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Abstract
The kidneys are the major organs affected in diarrhea-associated hemolytic uremic syndrome
(D+HUS). The pathophysiology of renal disease in D+HUS is largely the result of the interaction
between bacterial virulence factors such as Shiga toxin and lipopolysaccharide and host cells in
the kidney and in the blood circulation. This chapter describes in detail the current knowledge of
how these bacterial toxins may lead to kidney disease and renal failure. The toxin receptors
expressed by specific blood and resident renal cell types are also discussed as are the actions of the
toxins on these cells.

This review provides a detailed view of the current knowledge of Shiga toxin (Stx) actions
and host responses that comprise the disease known as diarrhea-associated hemolytic uremic
syndrome, D+HUS. Stx2 is the predominant form of Stx produced by clinical isolates of
STEC and is considered to be the form of Stx that causes D+HUS in humans. Expression of
the Stx receptor, glycosphingolipid Gb3, or a close analog, is required for Stx interaction
with eukaryotic cells. Stx targets specific cell types in the kidney and blood circulation
causing the cells to either become activated, elicit proinflammatory mediators, or apoptose.
The primary target of Stx is thought to be endothelial cells, however, additional Stx-
sensitive cell types exist in the kidney that are required for normal filtration of the blood
(endothelial, podocyte) and fluid balance (tubules). Damage to these cells helps explain how
Stx causes proteinuria, dehydration, and renal failure. Stx-sensitive platelets in the blood
appear to be central to the renal vascular coagulation and thrombosis of D+HUS. Recent
evidence indicates that bacterial lipopolysaccharide (LPS) is required for platelet activation
in D+HUS prior to their interaction with Stx. The role of specific cytokines and chemokines
in the kidneys and blood circulation remains to be determined for D+HUS. Limited data
support the concept that transport of Stx from the colon to the kidneys may involve
neutrophils. Although successful delineation of the pathophysiology of D+HUS in humans
will continue to depend on animal models of D+HUS, none of the animal models currently
available for D+HUS completely recapitulates the disease in humans.

1 Shiga Toxin Interaction With Blood Cells in the Circulation
Stx-producing Escherichia coli (STEC) are non-invasive. Stx is released in the intestine and
after passing through the intestinal mucosal barrier the toxin circulates in the bloodstream
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before reaching its target organs. The main target organ is the kidney. How the toxin
circulates and whether it is free in the circulation or cell-bound has been addressed in
numerous studies. In patients with hemolytic uremic syndrome minimal amounts of Stx
were found in the serum (Brigotti et al. 2011) but in mice infected with E. coli O157:H7 Stx
was detected in serum 2–5 days after inoculation (Kurioka et al. 1998). The presence of Stx
in the circulation in mice but not in humans may reflect the longer time span that elapses
from infection to clinical presentation in patients. In addition to free toxin, which may no
longer be present in the circulation when HUS develops, studies have shown that toxin may
bind to blood cells and thus reach its target organs. Stx is not cytotoxic for neutrophils,
monocytes, and certain B lymphocytes (Cohen et al. 1990; van Setten et al. 1996; Liu et al.
1999a; Brigotti et al. 2008). Platelets and red blood cells (RBCs) are presumed to be less
sensitive to the cytotoxic effects of Stx as they lack nuclei. Thus binding of the toxin to
these blood cells will not destroy the cells.

1.1 Platelets
Low platelet counts are a hallmark of HUS and lower levels are associated with worse renal
prognosis (Robson et al. 1988). Mice inoculated with STEC developed thrombocytopenia
which was also demonstrated in mice injected with Stx2 and LPS (Keepers et al. 2006;
Calderon Toledo et al. 2008). Thrombocytopenia may be induced by multiple mechanisms
such as consumption of platelets in microthrombi on the surface of damaged endothelium
(Zoja et al. 2010), activation by circulating chemokines or other circulatory platelet
aggregating factors and by a direct interaction between STEC virulence factors and platelets
leading to their aggregation and deposition on endothelial cells (Karpman et al. 2001; Ghosh
et al. 2004; Guessous et al. 2005b; Ståhl et al. 2006; Zoja et al. 2010).

Stx circulates in vivo bound to platelets during HUS (Ståhl et al. 2006). The toxin binds to
activated platelets (Ghosh et al. 2004) via the globotriaosylceramide (Gb3) receptor and an
alternative glycosphingolipid receptor termed band 0.03 (Cooling et al. 1998; Ghosh et al.
2004). Stx undergoes endocytosis and exerts an activating effect on platelets which readily
aggregate on endothelial cells (Karpman et al. 2001). There is, to date, no evidence that Stx
is transferred from platelets to cells in target organs.

1.2 Monocytes
Stx1 binds to monocytes via a Gb3 receptor that differs somewhat from the receptor on
endothelial cells. Binding was enhanced in the presence of LPS and did not inhibit protein
synthesis (van Setten et al. 1996). On the contrary, Stx induced the synthesis and release of
cytokines IL-1β, IL-6, IL-8, and TNF-α from human monocytes in vitro (van Setten et al.
1996). Similar results were obtained using a monocytic cell line THP-1 which, upon
stimulation with Stx2, released IL-8, macrophage-derived chemokine (MDC), and regulated
upon activation, normal T-cell expressed and secreted (RANTES) capable of activating
platelets (Guessous et al. 2005a). A role in the prothrombotic manifestations occurring
during HUS was suggested by the finding that Stx1 and Stx2 could induce the expression of
tissue factor on monocytes (Murata et al. 2006; Ståhl et al. 2009). Tissue factor expression
was increased when Stx2 was co-incubated with LPS and particularly when monocytes were
in complex with platelets (Ståhl et al. 2009). Patients with STEC-associated HUS were
found to have Stx2 on platelet-monocyte complexes. Furthermore, Stx2 induced the release
of monocytic microparticles bearing tissue factor and tissue factor expressing-microparticles
were detected in patients (Ståhl et al. 2009). Tissue factor-bearing microparticles may fuse
with platelets and thus induce a pro-thrombotic process (Del Conde et al. 2005).

Although Stx can bind to and activate monocytes, and induce the formation of platelet-
monocyte complexes with prothrombotic properties, monocytes have not been shown to
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assist in the circulatory transfer of toxin to target cells (Geelen et al. 2007a, b). All the same,
biopsies from patients with HUS have demonstrated that monocytes infiltrate the kidneys
most probably recruited by increased levels of monocyte chemoattractant protein-1 (van
Setten et al. 1998).

1.3 Neutrophils
Stx was detected on the surface of neutrophils from HUS patients (Te Loo et al. 2001;
Tazzari et al. 2004; Ståhl et al. 2009; Brigotti et al. 2011). In addition, Stx2 was detected on
the surface of neutrophil-platelet complexes in whole blood from HUS patients (Ståhl et al.
2009). Binding of Stx to neutrophils has been debated (Geelen et al. 2007a), especially as
the Stx receptor on these cells has still not been identified (van Setten et al. 1996; Geelen et
al. 2007a; Arfilli et al. 2010). Toxin bound preferentially to mature PMNs (Brigotti et al.
2008). In vitro studies have shown that Stx could transfer from the surface of neutrophils to
human endothelial cells suggesting that neutrophils could serve as a carrier for the toxin
until the target organ was reached (Te Loo et al. 2000; Brigotti et al. 2010).

Neutrophil counts are high during HUS and higher levels, as well as elevated IL-8 levels,
correlated with poor prognosis (Fitzpatrick et al. 1992; Robson et al. 1992; Fernandez et al.
2007). High PMN levels could be partially attributed to decreased spontaneous neutrophil
apoptosis during HUS (Fernandez et al. 2007). Stx2 may promote neutrophilia in mice by
triggering the release of cells of myeloid lineage from the bone marrow and by accelerating
proliferation of PMN progenitors (Fernandez et al. 2006). Stx2 was also shown to impair
neutrophil migration in mice (Fernandez et al. 2006). Neutrophils are activated during STEC
infection. Circulating neutrophils degranulate thus releasing proteases and reactive oxygen
species (Fernandez et al. 2005). In vitro studies have shown that Stx2 activates neutrophils,
particularly those in complex with platelets (Ståhl et al. 2009). Furthermore, leukocytes
adhere to the endothelium in the presence of Stx, a process promoted by endothelial
expression of fractalkine, MCP-1, IL-8, and heparan sulfate proteoglycans (Zoja et al. 2002;
Geelen et al. 2008; Zanchi et al. 2008).

In addition to Stx, E. coli O157 may also secrete StcE, a metalloprotease that cleaves mucin
demonstrated to increase neutrophil oxidative burst and cell adhesion, thus impairing
neutrophil migration (Szabady et al. 2009). Taken together, the interactions between Stx or
StcE and neutrophils could explain neutrophil activation, degranulation, and impaired
migration leading to increased tissue destruction at sites of neutrophil infiltration.
Furthermore, the possibility that neutrophils bear Stx on their membrane during HUS would
enable transfer of the toxin to other target cells more prone to a cytotoxic reaction.

1.4 Red Blood Cells
Fragmented RBCs occur during HUS in which non-immune hemolytic anemia occurs. It is
assumed that RBCs fragment mechanically while passing through partially occluded
capillaries. One study also reported that RBC membranes were stiffened by oxidative
damage (Turi et al. 1994). Although the exact mechanism by which hemolysis occurs is, as
yet unclear, the RBC fragmentation can be reproduced in animal models inoculated with E.
coli O157:H7 (Karpman et al. 1997) or injected with Stx (Taylor et al. 1999).

Hemolysin is one of the virulence factors expressed by E. coli O157:H7 encoded in a large
plasmid (pO157) (Schmidt et al. 1994). The hemolysin is a pore-forming cytolysin. E. coli
0157:H7 hemolysin has been shown to lyse human RBCs in vitro (Bauer and Welch 1996),
but this phenomenon most probably does not occur in vivo as bacteremia does not occur
during STEC infection and STEC hemolysin is bound to the bacterial cell membrane
(Schmidt et al. 1994; Bauer and Welch 1996).
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Studies have investigated whether the expression of different P blood group antigens on
RBCs may influence the risk of developing HUS. The P blood group includes three different
antigens: P, P1, and Pk, giving rise to five different phenotypes P1, P2, P1k, P2k, and p. The
Pk antigen is the precursor of the P antigen as well as the Gb3 receptor for Stx. Thus the
Gb3 receptor for Stx is present on all RBCs that possess the Pk antigen (all but the rare p
phenotype) (Bitzan et al. 1994; Spitalnik and Spitalnik 1995). Studies have addressed
whether expression of the P1 blood group could be protective reducing the risk of
developing HUS based on the assumption that P1 expression on RBCs would bind Stx and
thereby reduce the amount of circulating toxin. Thus individuals with RBCs negative for P1
or with lower amounts of Gb3 would be at higher risk of developing HUS (Taylor et al.
1990; Newburg et al. 1993). These findings however, could not be confirmed by others
(Jelacic et al. 2002).

2 Gb3 Expression in the Kidney
Specific and high-affinity binding of Stx to its receptor is required for toxin action in the
disease process. The receptor for Stx1 and Stx2 is the glycosphingolipid Gb3 that is
expressed in kidneys and some other tissues of humans and animals (McCluer et al. 1981;
Cohen et al. 1987; Lindberg et al. 1987; Lingwood et al. 1987; Boyd and Lingwood 1989;
Obrig et al. 1993; Lingwood 1996; Hughes et al. 2002; Garcia et al. 2006). Gb3 is
synthesized within golgi of cells, then transported to and inserted into the plasma membrane
outer leaflet where the trisaccharide faces outward for specific recognition by the B-subunits
of Stx (Lingwood 1993). The importance of Gb3 for Stx action was revealed by the total
absence of Stx effects in mice lacking Gb3 and, in vitro, by concomitant reconstitution of
Gb3 and Stx-sensitivity in cells lacking Gb3 (Waddell et al. 1990; Okuda et al. 2006).
Recent advances in glycolipid biology indicate that Gb3 is localized to lipid rafts rich in
cholesterol (Hakomori 2000; Falguieres et al. 2001; Falguieres et al. 2006; Muthing et al.
2009). Binding of Stx to Gb3 localized to lipid rafts is important for action of Stx in
eukaryotic cells (Hoey et al. 2003; Smith et al. 2006a; Khan et al. 2009; Lingwood et al.
2010a). Human kidney contains a series of Gb3 subspecies which differ in their ceramide
hydrocarbon chain length (C16–C24) and degree of hydroxylation (Shayman and Radin
1991; Muthing et al. 2009). Recent data support the concept that not all Gb3 in the plasma
membrane is bioavailable (Johannes and Romer 2010; Lingwood et al. 2010a, b; Mahfoud et
al. 2010; Betz et al. 2011).

2.1 Glomerular Gb3
It is generally accepted that the renal endothelium is a primary target of Stx in STEC-
associated hemolytic uremic syndrome, also known as D+HUS, in which the D+ stand for
diarrhea (Zoja et al. 2001; Karch et al. 2005; Ahn et al. 2009). Changes in the renal
endothelium typically include swelling and detachment from the basement membrane
(Habib 1992). Human glomerular microvascular endothelial cells have been shown to be
sensitive to sub-nanomolar Stx, in vitro (Obrig et al. 1993; van Setten et al. 1997a, b). This
is in contrast to human large vessel umbilical vein endothelial cells that are relatively
refractory to Stx action (Obrig et al. 1988, 1993; Tesh et al. 1991). This differential
sensitivity to Stx was demonstrated to be due to a 50-fold higher expression of Gb3 by the
glomerular endothelial cells (Obrig et al. 1993). As described below in more detail, human
podocytes and mesangial cells are also sensitive to Stx (Simon et al. 1998; Psotka et al.
2009). Human podocytes and mesangial cells express Gb3 (Robinson et al. 1995; Psotka et
al. 2009).

Animal models for D+HUS should preferably reflect the Gb3 expression pattern of human
kidneys. However, an analysis of Gb3 location in kidneys of such animals remains
incomplete although the mouse, rat, pig, rabbit, dog, ferret, and baboon have been utilized as
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models of D+HUS (Taylor et al. 1999; Rutjes et al. 2002; Melton-Celsa and O’Brien 2003;
Caprioli et al. 2010). None of these models completely recapitulates the D+HUS renal
disease of humans. Presently, the baboon model of D+HUS appears best in this regard
following intravenous administration of purified Stx2 (Taylor et al. 1999; Siegler et al. 2003;
Stearns-Kurosawa et al. 2010). However, details of location and quantification of Gb3 in
baboon kidney have yet to be reported.

2.2 Extraglomerular Gb3
There is a need for a thorough assessment of Gb3 expression along the different segments of
the nephron in human and animal kidneys. Most of the available data for Gb3 expression in
tubules are derived from isolated propagated cell types of human and animal kidneys.
Numerous studies have demonstrated the significant Stx-sensitivity of tubule cells, but little
information is presented about Gb3, per se, in these cells in culture (Hughes et al. 1998a;
Kodama et al. 1999; Liu et al. 1999b; Williams et al. 1999; Kaneko et al. 2001; Nestoridi et
al. 2005a; Paixao-Cavalcante et al. 2009). Analysis of intact renal tissues from human and
animal sources provided evidence that Gb3 is expressed by renal tubules (Lingwood 1994;
Rutjes et al. 2002; Ergonul et al. 2003a; Winter et al. 2004; Silberstein et al. 2008). Direct
binding of Stx to frozen sections of murine kidney revealed Gb3 in proximal, distal, and
collecting duct cells (Tesh et al. 1993; Rutjes et al. 2002). In human kidney sections, Stx
binding was localized to distal and collecting duct tubule epithelium (Lingwood 1994). A
more detailed examination of human and murine renal tissue performed with co-localization
of Gb3 with renal tubule cell-type specific markers indicated that Gb3 is expressed by
proximal and collecting duct tubules in both human and murine kidney (Psotka et al. 2009)
(Obata and Obrig, unpublished data). Interstitial microvascular endothelial cells also express
Gb3. The effects of Stx on renal tubule cells are described in more detail in the following
section.

3 Stx Interaction With Cell Types of the Kidney
Much information is now available regarding Stx interaction with resident cells of the
kidney (Karpman et al. 2010; Obrig 2010). The fact that Stx interacts with many cell types
of the kidney makes difficult the assignment of their relative importance for development of
renal disease in D+HUS.

3.1 Glomerular Cells
As described above, human glomerular podocyte, endothelial, and mesangial cells express
Gb3. This, in part, explains the changes observed in D+HUS glomeruli which are likely due
to Stx. Interaction of Stx with these cell types is described next in more detail. Stx may
target Gb3-positive glomeruli of the pediatric versus adult kidney, an observation that could
explain the higher incidence of D+HUS among the pediatric population (Lingwood 1994;
Chaisri et al. 2001). However, this concept needs to be validated.

3.1.1 Endothelial Cells—Although direct effects of Stx were first described with large
vessel endothelial cells, these cells were orders of magnitude less sensitive to concentrations
of Stx than microvascular endothelial cells (Obrig et al. 1988, 1993; Louise and Obrig 1994;
Ohmi et al. 1998). However, it was noted that only 7% of 55 human umbilical vein
endothelial cell cultures, each derived from a different individual, were truly sensitive to the
cytotoxic action of Stx (Kaye et al. 1993). The topic of Stx-endothelial interaction has been
reviewed recently (Zoja et al. 2001; Muthing et al. 2009; Petruzziello et al. 2009; Karpman
et al. 2010; Obrig 2010). It should be noted that the generally accepted pathological
description of endothelial damage in D+HUS is swollen and detached endothelium (Habib
1992; Zoja et al. 2001). While this level of damage appears less severe than cell death,
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endothelial cell viability is known to be dependent on attachment to basement membrane
(Yannariello-Brown et al. 1988; Hoch et al. 1989; Lalka et al. 1989; Smith et al. 1989; Grant
et al. 1990). Given this information, it seems likely that most of the damage to glomerular
endothelium is due to direct action of Stx in D+HUS. However, there are many additional
host response factors in the kidney during D+HUS, some of which are known to interact
with endothelium. The health of endothelium is dependent on other cells such as renal
glomerular podocytes that produce vascular endothelial cell growth factor (VEGF) essential
for endothelial cells (Eremina et al. 2008; Sison et al. 2010). The fact remains that Stx
interacts with many different cell types eliciting a myriad of responses (O’Loughlin and
Robins-Browne 2001; Karpman et al. 2010; Obrig 2010). Cytokines elicited by bacterial
LPS during D+HUS such as TNF-alpha and IL-1beta, and LPS itself, can induce Gb3
synthesis and increase Stx-sensitivity of endothelial cells (Louise and Obrig 1991, 1992; van
de Kar et al. 1992, 1993; Kaye et al. 1993; van Setten et al. 1997a, b; Stricklett et al. 2005).

Responses of endothelial cells to Stx are diverse. Stx was shown to elicit release of
chemokines which may be important for development of some aspects of D+HUS (Zoja et
al. 2002; Guessous et al. 2005b). Stx was also shown to decrease prostacyclin synthesis by
endothelial cells (Karch et al. 1988). In addition, Stx caused microvascular endothelial cells
from human brain or renal glomeruli to apoptose (Kaneko et al. 2001; Pijpers et al. 2001;
Ergonul et al. 2003b; Fujii et al. 2008; Psotka et al. 2009). In other cases, Stx activated
endothelial cells for increased leukocyte adherence (Zoja et al. 2002; Geelen et al. 2008). As
would be expected, some of the direct effects of Stx on endothelial cells result in changes in
physiology related to coagulation and thrombosis (Louise and Obrig 1994; van de Kar et al.
1994; Kaye and Obrig 1995; Karpman et al. 2001; Nolasco et al. 2005; Te Loo et al. 2006;
Huang et al. 2010). The interaction of Stx and TNF with human renal endothelial cells was
shown to elicit tissue factor expression (Nestoridi et al. 2005b). Whether some of these latter
events are related to complement activation typical of other thrombotic microangiopathies
remains an interesting, but unanswered question (Moake 2009; Thurman et al. 2009;
Caprioli et al. 2010; Zipfel et al. 2010). In summary, ample evidence exists demonstrating
the central role of endothelial cells in D+HUS.

3.1.2 Podocytes—Podocytes or visceral epithelial cells are an integral part of the kidney
filtration barrier presenting a slit-diaphragm barrier for blood components (Hirschberg et al.
2008; Fogo 2009; Peti-Peterdi and Sipos 2010). Podocytes develop extended foot processes
which wrap around the glomerular capillaries and are separated from glomerular
endothelium by a basement membrane and glycocalyx. Changes in podocyte physiology are
contributing factors in some important renal diseases (Coward et al. 2005; Tryggvason et al.
2006; Henao et al. 2007; Marshall 2007; Collino et al. 2008; D’Agati 2008; Thorner et al.
2008; Quaggin 2009; Clement et al. 2010). Damaged podocytes result in faulty filtration of
the blood into the urinary space resulting in increased proteinuria.

Given that podocyte–endothelium interactions are important to both cell types, how does
this relate to D+HUS? One example is that podocytes secrete VEGF that is essential to the
nearby endothelial cells (Sison et al. 2010). A Stx-induced decrease in VEGF production by
podocytes may add to the proteinuria (Shankland 2006; Eremina et al. 2008; Izzedine et al.
2010). In addition, Stx has been shown to increase endothelin-1 in podocytes that may be
deleterious to podocytes (Morigi et al. 2006). An interesting phenomenon is that both CNS
neurons and renal podocytes express Gb3, are sensitive to Stx, and exhibit glutamatergic
signalling. Podocyte glutamine signalling is important for the function of the filtration
barrier (Giardino et al. 2009). While it is has been demonstrated that Stx increases glutamine
release in murine neurons, changes in glutamine release have not been studied in glomerular
podocytes (Obata et al. 2008; Obata 2010; Obata and Obrig 2010). Important to this review
is that human podocyte and glomerular endothelial cells are sensitive to picomolar
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concentrations of Stx (Obrig et al. 1993; Psotka et al. 2009). Detailed analyses of Stx effects
on glomerular podocytes and endothelial cells have not been reported in animal models of
D+HUS. Stx was detected bound to podocytes in the kidney tissue of an infant who died of
D+HUS (Chaisri et al. 2001). This is in agreement with an earlier report showing that
glomeruli from an infant, but not an adult kidney bound Stx (Lingwood 1994).
Unfortunately, murine podocyte and endothelial cells do not express Gb3 and are insensitive
to Stx, thus placing limits on the use of the murine model of D+HUS (Rutjes et al. 2002;
Psotka et al. 2009). This concept appears to be true for other animal models of D+HUS
including the New Zealand White rabbit.

3.1.3 Mesangial Cells—Expansion of glomerular mesangium occurs in D+HUS
(Shigematsu et al. 1976). Stx binds to and has multiple direct effects on human mesangial
cells, in vitro (Robinson et al. 1995; Simon et al. 1998). Although Stx enters these cells to
inhibit protein synthesis, mesangial cells are not killed by the toxin (van Setten et al. 1997a,
b; Simon et al. 1998). The total importance of Stx interaction with mesangial cells is largely
unknown for D+HUS as very few reports currently exist on this topic. It also appears that
basic science knowledge on the normal interaction between mesangial cells and glomerular
endothelium or podocytes has lagged behind other areas of kidney research (Vaughan and
Quaggin 2008; Picken 2009; Schlondorff and Banas 2009). However, it seems very likely
that products elicited in mesangial cells by Stx will be of importance for a complete
understanding of D+HUS pathophysiology.

3.2 Extraglomerular Cells
Sensitivity of renal cells to Stx requires interaction with Gb3 Stx receptors expressed on the
plasma membrane. As alluded to above, the distribution of Gb3 among the different tubular
epithelial cells of the nephron has not been fully described for human or animal kidneys.
However, there is good evidence that some of these specialized cells express Gb3 and are
sensitive to Stx (Obrig 2010). The following is a more detailed description of these data. A
significant number of immortalized cell lines now exist for in vitro studies of Stx action in
the different specialized cells of the nephron (Bens and Vandewalle 2008). At present, it is
not clear which animal model of D+HUS may best represent extraglomerular
pathophysiology of D+HUS in humans (Caprioli et al. 2011).

3.2.1 Proximal Tubule Cells—Proximal tubule cells are the most studied of the renal
tubular cell types for D+HUS. Human proximal tubule cells are sensitive to picomolar
concentrations of Stx, in vitro (Hughes et al. 1998a; Sood et al. 2001; Fuller et al. 2011).
This high degree of sensitivity to Stx was attributed to ample Gb3 production by human
proximal tubule cells, in vitro (Hughes et al. 2002). Interestingly, the StxB (binding) subunit
alone also exhibited some responses in this cell type, in vitro (Creydt et al. 2006). Stx
induced tissue factor activity on the surface of human proximal tubule cells (Nestoridi et al.
2005a). As there is a role for complement-induced dysfunction of proximal tubules (Buelli
et al. 2009), this may also contribute to renal disease in D+HUS. Low concentrations of Stx
induced an increase in TNF-alpha mRNA and release of TNF-alpha from human proximal
tubule cells, in vitro (Hughes et al. 1998b). A similar effect was observed in these cells for
an increase in IL-1 beta, while Stx synergized with LPS for an increase in IL-6 mRNA
(Hughes et al. 1998b). Stx inhibited water absorption by proximal tubule cells in an in vitro
assay (Silberstein et al. 2008). Stx caused apoptosis of human proximal tubule cells that
could be reversed by silencing the proapototic factor Bak (Karpman et al. 1998; Kodama et
al. 1999; Wilson et al. 2005). Finally, it remains to be determined in animal models of
D+HUS whether Stx-induced damage to the filtration barrier results in proteinuria which, in
turn, leads to indirect damage to proximal tubules (Zoja et al. 2003; Li et al. 2010; Wu et al.
2010).
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3.2.2 Distal Tubule Cells—Mice injected with Stx exhibit specificity for toxin
interaction with distal tubules (Rutjes et al. 2002). In some cases the affected cells are
described only as cortical or medullary, so interpretation of these data is limited in scope.
However, Stx binding to distal tubules has been reported in human renal tissue (Lingwood
1994).

3.2.3 Collecting Duct Cells—Stx targets collecting ducts of mice (Rutjes et al. 2002;
Psotka et al. 2009). Renal collecting ducts of mice apoptose in response to intraperitoneally
administered Stx (Psotka et al. 2009). Rats given Stx respond with an increased urinary
aquaporin-2 level suggesting damage to the AQP2-producing collecting duct cells (Sugatani
et al. 2002). Polyuria was reported in both mice and rats given Stx indicating damaged
collecting duct cells leading to decreased water reabsorption (Sugatani et al. 2002; Psotka et
al. 2009).

3.2.4 Loop of Henle Cells—Very little is known about Stx interaction with epithelial
cells of the descending and ascending Loop of Henle in human or animal kidneys. Future in
vivo studies of Gb3 co-localization with cell type specific markers will be necessary. Using
this approach, preliminary results indicate that anti-Gb3 antibody co-localizes with anti-
Tamm Horsfall protein antibody in sections of the murine kidney suggesting that the thick
ascending Loop of Henle expresses Gb3 (Obata and Obrig, unpublished data). We also
observed co-localization of anti-Gb3 and anti-aquaporin 1 antibodies in medullary sections
of human kidney indicating that Gb3 is expressed in the thin descending limb of the Loop of
Henle.

In summary, compelling evidence is available supporting a key role of renal microvascular
endothelial cells in D+HUS. However, the fact that human glomerular podocytes are also
very sensitive to Stx requires a rethinking of how Stx action leads to renal failure in D+HUS.
In a similar tone, direct effects of Stx on human proximal and collecting duct tubules may
explain the dehydration observed in D+HUS patients. Thus, ample evidence now provides
for a rational scheme of how Stx causes renal failure in D+HUS.

4 LPS Interaction With Cells of the Blood and Resident Renal Cells
4.1 Platelets

LPS is a component of the outer membrane of Gram-negative bacteria which may be
released into the circulation leading to endotoxemia and endotoxic shock. It has potent
biological activity activating the innate immune response leading to cytokine release
(Aderem and Ulevitch 2000). Various studies have shown that LPS may induce platelet
activation and aggregation both in vitro (Wachowicz et al. 1998; Saluk-Juszczak et al. 1999)
and in vivo (Itoh et al. 1996). This effect may result in consumptive thrombocytopenia
(Cicala et al. 1997). Resting platelets must be primed with LPS before interaction with Stx
(Viisoreanu et al. 2000; Ståhl et al. 2009). O157LPS binds to platelets via a complex
receptor composed of TLR-4 and CD62 (P-selectin) and thus activates them. LPS was also
detected on the surface of platelets from HUS patients suggesting that it may activate
platelets in the circulation (Ståhl et al. 2006). Thus, as mentioned above, both Stx and
O157LPS (Ståhl et al. 2006) are capable of activating platelets and co-stimulation with both
virulence factors simultaneously has an additive effect on the formation of platelet-leukocyte
complexes expressing tissue factor in whole blood (Karpman et al. 2001; Ghosh et al. 2004;
Ståhl et al. 2006, 2009). This effect was further enhanced at increasing shear rates. Co-
stimulation of whole blood with Stx and O157LPS also induced an enhanced release of
platelets-derived microparticles and tissue factor-coated microparticles, more than each
stimulant alone (Ståhl et al. 2009). Thus LPS appears to trigger several mechanisms leading
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to a prothrombotic state. O157LPS is at least as potent as other forms of LPS in this respect,
if not more (Ståhl et al. 2009).

4.2 Resident Renal Cells
LPS may be important for the development of D+HUS. Although the amount of LPS in the
blood circulation of D+HUS patients remains undocumented, one would expect a lower level
of LPS in D+HUS than in systemic bacterial infections because D+HUS is not a bacteremic
disease (Tarr et al. 2005; Ahn et al. 2009). The primary receptor for bacterial LPS is toll-like
receptor 4 (TLR4) (Beutler and Poltorak 2000; Knotek et al. 2001; Takeuchi and Akira
2001; Yamamoto and Akira 2010). LPS is a more active proinflammatory agent than Stx,
and TLR4 receptors are expressed on specific cell types of the kidney. Fortunately, a
considerable amount is known about the TLRs in kidneys (Vandewalle 2008; Mkaddem et
al. 2010; Pulskens et al. 2010; Batsford et al. 2011; Goncalves et al. 2011). Thus, LPS would
be expected to be active in the pathophysiology of D+HUS. LPS modulates Stx action in
cells through induction of Gb3 (Louise and Obrig 1992; Hughes et al. 1998a; 2000; Clayton
et al. 2005). In animal models of D+HUS, administration of LPS either before, during, or
after Stx significantly influences the effects of Stx (Barrett et al. 1989; Palermo et al. 2000;
Siegler et al. 2001; Clayton et al. 2005; Keepers et al. 2006, 2007). Mice lacking an
adequate response to LPS due to a mutation in, or deficiency of, the TLR4 receptor exhibit
an increased response to Stx most probably due to decreased bacterial clearance in the gut
(Karpman 1997, Calderon Toledo 2008). The action of LPS in animal models of D+HUS is
discussed in more detail below.

5 Inflammatory Responses in the Kidney
D+HUS exhibits an inflammatory component. Cytokines and chemokines are increased in
the blood and kidneys during D+HUS. The role of these proinflammatory agents in D+HUS
remains to be delineated. The following is a review of data from humans and from animal
models of D+HUS derived from many different laboratories documenting the presence of
such agents in D+HUS.

5.1 Cytokines
The role of TNF-alpha in D+HUS is controversial. Several reports agree that TNF-alpha can
induce Gb3 in some eukaryotic cells, sensitizing the cells to Stx (van de Kar et al. 1992;
Louise et al. 1997; van Setten et al. 1997a, b). However, data from a murine model of
D+HUS suggest that TNF-alpha is not an essential contributor to the disease (Wolski et al.
2002). In humans with D+HUS, TNF-alpha and IL-6 were higher in the urine than in the
blood circulation, suggesting localized production of the cytokines (Karpman et al. 1995).
These cytokines were not present in the blood and urine of healthy individuals (Karpman et
al. 1995). A similar scenario was described for urinary IL-8 in D+HUS pediatric patients
(Inward et al. 1997). Stx directly induced increased release of TNF-alpha from human renal
proximal tubule cells, in vitro (Hughes et al. 1998b).

5.2 Chemokines
There is growing evidence of an increase in chemokine synthesis in the kidneys during
D+HUS. In a murine model of D+HUS, LPS induces C–X–C and C–C chemokines by
proximal tubule cells (Keepers et al. 2007; Roche et al. 2007). In homogenates of whole
kidney from mice injected with LPS, these chemokines are also increased. In these cases,
Stx stabilizes the half-life of chemokine mRNA, further enhancing the total amount of
chemokine produced. Chemokines including MCP-1 and IL-8 are increased in urine of
D+HUS patients (van Setten et al. 1998). It is reasonable to expect that individual
chemokines may be derived from more than one cell type in D+HUS. However, it is clear
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that inflammatory cells such as monocytes and PMNs are attracted into the kidneys during
D+HUS (Keepers et al. 2006, 2007; Roche et al. 2007). Their relative importance to renal
damage in D+HUS remains to be determined. In the murine model of D+HUS, it was
determined that renal fibrin deposition and the lethal effect of Stx were not affected by the
elimination of monocyte/macrophage cell type from these animals (Obrig. et al.,
unpublished data). Renal chemokines in D+HUS may act as secondary activators of
platelets, along with thrombin or ADP, for renal thrombosis common to this disease (Gear et
al. 2001; Gear and Camerini 2003; Guessous et al. 2005b).

5.3 Nitric Oxide
Nitric oxide (NO) is known to exhibit antiplatelet and renal vasodilatory activity (Martin et
al. 1986; Radomski et al. 1987). NO was protective in mice against Stx-induced renal
toxicity (Dran et al. 2002). However, NO bioavailability was reduced in baboons in response
to Stx (Siegler et al. 2005). The role of NO in humans with D+HUS is not clear. The fact
that Stx inhibited NO production by microvascular endothelial cells, in vitro may, in part
explain the interaction between Stx and NO in D+HUS (Te Loo et al. 2006).

6 Thrombosis and Fibrinolysis in D+HUS
A major feature of D+HUS is the appearance of thrombi in the renal microvasculature. This
process involves platelets and endothelial cells. More research is needed to identify
additional cell types and inflammatory mediators which also have a role in the thrombosis of
D+HUS. The relative potential of therapeutics for D+HUS based on targets of thrombosis is
made less attractive due to the risk of resulting hemorrhages within the CNS.

6.1 Platelet Activation
Endothelial cells are damaged during HUS. Upon exposure of the subendothelium platelets
bind to subendothelial matrix proteins including von Willebrand factor (VWF), fibrinogen
and collagen resulting in formation of platelet thrombi. Formation of microthrombi will
compromise the blood flow in the microvasculature of the kidney. The initial event in this
process is binding of VWF to the platelet membrane receptor glycoprotein 1b (GP1b)
allowing a conformational change to occur in the platelet exposing the GPIIb/IIIa receptor
on the platelet membrane (Savage et al. 1992). VWF and fibrinogen bind to GPIIb/IIIa
which will link one platelet to another, thus forming a clot. Activated platelets release
granular contents, such as ADP, thromboxane A2 and thrombin, promoting further
activation.

Platelets in HUS appear to be degranulated (Fong and Kaplan 1982; Sassetti et al. 1999) and
circulatory levels of β-thromboglobulin (Appiani et al. 1982) and soluble P-selectin
(Katayama et al. 1993) are increased. VWF may be secreted from both endothelial cells and
platelets and levels are elevated during HUS enabling enhanced formation of thrombi (van
de Kar et al. 1994). A decreased multimer size presumably reflects enhanced proteolysis
(Tsai et al. 2001) although the activity of ADAMTS13, the vWF cleaving protease, was
found to be normal (Tsai et al. 2001). In vitro experiments have shown that Stx induces the
release of ultra-large VWF multimers from human endothelial cells and delayed cleavage of
VWF by ADAMTS13 (Nolasco et al. 2005), thus promoting the formation of platelet strings
attached by ultra-large VWF on endothelial cells. The importance of VWF for promoting
platelet aggregation on endothelial cells was illustrated by blocking VWF-platelet specific
receptors (Morigi et al. 2001).

There is no consumption of plasma coagulation factors during HUS but prothrombotic
markers such as prothrombin 1 + 2 and thrombin–antithrombin III complex are elevated
(Nevard et al. 1997; Van Geet et al. 1998) occurring even before patients develop HUS
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(Chandler et al. 2002). HUS patients were found to have elevated levels of tissue factor
(Kamitsuji et al. 2000) as well as circulating platelet-leukocyte complexes and platelet-
derived microparticles, both with deposits of tissue factor and complement on their surface
(Ståhl et al. 2009, 2011). These changes were specific for the acute phase of disease,
decreasing upon remission. In vitro experiments showed that Stx induced the formation of
complexes between platelets and leukocytes, mostly platelets and monocytes. In addition,
the toxin induced the release of tissue factor and C3 as well as C9-bearing microparticles,
mainly from platelets (Ståhl et al. 2009; Ståhl et al. 2011). Microparticles are procoagulant
due to membrane expression of phosphatidylserine (Mallat et al. 2000), an effect that is
further enhanced when they are coated with tissue factor. Tissue factor is a transmembrane
glycoprotein receptor for coagulation factor VII, leading to conversion of factor X into
factor Xa in the extrinsic coagulation pathway (Rao et al. 1986). This will ultimately lead to
thrombin generation, resulting in thrombus formation and further platelet activation.

Stx exerts other indirect effects on platelets such as inducing the release of platelet-
stimulatory cytokines from monocytes described above (Guessous et al. 2005a). When co-
administrated with O157LPS, and especially under high shear rates, the toxin induces
pronounced platelet activation (Ståhl et al. 2009). Taken together, platelet activation leading
to thrombus formation may occur as a direct effect of bacterial toxin and/or LPS as well as
an indirect effect via stimulatory cytokines, in addition to the platelet aggregating events
occurring during extensive endothelial cell damage.

6.2 Endothelial Activation
The pathological lesion seen in kidneys during HUS is termed thrombotic microangiopathy
and includes the presence of thrombi in glomerular capillaries as well as pronounced
endothelial cell swelling and detachment due to subendothelial swelling (Benz and Amann
2009). Damaged endothelium promotes a pro-thrombotic state. Endothelial cell damage
presumably occurs before patients develop HUS, as markers of endothelial cell activation
(thrombomodulin, soluble vascular cell adhesion molecule and E-selectin) in HUS patients
were not found to be higher than in dialysis patients (Nevard et al. 1999).

Stx1 binds to glomerular endothelial cells via the Gb3 receptor and induces a cytotoxic
effect (Obrig et al. 1993; van Setten et al. 1997a, b). Stx1 also leads to platelet aggregation
on human endothelium (Karpman et al. 2001) particularly on microvascular endothelial cells
under conditions of high shear stress (Morigi et al. 2001). Glomerular microvascular
endothelial cells pretreated with TNF-α expressed reduced levels of thrombomodulin after
incubation with Stx (Fernandez et al. 2003). As thrombomodulin has anti-thrombogenic
properties this may promote thrombus formation. Endothelial beta-3-integrin subunit,
vitronectin receptor, P-selectin, and PECAM-1 are all involved in Stx-induced platelet
aggregation on endothelial cells (Morigi et al. 2001).

In addition to Stx, neutrophils may promote endothelial cell injury during HUS (Forsyth et
al. 1989). Stx induces leukocyte adherence to the endothelium (Morigi et al. 1995) as well as
their transmigration under flow (Zoja et al. 2002). Activated neutrophils degranulate
releasing reactive oxygen species as well as proteases (Fernandez et al. 2005) which may
contribute to local cellular injury.

6.3 Fibrinolysis
Under physiological conditions endothelial cells present an antithrombotic surface due to
expression of heparan sulphate and thrombomodulin. Heparan sulphate binds antithrombin
III which promotes inactivation of the intrinsic coagulation cascade. Thrombomodulin is a
glycoprotein receptor on the endothelial surface which binds thrombin thus activating

Obrig and Karpman Page 11

Curr Top Microbiol Immunol. Author manuscript; available in PMC 2013 September 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



protein C. Activated protein C and its cofactor, protein S, inactivate factors Va and VIIIa
(Lammle and Griffin 1985). Endothelial cells also produce inhibitors of platelet aggregation
such as prostacyclin and tissue plasminogen activator (t-PA) (Pearson 2000). Fibrin clots
have binding sites for plasminogen and t-PA. t-PA promotes conversion of plasminogen into
plasmin. When the fibrinolytic system is activated fibrin is degraded to degradation
products, D dimers, by plasmin.

Increased levels of D-dimers, t-PA, t-PA-plasminogen-activator inhibitor type 1 (PAI-1)
complex were demonstrated in the early stage of STEC infection even before HUS
developed further increasing after the development of HUS (van de Kar et al. 1994;
Chandler et al. 2002). Impaired fibrinolysis was demonstrated in patients with STEC-
induced HUS (Nevard et al. 1997) which may be due to increased PAI-1 in the circulation
(Bergstein et al. 1992). In summary, coagulative aberrations occurring during HUS promote
a prothrombotic and hypofibrinolytic state.

7 Development of Acute Renal Failure in D+HUS
The kidney is the main target organ in STEC-mediated HUS. Renal biopsies are not
routinely carried out as the diagnosis is made on a clinical basis and patients are usually
thrombocytopenic. Histopathological features during STEC-associated HUS are the
presence of microthrombi in glomerular capillaries, extensive endothelial damage with
occlusion of capillary lumina, deposition of fibrin, mesangiolysis, and mesangial expansion
(Shigematsu et al. 1976) as well as extensive tubular apoptosis (Karpman et al. 1998).
Severe cases develop acute cortical necrosis affecting most cells in the renal cortex.
Bacterial virulence factors may affect the glomerular endothelium, podocytes, mesangial
cells as well as tubular cells, as described above. Damage to glomerular endothelium will
initiate thrombus formation resulting in multiple microthrombi in glomerular capillaries.
Damage to tubular cells will result in electrolyte disturbances, acidosis and decreased urine
production. Damaged tubuli may have a secondary deleterious effect on the glomerulus in
the same nephron, but the converse is also possible, ischemic injury to the glomerulus will
eventually lead to tubular damage within the nephron. Stx was demonstrated in a limited
number of human kidneys from patients with HUS, in both glomeruli and tubuli (Uchida et
al. 1999; Chaisri et al. 2001). As bacterial toxin may affect both tubular and glomerular cells
it is unclear whether the toxin targets certain renal cells preferentially or whether the various
cells are affected simultaneously.

In addition to the noxious effect of Stx, presumably in combination with LPS, heme
proteins, released during hemolysis, may also have a cytotoxic effect on renal tubular cells
and microvascular endothelial cells. This effect was enhanced by Stx in vitro (Bitzan et al.
2004). Recent studies have also raised the possibility that complement-mediated renal injury
may occur in STEC-associated HUS. At presentation, patients exhibited activation of the
alternative pathway of complement in the circulation (Robson et al. 1992; Thurman et al.
2009; Ståhl et al. 2011). Interestingly, in vitro studies have shown that Stx could induce
complement activation and deposition on microvascular endothelial cells under flow (Zoja et
al. 2010) as well as activate the alternative pathway in serum (Orth et al. 2009).
Complement-mediated renal injury could thus enhance the direct effect of bacterial toxins.
Stx may also inhibit the regulatory effect of factor H (Orth et al. 2009) although it is unclear
whether this occurs in vivo.

8 Experimental Therapeutics for Renal Disease in D+HUS
Therapeutics are not currently available for the treatment of D+HUS. Standard supportive
care includes maintenance of electrolytes and fluid balance as well as dialysis in more
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severe cases. However, the early development and preclinical testing of potential
therapeutics has taken place in recent years.

Vaccines are effective to reduce STEC colonization of commercial bovine species (Potter et
al. 2004; McNeilly et al. 2010). Vaccines for STEC in humans are less advanced in
development and face the test of financial feasibility by pharmaceutical companies.
Humanized anti-Stx antibodies have entered the clinical testing phase (Tzipori et al. 2004;
Akiyoshi et al. 2005; Dowling et al. 2005; Smith et al. 2006b). Phase I clinical testing of a
humanized anti-Stx monoclonal antibody in adult and pediatric subjects demonstrated safety
at doses up to 3mg/kg (Lopez et al. 2010). Passive immunization of animals with anti-Stx
neutralizing antibodies has demonstrated a moderate degree of protection against challenge
with either oral STEC or parenteral Stx (Sauter et al. 2008; Mohawk et al. 2010). The
important question to be answered here is whether Stx remains in the blood circulation for a
prolonged period of time in D+HUS patients after the hemorrhagic colitis stage to be
available for neutralization by the anti-Stx antibodies. This question remains to be answered.
Stx receptor mimics (Lingwood and Mylvaganam 2003; Miura et al. 2006; Watanabe-
Takahashi et al. 2010) or inhibitors of Stx enzymatic activity (Wahome et al. 2010)
represent different approaches to Stx neutralization in the blood circulation. These agents
remain to be approved for clinical testing.

A number of therapeutic strategies have been proposed for late-stage intervention of D+HUS
which target Stx action in the kidneys. Cell permeable small molecules which interfere with
Stx trafficking may be effective inhibitors of Stx action (Nishikawa et al. 2006; Sandvig et
al. 2009). Others have identified Stx-initiated signal-transduction events in cells as potential
targets for therapeutic intervention (Jandhyala et al. 2008). Finally, deleterious host
responses to Stx in renal tissue are also potential targets for therapeutics. Examples of these
include biological events which lead to coagulation, thrombosis, and changes in the filtration
barrier in the kidney. The earlier literature is replete with superficial clinical tests for these
targets, none of which showed results sufficient for further testing in properly designed
clinical trials. However, some preclinical studies with animal models of D+HUS have shown
promise for late-stage intervention at the kidney level (Nishikawa et al. 2006; Warnier et al.
2006; Roche et al. 2007; Psotka et al. 2009; Jeong et al. 2010).

Development of therapeutics for D+HUS will depend on measurements of surrogate
biomarkers of the disease. These biomarkers are released from damaged cells into the blood
circulation or into urine (Rosner 2009). To date, biomarkers specific to D+HUS are yet to be
reported. Urinary neutrophils gelatinase-associated lipocalin (Ngal) has been detected in
urine of D+HUS patients (Trachtman et al. 2006). However, Ngal is less specific as a
biomarker of renal injury (Bolignano et al. 2010; Devarajan 2010; Viau et al. 2010). Future
application of the Ngal gene reporter mouse to D+HUS could lead to data more helpful for
this application (Paragas et al. 2011). A group of different biomarkers specific to D+HUS
may be required to achieve an acceptable level of clinical utility.
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