional version of the classical bubble memory
technology of the late 1960s. The bubble memory employs a thin �lm of magnetic material to hold
small magnetized areas known as bubbles. This memory is typically organized as two-dimensional
structure of bubbles composed of major and minor loops [10]. The bubble technology could not
compete with the Flash RAM due to speed limitations and it vanished entirely by the late 1980s.
Various data reorganization techniques have been proposed for the bubble memories [10, 49, 53].
These techniques alter the relative position of the data items in memory via dynamic reordering
so that the more frequently accessed items are close to the access port. Since these architectural
techniques are blind to exact memory reference patterns of the applications, they might excerbate
the total energy consumption.
Compared to other memory technologies, RMs have the potential to dominate in all perfor-

mance metrics, for which they have received considerable attention as of late. RMs have been
proposed as replacement for all levels in the memory hierarchy for di�erent application scenar-
ios. Mao and Wang et al. proposed an RM-based GPU register �le to combat the high leakage and
scalability problems of conventional SRAM-based register �les [30, 50]. Xu et al. evaluated RM at
lower cache levels and reported an energy reduction of 69% with comparable performance relative
to an iso-capacity SRAM [56]. Sun et al. and Venkatesan et al. demonstrated RM at last-level cache
and reported signi�cant improvements in area (6.4×), energy (1.4×), and Performance (25%) [47,
48]. Park advocates the usage of RM instead of SSD for graph storage, which not only expedites
graph processing but also reduces energy by up to 90% [35]. Besides, RMs have been proposed as
scratchpad memories [29], content addressable memories [62], and recon�gurable memories [63].

Various architectural techniques have been proposed to hide the RM access latency by pre-
shifting the likely accessed DW to the port position [48]. Sun et al. proposed swapping highly
accessed DWs with those closer to the access port(s) [47]. Atoo�an proposed a predictor-based
proactive shifting by exploiting register locality [1]. Likewise, proactive shifting is performed on
the data items waiting in the queue [30]. While these architectural approaches reduce the access
latency, they may increase the total number of shifts, which exacerbates energy consumption.
To abate the total number of shifts, techniques such as data swapping [47, 56], data compres-

sion [57], data reorganization for bubble memories [10, 49, 53], and e�cient software supported
data and instruction placement [5, 29, 34] have been proposed. In addition, recon�gurable cache
organizations have been proposed that mitigate the number of RM shifts by (de-)activating RM-
cache sets/ways, which are far from the access ports at run time [42, 46]. Amongst all, data place-
ment has shown great promise, because it e�ectively reduces the number of shifts with negligible
overheads.
Historically, hardware/software guided data placement has been proposed for di�erent mem-

ory technologies at di�erent levels in the memory hierarchy. It is demonstrated that e�cient data
placement improves energy consumption and system performance by exploiting temporal/spatial
locality of the memory objects [4]. In a multi-level cell (MLC) PCM device, intelligent page place-
ment in logically decoupled fast/slow regions signi�cantly improve both performance and en-
ergy [60]. More recently data-placement techniques have been employed in NVM-S/DRAM hybrid
memory systems to improve their performance and lifetimes. For instance, References [21, 22] em-
ploy data-placement techniques to hide the higher write latency and hence cache blocks migration
overhead in an STT-SRAM hybrid cache. The caching policies in Reference [59] mitigate the costly
PCM row bu�er misses by caching rows with higher reusability and lower row bu�er hit rate in
the DRAM row bu�er in a DRAM-PCM hybrid memory. In another similar con�guration, rank-
based page placement and page migration policies track pages with high access frequencies and

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 56. Publication date: December 2019.

56:20 A. A. Khan et al.

high-write intensities and migrate highest rank pages to DRAM [41]. However, individual opti-
mizations for row bu�er locality, write intensity and access frequencies do not capture the overall
system’s performance andmay lead to sub-optimal placement decisions. Li et al. proposed a utility-
based hybrid memory management that uses several factors to determine the impact of page mi-
gration on the overall system’s performance and migrate only pages with the greatest estimated
system level performance bene�ts [23]. Similarly, in References [39, 40, 45, 52], data-placement
techniques have been proposed to make e�cient utilization of the memory systems equipped
with multiple memory technologies. While most of these solutions e�ectively improve both per-
formance and energy, their applicability to RMs is of secondary interests (hybrid RM-S/DRAM
memory system). Fundamentally, the data-placement solutions in RMs such as for GPU register
�les [24], scratchpad memories [13, 29], and stacks [14] aim at reducing the number of RM shifts.

In the past, various data-placement solutions have been proposed for signal processing in the
embedded systems domain (i.e., SOA, cf. 2.4). These solutions include heuristics [2, 3, 18, 20, 25],
genetic algorithms [19] and ILP-based exact solutions [11, 27, 28]. As discussed in Section 5 our
heuristic builds on top of this previous work, providing an improved data allocation.

7 CONCLUSIONS

This article presented a set of techniques to minimize the number of shifts in RMs by means of
e�cient data placement. We introduced an ILP model for the data-placement problem for an ex-
act solution and heuristic algorithms for e�cient solutions. We show that our heuristic computes
near-optimal solutions, at least for small problems, in less than 3 ms. We revisited well-known o�-
set assignment heuristics for racetrack memories and experimentally showed that they perform
better on short access sequences. In contrast, group-based approaches such as the Chen heuris-
tic exploit global adjacencies and produce better results on longer sequences. Our ShiftsReduce
heuristic combines the bene�ts of local and global adjacencies and outperforms all other heuris-
tics, minimizing the number of shifts by up to 40%. ShiftsReduce employs intelligent tie-breaking,
a technique that we use to improve the original Chen heuristic. To further improve the results,
we combined ShiftsReduce with a genetic algorithm that improved the results by 9.5%. In future
work, we plan to investigate placement decisions together with reordering of accesses from higher
abstractions in the compiler, e.g., from a polyhedral model or by exploiting additional semantic
information from domain-speci�c languages. We also plan to research hybrid solutions where a
simpli�ed hardware logic in the shift controller of RMs will support the placement decisions to
hide the shift latencies.

ACKNOWLEDGMENTS

We thank Andrés Goens for his useful input in the ILP formulation and Dr. Sven Mallach from
Universität zu Köln (Cologne) for providing the sources of SOA heuristics.

REFERENCES

[1] Ehsan Atoo�an. 2015. Reducing shift penalty in domain wall memory through register locality. In Proceedings of

the International Conference on Compilers, Architecture and Synthesis for Embedded Systems (CASES’15). IEEE Press,

Piscataway, NJ, 177–186. Retrieved from http://dl.acm.org/citation.cfm?id=2830689.2830711.

[2] Sunil Atri, J. Ramanujam, and Mahmut T. Kandemir. 2001. Improving o�set assignment for embedded processors.

In Proceedings of the 13th International Workshop on Languages and Compilers for Parallel Computing-Revised Papers

(LCPC’00). Springer-Verlag, London, 158–172. Retrieved from http://dl.acm.org/citation.cfm?id=645678.663953.

[3] David H. Bartley. 1992. Optimizing stack frame accesses for processors with restricted addressing modes. Softw. Pract.

Exper. 22, 2 (Feb. 1992), 101–110. DOI:https://doi.org/10.1002/spe.4380220202

[4] Brad Calder, Chandra Krintz, Simmi John, and Todd Austin. 1998. Cache-conscious data placement. SIGPLAN Not. 33,

11 (Oct. 1998), 139–149. DOI:https://doi.org/10.1145/291006.291036

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 56. Publication date: December 2019.

http://dl.acm.org/citation.cfm?id$=$2830689.2830711
http://dl.acm.org/citation.cfm?id$=$645678.663953
https://doi.org/10.1002/spe.4380220202
https://doi.org/10.1145/291006.291036

Shi�sReduce: Minimizing Shi�s in Racetrack Memory 4.0 56:21

[5] Xianzhang Chen, Edwin Hsing-Mean Sha, Qingfeng Zhuge, Chun Jason Xue, Weiwen Jiang, and Yuangang Wang.

2016. E�cient data placement for improving data access performance on domain-wall memory. IEEE Trans. Very

Large Scale Integr. Syst. 24, 10 (Oct. 2016), 3094–3104. DOI:https://doi.org/10.1109/TVLSI.2016.2537400

[6] Sangyeun Cho and Hyunjin Lee. 2009. Flip-n-write: A simple deterministic technique to improve pram write perfor-

mance, energy and endurance. In Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchi-

tecture (MICRO’09). ACM, New York, NY, 347–357. DOI:https://doi.org/10.1145/1669112.1669157

[7] LLC Gurobi Optimization. 2018. Gurobi Optimizer Reference Manual. Retrieved from http://www.gurobi.com.

[8] F. Hameed, A. A. Khan, and J. Castrillon. 2018. Performance and energy-e�cient design of STT-RAM last-level cache.

IEEE Trans. Very Large Scale Integr. Syst. 26, 6 (June 2018), 1059–1072. DOI:https://doi.org/10.1109/TVLSI.2018.2804938

[9] M. Hayashi, L. Thomas, C. Rettner, R. Moriya, Y. B. Bazaliy, and S. Parkin. 2007. Current driven domain wall velocities

exceeding the spin angular momentum transfer rate in permalloy nanowires. Phys Rev Lett. 98, 3 (2007), 037204.

[10] Mario Jino and JaneW. S. Liu. 1978. Intelligentmagnetic bubblememories. In Proceedings of the 5th Annual Symposium

on Computer Architecture (ISCA’78). ACM, 166–174.

[11] Michael Jünger and Sven Mallach. 2013. Solving the simple o�set assignment problem as a traveling salesman. In

Proceedings of the 16th International Workshop on Software and Compilers for Embedded Systems (M-SCOPES’13). ACM,

New York, NY, 31–39. DOI:https://doi.org/10.1145/2463596.2463601

[12] A. A. Khan, F. Hameed, R. Bläsing, S. Parkin, and J. Castrillon. 2019. RTSim: A cycle-accurate simulator for racetrack

memories. IEEE Comput. Architect. Lett. 18, 1 (Jan. 2019), 43–46. DOI:https://doi.org/10.1109/LCA.2019.2899306

[13] Asif Ali Khan, Norman A. Rink, Fazal Hameed, and Jeronimo Castrillon. 2019. Optimizing tensor contractions for

embedded devices with racetrack memory scratch-pads. In Proceedings of the 20th ACM SIGPLAN/SIGBED Interna-

tional Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES’19). ACM, New York, NY, 5–18.

DOI:https://doi.org/10.1145/3316482.3326351

[14] Hoda Aghaei Khouzani and Chengmo Yang. 2017. A DWM-based stack architecture implementation for energy har-

vesting systems. ACM Trans. Embed. Comput. Syst. 16, 5s (Sept. 2017). DOI:https://doi.org/10.1145/3126543

[15] E. Kultursay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu. 2013. Evaluating STT-RAM as an energy-e�cient

main memory alternative. In Proceedings of the International Symposium on Performance Analysis of Systems and

Software (ISPASS’13). 256–267.

[16] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. 2009. Architecting phase change memory as a scalable

dram alternative. SIGARCHComput. Archit. News 37, 3 (June 2009), 2–13. DOI:https://doi.org/10.1145/1555815.1555758

[17] B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu, and D. Burger. 2010. Phase-change technology and

the future of main memory. IEEE Micro 30, 1 (Jan 2010), 143–143. DOI:https://doi.org/10.1109/MM.2010.24

[18] Rainer Leupers. 2003. O�set assignment showdown: Evaluation of DSP address code optimization algorithms. In

Proceedings of the 12th International Conference on Compiler Construction (CC’03). Springer-Verlag, Berlin, 290–302.

Retrieved from http://dl.acm.org/citation.cfm?id=1765931.1765960.

[19] R. Leupers and F. David. 1998. A uniform optimization technique for o�set assignment problems. In Proceedings of

the 11th International Symposium on System Synthesis. 3–8. DOI:https://doi.org/10.1109/ISSS.1998.730589

[20] R. Leupers and P. Marwedel. 1996. Algorithms for address assignment in DSP code generation. In Proceedings of the

International Conference on Computer Aided Design. 109–112. DOI:https://doi.org/10.1109/ICCAD.1996.569409

[21] Qingan Li, Jianhua Li, Liang Shi, Chun Jason Xue, and Yanxiang He. 2012. MAC: Migration-aware compilation for

STT-RAM-based hybrid cache in embedded systems. In Proceedings of the ACM/IEEE International Symposium on Low

Power Electronics and Design (ISLPED’12). ACM, NewYork, NY, 351–356. DOI:https://doi.org/10.1145/2333660.2333738

[22] Q. Li, J. Li, L. Shi, M. Zhao, C. J. Xue, and Y. He. 2014. Compiler-assisted STT-RAM-based hybrid cache for energy

e�cient embedded systems. IEEE Trans. Very Large Scale Integr. Syst. 22, 8 (Aug. 2014), 1829–1840. DOI:https://doi.

org/10.1109/TVLSI.2013.2278295

[23] Y. Li, S. Ghose, J. Choi, J. Sun, H. Wang, and O. Mutlu. 2017. Utility-based hybrid memory management. In Proceed-

ings of the IEEE International Conference on Cluster Computing (CLUSTER’17). 152–165. DOI:https://doi.org/10.1109/

CLUSTER.2017.130

[24] Yun Liang and ShuoWang. 2016. Performance-centric optimization for racetrackmemory-based register �le onGPUs.

J. Comput. Sci. Technol. 31, 1 (Jan. 2016), 36–49.

[25] Stan Liao, Srinivas Devadas, Kurt Keutzer, Steve Tjiang, and Albert Wang. 1995. Storage assignment to decrease code

size. SIGPLAN Not. 30, 6 (June 1995), 186–195. DOI:https://doi.org/10.1145/223428.207139

[26] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geo� Lowney, Steven Wallace, Vijay Janapa

Reddi, and Kim Hazelwood. 2005. Pin: Building customized program analysis tools with dynamic instrumentation. In

Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’05). ACM,

New York, NY, 190–200. DOI:https://doi.org/10.1145/1065010.1065034

[27] Sven Mallach. 2015. More general optimal o�set assignment. Leibniz Trans. Embed. Syst. 2, 1 (2015), 02–1–02:18.

DOI:https://doi.org/10.4230/LITES-v002-i001-a002

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 56. Publication date: December 2019.

https://doi.org/10.1109/TVLSI.2016.2537400
https://doi.org/10.1145/1669112.1669157
http://www.gurobi.com
https://doi.org/10.1109/TVLSI.2018.2804938
https://doi.org/10.1145/2463596.2463601
https://doi.org/10.1109/LCA.2019.2899306
https://doi.org/10.1145/3316482.3326351
https://doi.org/10.1145/3126543
https://doi.org/10.1145/1555815.1555758
https://doi.org/10.1109/MM.2010.24
http://dl.acm.org/citation.cfm?id$=$1765931.1765960
https://doi.org/10.1109/ISSS.1998.730589
https://doi.org/10.1109/ICCAD.1996.569409
https://doi.org/10.1145/2333660.2333738
https://doi.org/10.1109/TVLSI.2013.2278295
https://doi.org/10.1109/TVLSI.2013.2278295
https://doi.org/10.1109/CLUSTER.2017.130
https://doi.org/10.1109/CLUSTER.2017.130
https://doi.org/10.1145/223428.207139
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.4230/LITES-v002-i001-a002

56:22 A. A. Khan et al.

[28] Sven Mallach and Roberto Castañeda Lozano. 2014. Optimal general o�set assignment. In Proceedings of the 17th

International Workshop on Software and Compilers for Embedded Systems (SCOPES’14). ACM, New York, NY, 50–59.

DOI:https://doi.org/10.1145/2609248.2609251

[29] H. Mao, C. Zhang, G. Sun, and J. Shu. 2015. Exploring data placement in racetrackmemory-based scratchpadmemory.

In Proceedings of the IEEE Non-Volatile Memory System and Applications Symposium (NVMSA’15). 1–5. DOI:https://

doi.org/10.1109/NVMSA.2015.7304358

[30] M. Mao, W. Wen, Y. Zhang, Y. Chen, and H. Li. 2014. Exploration of GPGPU register �le architecture using domain-

wall-shift-write-based racetrack memory. In Proceedings of the 51st ACM/EDAC/IEEE Design Automation Conference

(DAC’14). 1–6.

[31] I. Mihai Miron, T. Moore, H. Szambolics, L. Buda-Prejbeanu, S. Au�ret, B. Rodmacq, S. Pizzini, J. Vogel, M. Bon�m, A.

Schuhl, and G. Gaudin. 2011. Fast current-induced domain-wall motion controlled by the Rashba e�ect. Nat Mater.

10, 6 (2011), 419–23. DOI:10.1038/nmat3020

[32] Sparsh Mittal and Je�rey Vetter. 2015. A survey of software techniques for using non-volatile memories for storage

and main memory systems. IEEE Trans. Parallel Distrib. Syst. 27 (Jan. 2015). DOI:https://doi.org/10.1109/TPDS.2015.

2442980

[33] S. Mittal, J. S. Vetter, and D. Li. 2015. A survey of architectural approaches for managing embedded DRAM and

non-volatile on-chip caches. IEEE Trans. Parallel Distrib. Syst. 26, 6 (June 2015), 1524–1537.

[34] Joonas Multanen, Asif Ali Khan, Pekka Jääskeläinen, Fazal Hameed, and Jeronimo Castrillon. 2019. SHRIMP: E�cient

instruction deliverywith domainwall memory. In Proceedings of the International Symposium on Low Power Electronics

and Design (ISLPED’19). ACM, New York, NY.

[35] E. Park, S. Yoo, S. Lee, and H. Li. 2014. Accelerating graph computation with racetrack memory and pointer-assisted

graph representation. In Proceedings of the Design, Automation Test in Europe Conference Exhibition (DATE’14). 1–4.

DOI:https://doi.org/10.7873/DATE.2014.172

[36] Stuart Parkin, Masamitsu Hayashi, and Luc Thomas. 2008. Magnetic domain-wall racetrack memory. Science 320

(2008), 5873, 190–194. DOI:10.1126/science.1145799

[37] Stuart Parkin and See-Hun Yang. 2015. Memory on the racetrack. Nat Nanotechnol. 10, 3 (March 2015), 195–198.

[38] S. S. Parkin. 2004. Shiftable Magnetic Shift Register and Method of Using the Same. US patent 6834005B1.

[39] Ivy Bo Peng, Roberto Gioiosa, Gokcen Kestor, Pietro Cicotti, Erwin Laure, and Stefano Markidis. 2017. RTHMS: A

tool for data placement on hybrid memory system. In Proceedings of the ACM SIGPLAN International Symposium on

Memory Management (ISMM’17). ACM, New York, NY, 82–91. DOI:https://doi.org/10.1145/3092255.3092273

[40] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers. 2009. Scalable high performance main mem-

ory system using phase-change memory technology. In Proceedings of the 36th Annual International Symposium on

Computer Architecture (ISCA’09). ACM, New York, NY, 24–33. DOI:https://doi.org/10.1145/1555754.1555760

[41] Luiz E. Ramos, Eugene Gorbatov, and Ricardo Bianchini. 2011. Page placement in hybrid memory systems. In Pro-

ceedings of the International Conference on Supercomputing (ICS’11). ACM, New York, NY, 85–95. DOI:https://doi.org/

10.1145/1995896.1995911

[42] A. Ranjan, S. G. Ramasubramanian, R. Venkatesan, V. Pai, K. Roy, and A. Raghunathan. 2015. DyReCTape: A dynam-

ically recon�gurable cache using domain wall memory tapes. In Proceedings of the Design, Automation Test in Europe

Conference Exhibition (DATE’15). 181–186. DOI:https://doi.org/10.7873/DATE.2015.0838

[43] Silvius Rus, Lawrence Rauchwerger, and Jay Hoe�inger. 2003. Hybrid analysis: Static & dynamic memory reference

analysis. Int. J. Parallel Program. 31, 4 (Aug. 2003), 251–283. DOI:https://doi.org/10.1023/A:1024597010150

[44] K.-Su Ryu, L. Thomas, S-Hun Yang, and S. Parkin. 2013. Chiral spin torque at magnetic domain wall. Nat Nanotechnol.

8, 7 (2013), 527–33. DOI:10.1038/nnano.2013

[45] H. Servat, A. J. Peña, G. Llort, E. Mercadal, H. Hoppe, and J. Labarta. 2017. Automating the application data placement

in hybrid memory systems. In Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER’17).

126–136. DOI:https://doi.org/10.1109/CLUSTER.2017.50

[46] Zhenyu Sun, Xiuyuan Bi, Alex K. Jones, and Hai Li. 2014. Design exploration of racetrack lower-level caches. In

Proceedings of the International Symposium on Low Power Electronics and Design (ISLPED’14). ACM, New York, NY,

263–266. DOI:https://doi.org/10.1145/2627369.2627651

[47] Z. Sun, Wenqing Wu, and Hai Li. 2013. Cross-layer racetrack memory design for ultra-high density and low power

consumption. In Proceedings of the 50th ACM/EDAC/IEEE Design Automation Conference (DAC’13). 1–6.

[48] Rangharajan Venkatesan, Vivek Kozhikkottu, Charles Augustine, Arijit Raychowdhury, Kaushik Roy, and Anand

Raghunathan. 2012. TapeCache: A high-density, energy-e�cient cache based on domain wall memory. In Proceedings

of the ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED’12). ACM, New York, NY, 185–

190. DOI:https://doi.org/10.1145/2333660.2333707

[49] O. Voegeli, B. A. Calhoun, L. L. Rosier, and J. C. Slonczewski. 1975. The use of bubble lattices for information storage.

AIP Conf. Proc. 24, 1 (1975), 617–619.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 56. Publication date: December 2019.

https://doi.org/10.1145/2609248.2609251
https://doi.org/10.1109/NVMSA.2015.7304358
https://doi.org/10.1109/NVMSA.2015.7304358
https://doi.org/10.1038/nmat3020
https://doi.org/10.1109/TPDS.2015.2442980
https://doi.org/10.1109/TPDS.2015.2442980
https://doi.org/10.7873/DATE.2014.172
https://doi.org/10.1126/science.1145799
https://doi.org/10.1145/3092255.3092273
https://doi.org/10.1145/1555754.1555760
https://doi.org/10.1145/1995896.1995911
https://doi.org/10.1145/1995896.1995911
https://doi.org/10.7873/DATE.2015.0838
https://doi.org/10.1023/A:1024597010150
https://doi.org/10.1038/nnano.2013
https://doi.org/10.1109/CLUSTER.2017.50
https://doi.org/10.1145/2627369.2627651
https://doi.org/10.1145/2333660.2333707

Shi�sReduce: Minimizing Shi�s in Racetrack Memory 4.0 56:23

[50] Shuo Wang, Yun Liang, Chao Zhang, Xiaolong Xie, Guangyu Sun, Yongpan Liu, Yu Wang, and Xiuhong Li. 2016.

Performance-centric register �le design for GPUs using racetrack memory. In Proceedings of the 21st Asia and South

Paci�c Design Automation Conference (ASP-DAC’16). 25–30. DOI:https://doi.org/10.1109/ASPDAC.2016.7427984

[51] Z. Wang, D. A. Jiménez, C. Xu, G. Sun, and Y. Xie. 2014. Adaptive placement and migration policy for an STT-

RAM-based hybrid cache. In Proceedings of the IEEE 20th International Symposium on High Performance Computer

Architecture (HPCA’14). 13–24. DOI:https://doi.org/10.1109/HPCA.2014.6835933

[52] WeiWei, Dejun Jiang, Sally A. McKee, Jin Xiong, and Mingyu Chen. 2015. Exploiting program semantics to place data

in hybrid memory. In Proceedings of the International Conference on Parallel Architecture and Compilation (PACT’15).

IEEE Computer Society, Washington, DC, 163–173. DOI:https://doi.org/10.1109/PACT.2015.10

[53] C. K. Wong and P. C. Yue. 1976. Data organization in magnetic bubble lattice �les. IBM J. Res. Dev. 20, 6 (Nov. 1976),

576–581.

[54] H. P. Wong, H. Lee, S. Yu, Y. Chen, Y. Wu, P. Chen, B. Lee, F. T. Chen, and M. Tsai. 2012. Metal-Oxide RRAM. Proc.

IEEE 100, 6 (June 2012), 1951–1970. DOI:https://doi.org/10.1109/JPROC.2012.2190369

[55] H.-S. Philip Wong, Simone Raoux, Sangbum Kim, Jiale Liang, John Reifenberg, Bipin Rajendran, Mehdi Asheghi, and

Kenneth Goodson. 2010. Phase change memory. Proc. of the IEEE 98, 12 (2010), 2201–2227. DOI:10.1109/JPROC.2010.

2070050

[56] H. Xu, Y. Alkabani, R. Melhem, and A. K. Jones. 2016. FusedCache: A naturally inclusive, racetrack memory, dual-level

private cache. IEEE Trans. Multi-Scale Comput. Syst. 2, 2 (Apr. 2016), 69–82. DOI:https://doi.org/10.1109/TMSCS.2016.

2536020

[57] Haifeng Xu, Yong Li, R. Melhem, and A. K. Jones. 2015. Multilane racetrack caches: Improving e�ciency through

compression and independent shifting. In Proceedings of the 20th Asia and South Paci�c Design Automation Conference.

417–422. DOI:https://doi.org/10.1109/ASPDAC.2015.7059042

[58] See-Hun Yang, Kwang-Su Ryu, and Stuart Parkin. 2015. Domain-wall velocities of up to 750 m/s driven by exchange-

coupling torque in synthetic antiferromagnets. Nat Nanotechnol. 10, 3 (2015), 221–6. DOI:10.1038/nnano.2014.324

[59] HanBin Yoon. 2012. Row bu�er locality aware caching policies for hybrid memories. In Proceedings of the IEEE

30th International Conference on Computer Design (ICCD’12). IEEE Computer Society, Washington, DC, 337–344.

DOI:https://doi.org/10.1109/ICCD.2012.6378661

[60] Hanbin Yoon, Justin Meza, Naveen Muralimanohar, Norman P. Jouppi, and Onur Mutlu. 2014. E�cient data mapping

and bu�ering techniques for multilevel cell phase-changememories.ACMTrans. Archit. Code Optim. 11, 4 (Dec. 2014).

DOI:https://doi.org/10.1145/2669365

[61] Chao Zhang, Guangyu Sun, Weiqi Zhang, Fan Mi, Hai Li, and W. Zhao. 2015. Quantitative modeling of racetrack

memory, a tradeo� among area, performance, and power. In Proceedings of the 20th Asia and South Paci�c Design

Automation Conference. 100–105. DOI:https://doi.org/10.1109/ASPDAC.2015.7058988

[62] Y. Zhang, W. Zhao, J. Klein, D. Ravelsona, and C. Chappert. 2012. Ultra-high density content addressable memory

based on current induced domain wall motion in magnetic track. IEEE Trans. Magnet. 48, 11 (Nov. 2012), 3219–3222.

DOI:https://doi.org/10.1109/TMAG.2012.2198876

[63] W. Zhao, N. Ben Romdhane, Y. Zhang, J. Klein, and D. Ravelosona. 2013. Racetrack memory-based recon�gurable

computing. In Proceedings of the IEEE Faible Tension Faible Consommation. 1–4. DOI:https://doi.org/10.1109/FTFC.

2013.6577771

[64] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. 2009. A durable and energy e�cient main memory using phase

change memory technology. SIGARCH Comput. Archit. News 37, 3 (June 2009), 14–23. DOI:https://doi.org/10.1145/

1555815.1555759

Received January 2019; revised October 2019; accepted November 2019

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 56. Publication date: December 2019.

https://doi.org/10.1109/ASPDAC.2016.7427984
https://doi.org/10.1109/HPCA.2014.6835933
https://doi.org/10.1109/PACT.2015.10
https://doi.org/10.1109/JPROC.2012.2190369
https://doi.org/10.1109/JPROC.2010.2070050
https://doi.org/10.1109/JPROC.2010.2070050
https://doi.org/10.1109/TMSCS.2016.2536020
https://doi.org/10.1109/TMSCS.2016.2536020
https://doi.org/10.1109/ASPDAC.2015.7059042
https://doi.org/10.1038/nnano.2014.324
https://doi.org/10.1109/ICCD.2012.6378661
https://doi.org/10.1145/2669365
https://doi.org/10.1109/ASPDAC.2015.7058988
https://doi.org/10.1109/TMAG.2012.2198876
https://doi.org/10.1109/FTFC.2013.6577771
https://doi.org/10.1109/FTFC.2013.6577771
https://doi.org/10.1145/1555815.1555759
https://doi.org/10.1145/1555815.1555759

