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Abstract A new computer program, called SHIFTX2, is

described which is capable of rapidly and accurately cal-

culating diamagnetic 1H, 13C and 15N chemical shifts from

protein coordinate data. Compared to its predecessor

(SHIFTX) and to other existing protein chemical shift

prediction programs, SHIFTX2 is substantially more

accurate (up to 26% better by correlation coefficient with

an RMS error that is up to 3.39 smaller) than the next best

performing program. It also provides significantly more

coverage (up to 10% more), is significantly faster (up to

8.59) and capable of calculating a wider variety of back-

bone and side chain chemical shifts (up to 69) than many

other shift predictors. In particular, SHIFTX2 is able to

attain correlation coefficients between experimentally

observed and predicted backbone chemical shifts of 0.9800

(15N), 0.9959 (13Ca), 0.9992 (13Cb), 0.9676 (13C0), 0.9714

(1HN), 0.9744 (1Ha) and RMS errors of 1.1169, 0.4412,

0.5163, 0.5330, 0.1711, and 0.1231 ppm, respectively. The

correlation between SHIFTX2’s predicted and observed

side chain chemical shifts is 0.9787 (13C) and 0.9482 (1H)

with RMS errors of 0.9754 and 0.1723 ppm, respectively.

SHIFTX2 is able to achieve such a high level of accuracy

by using a large, high quality database of training proteins

([190), by utilizing advanced machine learning tech-

niques, by incorporating many more features (v2 and v3

angles, solvent accessibility, H-bond geometry, pH, tem-

perature), and by combining sequence-based with struc-

ture-based chemical shift prediction techniques. With this

substantial improvement in accuracy we believe that

SHIFTX2 will open the door to many long-anticipated

applications of chemical shift prediction to protein struc-

ture determination, refinement and validation. SHIFTX2 is

available both as a standalone program and as a web server

(http://www.shiftx2.ca).

Keywords NMR � Protein � Chemical shift �
Machine learning

Introduction

Chemical shifts are often called the mileposts of NMR

spectroscopy. They are easily measured, highly reproduc-

ible spectroscopic parameters that can be readily used to

identify, annotate or locate individual atoms. Chemical

shifts also contain a considerable amount of information

pertaining to a molecule’s covalent and non-covalent

structure. Indeed, their sensitivity to the type and character

of neighbouring atoms has long made chemical shifts a

favourite tool of organic synthetic chemists to help deci-

pher the structure of small molecules. Likewise, their
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sensitivity to a variety of important protein structural fea-

tures has made chemical shifts equally valuable to protein

chemists and biomolecular NMR spectroscopists. In fact,

protein chemical shifts can be used to identify secondary

structures (Pastore and Saudek 1990; Williamson 1990;

Wishart et al. 1991), estimate backbone torsion angles

(Spera and Bax 1991; Wishart and Nip 1998), determine

the location of aromatic rings (Perkins and Dwek 1980;

Osapay and Case 1991), assess cysteine oxidation states

(Sharma and Rajarathnam 2000), estimate solvent exposure

(Vranken and Rieping 2009) or measure backbone flexi-

bility (Berjanskii and Wishart 2005).

While the extraction of approximate structural features

from protein chemical shifts has become almost routine,

the extraction of precise structural features is not. In fact,

the inherently complex geometric, dynamic and electronic

dependencies of protein chemical shifts has made the cal-

culation of precise chemical shifts from protein structures

or the calculation of precise structures from chemical shifts

a significant challenge for more than 40 years (Sternlicht

and Wilson 1967). For the specific task of calculating

chemical shifts from structure (i.e. protein chemical shift

prediction), at least two different routes have emerged. One

is based on using sequence/structure alignment against

chemical shift databases (i.e. sequence-based methods) and

the other is based on directly calculating chemical shifts

from atomic coordinates (i.e. structure-based methods).

Sequence-based methods take advantage of the contin-

uous growth of today’s protein chemical shift databases.

The idea behind predicting shifts via sequence homology

lies in the simple observation that similar protein sequences

share similar structures, which in turn, share similar

chemical shifts (Gronwald et al. 1998; Potts and Chazin

1998; Wishart et al. 1997). The first implementation of this

concept appeared in 1997 in a program called SHIFTY

(Wishart et al. 1997). This relatively simple program takes

an input sequence and uses sequence alignment against the

BRMB (Seavey et al. 1991) or other chemical shift dat-

abases (Zhang et al. 2003) to identify a matching homo-

logue. Once found, the complete set of homologous shifts

of the matching protein is ‘‘assigned’’ to the query protein

using a set of empirically defined rules. Chemical shifts

predicted via sequence homology can be very accurate if a

good homologue is found (Wishart and Nip 1998; Wishart

et al. 1997). A key advantage to sequence-based methods is

that as the chemical shift database (e.g. BMRB) expands,

the predictions tend to improve as the odds of finding a

suitable sequence homologue tends to increase. A key

disadvantage of sequence-based approaches is that no

predictions will be performed if no sequence homologue

can be found.

A more recent extension to standard sequence-based

shift prediction methods is SPARTA (Shen and Bax 2007).

Rather than looking for global similarity, as is done with

SHIFTY, SPARTA assesses similarity over a much smaller

sequence range (just three residues). To predict chemical

shifts for a given query protein, each tripeptide in the query

structure is searched against the SPARTA tripeptide data-

base and scored on the basis of its sequence and torsion

angle (/, w, and v1) similarity. This information is com-

bined with additional structural information (H-bond

effects and ring current effects) to calculate a final set of

chemical shifts. SPARTA and its successor SPARTA?

(Shen and Bax 2010), have proven to be remarkably

accurate, especially for predicting 13C and 15N backbone

shifts.

In addition to these sequence-based methods, a sub-

stantial number of structure-based methods have emerged

over the past 10 years. These include SHIFTCALC

(Iwadate et al. 1999), SHIFTS (Moon and Case 2007; Xu

and Case 2001), CheShift (Vila et al. 2009), SHIFTX (Neal

et al. 2003), PROSHIFT (Meiler 2003) and CamShift

(Kohlhoff et al. 2009). All of these programs calculate

chemical shifts using only protein coordinates as input.

Some methods, such as SHIFTCALC and SHIFTX use

empirically derived chemical shift hypersurfaces or related

structure/shift tables to translate coordinate data into

chemical shifts. Others, such as CheShift and SHIFTS use

quantum mechanical models to generate their atom-specific

chemical shift hypersurfaces. Still others, such as PRO-

SHIFT, use neural network methods (i.e. machine learning)

to predict protein chemical shifts from coordinate data.

CamShift employs an ingenious approach to calculate

chemical shifts using a set of parameterized distance

equations. This makes CamShift’s chemical shift functions

both rapid to calculate and easily differentiable. Having a

differentiable function is particularly useful for chemical

shift refinement via conjugate gradient minimization or

molecular dynamics.

All the aforementioned methods are capable of pre-

dicting protein chemical shifts with reasonably high accu-

racy. As a rule, SHIFTX, SHIFTY, CamShift and SPARTA

generally perform better than PROSHIFT, SHIFTS,

SHIFTCALC and CheSHIFT. Nevertheless, it appears that

sequence-based approaches, under certain circumstances,

perform better than structure-based approaches, and vice

versa. This suggests that by combining the strengths of

both approaches, it may be possible to produce a hybrid

method that exceeds the performance of any single

sequence-based or structure-based method. Here we

describe just such a hybrid method, called SHIFTX2. In

particular, SHIFTX2 combines many of the structure-based

concepts originally introduced in SHIFTX (Neal et al.

2003) with the sequence-based concepts introduced with

SHIFTY (Wishart et al. 1997). By making use of a much

larger and higher quality training set in combination with a
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number of other enhancements (using advanced machine

learning techniques, employing more structural parame-

ters) the performance of the structure-based component

(now called SHIFTX?) was substantially improved.

Likewise by using an improved sequence/shift database

and by making use of local, instead of global, sequence

alignment techniques we were also able to make substantial

improvements to the performance of the sequence-based

component (now called SHIFTY?). By carefully combin-

ing the algorithms for SHIFTX? and SHIFTY? we were

able to create the hybrid program called SHIFTX2.

As shown below, SHIFTX2 is substantially more accu-

rate (up to 26% better by correlation coefficient and an

RMS error that is up to 3.39 smaller) than the next best

performing program. It also provides significantly more

coverage (up to 10% more), is significantly faster (up to

8.59) and capable of calculating a wider variety of back-

bone and side chain chemical shifts (up to 69) than many

other shift predictors. In particular, SHIFTX2 is able to

attain correlation coefficients between experimentally

observed and predicted backbone chemical shifts of 0.9800

(15N), 0.9959 (13Ca), 0.9992 (13Cb), 0.9676 (13C0), 0.9714

(1HN), 0.9744 (1Ha) and RMS errors of 1.1169, 0.4412,

0.5163, 0.5330, 0.1711, and 0.1231 ppm, respectively. The

correlation coefficients between SHIFTX2’s predicted and

observed side chain chemical shifts are 0.9787 (13C) and

0.9482 (1H) with RMS errors of 0.9754 and 0.1723 ppm,

respectively. Additional details about SHIFTX2’s algo-

rithms, its training process, its testing protocols and its

potential applications is provided in the following pages.

Methods

Key to the development of accurate chemical shift pre-

dictors is the creation of high quality chemical shift dat-

abases. For sequence-based methods it is necessary to

develop a large and accurate database of protein sequences

and properly referenced protein assignments. For structure-

based methods it is critical to develop a large and accurate

database of protein structures with correspondingly accu-

rate and comprehensive chemical shift assignments. In

developing the database for our sequence-based method

(SHIFTY?) we used the chemical shift assignments from

RefDB (Zhang et al. 2003). RefDB, which is updated

weekly, currently contains 1903 re-referenced protein

assignments that are automatically extracted and processed

from the BioMagResBank (Seavey et al. 1991).

In constructing the database for our structure-based

method (SHIFTX?) we compiled a preliminary collection

of *300 candidate proteins from a number of sources,

including RefDB (Zhang et al. 2003), the SPARTA training

set17 and the SHIFTX training set (Neal et al. 2003). This

dataset was filtered by selecting only those proteins that

had X-ray structures with a resolution \2.1 Å, that were

largely monomeric, that were free of bound DNA, RNA or

large cofactors and that had mostly ([90%) sequentially

complete 1H, 13C and/or 15N assignments. Note that in

compiling this database, X-ray structures were given

preference over NMR structures. This is because it is

widely acknowledged that most NMR structures do not

achieve the coordinate accuracy or precision of high

quality X-ray structures (Andrec et al. 2007; Berjanskii

et al. 2010; Laskowski et al. 1996; Shen and Bax 2007).

This collection of *250 high resolution X-ray structures

was then analyzed for structural defects using a number of

structure validation programs including VADAR (Willard

et al. 2003), PROSA (Wiederstein and Sippl 2007), and

WHAT_CHECK (Hooft et al. 1996). A separate program

called RefDens (Ginzinger et al. 2010) was used to assess

the quality of the protein side chains in each model. Several

dozen structures were subsequently excluded due to their

poor coordinate geometry or obvious structural defects.

For the remaining structures, we manually matched each

structure with their observed chemical shift record from the

BioMagResBank (Seavey et al. 1991). SHIFTCOR (Zhang

et al. 2003) was used to identify potential chemical shift

referencing problems and to re-reference all observed

chemical shifts to the IUPAC standard—DSS (2,2-dime-

thyl-2-silapentane-5-sulfonic acid) (Wishart et al. 1995b).

PANAV (Wang et al. 2010), CheckShift (Ginzinger et al.

2009) and SHIFTX were also used to check the quality of

the protein chemical shift assignments and to identify

certain types of gross assignment errors (i.e. ‘‘flipped’’

assignments from folded spectra). Within the accepted set

of structures and assignments we further excluded certain

chemical shifts from the dataset that seemed to be extreme

outliers (beyond four standard deviations) based on the

expected shifts of their atom type, residue type or observed

secondary structure. These outliers were identified by

CheckShift (Ginzinger et al. 2009) and PANAV (Wang

et al. 2010). Finally all of the X-ray structures were

‘‘protonated’’ (i.e. H atoms added) using the program

called REDUCE (Word et al. 1999). Consequently, the

final training dataset consisted of 197 high resolution and

high-quality protein structures (with computationally added

hydrogen atoms) which had a total of 140,518 re-refer-

enced backbone chemical shifts and 66,385 re-referenced

side chain chemical shifts. A list of the training set’s pro-

tein names along with their BMRB accession numbers and

PDB identifiers is provided in Table S1. The complete

training data set (coordinates and assignments) is down-

loadable from the SHIFTX2 website.

In addition to this large training set, a separate ‘‘testing’’

dataset was assembled to assess the performance of both

SHIFTX2 and other chemical shift prediction programs.
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This test set was constructed using the same criteria

described above, but with the requirement that the proteins

could not already be in the training or testing sets used by

other programs (SHIFTX2, SHIFTX, SPARTA, CamShift).

This was done to reduce any potential performance bias

towards a single prediction program. The final testing

dataset consisted of 61 high resolution protein structures

corresponding to 47,514 re-referenced backbone chemical

shifts and 24,933 re-referenced side chain chemical shifts.

A list of the test set’s protein names along with their

BMRB accession numbers and PDB identifiers is provided

in Table S2. The complete testing data set (coordinates and

assignments) is also downloadable from the SHIFTX2

website.

To develop our structure-based shift prediction algo-

rithm (SHIFTX?) each protein structure in the training

data set was further processed by VADAR (Willard et al.

2003), SHIFTX (Neal et al. 2003), PROSESS (Berjanskii

et al. 2010) and other in-house programs. These programs

calculate dozens of structural features from protein coor-

dinate data, including backbone torsion angles, side chain

torsion angles, hydrogen bond energies, hydrogen bond

angles, hydrogen bond lengths, solvent exposure, second-

ary structure, etc. In addition to these structural features,

other features pertaining to the pH, temperature and sol-

vents were extracted from each protein’s BioMagResBank

file. Likewise, experimentally derived random coil chem-

ical shifts (Wishart et al. 1995a) and nearest-neighbour

sequence information were also used as input features. In

total, 97 atom-specific, residue-specific and protein-specific

data features were compiled.

From this initial set of features, we applied machine-

learning methods to develop a multiple-regression model

that predicts protein chemical shifts from protein coordi-

nate data. A variety of popular machine learning methods

were tested including Support Vector Regression (SVR),

Support Vector Machine (SVM), M5P/M5Rules, Artificial

Neural Networks (ANNs), Bagging and others. These were

evaluated using the WEKA suite of machine learning tools

(Frank 2004; Hall et al. 2009). We found that while several

machine learning algorithms gave reasonable prediction

accuracy, ensemble methods usually achieved the best

prediction performance. In particular, we found that when

we combined several machine learning methods together,

somewhat higher prediction accuracy could be achieved.

These ensemble methods exploit the advantages of differ-

ent machine learning algorithms (‘‘base learners’’) by

combining them to build a more accurate model. There are

two popular ensemble methods: Bagging (Breiman 1996)

and Boosting (Schapire 1990) or its variants (e.g. Ada-

Boost) (Freund and Schapire 1997; Kotsiantis 2007; Opitz

and Maclin 1999). Bagging trains ‘‘base learners’’ from a

random sample (with replacement) of the original training

dataset and then averages the predictions from all the base

learners to make a final prediction. In contrast, Boosting

trains subsequent base learners on the mistakes of the

previous base learner. Boosting will only use the next base

learner if the previous base learners are uncertain about

their predictions. In SHIFTX?, we combined Boosting

with Bagging. In particular, SHIFTX? uses an additive

regression (a Boosting method) model which employs a

series of Bagging learners as its base learner; each Bagging

learner uses a series of regression trees (i.e. the REPTree

method) as its base learners (see Fig. 1). Therefore

SHIFTX?’s architecture consists of six models for pre-

dicting backbone shifts and 34 models for predicting side

chain shifts. The total number of side chain models used by

SHIFTX? was dictated by the number of shifts available

for training (a minimum of 100). Too few shifts were

available for 9 side chain 15N atoms, eight 1H atoms

(HD21, HD22, HE21, HE22, HH11, HH12, HH21 and

HH22) and four carbon atoms (CE3, CH2, CZ2, CZ3).

Once the optimal machine learning method was identi-

fied, SHIFTX? was then further refined through a process

known as feature selection. In machine learning, a high

quality feature set is particularly important for improving

the accuracy of any given predictor. Generally speaking,

optimal accuracy may only be obtained by retaining the

most important features. To select the best input features,

we initially used as many features as possible to train our

predictor. We then progressively examined each feature

and retained it only if the exclusion of such a feature

decreased the prediction accuracy of the model. This fea-

ture selection process was repeated several times using

different orderings of input features. From this initial set of

97 features, our feature selection process reduced this list

to a final set of 63 ‘‘useful’’ features. These features are

listed in Table S3 (which is also available on the SHIFTX2

website). The performance of the final version of

SHIFTX? was assessed against both its training set (via

tenfold cross-validation) and the testing dataset. This was

done to determine the robustness of the predictor and to

check if any over-training had occurred.

As noted earlier, SHIFTX2 is composed of two com-

ponents, a structure-based component (SHIFTX?) and a

sequence-based component (SHIFTY?). SHIFTY? is

essentially an enhanced version of SHIFTY (Wishart et al.

1997). Both SHIFTY and SHIFTY? predict 1H, 13C and
15N chemical shifts based on sequence matching and

alignment of a query protein against a database of previ-

ously assigned proteins (RefDB or BMRB). Sufficiently

high scoring matches ([40% sequence identity) are aligned

together and the chemical shifts of the database pro-

tein(s) are transferred to the chemical shifts of the query

protein using appropriate residue-specific corrections. In

developing SHIFTY?, a number of improvements were
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made including the use of BLAST (Altschul et al. 1990) to

identify sequence matches instead of the slower Needle-

man-Wunsch algorithm, the expansion of the chemical

shift database by a factor 27.5% to include 1,903 assigned

proteins, the correction of numerous chemical shift refer-

encing errors in the database (via CheckShift and SHIFT-

COR), and the elimination of erroneous or questionable

assignments among the reference database’s collection of

shifts (via PANAV and CheckShift).

Sequence-based methods tend to outperform structure-

based methods, especially when a good homologue is found

(Wishart and Nip 1998; Wishart et al. 1997). However, if no

suitable homologue exists sequence-based methods will

obviously do much worse than structure-based methods.

Even when homologues are found, sequence-based methods

make a potentially dangerous assumption that the structure

of the matching homologue is always similar to the query

protein. This is not always true. In NMR it is certainly

possible to have identical sequences but completely

different chemical shifts (i.e. folded and unfolded versions

of the same protein). In these (rare) situations sequence-

based methods cannot distinguish whether the folded or

unfolded form is correct. Likewise, sequence-based methods

are not sensitive to subtle conformational changes arising

from mutations, deletions, structure refinement or the exis-

tence of ‘‘excited’’ states that are conformationally different

from the database’s homologues. On the other hand, struc-

ture-based methods are not limited by these kinds of con-

straints. Therefore, by intelligently combining structure-

based methods (SHIFTX?) with sequence based methods

(SHIFTY?) we should be able to exploit the high prediction

accuracy of sequence-based methods with the broad pre-

diction coverage of structure-based methods.

To properly combine output from SHIFTX? and

SHIFTY?, we compared their relative performance using

various sequence identity cut-offs. It was determined that

using a 40% (or above) sequence identity cut-off for

SHIFTY? consistently generated more accurate

Fig. 1 A flow chart explaining

the design of the SHIFTX2

program
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predictions than SHIFTX?. Therefore in the combined

SHIFTX2 program, any SHIFTY? prediction derived from

a homologue having [40% sequence identity is combined

with any shift predictions from SHIFTX?. Below this

sequence cutoff, no SHIFTY? data is used in making a

chemical shift prediction. SHIFTX2 combines the predic-

tions of SHIFTX? and SHIFTY? according to the mag-

nitude of the atom-by-atom difference between their

predictions. When the difference is sufficiently small,

SHIFTY? overrules SHIFTX?; otherwise the predictions

are combined in a simple linear fashion with increasing

weight for SHIFTX? predictions as the difference grows.

This combination rule is given by the following equations:

d ¼ jdSHIFTXþ � dSHIFTYþj
rDd

ð1Þ

w ¼
0 if d� SDmin

ðd=SDmaxÞ2 if SDmax [ d [ SDmin

1 if d� SDmax

8
><

>:
ð2Þ

dSHIFTX2 ¼ w� dSHIFTXþ þ ð1� wÞ � dSHIFTYþ ð3Þ

where rDd is the standard deviation (calculated using the

SHIFTX? training dataset) of the observed secondary

chemical shift for a given atom type; d represents the dif-

ference between SHIFTX? and SHIFTY? predictions

versus the standard deviation; and SDmin and SDmax are

two parameters controlling the weight w we assign to the

SHIFTX? predictions. We experimented with various

values of SDmin and SDmax ranging from 0.5 to 5 in

increments of 0.5. From these tests we found that the best

prediction results were achieved with SDmin = 0.5 and

SDmax = 1.5. The resulting blended program (SHIFTX2)

is able to function much like a structure-based chemical

shift predictor. Hence when a protein structure is com-

pletely unfolded, SHIFTX2 biases itself towards SHIFTX?

predictions (large differences between SHIFTX? and

SHIFTY? predictions); whereas when the protein is near its

native structure, SHIFTX2 biases itself towards using

SHIFTY? predictions (small differences between SHIFTX?

and SHIFTY? predictions).

SHIFTX2 was written in C, Java and Python is available

as a standalone program, as an online web server and as a

VMWare version. All of these versions are available at

http://www.shiftx2.ca. SHIFTX2 has been compiled and

tested on Ubuntu Linux 10.04LTS; however, if properly

configured, the SHIFTX2 program should run under most

UNIX-like environments including Debian/GNU and

Mandriva Linux, openSUSE, OpenSolaris, OpenBSD and

Mac OS X. Despite having many more computationally

intensive components than the original SHIFTY or

SHIFTX programs, a number of code optimizations were

also implemented to make SHIFTX2 sufficiently fast so

that it could be used in chemical shift refinement or

incorporated into chemical-shift-based structure generation

programs such as CS23D (Wishart et al. 2008), CSRosetta

(Shen et al. 2008) or GeNMR (Berjanskii et al. 2009)

without any loss in speed.

Results and discussion

Assessment criteria

To fully assess SHIFTX2, we initially studied the perfor-

mance of each of its component programs (SHIFTX? and

SHIFTY?). First, we evaluated SHIFTX? on its training

(197 proteins) dataset using tenfold cross validation. This

was done to test the general robustness of the predictor.

Second, we evaluated SHIFTX? on a separate testing (61

proteins) dataset. This was done to obtain an independent

measure of SHIFTX?’s performance. Third we evaluated

SHIFTY? on the combined training/testing dataset (235

unique proteins) by excluding any exact database matches

from the SHIFTY? predictions. The exclusion of exact

database matches was done to avoid predicting chemical

shifts for proteins that had already been assigned and to

simulate more realistic prediction scenarios. These results

were used to assess SHIFTY?’s performance relative to

SHIFTX? and to get an estimate of its coverage (i.e. rate

of prediction). Fourth, we assessed SHIFTY? on the full

set of proteins in RefDB (1,903 proteins) to obtain a more

precise estimate of SHIFTY?’s expected coverage or

probability of prediction for any new query protein.

After obtaining estimates of the performance and cov-

erage of the component programs we then evaluated

the performance of the combined program—SHIFTX2.

This assessment involved comparing the performance

of SHIFTX2 to its component parts (SHIFTX? and

SHIFTY?) and to other state-of-the-art protein chemical

shift predictors (SHIFTX, CamShift, SPARTA, PRO-

SHIFT, SHIFTS, SPARTA ?) using our independent test

set of 61 proteins. All seven programs were evaluated on

the basis of: (1) their correlation coefficients (between

observed and predicted shifts); (2) their root mean square

deviation (RMSD) or RMS error; (3) their coverage (pro-

portion of proteins or residues in the test set that were

predicted); (4) their comprehensiveness (number of atoms

or atom types predicted); and (5) their speed (CPU seconds

or processing time to return an answer).

Component testing

Table S4 (also available on the SHIFTX2 website) shows

the correlation coefficients and RMSDs of the backbone

chemical shifts achieved for SHIFTX? both for the

48 J Biomol NMR (2011) 50:43–57
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training dataset and the testing dataset. As noted earlier, the

training dataset performance was assessed using cross-

validation. Cross-validation is a standard method in

machine learning for evaluating almost any prediction

model. In tenfold cross validation, 10% of data is randomly

extracted to test a model from the training set, the algo-

rithm is trained on the remaining 90% data and then

evaluated on the test set. This process is repeated ten times

and the results are averaged. If the algorithm has not been

over-trained, the performance for the tenfold cross vali-

dation should match closely with performance on the

independent test set. As seen in Table S4, this is indeed the

case. This result certainly gives us a high level of confi-

dence that the SHIFTX? algorithm is robust and that the

regression model has not been over-trained. Overall,

SHIFTX? is able to attain correlation coefficients (R) of

0.9149, 0.9842, 0.9970, 0.8939, 0.8103, and 0.9226 for
15N, 13Ca, 13Cb, 13C0, 1HN, 1Ha shifts with corresponding

RMS errors of 2.2878, 0.8743, 1.0099, 0.9945, 0.4356, and

0.2152 ppm, respectively. Table S5 (also available on the

SHIFTX2 website) shows SHIFTX?’s prediction accuracy

for side chain atoms. The correlation coefficients between

SHIFTX?’s predicted and observed side chain chemical

shifts are 0.9769 (13C) and 0.9321 (1H) with RMS errors of

0.9903 and 0.2238 ppm, respectively.

Because SHIFTY? is not based on machine learning

techniques but on sequence alignment, its performance can

be assessed much more simply. Table S6 (see the

SHIFTX2 website) provides the prediction accuracy data

for SHIFTY? for the 235 non-redundant proteins in the

training and testing datasets. As noted before, exact mat-

ches of the database proteins to the query protein were

excluded from the performance calculations to simulate

more realistic prediction scenarios. This ‘‘forced’’

SHIFTY? to predict shifts using only homologous proteins

or protein fragments. Using a sequence identity cutoff of

40%, we found that up to 74.5% (175/235) of the proteins

could have at least one class of chemical shifts predicted by

SHIFTY?. Because there is considerable variability in the

type and number of protein assignments deposited in

chemical shifts databases (some report on 1H shifts, others

report only 13C shifts and still others report all shifts), there

will naturally be some variability in the chemical shift

coverage that SHIFTY? can achieve. In particular,

SHIFTY?’s coverage ranged from a low of 38% (for HE3)

to a high of 74% (for 1HN), with an average of 57% over

all atom types. This means that SHIFTY? was able to

generate nearly complete assignments for about 57% of the

query proteins or, alternately, that SHIFTY? predicted

shifts for 57% of the residues it processed. For those

chemical shifts that SHIFTY? did predict in the 235 pro-

tein testing/training set, it achieved correlation coefficients

between predicted and observed backbone chemical shifts

of 0.9800, 0.9925, 0.9991, 0.9638, 0.9610, and 0.9677 for
15N, 13Ca, 13Cb, 13C0, 1HN, 1Ha atoms with corresponding

RMS errors of 1.1352, 0.6127, 0.5562, 0.5784, 0.2097, and

0.1411 ppm, respectively. The correlation coefficient

between SHIFTY?’s predicted and observed side chain

proton chemical shifts was 0.9628 (1H) with and RMS

error of 0.1393 ppm. The performance for SHIFTY? was

slightly better for the 61 protein testing dataset (for which it

predicted shifts for 46 proteins). In particular, SHIFTY?

achieved correlation coefficients between predicted and

observed backbone chemical shifts of 0.9974, 0.9991,

0.9999, 0.9961, 0.9964, and 0.9882 for 15N, 13Ca, 13Cb,
13C0, 1HN, 1Ha atoms with corresponding RMS errors of

0.4115, 0.2087, 0.2136, 0.1847, 0.0630, and 0.0845 ppm,

respectively. While the coverage of SHIFTY? is certainly

not as comprehensive as SHIFTX?, it is clear that for the

*57% of residues it could predict, SHIFTY? is somewhat

more accurate.

Expanding the SHIFTY? testing dataset to include all

1903 proteins in the RefDB/BMRB database revealed that

very similar levels of coverage and accuracy could be

obtained. In particular a total of 1,270 out of 1,903 proteins

(66.7%) could have at least one class of backbone and/or

side chain chemical shifts predicted by SHIFTY?. Aver-

aged over all atom types, SHIFTY? achieved a residue

coverage of 55%. In terms of protein coverage (76% vs.

67%) or residue coverage (57% vs. 55%) these numbers are

almost identical to those found with the smaller (235 pro-

tein) testing/training set. Likewise, as seen in Table S7, the

correlation coefficients and RMS errors for the backbone

and side-chain shifts are essentially identical to those seen

in Table S6. These data suggest that sequence-based

methods should routinely work about 70% of the time for

any new query protein. Assessing SHIFTY?’s perfor-

mance with different sizes of the RefDB showed a clear

correlation between the size of the reference database and

the level of coverage as well as the quality of the predic-

tions (see Table S8 and the SHIFTX2 website for more

details). Based on the size and current growth rate of the

BMRB and RefDB (about 300 proteins/year) we expect

that the proportion of proteins predictable by SHIFTY?

should climb at a rate of about 3–5% per year. This cov-

erage projection was calculated by fitting the data in Table

S8 to the following equation: Coverage = 0.84 - 390/

NRefDB ? 45,000/(NRefDB
2 ) where NRefDB is the number of

proteins in RefDB.

Comparative performance of SHIFTX2

To evaluate the performance of SHIFTX2 relative to its

two component programs (SHIFTX? and SHIFTY?) we

used all three programs to calculate correlation coefficients

and RMS errors for both the backbone and side chain
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chemical shifts on the full testing dataset of 61 proteins.

The results are summarized in Fig. 2 and Table S9 (see the

SHIFTX2 website). From these data it is clear that

SHIFTX2 achieves higher correlation coefficients and

lower RMS errors than SHIFTX?. In fact, for the complete

set of 235 proteins, SHIFTX2 achieves correlation coeffi-

cients of 0.9800, 0.9959, 0.9992, 0.9676, 0.9714, and

0.9744 for 15N, 13Ca, 13Cb, 13C0, 1HN, and 1Ha shifts with

RMS errors of 1.1169, 0.4412, 0.5163, 0.5330, 0.1711, and

0.1231 ppm, respectively.

Relative to SHIFTX?, SHIFTX2 routinely performs

about 6% better (as measured by correlation coefficients),

with the highest performance gain being seen for amide
1HN shifts (17.8%). For those proteins (*46) where

SHIFTY? is able to make predictions, the performance of

SHIFTY? and SHIFTX2 is identical. However, when the

performance of SHIFTX2 for the complete set of 61 pro-

teins is compared to the performance of SHIFTY? for its

partial set of 46 proteins, SHIFTX2 performs only slightly

worse (*1.3% as measured by average correlation coef-

ficient). On the other hand, SHIFTX2’s coverage

(percentage of proteins or residues predicted) is more than

24% greater than SHIFTY?’s coverage. These data clearly

show that SHIFTX2 is superior to both SHIFTX? and

SHIFTY?.

To compare the performance of SHIFTX2 with other

state-of-the-art shift predictors, we ran our test dataset of 61

proteins on six publicly available chemical shift prediction

programs or web servers, including SHIFTS, SHIFTX,

PROSHIFT, CamShift, SPARTA and SPARTA?. All seven

programs were evaluated on the basis of: (1) their correlation

coefficients (between observed and predicted shifts); (2)

their root mean square deviation (RMSD); (3) their coverage

(proportion of proteins or residues in the test set that were

predicted); (4) their comprehensiveness (number of atoms or

atom types predicted); and (5) their speed (CPU seconds or

processing time to return an answer).

The performance (correlation coefficient and RMSD) of

all seven chemical shift predictors for backbone chemical

shifts is shown in Fig. 3 and Table 1. To simplify the

comparisons between programs, the 1Ha shifts of glycine

were averaged (both predicted and observed) and incor-

porated into the 1Ha evaluation. Based on these perfor-

mance assessments, the programs appear to fall into three

categories. SHIFTS and PROSHIFT form one group,

SPARTA, SPARTA?, CAMSHIFT and SHIFTX form

another group and SHIFTX2 seems to stand on its own.

Overall, SHIFTX2 is substantially more accurate (up to

26% better by correlation coefficient with an RMS error

that is up to 3.39 smaller) than the next best performing

program. SHIFTX2 appears to be particularly good at

predicting proton and nitrogen chemical shifts. This may be

due to its use of sequence-based prediction methods and its

integration of more detailed descriptors or features asso-

ciated with hydrogen bond geometry. For those proteins in

the test set (*75%) that had sequence homologues in

RefDB, SHIFTX2 did somewhat better (*5% in terms

of correlation coefficient) than for those that didn’t

have homologues. Given this performance differential,

SHIFTX2 ‘‘flags’’ those proteins for which it has identified

a sequence homologue so that users can easily differentiate

chemical shift predictions that will be slightly better than

average. Nevertheless, as we showed earlier, this overall

performance appears to accurately reflect the ‘‘average’’

result for a SHIFTX2 prediction as the average query will

have *70% probability of being homologous to at least

one protein in the RefDB database. Indeed it might be

argued that these numbers underestimate the true perfor-

mance of SHIFTX2 because a significant number of pro-

teins that are being solved today are identical or highly

homologous to previously solved proteins.

While most state-of-the-art protein chemical shift pre-

dictors predict backbone chemical shifts, only four attempt

to predict a subset of side chain shifts (SHIFTX, SHIFTX2,

Fig. 2 The backbone chemical shift prediction performance of

SHIFTX?, SHIFTY?, and SHIFTX2 as evaluated on a test of 61

protein structures using correlation coefficients (a) and RMS error

(b). The statistics for SHIFTY? were calculated using 46, 46, 44, 39,

46, and 39 homologous proteins for 15N, 13Ca, 13Cb, 13C0, 1HN, and
1Ha shifts, respectively
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SHIFTS and PROSHIFT) and only two attempt to predict

all possible side chain shifts (SHIFTX2 and PROSHIFT).

Given the enormous amount of structural information

contained in side chain chemical shifts (especially with

respect to the influence of ring current effects and other

long-range effects) it is surprising that more effort is not

directed towards studying this class of chemical shifts.

Indeed, ignoring side chain chemical shifts for proteins is a

bit like ignoring side chain NOEs. Certainly most protein

structures could not be solved or at least solved accurately

without the inclusion of side chain NOEs. Similarly any

effort directed at refining or solving protein structures

using only backbone chemical shifts would no doubt lead

to somewhat middling or ambiguous results.

Table 2 presents the correlation coefficients and RMS

errors for the complete set of 27 measurable (1H and 13C)

side chain chemical shifts as well as the two 1Ha shifts for

glycine calculated via PROSHIFT, SHIFTS, SHIFTX and

SHIFTX2. The average correlation coefficient for 13C side

chain chemical shifts calculated via SHIFTX2 is 0.9783,

versus 0.9560 via PROSHIFT. More importantly, the

average RMS error for 13C side chain chemical shifts

calculated via SHIFTX2 is just 0.9614 ppm, versus

2.6308 ppm via PROSHIFT. Likewise the average corre-

lation coefficient for 1H side chain chemical shifts calcu-

lated via SHIFTX2 is 0.9504, versus 0.8785 (PROSHIFT),

0.8786 (SHIFTX), or 0.8602 (SHIFTS—excluding the 18%

of shifts that SHIFTS could not predict). Based on these

numbers it is clear that SHIFTX2 is between 2 and 9%

better (by correlation coefficient) and between 1.69 and

2.79 better (by RMS error) than SHIFTX, SHIFTS or

PROSHIFT.

In addition to comparing or assessing the accuracy (via

correlation and RMSD) of these different chemical shift

predictors, it is also important to assess their coverage

(proportion of proteins or residues that could be predicted),

their comprehensiveness (number of atoms or atom types

predicted) and their speed (CPU seconds or processing time

to return an answer). Somewhat surprisingly we found that

a number of popular programs were unable to make pre-

dictions for a significant number of residues or protein

structures (Table 3). For example, SHIFTS typically makes

Fig. 3 Bar graphs showing the correlation coefficients (a) and

RMSD (b) between the observed and predicted backbone chemical

shifts as measured for seven different chemical shift prediction

programs using a standard test set of 61 proteins

Table 1 Summary of the performance (correlation coefficients and RMSD) for predicted backbone shifts for seven different chemical shift

predictors using a test set of 61 proteins

Program 15N correlation

(RMSD)

13Ca correlation

(RMSD)

13Cb correlation

(RMSD)

13C0 correlation

(RMSD)

1HN correlation

(RMSD)

1Ha correlation

(RMSD)

SHIFTX 0.8820 (2.6593) 0.9758 (1.0746) 0.9957 (1.1733) 0.8384 (1.1724) 0.7073 (0.5190) 0.8875 (0.2533)

SPARTA 0.8985 (2.5141) 0.9814 (0.9418) 0.9968 (1.0107) 0.8763 (1.0222) 0.5960 (0.5845) 0.8012 (0.3336)

SPARTA? 0.8864 (2.7054) 0.9774 (1.0893) 0.9962 (1.0975) 0.8497 (1.1795) 0.5133 (0.6357) 0.8472 (0.3124)

CamShift 0.8636 (2.8236) 0.9744 (1.1035) 0.9959 (1.1442) 0.8632 (1.0697) 0.7143 (0.5060) 0.8926 (0.2474)

SHIFTS 0.7622 (4.4087) 0.9659 (1.2849) 0.9937 (1.4285) 0.6928 (1.7439) 0.5127 (0.6301) 0.8413 (0.2989)

PROSHIFT 0.8273 (3.1527) 0.9368 (2.5713) 0.9900 (2.6842) 0.7941 (2.3260) 0.5742 (0.5928) 0.7847 (0.3439)

SHIFTX2 0.9800 (1.1169) 0.9959 (0.4412) 0.9992 (0.5163) 0.9676 (0.5330) 0.9714 (0.1711) 0.9744 (0.1231)

Note that not all programs were able to generate complete predictions, so only those shifts that were produced by these predictors were used in

their evaluation
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no predictions for about 10% of backbone 1H atoms and

18% of side chain 1H atoms. CamShift makes no predic-

tions for about 5% of backbone atoms while SPARTA and

SPARTA? make no predictions for about 2 and 0.03% of

backbone atoms, respectively. Given the variability in PDB

file structures and the difficulty in writing robust PDB file

parsers, a small percentage of file reading errors is not

entirely unexpected. In other cases, it appears that the

programs were specifically designed to ignore certain res-

idues or atom types. Table 3 describes the chemical shift

coverage, both in terms of the number of shifts and the

number of proteins that could be analyzed by each of the

seven programs used in this study. As seen in this table,

only SHIFTX and SHIFTX2 achieve near 100% coverage.

Note that for the performance comparisons given in

Tables 1 and 2, we used only the atoms, residues and/or

proteins in the 61-protein test set where all seven programs

were able to calculate a chemical shift. Certainly if the

unpredicted (i.e. null) shifts were included in the calcula-

tions shown in Tables 1 and 2 then the relative perfor-

mance of SHIFTX2 against most other programs would be

somewhat better than reported.

Table 4 summarizes the comprehensiveness (number of

atom types predicted) and the computational speed (limited

to backbone shifts) of each of the seven different chemical

shift predictors. In terms of comprehensiveness, only

SHIFTX2 and PROSHIFT provide complete coverage (all

40 atom types). SHIFTS and SHIFTX provide coverage for

Table 2 Correlation coefficients and RMSDs between observed and predicted side chain chemical shifts (29 different atom types) for four

different chemical shift prediction programs as measured for a test set of 61 proteins

ATOM Correlation coefficient RMSD No. of shifts

SHIFTSa SHIFTX PROSHIFT SHIFTX2 SHIFTSa SHIFTX PROSHIFT SHIFTX2

CD 0.9993 0.9998 2.473 0.625 750

CD1 0.9993 0.9997 2.739 1.227 990

CD2 0.9991 0.9996 3.104 1.417 629

CE 0.9758 0.9987 2.739 0.420 343

CE1 0.9398 0.9900 3.366 1.057 270

CE2 0.8800 0.9900 3.842 0.907 178

CG 0.9977 0.9995 2.559 0.788 1703

CG1 0.8851 0.9565 2.488 0.967 603

CG2 0.8131 0.8761 1.832 1.105 856

CZ 0.9794 0.9932 3.862 1.289 125

HA2 0.4691 0.3485 0.7175 0.452 0.381 0.245 411

HA3 0.3861 0.0889 0.6460 0.455 0.409 0.263 396

HB 0.9797 0.9748 0.9661 0.9939 0.242 0.243 0.274 0.117 1,421

HB2 0.9266 0.9328 0.9161 0.9817 0.295 0.271 0.299 0.142 3,385

HB3 0.9213 0.9253 0.9084 0.9785 0.302 0.295 0.325 0.156 3,206

HD1 0.9947 0.7787 0.9953 0.9975 0.204 0.222 0.299 0.212 1,125

HD2 0.9949 0.9754 0.9932 0.9968 0.239 0.387 0.282 0.190 1,468

HD3 0.9677 0.9560 0.9531 0.9849 0.274 0.283 0.290 0.163 633

HE 0.7937 0.9802 0.9860 0.9882 0.180 0.523 0.435 0.401 144

HE1 0.9183 -0.1186 0.9527 0.9639 0.511 1.209 0.346 0.302 427

HE2 0.9946 0.5172 0.9936 0.9978 0.217 0.167 0.227 0.134 568

HE3 0.9928 0.4448 0.9924 0.9946 0.193 0.210 0.208 0.195 290

HG 0.5850 0.6407 0.3659 0.6304 0.274 0.250 0.293 0.242 386

HG1 0.6323 0.5581 0.1963 0.7070 0.230 0.226 0.211 0.151 349

HG12 0.4599 0.4545 0.1537 0.4514 0.397 0.398 0.396 0.362 284

HG13 0.3506 0.3022 0.1688 0.5004 0.495 0.602 0.439 0.368 266

HG2 0.9439 0.9480 0.9209 0.9760 0.234 0.217 0.262 0.144 2,213

HG3 0.8595 0.8904 0.8611 0.9576 0.275 0.248 0.262 0.144 1,184

HZ 0.7412 0.2638 0.6009 0.308 0.373 0.315 136

a SHIFTS failed to generate side chain shift predictions for about 20% of the residues in the 61 protein test set. These were excluded from the

calculation of SHIFTS’ performance
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78 and 68% (respectively) of all atom types while SPARTA/

SPARTA? and CamShift provide coverage for only 15% of

all atom types.

In terms of computational speed, there is obviously con-

siderable variability among the seven programs. SPARTA

appears to be the slowest program, with an average speed of

17.92 s per 100 residues. PROSHIFT is the next slowest

(12.87 s per 100 residues) while SHIFTS is approximately

four times faster with an average speed of 3.66 s per 100

residues. The fastest program is SHIFTX, which averages

0.59 s per 100 residues. Of the seven programs, SHIFTX2

appears to be the third fastest program with an average speed

of 2.10 s per 100 residues. All of the computational speed

tests for SPARTA, SPARTA?, SHIFTS, CamShift,

SHIFTX and SHIFTX2 were performed on the same com-

puter (an Intel CoreTM2 Duo CPU 1.83 GHz processor with

1.6 GB RAM) using the same set of proteins. The calculation

speed reported for PROSHIFT is based on the response rate

of its web server. Without knowing the architecture of the

PROSHIFT server it is difficult to know whether PROSHIFT

numbers are comparable to the values generated on our test

CPU processor.

Influence of different parameters on different chemical

shifts

One of the goals of this study was to identify which protein

structural parameters appear to most significantly influence

the chemical shifts seen for specific nuclei. Our earlier

work in 2003 identified a number of structural factors for
1H, 13C and 15N backbone shifts and ranked them in a

qualitative fashion (Wishart et al. 1997). This early study

highlighted the importance of ring currents in determining
1H shifts and the influence of nearest-neighbour interac-

tions in determining 15N shifts. Since this study was first

published a number of other structural parameters per-

taining to torsion angles and hydrogen bond geometry

(kappa and theta angles) have been determined to influence

chemical shifts. To quantify the impact of these and other

factors in our structure-based model of chemical shifts we

conducted a simple leave-one-out feature analysis. Spe-

cifically, by removing a single feature at a time from the

SHIFTX? model and quantifying the increase that this

missing feature brings to the predictor’s RMS error it is

possible to estimate the importance of this feature to the

predictor. To get a more robust, quantitative assessment of

the impact of each feature, we then averaged the RMS

change using tenfold cross validation. Table 5 lists the top

20 most influential features for each backbone nucleus.

Table S10 (see the SHIFTX2 website) provides the

weighting for all features for each backbone nucleus. As

might be expected, the most influential features for proton

chemical shifts were found to be backbone torsion angles,

ring currents, electric field effects and hydrogen bonding

effects while for carbon and nitrogen shifts, the most

Table 3 Level of backbone chemical shift coverage for seven different chemical shift prediction programs using the standard test set of 61

proteins consisting of 55,493 predictable shifts. The HA2 and HA3 shifts for glycine were reduced to a single average shift to permit comparison

between all programs

Program Prediction No. of expected

shifts

Coverage rate

(for 55,493 atoms) (%)
No. of PDB No. of shifts

SHIFTX 61 55,493 55,493 100.00

SPARTA 61 54,421 98.07

SPARTA?a 61 55,476 99.97

CamShift 60 52,793 95.13

SHIFTS 60 (C,CA,CB,N)

49 (H,HA)

49,812 89.76

PROSHIFT 61 55,381 99.80

SHIFTX2 61 55,493 100.00

a SPARTA? failed to predict shifts for 29% of residues when run on various Linux operating systems (tested on several versions of Ubuntu,

Fedora, and Unix). However, it performed flawlessly when run on Mac OS X

Table 4 Comprehensiveness (number of atom types predicted) and

the computational speed (limited to backbone shifts) of the seven

different chemical shift predictors

Program No. of atom types

predicted

Speed (seconds/100

residues)

SHIFTX 27 0.59

SPARTA 6 17.92

SPARTA? 6 2.47

CamShift 6 0.91

SHIFTS 31 3.66

PROSHIFT 40 12.82

SHIFTX2 40 2.10
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influential features are the backbone and side chain dihe-

dral angles.

Assessing SHIFTX2 for chemical shift refinement

One of the main drivers for developing better protein

chemical shift predictors has been the hope that they could

be routinely used in protein structure determination and

protein structure refinement. Obviously, the faster and more

accurate a chemical shift predictor can be, the better it would

be at refining or defining protein structures. To evaluate

SHIFTX2 in the context of protein structure refinement, we

simulated the structure refinement process by generating 15

randomly perturbed structures for ubiquitin (PDB entry

1UBQ) by progressively altering the backbone //w angles of

the native protein. This led to the creation of 16 different

ubiquitin-like structures ranging from a completely unfol-

ded structure (structure #1, with an RMSD between the

native structure of 68.9 Angstroms) to the properly folded

native structure (structure #16, with an RMSD of 0 Ang-

stroms). We then predicted the backbone chemical shifts

using SHIFTX?, SHIFTY? and SHIFTX2 for each of the

structures and calculated their average correlation coeffi-

cient with the observed chemical shifts (BMRB 5387). The

result is illustrated in Fig. 4, with the protein structures

progressively arrayed from the most dissimilar (most

unfolded) on the left to the most similar (or native-like) on

the right. This figure illustrates three important points. First,

it can be seen that the sequence-based predictor (SHIFTY?)

is not sensitive to conformational changes while the struc-

ture-based predictor (SHIFTX?) clearly is. Second, by

combining the two predictors it is possible to get a single

predictor that is both sensitive to conformational changes

and actually more accurate than any of the constituent pre-

dictors. Third, it is also evident that as the RMSD between

each of the models and the actual structure gets smaller, the

correlation coefficient progressively (and smoothly) climbs

higher. This ‘‘smoothness’’ certainly suggests that chemical

shifts have the appropriate characteristics (i.e. the sensitivity

to both gross and subtle conformational changes) to be used

in refining and even determining protein structures. As

expected when the protein structure changes from the

completely unfolded state to the properly folded state,

SHIFTX2 achieves increasingly higher correlation coeffi-

cient (and low RMSD) with the observed chemical shifts.

This is because SHIFTX2 reflects characteristics of the

structure (via SHIFTX?) and characteristics of the sequence

(via SHIFTY?).

Caveats and limitations

While we have presented a substantial body of data showing

that SHIFTX2 has achieved a significant improvement in

protein chemical shift prediction accuracy, it is important to

be aware of its limitations. In particular, it is essential to

remember that the high correlation coefficients and low

RMS errors reported here will typically be better (1–2%)

than what one will get using an ‘‘average’’ protein. This is

because the test set of 61 proteins used to assess SHIFTX2’s

(and all of the other predictors’) performance was specially

selected for their exceptionally high resolution and high

quality. If one were to choose lower quality structures (low

resolution X-ray or NMR) then the agreement between

observed and predicted shifts would obviously be lower—

regardless of which program is chosen. Chemical shifts are

exquisitely sensitive to small coordinate errors or small

coordinate displacements (Iwadate et al. 1999; Kohlhoff

et al. 2009; Meiler 2003; Moon and Case 2007; Neal et al.

2003; Shen and Bax 2007, 2010; Vila et al. 2009; Xu and

Case 2001). Therefore any errors or lack of precision in

coordinate data will always be reflected in any set of pre-

dicted chemical shifts. In other words, ‘‘garbage in = gar-

bage out’’. For instance, if one were to use a low resolution

or a poor quality structure to attempt to predict chemical

shifts for assignment purposes, then it is likely that a number

of assignment errors will ensue. On the other hand, if one

finds that the calculated shifts for a given structure disagree

with the observed shifts by more than what is quoted in

Table 5 Relative (%) influence of the top 20 features or atomic

property descriptors for the SHIFTX? prediction module

Feature 13C0 13Ca 13Cb 1HN 1Ha 15N

R. coil shift 22.5 50.0 58.5 3.0 21.3 35.9

AAi 0.6 11.6 15.4 0.5 0.8 3.4

AAi-1 0.4 0.1 0.1 0.4 0.2 2.9

AAi?1 2.3 1.0 0.3 0.3 0.7 0.3

ui 5.8 11.0 8.1 4.4 29.9 4.5

ui-1 0.6 0.4 0.3 2.1 1.0 2.1

ui?1 3.6 1.1 0.6 0.9 1.3 0.9

wi 13.9 10.4 5.7 5.3 3.8 7.1

wi-1 1.4 0.3 0.2 15.3 0.4 18.7

wi?1 8.6 0.9 0.3 0.6 0.6 0.5

wi-2 0.4 0.2 0.2 5.9 0.4 0.5

v1i 4.1 2.6 1.3 0.8 1.3 5.9

v2i 3.1 2.2 1.4 0.5 0.4 1.6

hi 2.3 0.6 0.3 5.3 0.8 0.5

ji 2.5 0.3 0.2 3.1 0.4 0.4

SSi 8.1 0.1 0.1 0.1 0.6 0.0

Electric field 0.0 0.3 0.0 2.7 12.9 0.0

Ring current 0.0 0.5 0.9 11.5 11.2 0.6

Surface area 4.2 0.3 0.2 1.2 0.6 0.5

Hbond effect 0.0 0.0 0.0 18.4 0.3 0.0

The subscripts i-1, i and i?1 indicate the preceding, current and

following residue (AA amino acid type, SS secondary structure)
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Tables 1 or 2, then this is likely a good indication that the

structure is in need of further refinement. As shown in Fig. 4,

and as advocated in many other recent publications (Kohl-

hoff et al. 2009; Meiler 2003; Neal et al. 2003), using

chemical shifts to assist with the structure refinement pro-

cess would certainly help improve the quality of many

NMR-generated structures.

It is also important to remember that most protein

chemical shift predictors are designed to predict chemical

shifts of diamagnetic proteins in aqueous conditions at

moderate temperatures and at moderate pH values.

Therefore, attempting to use SHIFTX2 (or most other

programs) on paramagnetic proteins or on proteins dis-

solved in non-aqueous buffers or at extreme temperatures

or at extremes of pH will likely lead to poor results. While

SHIFTX2 can be used to calculate chemical shifts of pro-

tein–protein complexes, it is not capable of accurately

predicting shifts of amino acid residues in close proximity

to DNA, RNA or certain small molecule co-factors (heme

rings, NAD, FAD, etc.). This is because the characteristic

ring current and charge models for these non-proteinaceous

molecules are not included in the current SHIFTX2 model.

Conclusion

In this report we have described SHIFTX2, a novel, hybrid

chemical shift predictor that is capable of rapidly and

accurately calculating diamagnetic 1H, 13C and 15N chemi-

cal shifts from protein coordinate data. Comparison’s of

SHIFTX2 against many state-of-the art predictors clearly

show that the program is substantially more accurate (up to

26% better by correlation coefficient with an RMS error that

is up to 3.39 smaller) than the next best performing pro-

gram. It also provides significantly more coverage (up to

10% more), is significantly faster (up to 8.59) and capable

of calculating a wider variety of backbone and side chain

chemical shifts (up to 69) than many other shift predictors.

We were able to achieve this high level of performance by

carefully training and testing each of SHIFTX2’s compo-

nent programs (SHIFTY? and SHIFTX?) on a set of large

and very accurate databases. By utilizing advanced machine

learning techniques and by incorporating many more fea-

tures in our machine learning model we were able to sub-

stantially improve SHIFTX2’s structure-based predictor

(SHIFTX?). By carefully preparing a large reference

sequence/shift database (RefDB) and enhancing the

sequence alignment algorithm we were also able to sub-

stantially improve SHIFTX2’s sequence-based predictor

(SHIFTY?). By combining the results of these two pro-

grams using an automated differential weighting scheme we

were able to get the benefits of both shift prediction

techniques.

While the results we have obtained with SHIFTX2 are

impressive and the improvements over existing methods

are significant, it is likely that the predictive performance

Fig. 4 A plot illustrating the

change in the combined

(backbone ? sidechain) 1H

chemical shift correlation

coefficient (predicted vs.

observed) relative to the

similarity (measured by RMSD)

of ubiquitin to its native state.

This graph illustrates the

correlation coefficients

calculated via SHIFTX ? ,

SHIFTY? and SHIFTX2 using

16 different 1UBQ structures

(15 randomized and 1 native

structure). Sample structures are

shown below the RMSD axis to

illustrate how the RMSD values

relate to observable structural

changes. Note that SHIFTY? is

not sensitive to the structure

changes and so it is not useful

(on its own) for chemical shift

refinement
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of protein chemical shift predictors is now nearing its limit.

No doubt as databases continue to expand and as more

methods are intelligently combined, it may be possible to

improve shift prediction accuracy by another 1 or 2%.

However, once this level is reached, the inherent impreci-

sion of atomic coordinates and the inherent conformational

differences between proteins in the solid state (crystals)

versus those in solution will probably become the largest

contributors to any observed chemical shift discrepancies.

In other words, it will be impossible to get perfect chemical

shift predictions. Perhaps the only way to get around

this ‘‘atomic precision’’ barrier may be to start including

conformational ensembles determined from molecular

dynamic simulations or generated via chemical shift

refinement (Lehtivarjo et al. 2009; Markwick et al. 2010).

Certainly a number of recent studies have suggested that

chemical shifts calculated over carefully weighted ensem-

bles of protein structures appear to give better agreement to

observed shifts than those generated from just a single

protein structure.

Despite these caveats, we believe that SHIFTX2, with is

high level of accuracy and broad chemical shift coverage,

should open the door to many long-anticipated applications

of chemical shift prediction. Indeed SHIFTX2 should be

particularly useful in refining and assessing protein struc-

tures, validating and adjusting chemical shift assignments,

and ultimately, for generating protein structures using only

chemical shift data alone.
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