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Abstract. Efficient algorithms of time series data mining have the com-
mon denominator of utilizing the special time structure of the attributes
of time series. To accommodate the information of time dimension into
the process, we propose a novel instance-level cursor based indexing tech-
nique, which is combined with a decision tree algorithm. This is bene-
ficial for several reasons: (a) it is insensitive to the time level noise (for
example rendering, time shifting), (b) its working method can be inter-
preted, making the explanation of the classification process more un-
derstandable, and (c) it can manage time series of different length. The
implemented algorithm named ShiftTree is compared to the well-known
instance-based time series classifier 1-NN using different distance metrics,
used over all 20 datasets of a public benchmark time series database and
two more public time series datasets. On these benchmark datasets, our
experiments show that the new model-based algorithm has an average
accuracy slightly better than the most efficient instance-based methods,
and there are multiple datasets where our model-based classifier exceeds
the accuracy of instance-based methods. We also evaluated our algorithm
via blind testing on the 20 datasets of the SIGKDD 2007 Time Series
Classification Challenge. To improve the model accuracy and to avoid
model overfitting, we provide forest methods as well.

Keywords: model-based time series classification, decision trees, forest
building methods.

1 Introduction

With the spread of automatic data collection systems, the role of time series has
been increasing in business intelligence applications in the domains of entertain-
ment, industry and of mobile devices. Even though the traditional source of time
series databases is the financial sector, due to the decrease in the pricing of sensors,
more and more time series data are collected from everyday electrical devices.

For example, most new cellular phones and laptops have a gyroscope for
the collection of acceleration data. By processing these time series data, hand
gesture controlled interfaces can be built into many applications. There seems
to have been an increase in the number of time series based applications on the
end-user level. Time series data can also be found in the fields of medicine and
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biology (e.g.: the ECG(electrocardiographic signal)), finance, system monitoring
and logistics.

Naturally, supervised and unsupervised learning tasks also appear connected
to time series data. These data mining tasks can be organized into the following
categories:

1. Data mining of single time series
(a) Next value prediction in time series (e.g. Stock market prediction [3] )
(b) Clustering of segments of the time series (e.g. Time series subsequence

clustering)
(c) Classification of segments of the time series (e.g. Hand gesture recogni-

tion in accelerator data [15])
(d) Motif (similar subsequences) discovery in a longer time series [14]

2. Data mining of multiple time series
(a) Clustering of time series (e.g. Segmentation of customers of an electricity

provider by clustering the time series of their charging)
(b) Classification of time series (e.g. Analyzing heart function by classifica-

tion of ECG signals [2] )

The complexity of this hierarchy can be reduced if we consider the fact that
Points 1.b and 1.c can be incorporated into Case 2. by the segmentation of the
original time series.

The reason for the difficulty of these tasks is rooted in the multi-dimensional
problem space and the special connection between the attributes (element or
values of time series): the sequence of attributes (elements) carries information
about the source entity. In the case of traditional vector-based data representa-
tion, there is no information in the order of attributes, but time series elements,
which are close to each other, have special connection through the dimension of
time. For example, if the values are shifted in a time series by one position (for
example, value of attributes i is replaced by attributes i-1), then the classification
label or cluster ID of the time series will probably stay the same. The effective
algorithms of time series data mining typically have some additional aspect to
handle the effect of this time-dimension structure. Our new method is capable
of considering time level aspects of time series.

Our approach is a novel model-based classification method labeling different
time series by learning from the database with unknown labels. We named this
algorithm ShiftTree. The beneficial properties of the method are the following:

– accuracy level similar to other techniques
– interpretable model
– capable of handling datasets of time series with different lengths
– preprocessing not necessary
– expert knowledge can be built into the modeling process.
– correspondences coded in time dimension can be interpreted

The rest of this paper is organized as follows: Section 2 reviews the time series
classification techniques, Section 4 presents the concept of our novel approach
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ShiftTree, whereas its formal definition is described in Section 5. After the Sec-
tion about interpretability, the Section 6 provides two other techniques to im-
prove the accuracy. Section 7 summarizes the numerical results, finally, Section
8 sums up our experiments.

2 Related Works

Time series specific classification algorithms usually belong to two categories:
instance-based (memory-based) learning methods form hypotheses directly from
the training instances themselves, whereas model-based learning methods create
general coherence by describing the implicit information of training data.

The key aspects of instance-based time series classifiers (e.g. k-nearest neigh-
bor algorithm and its variations) are the representation methods and the
(de)similarity measures. Time series representation techniques deal with the
transformation of the high-dimensional time series data to an other feature space.
The well-known representation methods are the Discrete Fourier Transformation
(DFT) [8] , Singular Value Decomposition (SVD) [8] , Discrete Wavelet Trans-
formation (DWT) [4] etc.

Their main functions are noise filtering and feature extraction. The similarity
measures have more connections to the special attribute structure of time series,
some of them are called elastic measures because they tolerate partial shifting or
spreading of the time series values. Dynamic Time Warping (DTW) [11] and the
edit distance based methods (Longest Common SubSequence(LCSS) [18] , Edit
Distance on Real Sequence (EDR) [6] and Edit Distance with Penalty (EDP)
[5]) are very efficient elastic similarity measures.

Typically, instance-based methods in time series classification provide efficient
and accurate solutions [7] , but the selection of the appropriate representation
method and the similarity measure require difficult cross-validation steps, more
running time and expert knowledge. Extensive experimental comparision of rep-
resentation and simirality measure can be read in [7].

Most model-based methods include some submethods to generate or predict
the time series. For example, a Hidden Markov Model (HMM) can be built on
time series with the same label, thus a time series in the test set is associated
with the class of which HMM has the highest probability to generate the given
time series.[17]. Similarly to this method, an other time series prediction method
can be used in a classification algorithm, in which case the higher accuracy of
the prediction method determines the labeling of the predicted time series. One
member of the most popular and efficient time series prediction method family is
the recurrent neural networks [10]. The classifiers based on these neural networks
are accurate, however, their models are non-interpretable.

Typically, the instance-based method can not handle time series with different
lengths, they require time series with equal lengths, whereas the prediction-based
solutions can handle difference in the length of time series as well.
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3 Classification of Time Series

3.1 Problem Definition

Time series Θ is a structured data, a finite vector of time value and observation
vector pairs (Θ = {< ti, xi >}T

i=1 where xi =< x1
i , x

2
i , . . . , x

m
i >, xj

i ∈ �). The
vector is ordered by the time parameter of its elements (ti ≤ ti+1). In this paper
we concentrate on equally sampled time series where ti+1 − ti equals tj+1 − tj ,
and we assume that ti equals i, so we can simplify Θ to {xi}T

i=1 (i.e. a vector of
observation vectors). Although the ShiftTree is also capable of classifying time
series with multiple observations (i.e. multinomial time series), we concentrate
on a simpler task in this paper: the xi observation vector is replaced by xi

observation scalar. This type of structured data is also called value series in the
literature. In the rest of this paper time series Θ refers to a series of xi values.

In the classification task, we are given a training set of time series with class
labels (TR = {< Θn, Ln >}NTR

n=1 ) and a set of time series with unknown class
labels. The task is to determine the value of the class labels of the elements of
the latter set. The class labels get their values from a finite (and often small)
set of values (Ln ∈ CL = {l1, l2, ..., lNC}). For the evaluation and comparison of
different classifiers, a test set is used (TE = {< Θn, Ln >}NTE

n=1 ). The TR and
TE sets have no common elements.

There are many metrics for evaluating classifiers. In this paper we use accu-
racy. The classifier assigns a predicted class label L̂n to the nth series of the TE
set. We define #hits as the number of correctly predicted class labels and the

accuracy of the classifier as Accuracy = #hits
NT E

=
∑ NTE

n=1 Ind{Ln=L̂n}
NTE

3.2 Notation

– TR → The training set.

• NTR → The number of time series in the training set.
• TR[n] =< Θn, Ln >→ The nth element of the training set, a time series

and class label pair.
• Θn → The nth series in the training set.
• Ln → The class label of the nth series in the training set.

– TE → The test set. The meaning of NTE , TE[n], Θte
n and Lte

n are similar
to NTR, TR[n], Θn and Ln. (The nth series of the TR and TE sets are
distinguished by the superscript te.)

– CL → The set of the possible class labels {l1, l2, ..., lNC}.
• NC → The number of different class labels.

– Θ → A time series.

• Θ[i] → The ith observation value of the time series Θ (i.e. xi).
• T → The length of the time series.
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4 Concept

In this paper we propose a novel decision tree based algorithm called ShiftTree.
In a node of an ordinary decision tree, the data set splitting criteria belongs to
only a certain attribute xi, but in the case of time series, adequate information
is usually not in the same attribute xi for each time series, as it may be found
in an different attribute position for each time series. For example, the global
maximum of time series would be an efficient splitting attribute, but their values
can not be assigned to an exact position i in time series, to a certain attributes
xi, so the approach of vector based attribute representation is not adequate in
this case.

In order to handle these problems, we assign a cursor (or eye) - denoted C - to
every time series. The task of the cursor is to appoint an element of time series,
and it can be interpreted as a position of its time series. This cursor can move
back and forward on the time axis of the time series throughout the duration
of our method. Initially, the cursors are set to the first position/attribute of
the time series (It’s assigned the attribute x1, its value is 1). In our algorithm,
every node of the decision tree has an operation of cursor, for example the
cursor has to move to the next local maximum of time series. The result of
this operation would be different for different time series, so this method has the
possibility of implementing a time-elastic handling of time dimension. Attributes
are computed dynamically using the position of the cursor, the value of the time
series in that position and the surrounding values.

Every node of ShiftTree has an operation of computing the attribute, for
example the attribute is the average of the values in the surroundings of the
cursor with a radius of 5. In this way, each branch of the ShiftTree gives an
interpretable description of the time series. An other important advantage of this
approach is that the expert of the application field can define suitable operations
to create a more accurate model for a specific problem.

The training of the novel decision tree model is based on selecting the ap-
propriate operators (moving of cursor, attribute calculator) for each node. Our
proposed training method is described in Section 5. The accuracy of the model
depends on the set of usable operations from which a node can choose an ap-
propriate one. One of our main goals was to create a general algorithm which
is applicable to different fields, which we will display in Section 7, by using a
basic set of operations to show that the accuracy of the models is satisfying on
severely different time series classification problems. The accuracy can be further
improved by using forest building methods. In section 6 we present two forest
building methods based on boosting and cross-validation.

5 The ShiftTree Algorithm

5.1 The Structure of a ShiftTree Node

The main structure of our proposed algorithm is the ShiftTree, which is similar
to the structure of decision tree algorithms: it is a binary tree with a root node,
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Fig. 1. Structure of a ShiftTree node

the leaf node contains the classification labels and decision points are associated
with the not leaf nodes. As we mentioned above every node of the ShiftTree
contains two operators: the first one describes how to move the cursor, the sec-
ond one describes how to compute a dynamic attribute. The family of the first
operator type is called EyeShifter operator (ESO) the second group is called
ConditionBuilder operator (CBO).

Each node of the ShiftTree can be represented by the following structure of
six elements < ESOj , CBOk, TV, PLabel, ChL, ChR >. ESOj is an EyeShifter
operator selected from a predefined set of ESOs (j ∈ [1..NESO]). An EyeShifter
Operator ESOj describes a shifting mode of a cursor on the given time series. It
is important to understand that an ESOj can shift the cursor on different time
series to different positions. That is why the method can handle time series of
different lengths in one classification task. CBOk is a ConditionBuilder operator
selected from a predefined set of CBOs (k ∈ [1..NCBO]). CBOk generates a
dynamic attribute called Calculated Value (CV ) using the position of the cursor
C, the value of the time series in that position (Θ[C]) and the nearby values. ChL

and ChR are pointers to the left and right subtrees of the current node. If the
node is a leaf then these two values are null. TV is called the threshold value.
If the corresponding attribute of the time series is smaller than TV then the
branch pointed by ChL will be the next one, in other cases the branch pointed
by ChR will process the time series. The function PLabel describes the labeling
information in the node, PLabel(li) returns with the confidence (probability) of
the label li in the given node. The structure of a node is shown in Figure 1.

We present some simple operator examples for both ESO and CBO. The current
position of the cursor is denoted by C, Cnew is the new position of the cursor after
applying the ESO, Cprev is the previous position of the cursor. The parameters of
the operators are predefined, they are not changing during the learning process.
We will show in Section 7 that a ShiftTree can be accurate using only this simple
operator set.
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Operator Examples

– ESONext(ΔT ) → Cnew = min(C+ΔT, T ). Similar operator: ESOPrev(ΔT ).
– ESONextMax(X) → Cnew = (i|Θ[i] > max{Θ[i ± 1]}, C < i,

∑i−1
k=C+1 IΘ[k]>max{Θ[k±1]} = X − 1). Similar operator: ESOPrevMax(X),

ESONextMin(X), ESOPrevMin(X).
– ESOMax(global) → Cnew = argmaxi(Θ[i]). Similar operator:

ESOMin(global).
– ESOMax(sofar) → Cnew = argmaxi=1...C(Θ[i]). Similar operator:

ESOMin(sofar).
– ESOClosestMax → Cnew = min|C−i|(i|Θ[i] > Θ[i − 1], Θ[i] ≥ Θ[i + 1])

Similar operator: ESOClosestMin.
– ESOGreaterMax → Cnew = argmax(Θ[ESONextMax(1)],

Θ[ESOPrevMax(1)]) Similar operators: ESOGreaterMin, ESOLesserMax,
ESOLesserMin.

– ESOMaxInNextInterval(ΔT ) → Cnew = argmaxi=0...ΔT (Θ[C + i]). Sim-
ilar operators: ESOMaxInPrevInterval(ΔT ), ESOMinInNextInterval(ΔT ),
ESOMinInPrevInterval(ΔT ).

– ComplexESO → This operator is a vector of two or more ESOs. It moves
the cursor by its first ESO then by its second ESO and so on.

– CBOSimple → CV = Θ[C]

– CBONormal(μ,σ,X) → CV = average{exp− μ2

2σ2 Θ[C], exp− (|i|−μ)2

2σ2 Θ[C ±
i]|i = 1 . . .X}

– CBOExp(λ,X) → CV = average{λΘ[C], exp−λ|i| Θ[C ± i]|i = 1 . . .X}
– CBOLinear(X) → CV = average{Θ[C], 1

|i|Θ[C ± i]|i = 1 . . .X}
– CBOAVG(X) → CV = average{Θ[C], Θ[C ± i]|i = 1 . . .X}
– CBODeltaT(norm/abs) → CV = C − Cprev or CV = |C − Cprev |
– CBOTimeSensitive(norm/abs) → CV = Θ[C]

C−Cprev
or CV = Θ[C]

|C−Cprev|
– CBO[Average/Variance](sofar/delta)→ Returns the average/variance of the

values {Θ[1], ..., Θ[C]} or {Θ[Cprev], ..., Θ[C]}
– CBO[Max/Min][AVG/VAR/Count](sofar/delta) → Returns the average/

variance/number of the local maximums/minimums in the subseries of
{Θ[1], ..., Θ[C]} or {Θ[Cprev], ..., Θ[C]}.

– CBOMedian(B, F ) → CV = median{Θ[C − B], Θ[C − B + 1], ..., Θ[C], ...,
Θ[C + F − 1]Θ[C + F ]}

5.2 Classification Process

The ShiftTree’s classification process for time series Θ can be written by the
next recursive process (see Algorithm 5.1). The input of the first call has to be
a ShiftTree represented by its root node R and the unlabeled time series Θ and
the initial cursor position (C = 0).

The function ShiftCursor(ESOj , Θ, C) shifts the cursor of time series from
position C to a new one by applying EyeShifter operator ESOj , the function
CalculateV alue(CBOk, Θ, C) calculates a value over time series Θ by using
ConditionBuilder operator CBOk and the cursor position C.
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Algorithm 5.1. Labeling process of the ShiftTree
Input: node R, time series Θ, cursor C
Output: label L ∈ [l1, ..., lNL ] for time series Θ
procedure ShiftTreeLabel(R, Θ, C)

1: R→< ESOj , CBOk, TV, PLabel,ChL, ChR >
2: if R is not a leaf then
3: Cnew ← ShiftCursor(ESOj , Θ, C)
4: CV ← CalculateValue(CBOk, Θ, Cnew)
5: if CV < TV then
6: L← ShiftTreeLabel(ChL, Θ, Cnew)
7: else
8: L← ShiftTreeLabel(ChR, Θ, Cnew)
9: end if

10: else
11: L← argmaxliPLabel(li), li ∈ [l1, ..., lNL ]
12: end if
13: return L

end procedure

5.3 Training Process

The learning process of the ShiftTree is more complicated (see Algorithm 5.2).
The process is defined by the generation method of only one ShiftTree node,
because the training method can be defined as a recursive algorithm. In this
case the input is a training set TR = {< Θn, Ln >}NTR

n=1 . The output of process
is a subtree of the ShiftTree represented by its root node R. The process tries to
find an accurate ESOj , CBOk and TV setting, because this triple determines
a splitting criteria in a given node. The algorithm selects the best splitting
criteria by minimizing the entropy of the child nodes. Note that this is the same
as maximizing the information gain of the splitting. The entropy is defined as
follows:

Ent(TRL, TRR) = −
∑

X∈[L,R]

NX

N

NC∑

i=1

(PXi ∗ log2 PXi) (1)

TRL and TRR are the two sets of time series label pairs. N , NL and NR are
the number of time series in TRL

⋃
TRR, TRL and TRR. PLi and PRi are the

relative frequency of the label li in TRL and TRR. NC is the number of class
labels.

The function StoppingCriteria(PLabels) return true if PLabels(li) = 1 for
a class label value li ∈ CL. We experimented with other stopping criteria
but this one gave the best results on the benchmark datasets. If the node is
not a leaf, every ESOj CBOk pairs are examined by the training algorithm.
ShiftCursor(ESOj , Θ, C) and CalculateV alue(CBOk, Θ, C) are the same as
they were in algorithm 5.1. When the CV s are calculated for all time series
in TR, every sensible threshold value is examined. The easiest way to do this
is to sort the CV s and set TV to be the mean of every two adjacent CV s
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Algorithm 5.2. Recursive learning method of ShiftTree
Input: a set of labeled time series TR = {< Θn, Ln >}NT R

n=1 and their cursors {Cn}NT R
n=1

Output: Node R that represents the newly created subtree of the ShiftTree
procedure BuildShiftTree(TR,{Cn}NT R

n=1 )

1: New node R
2: for all li ∈ CL do
3: PLabels(li)← |{n|Ln=li}|

NT R

4: end for
5: if StoppingCriteria(PLabels) = true then
6: R← leaf
7: else
8: for all ESOj ∈ ESO do
9: for all CBOk ∈ CBO do

10: for n = 1..NTR do
11: Cj,n

new ← ShiftCursor(ESOj ,Θn,Cn)
12: CV j,k,n ← CalculateValue(CBOk,Θn,Cj,n

new)
13: end for
14: [CV j,k,1, CV j,k,2, . . . , CV j,k,NT R ]← Sort([CV j,k

1 , CV j,k
2 , . . . , CV j,k

NT R
])

15: for m = 1..NTR − 1 do
16: TV j,k,m ← (CV j,k

m + CV j,k
m+1)/2

17: TRj,k,m
L ← {Θn|CV j,k,n < TV }

18: TRj,k,m
R ← {Θn|CV j,k,n ≥ TV }

19: Ej,k,m ← Ent(TRj,k,n
L , TRj,k,n

R )
20: end for
21: end for
22: end for
23: < j′q, k

′
q, m

′
q >

Q

q=1
= {< j, k, m > |Ej,k,m = minj,k,mEj,k,m}

24: j′, k′, m′ = argmaxj′q,k′
q,m′

q
H1({CV

j′q,k′
q

n }NT R
n=1 , TV j′q ,k′

q,m′
q )

25: for n = 1..NTR do
26: Cn ← Cj′,n

new

27: end for
28: TRL ← TRj′,k′,m′

L

29: TRR ← TRj′,k′,m′
R

30: CursorsL ← {Cn|Θn ∈ TRL}
31: CursorsR ← {Cn|Θn ∈ TRR}
32: ChL ← BuildShiftTree(TRL,CursorsL)
33: ChR ← BuildShiftTree(TRR,CursorsR)

34: R←< ESOj′ , CBOk′ , TV j′,k′,m′
, PLabels,ChL, ChR >

35: end if
36: return R

end procedure



ShiftTree 57

(line 14 - 19), because by doing so we examine every possible splitting of the TR
set by the current dynamical attribute. Lines 23 - 24 select the best splitting. As
we mentioned above the algorithm selects the splitting which minimizes the en-
tropy of the child nodes. In case of small training datasets, there may be several
< j, k, m > triplets that minimizes the expression in line 23. One should think
that selecting one from equally good triplets is meaningless but our experiments
have shown that the selection can significantly affect the accuracy of the model.
The training set contains no trivial information to distinct these triplets prop-
erly so we rely on heuristics. We defined two similar heuristics that were based
on the fact that the CV j,k,n values should be as far away from TV as possible.
It can be assumed that a member of the test set has lower probability of ending
up on the wrong side of the splitting if the CV s of the element of TRL and TRR

are more distinct. We also had to use some kind of normalization because the
CBOs might work in different range. This can be achieved in many ways, we
found the following heuristic satisfying:

H1({CV j,k
n }NTR

n=1 , TV j,k,m) =
CV j,k

m+1 − CV j,k
m

CV j,k
NT R

− CV j,k
1

(2)

If a triplet < j, k, m > maximizes formula (2), then the CV s of the elements of
TRj,k,m

L and TRj,k,m
R are rather distinct from each other. There may be some

nodes where more than one < j′, k′, m′ > triplets minimize (1) and maximize
(2), but those nodes don’t seem to be significant as they usually have a TR set of
only a couple of time series. In that case the first appropriate triplet is selected.

At the end of the process (lines 25 - 34) we set cursor C to its new position,
split the TR set into two sets (TRL, TRR), create the child nodes using the
same process on the elements of TRL and TRR. Note that Algorithm 5.2 is
for demonstrative purposes only, for example collecting all possible TV s is not
optimal and there are other issues one should consider when implementing this
algorithm. Computational complexity may seem to be high, but a semi-optimal
implementation of the ShiftTree was much faster than 1-NN using Eucledian
distance or DTW.

5.4 About Interpretability

Interpretability is often underestimated but it can be of great importance in
practical applications as most of the users do not trust machine learning algo-
rithms unconditionally. If a model is interpretable, one can check if it learned an
unimportant feature of the data or noise. An other advantage of interpretability
- besides gaining trust of the users - is that we can learn the previously unknown
properties of a problem. If a ShiftTree model is analyzed, special decision sce-
narios can be created by following different branches of the tree. If the ESOs
and CBOs are simple interpretable operations, the experts can be understood
deeper correspondences by considering the cursor scenarios.
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6 Forest Methods for ShiftTree

It is a common method to create different models for a given classification prob-
lem and then combine the output of those model in order to achieve improved
accuracy. The models can be the results of one or many algorithms. Building and
combining only decisions trees is often called forest building. In this section we
briefly introduce two forest approaches which we used to improve the accuracy
of ShiftTree models.

6.1 Boosting

One of the most common methods for combining is boosting [9]. This iterative
method assigns weights to the elements of the training set, trains a model and
assigns a weight to the model, based on its weighted classification error. The
weights assigned to the elements of the training set is also modified in a way
that the weights of the correctly classified elements decrease and the weights of
the rest of the elements increase. The combined output is a weighted vote on
the label. The widely used AdaBoost [9] technique has a precondition that the
weighted classification error of the model must be lesser than 50%. This is the
same error rate as the error of random guessing on a classification problem of
2 classes. Since we tested our algorithm on some problems which have many
classes (up to 50), we selected an other boosting technique that has a less strict
precondition. This boosting technique is called SAMME [19] and requires an
error rate lesser than 100% − 1

NC
which is the same as the error of random

guessing on a problem with NC classes. This method assigns the weight Wm

to the model and increases the weight of the wrongly classified elements. The
weights of the correctly classified elements are not updated but after the update
the sum of all weight is normalized to 1. Like AdaBoost, this method also stops
when the error of the model is 0%. We had to solve the problem that the ShiftTree
often creates a model that fits to the entire training set (in other words, the model
classifies every single element of the training set correctly). We experimented
with many pruning techniques. Every one of them decreased the accuracy of
the models on the test set. In the case of low accuracy the combined models
are better than an accurate single model. We used the common chi-square post-
pruning [16].

6.2 XV Method

This combination technique receives its name after cross-validation. Only a part
of the training set is used for training, the other part serves as a validation set
(V A) on which we measure the predicted accuracy of the model. We assign the
predicted accuracy to the model as the weight of the model. The combined output
is a weighted vote on the label, so this method implements a simple ensambled
method over ShiftTree construction. The two parameters of this method are the
iteration number M and the ratio of the sizes of the V A and (original) TR sets.



ShiftTree 59

7 Numerical Results

In this section we present the results of the ShiftTree on some datasets and com-
pare them to the accuracy of widely used instance-based methods. We examined
both the basic algorithm and the forest building methods. We also did blind
tests that took place in a contest environment and compared our results to the
results of the participants of that competition.

7.1 Datasets and Testing Environment

We used three databases for the evaluation. The first database is one of the
largest publicly available time series databases [13] often used as a benchmark
database. It will be referred to as the UCR database. This database consists
of 20 classification problems (datasets). Each set is originally divided into a
training and a test set. We used these original splits. About half of the training
sets in this database are small. While it is important to check the results of
ShiftTree on these classification problems too, we do not expect high accuracy
on these problems as ShiftTree is a model-based algorithm. The second database
consists of the 2 datasets of the Ford Classification Challenge [1]. These datasets
were originally divided into 3 sets (training, validation, test). We merged the
training and validation sets into a training set by both datasets and used the
test set for testing. This database will be referred to the Ford database. These two
databases were used for the normal testing of our algorithm. The third database
comprises the data of the SIGKDD2007 Time Series Classification Challenge
[12]. This database will be referred to the TSC database. This database consists
of 20 classification problems and the properties of the datasets are similar to the
properties of the UCR database. We used the TSC data for the blind tests. The
properties of the datasets can be seen in figure 2.

As one of our goals was to create a generally accurate algorithm, we decided to
use the same operators for every problem. The description of these operators is
in section 5. The parameters of the operators were also the same by all problems.
The value of the parameters were determined based on the minimal and maximal
length of time series of all datasets. Some operators were used more than once
(with different parameterization). A total of 130 ESOs and 48 CBOs were used,
so 6240 dynamic attributes were considered in each node.

7.2 Results of the Basic ShiftTree

Figure 2 shows the accuracy values for the problems of the UCR and Ford
databases. The weighted accuracy is the number of correctly classified series in
all test sets divided by the number of test samples (i.e. the weights are the sizes
of the test sets). The accuracy of the widely used 1-NN algorithm with both
Euclidian distance and DTW are also shown. We used the results reported on
[13] for 1-NN.

ShiftTree has the highest overall accuracy of the 3 algorithms, but the ranking
of the algorithms at different problems vary. As it is expected from a model based
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Fig. 2. Results of the basic ShiftTree, 1-NN (Euclidian) and 1-NN (DTW). Also con-
tains some basic properties of the datasets.

Fig. 3. Results of the basic ShiftTree, 1-NN (Euclidian) and 1-NN (DTW) on datasets

with greater and lesser |TR|
NC

values than a moving threshold

method, ShiftTree is less effective on smaller datasets. The average accuracy of
the algorithms on smaller/larger datasets are shown on figure 2. We considered
datasets “smaller” if the average number of instances per a class in the training
set ( |TR|

NC
) is lesser than than a threshold value (40). ShiftTree outperforms the

neighbor based algorithms if it is provided with enough samples of every class,
but loses to them if there are only a few samples available. Figure 3 shows the
accuracy of all three algorithms on both “smaller” and “larger” datasets using
different threshold values. At a threshold value Th the datasets of the UCR and
Ford databases were divided into two groups: the ones with lesser |TR|

NC
value than

Th were considered “smaller” an the others “larger”. We computed the weighted
accuracy (all correctly classified test samples divided by all test samples) for both
groups. By increasing the threshold, ShiftTree gains greater advantage on 1-NN
using the “larger” datasets. By lowering the threshold the gap between ShiftTree
and 1-NN widens on “smaller” datasets. This proves our assumption that our
model based approach performs well mostly on larger datasets.

The average running time of the basic ShiftTree (training) algorithm was
6.48 seconds per dataset in case of UCR dataset collection (minimum 0,144
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sec - CBF; maximum 33,99 sec - 50Words). The running times on the larger
FordA and FordB datasets were 200.5 and 173.5 seconds.

7.3 Results of the Forest Methods

We made several experiments with the forest building techniques (described in
6). We found that the accuracy of boosting increases continuously as the number
of iterations is increased. We finally set the number of iterations to 100 which
is an acceptable trade-off between speed and accuracy. The significance level of
pruning was set to 0.01% (strict pruning). Increasing number of iterations by
the XV method did not really affect the accuracy above 20 so we used 20 as the
M parameter. The XV method has another parameter: the size of the validation
set (S). If it is set too low then the variance of the predicted accuracy values
will be high and these accuracies are useless as model weights (because they are
inaccurate). If we set S too high, then the ShiftTree models will be inaccurate as
there are only a few samples for the training. We found 30% to be the optimal
value for S. The results of both methods (using the optimal parameters) and
the basic method can be seen in Figure 4. Boosting seems to be the better

Fig. 4. LEFT: Results of the basic ShiftTree, boosting used 100 iterations and XV used
20 iterations and 30% of the training set as the validation set. A dataset is considered
“smaller” if its training set contains less than 70 series.
RIGHT: Results of the basic ShiftTree and the ShiftForest on the blind test.

forest building technique. But if we look closer, the XV greatly outperforms
boosting on some datasets. The common property of these datasets is that their
training set is small. If we examine the average accuracy on datasets having less
than 70 samples for training (smaller sets), even the basic method outperforms
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boosting by a bit. The reason for this is that even the pruned ShiftTree model fits
perfectly to the small set of training data therefore the boosting stops after one
iteration. Thus we basically get the original ShiftTree algorithm back. XV uses
different training sets that insures to build different models. And by averaging
those models, improved accuracy can be achieved even on smaller datasets. But
XV is much more simpler than boosting so if enough training data is available,
boosting will surpasses XV. We found that “enough” means 70 training samples
by the UCR database. By using the appropriate method for all datasets, an
average accuracy of 93.57% can be achieved.

7.4 Results of the Blind Tests

As we mentioned above, we used the datasets of the SIGKDD2007 Time Series
Challenge to evaluate our algorithm in a blind test. We did one test for the basic
algorithm and one for the best forest method. The parameterization of the basic
method is the same as in the previous subsections. The parameterization of the
forest method is the same as the best parameterization for the UCR datasets: on
datasets having a training set of less than 70 examples, we used XV (M = 20,
S = 30%), on the rest we used boosting with 100 as the number of iterations.
We calculated the points for ShiftTree as it had taken part in the competition:
10 point for a 1st place, 9 for a 2nd and so on. We also modified the points of the
other participants, if the ShiftTree surpassed the accuracy of their algorithms.
The two methods took part in two separate tests (i.e. they were not competing
each other). Figure 4 shows the results.

Out of 12+1 participants basic ShiftTree gained a total rank of 8. We consider
this to be a great success as the operators/parameters were not optimized and
we assume that most of the participants used blended algorithms. Interestingly,
ShiftTree ranked 1st place 5 times out of 20 which is the same amount as the
overall winner has. We think that the reason for this is that ShiftTree is accu-
rate on datasets with greater average training examples per class values. The
ShiftTree forest improves the overall results: it gains one more 1st place as the
overall winner loses one and moves forward to the 6th place of the challenge.

8 Conclusion

We proposed a new model-based time series classifier called ShiftTree, which is
an important advance in this research field because of its unique benefits: thanks
to its model-base approach, the decision tree based model can be interpretable,
this property is infrequent in this data mining domain, where the instance-based
algorithms are overrepresented.

The key aspect of time series classification is the handling of correspondences
of time dimension. Instead of an elastic time approach, we propose a novel at-
tribute indexing technique: a cursor is assigned to each instance of the time series
dataset. By determining the cursor operators, our algorithm can classify with
high accuracy. The supervised learning method of the ShiftTree is an extension
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of the decision tree building methods, where the cursor operator and attribute
calculator modes are designated beyond the splitting value.

The numerical results of 22 datasets of a benchmark collection show that
our algorithm has similar accuracy to other techniques, moreover its accuracy
exceeds the best instance-based algorithms on some datasets. As it is typical
of model-based algorithms, the ShiftTree algorithm can work more efficiently
than the instance-based methods when the size of training dataset is larger. The
proposed forest extension of ShiftTree, the cross-validation based and boosting
techniques are to improve the accuracy level of ShiftTree. The efficiency of the
algorithm can be further enhanced by defining domain specific cursor operators
and attribute calculators, where the specific characteristics of the dataset are
also used.

Although the efficiency of our algorithm is significant in some cases, its impor-
tance lies in the fact, that by novel cursor-based attribute indexing, it can solve
some classification problems which can not be answered by the other model-based
or instance-based methods. We think that this attribute indexing technique is
promising and it can be the base of a novel algorithm family in the future in the
field of time series and spatial data mining.
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