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Notation

symbol description

a half of the tyre contact length

ai coefficient of the characteristic equation; general coefficient

c stiffness

ca shaft torsional stiffness (co-rotating wheels)

cc tyre lateral carcass stiffness per unit of length

ceq equivalent stiffness

cy landing gear lateral stiffness

csd shimmy damper spring stiffness

cv tyre lateral stiffness

cz tyre vertical stiffness

cβ tyre yaw stiffness

cψ landing gear yaw stiffness

cφ landing gear roll stiffness

C f α cornering stiffness

C f κ longitudinal slip stiffness

C f φ turn slip stiffness of the lateral force

C f γ camber stiffness of the lateral force

Cmα self aligning stiffness

Cmφ turn slip stiffness of the aligning moment

Cmγ camber stiffness of the aligning moment

e mechanical trail

f frequency

Fx tyre longitudinal force

Fy tyre lateral force

Fz tyre vertical force

Hi i-th Hurwitz determinant

Hy,x(s) transfer function: input x, output y

I moment of inertia

Iz, It yaw moment of inertia

Ip wheel polar moment of inertia

j complex variable, j2 = −1

k linear damping constant

keq equivalent linear damping constant

kv tyre lateral damping constant

ksd shimmy damper damping constant

ky landing gear lateral damping constant

kβ tyre yaw damping constant
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6 NOTATION

kψ landing gear yaw damping constant

l (effective) gear length

lb overlap, distance between bearings

m mass

Mx tyre overturning moment

My tyre rolling resistance moment

Mz tyre self aligning moment

p tyre pressure

pr rated tyre pressure

pα, pβ, pγ coefficients of the Keldysh tyre model

q position of the centre of gravity with respect to the wheel centre

R loaded tyre radius

Rc curvature radius

R0 unloaded tyre radius

Re effective rolling radius

s Laplace variable

st travelled distance

t time

tp tyre pneumatic trail

T oscillation period, T = 1
f

v lateral deformation of the tyre string

v1 lateral deformation of the tyre string at the leading contact point

v2 lateral deformation of the tyre string at the trailing contact point

V forward velocity

Vx forward velocity projected on the wheel plane and parallel to the ground

Vcy lateral sliding velocity of the contact centre C

Vsx longitudinal sliding velocity of the imaginary slip point S

Vsy lateral sliding velocity of the imaginary slip point S

w half of track width

wt tyre width

W work

x longitudinal coordinate; degree of freedom

y lateral coordinate

yc lateral position of the tyre contact centre C

y1 lateral position of the tyre string at the leading contact point

y2 lateral position of the tyre string at the trailing contact point

α side slip angle

α′ tyre deformation angle

α1 side slip angle at the leading contact point

β twist angle of the contact patch: β = −α′

δ tyre deflection

ε turn slip coefficient (Rogers tyre model)

εa torsion angle of the shaft (co-rotating wheels)

κ longitudinal slip

κm,κt relative damping

γ inclination angle
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λ wavelength: λ = V
f
; root of the characteristic equation

η amplitude ratio lateral/yaw motion of the wheel plane at road level

µ friction coefficient

ψ yaw angle

ψa yaw angle of the wheel axle

σ relaxation length

τ time constant of the Moreland tyre model

φ turn slip

φa roll angle of the wheel axle

θ landing gear cant angle

ξ phase lead of the lateral motion over the yaw motion of the wheel plane

at road level

ω radial frequency, ω= 2πf

Ω wheel angular velocity

x∗ parameter x made dimensionless using reference variables, see section 1.5

ẋ first time derivative of x

ẍ second time derivative of x

sgn(x) signum function: if x ≥ 0 then sgn(x) = 1, if x < 0 then sgn(x) = −1

A,B,C,D system matrices, state space representation

I unity matrix

M mass matrix

K damping matrix

C stiffness matrix

T transformation matrix

n normal vector

x state vector

A−1 inverse of matrix A

AT transpose of matrix A
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Chapter 1

Introduction

This introductory chapter starts with a discussion on the design requirements and

operating conditions of a landing gear. The available literature on the shimmy

phenomenon, with particular reference to aircraft landing gears, will be reviewed. Next,

the objectives and scope of this thesis will be defined and an outline will be presented.

Finally the usage of non-dimensional parameters will be explained.

1.1 Design requirements

Among the various components that make up an aircraft, the landing gear is an important

and complex system. A recent study indicates that the landing gear continues to be the

most failure prone system of Western-built commercial jet transports [11]. According

to this study there were 1408 system related accidents between 1958 and 1993 in total;

about one third (456) of these accidents were related to landing gears. This is more

than twice as many as the next most failure prone category engines, which accounted for

192 accidents. Apparently the landing gear design and maintenance procedures may still

require improvements to enhance flight safety.

The demands on the landing gear system are numerous and conflicting. The next list

is not complete, but gives an impression of the operating conditions of the landing gears

on a civil aircraft. For a detailed overview on design requirements reference is made to

[19], [27].

• In flight the landing gear is just dead weight. Therefore its mass and volume

should be as small as possible in order not to degrade the performance of the

aircraft. The mass of the landing gears, including wheels and tyres, typically

amounts 6 to 10 % of the aircraft mass (Manufacturing Empty Weight, MEW).

The aerodynamics of the aircraft should not be disturbed by the landing gear;

generally the gear is retractable and the size of the fairing should be small in order to

minimise aerodynamic drag. This implies that a complicated retraction mechanism

is required to retract and lower the landing gear. In retracted position the gear

should interfere as little as possible with the cargo compartment.

• In order to allow sufficient rotation of the aircraft during take-off, generally about 10

to 15 degrees in pitch, a boundary for the location of the wheels can be established.

Furthermore the jet engines or propellers should have sufficient clearance with

respect to the runway when the aircraft is on the ground. For many aircraft these

11



12 CHAPTER 1. INTRODUCTION

requirements result in a wing mounted main landing gear with a considerable

length. The main wheels will be located rather close to the centre of gravity of the

aircraft in the longitudinal direction. Sufficient load on the nose landing gear has to

be provided, in order to prevent aft-tipping of the aircraft. In addition, requirements

may exist regarding the aircraft static attitude in order to provide the correct angle

of attack during take-off.

• The landing gear should be able to absorb the energy of landing impact up to descent

velocities of 3.66 m/s (12 fps). This requires a shock absorber with a considerable

stroke in order to limit the loads occurring during landing impact. For a civil jet

aircraft the ground speed during landing is in the range of 200 to 300 km/h. On

touch down the wheels have to be accelerated and this spin-up phenomenon results

in very high loads on the landing gear structure. The vertical loads generated during

landing impact may be decisive for the design of several parts of the fuselage. Also

during ground operations (e.g. towing, jacking, braking) the loads applied through

the landing gear may be highly significant.

• The life of an aircraft is expressed in the number of flights; the current design

requirement for a new aircraft may be as much as 90000 safe flights, which

corresponds to an operational life of about 30 years. The landing gear should be

designed for this period without the replacement of major structural parts. This

requirement cannot be met by the brake disks and tyres; they have to be replaced on

a regular basis; tyres last for a few hundreds up to several thousands landings. Since

many civil aircraft are in use for almost 24 hours a day, there is minimal room for

servicing. The reduction of maintenance costs and time is a very important driver

in the design of a landing gear.

• The vertical loads, which are allowed for aircraft tyres, exceed by far the values

found for truck tyres of similar size. The upper limit on the diameter of aircraft

tyres is about 1.2 meter combined with a maximum vertical load capacity of 250 kN

for a single tyre. In order to have acceptable ground floatation characteristics and to

minimise the damage to the runway, the tyres should have a large contact area and

consequently the tyre deflection will be relatively large. The combination of heavy

loading, high speeds and high deflection percentages make the operating conditions

of aircraft tyres extremely severe.

• The landing gear should be free from excessive vibrations and dynamic instabilities.

Ride comfort is in general not a design target, but some minimum requirements have

to be met. Vibrations can be induced by the brakes, possibly in combination with

the anti-skid system. Normally the tyres are not balanced or only in a very limited

way, which also can be a source of vibrations. Shimmy vibrations can occur due

to the interaction between the landing gear and tyre dynamic behaviour and are the

subject of this thesis.

Generally there is no opportunity to create prototypes during the landing gear design

process for a civil aircraft. The design has to be ”the first time right”, because of the

high costs involved to create a die and the relatively small production numbers. Various

computer models are used in the development stage of the landing gear: calculation of

loads, verification of stress levels, fatigue life, retraction analysis, etc. At a later stage



1.1. DESIGN REQUIREMENTS 13

of the design process a number of tests are performed to check these calculations. Drop

tests are used for example to validate spring and damping characteristics of the shock

absorber at high descent velocities. Fatigue tests on the landing gear may run for many

years, parallel to operational usage of the first production gears. In order to obtain an

airworthiness certificate the landing gear design has to meet the JAR/FAR regulations:

the calculation and test methods have to be approved by the airworthiness authorities.

A number of different landing gear configurations are shown in figure 1.1. For nose

landing gears a twin-wheeled, cantilevered design is by far the most common design.

A twin-wheeled main landing gear is generally used for aircraft weights below roughly

100 tons. The wing mounted cantilevered design is the most common, although there

are also some examples of fuselage mounted, levered suspensions. For higher aircraft

weights a four-wheeled bogie is employed. If the maximum load capacity of the bogie

is reached, a six-wheeled bogie can be introduced or one has to abandon the ”tricycle”

lay-out, consisting of one nose and two main gears, and introduce additional landing

gears. Some examples: the Boeing 747 has four four-wheeled bogies, the Airbus A-340

has two four-wheeled bogies and a twin-wheeled fuselage mounted centre gear of the

cantilevered design type. More exotic wheel arrangements may be employed for military

transport aircraft; examples are the Lockheed C-5A and McDonnell Douglas C-17A as

shown in figure 1.1.

This thesis will focus mainly on twin-wheeled cantilevered main landing gears. Figure

1.2 gives a detailed illustration; the following components can be distinguished:

• main fitting: largest part of the landing gear structure; internally it combines an air

spring and hydraulic damper.

• side stay: lateral support of the main fitting; consists of two members to allow

retraction of the landing gear.

• sliding member: translates vertically with respect to the main fitting; since the

bearings are circular it also has a rotational degree of freedom with respect to the

main fitting.

• torque links: transfer moments between main fitting and sliding member and

prevent rotation of the sliding member with respect to the main fitting.

• shimmy damper: hydraulic damper in series with the torque links, which provides

additional damping for the yaw motion of the wheel axle. The shimmy damper is

installed at the apex joint and its stroke is limited to a few degrees in yaw.

• wheel axle: often has a mechanical trail with respect to the vertical rotation axis

between sliding member and main fitting.

• back-up structure: local structure in the aircraft wing to which the landing gear is

attached.

Figure 1.2 also shows some details on the retraction mechanism and doors, which cover

the landing gear in retracted position.
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cantilevered semi-levered levered

bogie wheel arrangements

C-5A

C-17A

Fig. 1.1: Schematic overview of different landing gear configurations.

Fig. 1.2: Main components of a cantilevered main landing gear.
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1.2 Landing gear shimmy, a review

Shimmy is an oscillatory, combined lateral-yaw motion of the landing gear caused by the

interaction between dynamic tyre behaviour and landing gear structural dynamics. The

motion typically has a frequency in the range of 10 to 30 Hz. The amplitude may grow

to a level of annoying vibrations affecting the comfort and visibility of the pilot, or can

even result in severe structural damage and landing gear collapse. Shimmy can occur on

both nose and main landing gears, although the latter case is more rare. Most publications

on shimmy found in the open literature typically deal with twin-wheeled cantilevered

landing gears, which apparently are more susceptible to shimmy vibrations compared to

other landing gear configurations. Shimmy does not only occur on aircraft but has also

been encountered on the steerable wheels of cars, trucks and motorcycles.

Theoretical research in the field of shimmy has already a long history. Initially the

main focus was on finding a correct description of the tyre dynamic behaviour. Examples

from this early period, which are still relevant today, are the tyre models of Von Schlippe

(1941, [45]), Keldysh (1945, [22]) and Moreland (1954, [32]). Smiley (1956, [46])

reviewed existing theories of linearised tyre motion and developed a summary theory.

Pacejka (1966, [35]) developed the ”straight tangent” approximation to the Von Schlippe

tyre model and explored the field of non-linear tyre behaviour. Rogers (1972, [40])

developed an empirical tyre model based on measured transfer functions and provided

a theoretical justification using the stretched string approximation.

With the availability of tyre models an increasing need for accurate tyre parameters

develops. Smiley and Horne (1961, [47]) compiled an impressive overview of

measurements on many different characteristics of aircraft tyres and developed generic,

empirical formulas to describe these characteristics. Other sources are for example

Collins (1969, [8]) and Ho (1973, [20]). Clark (1974, [6]) performed tests on scale models

of aircraft tyres. Black (1982, [4]) provides a systematic approach to obtain parameters

for the Moreland model. Traditionally aircraft tyres are of a bias-ply construction. In the

last decade radial design aircraft tyres have become available and this has also initiated

measurement programmes on tyre characteristics, see e.g. Yager (1990, [52]) and Davis

(1991, [9] [10]). A generic, empirical expression for the relaxation length of aircraft tyres

was developed by Alsobrook (1996, [1]).

Initially, the models for evaluating shimmy stability remained linear. Pacejka (1966,

[35], [36]) used non-linear models for both the tyre and suspension when analysing front

wheel shimmy on a light truck. The landing gear model of Leve (1969, [28]) includes

a shimmy damper with velocity squared damping force and limited stroke; in addition

a number of design guidelines and measures to prevent shimmy are given. The model

of Black (1976, [3]) features a detailed model of the yaw stiffness including friction

forces, free-play. Grossmann (1980, [15]) demonstrates the use of linearisation techniques

to avoid time-consuming non-linear analyses. Van der Valk (1992, [49]) uses a modal

representation to describe bending of the main fitting and sliding member. The models

created by Baumann (1991, [2]) and Li (1993, [29]) take a similar modelling approach as

laid down in the work of Black.

At first sight the amount of literature available over the years on landing gear shimmy

may seem to be limited, but one has to be aware that many developments may be in-house

proprietary and are not published in the open literature. In a review paper on aircraft

ground dynamics Hitch (1980, [19]) states:
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”Main wheel shimmy is sufficiently rare that it is totally ignored. However

the Douglas DC-9, the BAC 1-11 and according to some accounts the Boeing

737 and Fokker F28 all designed to a very similar specification in the same

5 year time span - each suffered main wheel shimmy to varying degrees. This

caught the Industry by surprise and, even among rivals, some conferring

took place. ... This effort undoubtedly updated the ”state-of-the-art” but

none of the companies reported their work in the open literature and the

especial conditions which these four aircraft represented have never been re-

established nor has the problem recurred. The next generation of designers

will have to learn the secrets all over again.”

Krabacher (1993, [25]) describes his experiences over a large number of years in the field

of landing gear dynamics:

”... the actual approach taken in dealing with landing gear dynamics

problems frequently is on the level of a primitive science with some

engineering conjury thrown in for good measure. ... In the landing gear

design phase there seems to be a lack of concern about the design features

which could contribute to potential gear problems such as shimmy and gear

walk.”

Krabacher proposes to set up working groups to produce a standardised model for landing

gear dynamics and to update the work of Smiley and Horne for the aircraft tyres in

use today. Norton (1993, [33]) describes the lengthy and troublesome shimmy testing

programme of the C-17A military transport aircraft.

In 1995 an AGARD (Advisory Group for Aerospace Research & Development)

conference was almost exclusively devoted to landing gear shimmy. A comparatively

large number of papers was presented. Krabacher [26] presents the equations of a shimmy

model which was developed 17 years ago; parameters and analysis results are given for a

number of different landing gears. Woerner [51] discusses the impact of non-linearities on

landing gear modal testing and the impact on landing gear stability. Koenig [24] remarks

that the mathematical description of the tyre dynamic behaviour is almost 50 years old and

questions why no reliable up-to-date theory is available. Glaser and Hrycko [12] report

on the past shimmy problems encountered by de Havilland. They state:

”... While these problems occurred 10 years ago, it is the authors’ contention

that little progress has been made in the discipline in the intervening years.

It is recommended that advisory material is needed in this important but

often neglected subject. ... The authors have reason to believe that the

shimmy ”problem” is perceived by many to be a ”black art” with no basis

in sound engineering methods. The authors disagree and are concerned

that this ”black art” perception has hindered progress in shimmy design

unnecessarily. ... What is lacking is the accumulation, integration and

dissemination of currently available analytical and experimental experience

to support the development of the practical design process.”

The advisory material should include guidelines for modelling, analysis, test procedures,

maintenance and practical design information.

As stated before, the landing gear design has to meet the JAR/FAR regulations in order

to obtain an airworthiness certificate. Especially with respect to the calculation of load
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cases the requirements are quite extensive, resulting in a complete procedure to obtain the

static design loads. The JAR/FAR regulations to date do not explicitly include dynamic

stability of the landing gear or a shimmy analysis in particular. On the other hand a flutter

analysis, concerning the dynamic stability of the wings, is required to certify the aircraft.

So there seems to be some inconsistency in the regulations for civil air transports. For

military aircraft regulations are applicable which explicitly require a shimmy analysis

and dedicated tests.

As already indicated by the quotes of a number of experts in the field, shimmy is

easily ignored in the design process. That may be partly due to lack of specific knowledge

of the shimmy phenomenon, of suitable analysis tools and of reliable data on structural

stiffness or tyre characteristics. This situation is complicated by the fact that even with

the best available tools, reliable analysis results may not be expected until detailed design

of both landing gear and airframe is well advanced. To avoid a development risk in

the form of shimmy, at a late stage in the design process while possibly under schedule

pressure, will require at least a clear delineation of responsibilities between airframe and

landing gear designer/manufacturer, and intensive communication to evaluate the shimmy

characteristics as the landing gear design progresses.

As a concluding remark it can be stated that despite a long history, landing gear

shimmy remains a relevant problem today.

1.3 Objectives and scope

This research was initiated by a landing gear shimmy event, which occurred on a test

aircraft. In the process of studying the shimmy instability, it was felt that the knowledge

on the shimmy phenomenon could be improved. The number of publications available in

the open literature appears to be relatively small, as already indicated in section 1.2, and

was found to be of limited use. This situation marked the starting point of this thesis. The

aim is to gain a better understanding of the shimmy phenomenon and possibly develop

guidelines for a shimmy-free landing gear design.

The thesis focuses on the shimmy stability of twin-wheeled aircraft main landing

gears, in particular the cantilevered design employed on civil jet transports. Three fields

of research have been identified:

• shimmy fundamentals

Shimmy is a complex phenomenon and is influenced by many design parameters.

Most publications available in the open literature typically deal with detailed

models of the landing gear and are generally focussed on solving shimmy problems

for this particular configuration. Though sensitivity studies have been performed,

the trends may not be generally applicable. The aim of this thesis is to provide

a better understanding of the basic mechanisms governing the shimmy stability

of landing gears. Relatively simple models will be used to analyse the impact of

various parameters on shimmy stability; design guidelines will be extracted when

possible.

• tyre models

Over the years a number of different tyre models have been developed for

application to the shimmy problem. The question which model is most accurate

in predicting shimmy has been a source of disputes. A comparison will be made
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between the theories of Von Schlippe, Keldysh, Moreland, Pacejka and others.

Furthermore, attention will be paid to obtaining a valid and consistent set of tyre

parameters, which is a problem of its own. Accurate tyre data is crucial for making

reliable shimmy predictions.

• dedicated shimmy study

Although the simple models are useful for studying the shimmy behaviour in

general, more detailed models are required in the design stage or when solving

actual shimmy problems. The various issues arising when developing a dedicated

model for a particular landing gear will be discussed. Different component tests

may be required for validation purposes or to provide characteristics for the model;

also the operating conditions and possibilities of full-scale shimmy testing will be

discussed.

Since this thesis focuses on main landing gears, no attention will be given to the steering

system. The steering system may be an important factor in nose landing gear shimmy

vibrations and its characteristics may be tuned to suppress shimmy. Furthermore the

possible impact of the brakes on the shimmy stability will be left untouched.

1.4 Outline of the thesis

This thesis covers a variety of shimmy analysis models, ranging from simplified linear

models to an elaborate non-linear multi-body/finite element model. The general approach

is to start with the most simple models and gradually increase complexity.

In chapter 2 simplified models of the landing gear structure and tyre are introduced

to study the fundamental mechanisms governing shimmy. Analytical expressions will be

developed for the stability as a function of the gear and tyre parameters. Based on an

energy balance for the tyre, combinations of lateral and yaw motions can be identified

which may result in shimmy. Finally it is shown that the Nyquist criterion may be applied

to assess system stability in the frequency domain.

Some of these methods will be applied to a twin-wheeled cantilevered landing gear

in chapter 3. The effect of various parameter changes will be investigated and the base

configuration will be optimised for shimmy stability. Special features may be introduced

in the landing gear design to suppress shimmy: the shimmy damper, co-rotating wheels,

bob mass and tuned mass will be discussed.

A number of different theories to describe tyre behaviour are currently in use

to analyse shimmy. In chapter 4 a description of these theories and their mutual

relations are given. A comparison will be made in the frequency domain and using the

various step responses. Based on literature, available measurement results and physical

considerations, some guidelines will be presented to estimate and judge the parameters of

the tyre model.

Various aspects of the landing gear, which must be considered when developing a

detailed shimmy analysis model, are described in chapter 5. This includes the shock

absorber characteristics and the dependency of the gear stiffness on the shock absorber

closure. Non-linearities, like free-play and friction, can have a large impact on shimmy

stability and may also disturb the results obtained by modal testing. Methods of full-scale

shimmy testing and model validation will be discussed.
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In chapter 6 the shimmy vibrations recorded on a test aircraft are analysed

and a comparison is made with simulation model results. Finally conclusions and

recommendations for future research are given in chapter 7.

1.5 Non-dimensional parameters

Although it is possible to obtain some analytical results for shimmy stability, the majority

of the results presented in this thesis are based on numerical computations for a given

set of parameters. The parameters used in these calculations are presented in a non-

dimensional form. This has the advantage that the results will independent of the selected

system of units. It will also allow to easily apply the numerical results to similar shimmy

problems. The following transformations are applied:

• length is expressed as a fraction of the unloaded tyre radius Rre f

• mass is expressed as a fraction of the landing gear unsprung mass mre f

• force is expressed as a fraction of the nominal tyre load Fre f

• the unit of time is seconds, tre f = 1 s

• the angular unit is radians, ψre f = 1 rad

It is not possible to select Rre f , mre f , Fre f and tre f independently. For the numerical results

presented in this thesis the following relation is applicable:

Fre f t
2
re f

mre f Rre f

= 500 (1.1)

The value of 500 gives the relation between the unloaded tyre radius, landing gear

unsprung mass and nominal tyre load. It typically reflects the combination seen on a

specific twin-wheeled landing gear, but is believed to be valid for a wider range of twin-

wheeled landing gears. This is based on the assumption that the (unsprung) landing gear

mass will be a fairly constant fraction of the total aircraft mass. The nominal load on the

main tyres will again be almost proportional to the total aircraft mass, the nose landing

gear generally carrying only 5 to 10 % of the total aircraft mass. Furthermore it can be

noted that the tyre radius is relatively constant for large civil aircraft. These observations

seem to justify that equation 1.1 may be valid for a class of twin-wheeled main landing

gears.

Using the reference values, it is possible to create dimensionless parameters, which

are indicated with a ”∗”. Some examples: the relaxation length (unit: length) is expressed

as a fraction of the tyre radius:

σ∗ =
σ

Rre f

(1.2)

The moment of inertia (unit: mass length squared) is made dimensionless using the

reference mass and tyre radius:

I∗ =
I

mre f R2
re f

(1.3)
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The expression for the forward velocity (unit: length/time):

V ∗ =
Vtre f

Rre f

(1.4)

The expression for the cornering stiffness (unit: force/angle):

C∗
f α =

C f αψre f

Fre f

(1.5)

An advantage of using non-dimensional parameters is that the numerical results are

applicable to any configuration which satisfies equation 1.1. In this way some of the

results presented in this thesis could even be relevant to a passenger car suspension. As

an example we may choose mre f = 25 kg, Rre f = 0.3 m and Fre f = 3750 N. If in this

case the non-dimensional cornering stiffness C∗
Fα equals 10, then the cornering stiffness

CFα becomes 37500 N/rad; V ∗ = 100 would represent a forward velocity of 30 m/s and

I∗ = 0.5 corresponds to a moment of inertia I of 1.125 kgm2. These are all fairly realistic

values for a passenger car.

Furthermore the reader may transform the non-dimensional parameters to any

preferred consistent set of units, with the restriction that the unit of time remains one

second and that radians are used for angular dimensions. For example choose mre f =
3 lb·s2/inch, Rre f = 25 inch and Fre f = 37500 lb.

Since the non-dimensional quantities are employed only to facilitate the presentation

of results, the (differential) equations that govern system behaviour have not been made

dimensionless. This is the most common way of presenting equations; it makes the

interpretation easier and they can be used directly in numerical calculations without the

need to perform transformations.



Chapter 2

Shimmy fundamentals

In this chapter basic knowledge, including various new results, with respect to the shimmy

phenomenon is presented. The trailing wheel model, as shown in figure 2.1, is often

used to illustrate the shimmy instability and to evaluate differences between tyre models.

Examples can be found in the papers of e.g. Von Schlippe [45], Smiley [46] and

Pacejka [35]. In this chapter a number of extensions will be made to the trailing wheel

model: including a yaw stiffness, a lateral compliance of the support and roll. This model

will reflect the actual landing gear more closely.

In this chapter the tyre description is limited to the simple ”straight tangent” model.

In chapter 4 the influence of using more advanced tyre models on shimmy stability will

be discussed, which will be especially important at low forward velocity.

Traditionally, a shimmy stability analysis is performed using either the Hurwitz

criterion or an eigenvalue analysis. Using the Hurwitz criterion it appears to be possible to

develop analytical expressions for the shimmy stability and ways of presentation, which

are new and cannot be found in the available literature.

In addition two new techniques will be introduced, which may be helpful in

understanding the cause of the shimmy instability. Based on energy considerations, it

is possible to identify stable and unstable combinations of lateral and yaw input to the

wheel plane at road level. Furthermore, it will be shown that the Nyquist criterion may be

applied to evaluate shimmy stability in the frequency domain.

k

yF

m,Iz

Mz

e

ψ

cψ

ψ

V

Fig. 2.1: Model of the trailing wheel system (top view).
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2.1 Trailing wheel model

The most simple system capable of showing oscillatory unstable shimmy motions is the

trailing wheel model shown in figure 2.1. Wheel and tyre are mounted on a trailing arm;

this arm can swivel with respect to a vertical rotation axis. A linear stiffness cψ and

damping constant kψ are introduced for the yaw motion. The hinge joint moves forward

along a straight line with a constant velocity V .

σ

σ

a
a

V

tp
α’

Fy

x

y

ψ

c

Fig. 2.2: Straight tangent tyre model (top view).

The straight tangent tyre model will be utilised. At this stage it is sufficient to remark

that this tyre model is conservative with respect to detecting shimmy; for a detailed

discussion on various tyre models reference is made to chapter 4. The next equations

are applicable for the straight tangent tyre model when considering small deviations from

a straight line motion, see also figure 2.2:

σα̇′ +Vα′ = Vψ−aψ̇− ẏc

Fy = C f αα′

Mz = Cmαα′















(2.1)

In these equations σ is the relaxation length, V the forward velocity and a half of

the tyre contact length. The deformation angle α′ responds to the lateral velocity ẏc

of the wheel centre, yaw angle ψ and yaw velocity ψ̇. The lateral force Fy and self

aligning moment Mz generated by the tyre are linearly dependent on the deformation

angle. The coefficient C f α is the cornering stiffness; Cmα is the self aligning stiffness and

this coefficient will be negative following the adopted sign convention (see also section

4.1). They are related by the pneumatic trail tp:

tp = −Mz

Fy
= −Cmα

C f α
(2.2)

As can be seen from figure 2.2 the pneumatic trail tp has a clear physical interpretation: it

represents the moment arm of the lateral force Fy with respect to the tyre contact centre.

The linearised equations of motion for the trailing wheel system in state-space form
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(ẋ = Ax) read:









ψ̈
ψ̇
α̇′









=









−kψ
It

−cψ
It

−C f α(e+tp)
It

1 0 0
(e−a)

σ
V
σ −V

σ









·









ψ̇
ψ
α′









(2.3)

In these equations e equals the length of mechanical trail, cψ the yaw stiffness and kψ
the yaw damping constant. The total moment of inertia about the swivel axis equals

It = Iz + me2, with m being the mass and Iz the yaw moment of inertia of the wheel,

including the tyre.

If possible, analytical expressions are preferred to describe the shimmy stability. A

common way of judging system stability is the calculation of the eigenvalues of the matrix

A. Using computational tools, it is even possible to obtain symbolic expressions for the

eigenvalues. Unfortunately these symbolic expressions are already very lengthy for this

simple third order system, so another method is used to obtain analytical results: the

Hurwitz criterion [17], [35].

First the third order system without damper is considered (kψ = 0). The characteristic

equation reads:

a0λ3 +a1λ2 +a2λ +a3 = 0 (2.4)

where:

a0 = Itσ
a1 = ItV

a2 = cψσ+C f α(e−a)(e+ tp)

a3 = cψV +C f α(e+ tp)V























(2.5)

The Hurwitz criterion can be applied and physically relevant parameters are assumed:

It , V , C f α , tp, a and σ will all be positive. The system is stable if all of the following

conditions are met (note: H2 = a1a2 −a0a3):

a0 > 0 : Itσ > 0

a1 > 0 : ItV > 0

a3 > 0 : e > −(tp + cψ/C f α)

H2 > 0 : e > σ+a or e < −tp























(2.6)

The first two conditions are trivial: the relaxation length, velocity and inertia

properties will be positive. For slightly negative and limited positive values of the

mechanical trail e the system is oscillatory unstable (H2 < 0); independent of inertia,

forward velocity, cornering stiffness and yaw stiffness. Furthermore there exists a stable

region when the mechanical trail is negative, the size of this region is dependent on the

yaw stiffness: if this stiffness equals zero this stable region disappears. For a large

negative mechanical trail the system is monotonically unstable (a3 < 0). These results

are illustrated by figure 2.5.

The eigenvalues are calculated as a function of the mechanical trail using the following

data: m∗ = 1, I∗z = 0.5, c∗ψ = 15, k∗ψ = 0, V ∗ = 120, a∗ = 0.4, σ∗ = 1.2, t∗p = 0.2 and

C∗
f α = 10. With these parameters figure 2.3 can be obtained. The real part of one of the

eigenvalues is positive for certain regions of the mechanical trail e∗, indicating an unstable
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Fig. 2.5: Stability boundaries of the trailing wheel model (kψ=0).

system. The system is monotonically unstable for a trail smaller than -1.7 and oscillatory

unstable in the region between -0.2 and 1.6; this is consistent with the analytical results.

The effect of introducing yaw damping is shown in figure 2.4. From this figure it

can be seen that the oscillatory unstable area is reduced with the introduction of damping

and disappears completely when the damping is sufficiently high. Furthermore this figure

illustrates the velocity dependency of the (in)stability at moderate values of yaw damping.

The transition to the monotonically unstable area does not change with the introduction

of damping and remains at e∗ = −1.7.

Next a closely related system is studied: a bogie consisting of two wheels, see figure

2.6. The required modification of equation 2.3 is simple: only a second deformation angle

for the front tyre has to be introduced; the total moment of inertia about the swivel axis

now equals It = 2Iz +2me2. The following equation is applicable (ẋ = Ax):













ψ̈
ψ̇
α̇′

f

α̇′
r













=













−kψ
It

−cψ
It

C f α(e−tp)
It

−C f α(e+tp)
It

1 0 0 0

− (e+a)
σ

V
σ −V

σ 0
(e−a)

σ
V
σ 0 −V

σ













·













ψ̇
ψ
α′

f

α′
r













(2.7)

Again the Hurwitz criterion is applied to the characteristic equation for a system without

a damper (kψ = 0). Physically relevant parameters are assumed: It , V , C f α , tp, a, e and σ

k
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F

cψ

ψ

e
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V

F

0

y,r

y,f

Fig. 2.6: Simple bogie model (top view).
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will all be positive. The system is stable if all of the following conditions are met:

a0 > 0 : Itσ > 0

a1 > 0 : 2ItV > 0

a4 > 0 : cψ +2C f αtp > 0

H2 > 0 : e2 > (σ+a)tp −
ItV

2

C f ασ

H3 > 0 : e2 > (σ+a)tp or e2 < −
(

(σ−a)tp +
cψσ
C f α

+
ItV

2

C f ασ

)















































(2.8)

For a physical system all coefficients will be larger than zero; the stability requirement

then reduces to:

e2 > (σ+a)tp (2.9)

As a first estimate the following approximations could be used: a ≤ 0.5R0, σ ≈ 3a and

tp ≈ 0.5a, where R0 is the unloaded tyre radius. Then the stability requirement becomes:

e ≥ 1
2

√
2R0. From geometrical considerations, as already indicated by figure 2.6, e will be

larger than R0 and consequently the system will always be stable independent of forward

velocity and yaw stiffness. Taking e∗ = 1.4, c∗ψ = 10 and using the other parameters of

the previous numerical example, it can easily be verified that each wheel individually

operates in an unstable region (see figure 2.5). Nevertheless the combination is stable: the

front tyre apparently suppresses the oscillatory instability of the rear tyre and the rear tyre

cancels out the monotonical instability of the front tyre.

2.2 Lateral flexibility of the support

In the trailing wheel model of the preceding section the lateral support of the hinge is rigid,

which may not be a reasonable assumption when modelling a realistic landing gear. A

landing gear is designed with strength requirements in mind in order to minimise weight;

it has to be stress efficient and this may also result in significant flexibility of the structure.

For the shimmy phenomenon the dynamic behaviour of this flexible structure has to be

considered.

The most simple extension to the base trailing wheel model to illustrate this, is the

introduction of a lateral stiffness cy as shown in figure 2.7. This system has an independent

k
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e
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ψ

ψ

y yc

tp

q
y

V

Fig. 2.7: The trailing wheel system with lateral flexibility (top view).
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lateral y and yaw ψ degree of freedom. Since the dynamic behaviour will be considered,

an additional parameter q is introduced which represents the relative location of the centre

of gravity with respect to the wheel centre. The following set of linearised equations is

applicable (ẋ = Ax):



















ÿ

ψ̈
ẏ

ψ̇
α̇′



















=



















−ky

m
−kyet

m
−cy

m
−cyet

m

C f α
m

−kyet

Iz
−kye2

t +kψ
Iz

−cyet

Iz
−cye2

t +cψ
Iz

C f α(q−tp)
Iz

1 0 0 0 0

0 1 0 0 0

− 1
σ − (q+a)

σ 0 V
σ −V

σ



















·



















ẏ

ψ̇
y

ψ
α′



















(2.10)

where:

et = e+q (2.11)

First the case where wheel centre and centre of gravity coincide is considered (q = 0).

In this section the damping constants ky and kψ are also taken equal to zero. In addition

to the parameters of the numerical example of the previous paragraph a lateral stiffness

c∗y = 15 is introduced. The eigenvalues have been calculated as a function of the

mechanical trail to investigate shimmy stability, see figure 2.8. A comparison with figure

2.3 makes clear that introducing the lateral stiffness increases the damping of the original

mode (”osc. 1”) to a positive value, but now a second mode arises (”osc. 2”), which is

unstable for a trail e∗ smaller than approximately 0.24. Furthermore it can be observed

that maximum obtainable positive damping for the least damped mode at a mechanical

trail e∗ ≈ 0.5 is very marginal (< 1.5%); the lateral stiffness had to be selected with care

in order to obtain a stable system at all.
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With the aid of computational tools for the symbolic manipulation of equations, the

Hurwitz criterion has been applied to the characteristic equation of the system described

by equation 2.10. The parameters q, ky, kψ are taken equal to zero and physically relevant

parameters are assumed: m, Iz, V , C f α , tp, a and σ will all be positive. The system is

stable if all of the following conditions are met (a0 = 1):

a1 > 0 :
V

σ
> 0

a5 > 0 : cψ > −C f α(e+ tp)

H2 > 0 : Iz > m(σ+a)tp

H3 > 0 : cψ <
cyI2

z

m2(σ+a)tp
+

Iz(C f α − ecy)

m(σ+a)
+

cyeIz

mtp
− cye2 −C f αtp

H4 > 0 : min(r1,r2) < cψ < max(r1,r2)











































(2.12)

H4 is a quadratic function of cψ; r1 and r2 are the roots of the algebraic equation H4 = 0

with respect to cψ:

r1 =
Iz(C f α − ecy)

m(σ+a)
+

Izcy

m
+ cye(σ+a)− cye2 −C f αtp

r2 =
cy(e+ tp)(Iz − emtp)

mtp



















(2.13)

From this equation it can be seen that the two roots (r1, r2) are again quadratic functions

of e. The requirement for a1 is trivial and it appears that the condition H3 > 0 is always

covered by H4 (proof will be omitted here). Condition a5 > 0 is a reformulation of

condition a3 > 0 for the trailing wheel system with infinite lateral stiffness, see equation

2.6. Apparently this condition is independent of the lateral stiffness. Furthermore a

requirement exists representing a lower boundary for the yaw moment of inertia Iz,

condition H2 > 0.

It is interesting to note that none of the stability criteria are velocity dependent. The

stability boundaries are given schematically in figure 2.9. In this figure also analytical

expressions are given to identify a number of characteristic values for the mechanical

trail. Basically the stability boundaries in the e-cψ plane can be described by two shifted

parabolas with a lower boundary for cψ based either on physical considerations or the

monotonical instability for negative trail values in excess of the pneumatic trail tp.

For the previously defined numerical example, a stability plot similar to figure 2.9 will

be constructed. The actual method employed is to calculate the eigenvalues using a fine

grid in the e-cψ space. The system is on a stability boundary if the maximum of the real

parts of the eigenvalues equals zero, which again corresponds to the results obtained with

the Hurwitz criterion. The eigenvalue analysis has the advantage that it is also possible

to produce additional contour lines corresponding to a certain stability level. The result

is given in figure 2.10 and confirms the parabolic shape. Furthermore it can be noticed

that the shimmy stability may be rather sensitive to changes in yaw stiffness, if the value

of the mechanical trail is close to zero. It should be noted that large portions of the graph

are merely of academic interest, since for a cantilevered landing gear the mechanical trail

length e∗ is expected to be in the range of -0.4 to 0.6.

The influence of changing the lateral stiffness cy is shown in figure 2.11; the case

where cy = ∞ has been calculated using the model of section 2.1. It appears that the
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system is only stable for specific stiffness combinations, depending on the choice of the

mechanical trail e. A different representation is given in figure 2.12, which clearly shows

that the stiffness ratio may be decisive for shimmy stability. The fact that the boundaries

are linear is not surprising: the roots (r1, r2), as given by equation 2.13, are linear functions

of the lateral stiffness cy.

So far it has been assumed that the centre of gravity coincides with the wheel centre

(q = 0). For a twin-wheeled main landing gear the wheels, tyres and brakes determine to

a large extent the total mass of the gear, so this appears to be a reasonable first estimate.

But the location of the centre of gravity is also affected by the location of the main fitting,

sliding member and torque links and therefore an offset may exist from the exact wheel

centre. Again the Hurwitz criterion is applied to equation 2.10, now including an offset

of the centre of gravity (q 6= 0), but still keeping the damping ky, kψ zero. Similar to the

equations 2.12, all of the following conditions have to be met in order to obtain a stable

system:

a1 > 0 : V
σ > 0

a5 > 0 : cψ > −C f α(e+ tp)

H2 > 0 : Iz > m(σ+a+q)(tp −q)

H3 > 0

H4 > 0



































(2.14)

The expressions for H3 and H4 are rather lengthy and have been omitted here.

Nevertheless it appears to be possible to construct a modified version of figure 2.9, and

determine a number of characteristic points for the mechanical trail, see figure 2.14. This

figure applies to the case where q < tp: the centre of gravity is in front of the point of

application of the lateral force Fy. It can be seen that the location of the characteristic

points 2 and 4 and the shape of the parabola connecting 1 and 4 remain unchanged when

moving the centre of gravity.

Some calculations have been made for the numerical example used so far, to show the

effect of large changes in the location of the centre of gravity. The results are given in

figure 2.13; it also shows the behaviour when q ≥ tp (q∗ ≥ 0.2 in the numerical example).

For the system under study, moving the centre of gravity forward reduces the stable area

but the required yaw stiffness to actually stabilise the system at a positive mechanical trail

(say e∗ = 0.5) is smaller in comparison to moving the centre of gravity rearwards with

respect to the wheel centre. If q∗ equals -0.2 the system is unstable for any combination

of yaw stiffness and mechanical trail. It can also be shown that it is possible to obtain

a stable system again for very large negative values of q (q∗ ≈ −1.3), but this is only of

academic interest.
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2.3 Energy flow and mode shapes

So far a trailing wheel system without viscous damping has been studied; the structural

part is a conservative system and does not dissipate energy. This has to imply that the tyres

are responsible for the dissipation of energy in case the total system is positively damped,

or vice versa that energy is provided through the tyres to drive the unstable vibration.

The underlying mechanism, which describes in detail how energy is extracted from the

aircraft forward motion and fed into the lateral/yaw motion of the landing gear in case of

an instability, will not be discussed here. In this section the tyre is treated as a ”black box”

which, at a given constant forward velocity, produces forces and moments in response to

motions of the wheel plane.

The energy balance for the tyre during one vibrational cycle will now be considered.

From equations 2.1 it can be seen that the straight tangent tyre model has two inputs:

the lateral velocity ẏc and the yaw motion (ψ and ψ̇). The resulting output is the lateral

force Fy and self aligning moment Mz. Sinusoidal inputs with a radial frequency ω are

considered; am is a measure for the amplitude of the motion:

yc(t) = amη sin(ωt + ξ)

ψ(t) = am sin(ωt)
(2.15)

If the amplitude ratio η is zero, only a yaw input is considered; with increasing η the

relative magnitude of the lateral motion increases. The relative phase angle ξ indicates

the phase lead of the lateral motion with respect to the yaw motion. The energy balance

is calculated for one cycle, with a period T = 2π
ω :

W =
Z T

0
(Fyẏc +Mzψ̇)dt (2.16)
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If W is negative, energy is fed into the tyre. In order to calculate the integral, first the

differential equation 2.1, combined with equation 2.15, has to be solved. Since the long-

term behaviour will be studied, only the steady-state periodic solution is considered. The

following expression is obtained for the deformation angle α′(t):

α′(t) =
am

V 2 +σ2ω2

(

−(σ+a)Vωcos(ωt)−ηVωcos(ωt + ξ)

+(V 2 −aσω2)sin(ωt)−ησω2 sin(ωt + ξ)
)







(2.17)

With expressions 2.1 and 2.2 for Fy and Mz integral 2.16 becomes:

W =
Z T

0

(

C f αα′ωamη cos(ωt + ξ)−C f αtpα′ωam cos(ωt)
)

dt (2.18)

Substitution of 2.17 and solving the integral yields:

W =
a2

mC f απVω
V 2 +σ2ω2

(

−η2 +(σ+a)tp +(tp −a−σ)η cosξ

+(aσω
V
− V

ω + tpσω
V
)η sinξ

)











(2.19)

First a fixed rotation centre will be considered: in this case the yaw and lateral motion are

in phase (ξ = 0) and η represents the distance between wheel centre and rotation centre.

The expression for the energy reduces to:

W =
a2

mC f απVω
V 2 +σ2ω2

(−η + tp)(η +σ+a) (2.20)

Since the leading factor in this equation will always be positive, it can be seen that W > 0

if η < tp and η >−(σ+a). Following the adopted sign convention the rotation centre will

have a trail e = −η. Then it can be verified that these results are identical to the stability

criterion H2 > 0 as derived for the trailing wheel model, see equation 2.6. Thus it is

shown again that oscillatory instability occurs when −tp < e < σ+a. Note that the energy

method does not detect the monotonous instability which occurs if e < −(tp + cψ/C f α),
because not all solutions of 2.1 are considered, but only the steady-state periodic solutions

as defined by equation 2.15.

Now the general case will be studied including a phase difference between lateral and

yaw motion. It appears to be convenient to switch to polar coordinates:

xp = η cosξ, yp = η sinξ (2.21)

Then the expression for the energy becomes:

W =−a2
mC f απVω

V 2 +σ2ω2

(

x2
p+y2

p+(σ+a−tp)xp+
(V

ω
− σω

V
(tp+a)

)

yp−tp(σ+a)

)

(2.22)

We will now focus on the W = 0 case, which marks the boundary of stability. Furthermore

the wavelength λ is introduced:

λ =
2πV

ω
(2.23)
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Equation 2.22 then reduces to:

x2
p + y2

p +(σ+a− tp)xp +

(

λ
2π

− 2πσ
λ

(tp +a)

)

yp − tp(σ+a) = 0 (2.24)

This equation is actually the description of a circle in the xp-yp plane. The coordinates of

the origin of the circle are given by:

(xpc,ypc) =

(

−1

2
(σ+a− tp),−

(

λ
4π

− πσ
λ

(tp +a)

))

(2.25)

An expression for the radius of the circle can also be derived, but it is more convenient to

consider 2.24 as a circle bundle with the basis points (−(σ+a),0) and (tp,0). As a result,

a polar plot can be constructed, where the distance to the origin is the amplitude ratio η
and the angle to the positive x-axis represents the relative phase angle ξ. It is important to

notice that these W = 0 circles are only a function of a, σ, tp and λ; they do not depend on

the forward velocity V . Figure 2.15 shows the results for σ = 3a, tp = 0.5a and λ = 20a,

40a, 60a and 80a. Instability occurs inside the circles, where W > 0.
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Fig. 2.15: Zero energy dissipation per cycle as function of amplitude ratio η and relative phase

angle ξ between lateral and yaw input to the wheel plane at road level (σ=3a, tp=0.5a).
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Fig. 2.16: Eigenfrequencies and mode shapes as function of forward velocity

(c∗ψ=13.95, ky, kψ, q=0).
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Figure 2.15 may be helpful in understanding that:

• a landing gear may become oscillatory unstable if certain conditions are met

regarding the mode shape and wavelength. The ”unstable” area inside the circle

moves and changes in size with wavelength; therefore the stability may become

dependent on frequency (stiffness, mass) and forward velocity.

• the stability boundaries of the base trailing wheel system (without damper and

lateral flexibility) are the basis points of the W = 0 circle bundle. In this special

case stability is only a function of the length of the mechanical trail.

• if only the lateral degree of freedom is available (η = ∞) the system will not become

oscillatory unstable.

The next example illustrates the mode shape analysis based on the energy

considerations. The trailing wheel model with lateral flexibility is only stable within a

certain range of the yaw stiffness, as was shown in the previous section. An upper and

lower value of the yaw stiffness can be selected, representing a system with one eigenvalue

with a zero real part. For this specific condition the mode shape will be analysed as

a function of the forward velocity. In the numerical example e∗ = 0.4 and q∗ = 0 are

selected. Using the parameters of page 23, taking c∗y = 15 and using equation 2.13, the

lower and upper value for the yaw stiffness can be assessed. We obtain: c∗ψ = 13.95 and

c∗ψ = 18.90; these values may also be checked in figure 2.10.

For the low value of the yaw stiffness figure 2.16 can be obtained. The damping of

the least damped mode (”mode 1”) is exactly zero over the velocity range, as expected.

Also the frequency and mode shape of this particular mode do not change. Figure 2.17

gives the polar plot with a point representation of the mode shape of ”mode 1”, indicated

with the symbol o. Since ”mode 1” lies on a basis point of the W = 0 circle bundle, it

will have zero damping. It can also be seen that at each forward velocity the second mode

(”mode 2”) is always outside the accompanying W = 0 circle and is therefore positively

damped.

The diagrams of figure 2.18 have been calculated for the high value of the yaw

stiffness. Again we find the damping of the least damped mode (”mode 2”) to be exactly

zero. For ”mode 2” both phase and amplitude of the mode shape change with forward

velocity: as the velocity increases the lateral motion gets an increasing phase lead over the

yaw motion and the amplitude ratio η∗ decreases. At each forward velocity this particular

mode shape should be represented by a point on the accompanying W = 0 circle in the

polar diagram. The frequency of ”mode 2” is constant, but the wavelength will increase

linearly with forward velocity and therefore also the location of the W = 0 circle will

change. In figure 2.19 the actual mode shapes of ”mode 2” have been indicated with the

symbol o. It can be observed that these points are indeed located on the accompanying

W = 0 circle, which again illustrates the validity of the stability requirements derived from

energy considerations. The other mode (”mode 1”) has a phase angle ξ of 180 degrees

and an amplitude ratio η∗ of 2.5: it will always be located outside of the W = 0 circles

and is therefore positively damped.
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Fig. 2.18: Eigenfrequencies and mode shapes as function of forward velocity

(c∗ψ=18.9, ky, kψ, q=0).
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2.4 Damping and gyroscopes

In the stability analyses performed so far, both the yaw damping kψ and lateral damping

ky have been kept zero for the system with lateral flexibility of the support. The yaw

damping is of particular interest because it may represent an approximation to the energy

dissipation provided by the friction between main fitting and sliding member. The tyres

may also contribute to the yaw damping because of tread width effects, which are not

yet considered in the tyre model. For a conventional cantilevered landing gear design the

lateral damping will generally be fairly marginal and only consist of structural damping.

One conclusion of the energy considerations for a single tyre, as made in the previous

section, is that a yaw degree of freedom motion of the wheel is required to obtain an

unstable vibration. A positive yaw damping kψ will result in energy dissipation for the

yaw motion and may stabilise the system. For the system under consideration this is

illustrated by figure 2.20; the parameters of page 23 are used including V ∗ = 150 and

c∗y = 15. Note that introducing yaw damping does not change the monotonous instability,

which occurs for a combination of a negative mechanical trail and low values of the yaw

stiffness cψ.

The effect of introducing lateral damping is shown in figure 2.21. It appears that only

introducing lateral damping may actually destabilise the gear for small mechanical trail

values. This is in contrast to adding yaw damping, which has either no or a positive

contribution to the shimmy stability. It is obvious that if the lateral damping is made very

large, the system will behave again as the model without flexibility of the lateral support.

This system is unstable for any mechanical trail value in the range between −tp and σ+a,

as was shown in figure 2.5.

A landing gear has to operate up to forward velocities of 300 km/h and the rotating

parts, wheels, tyres and brake disks, have a large contribution to the total landing gear

mass. Furthermore, the wheel axle will roll about the longitudinal axis when a lateral load

is applied at ground level; so it can be expected that gyroscopic effects caused by these

rotating parts may be important. A simple extension will be made to the current model to

approximately incorporate gyroscopic behaviour, see figure 2.22. The gyroscopes can be

introduced in equation 2.10 by replacing two coefficients in the matrix A:

A(1,2) = −kyet

m
+

IpΩ
ml

A(2,1) = −kyet

Iz
− IpΩ

Izl















(2.26)

where Ip is the polar moment of inertia of the rotating parts and l is the effective gear

length. The effective rolling radius Re relates the angular velocity of the wheel Ω with the

forward velocity:

V = ΩRe (2.27)

The roll angle of the wheel is taken equal to ys/l with ys the lateral position of the

swivel axis at ground level. Using this approach, it is assumed that the centre of gravity

remains at road level and the lateral stiffness cy remains independent of l. A more detailed

three dimensional model of the landing gear will be introduced in chapter 3. Some results

for various values of the effective gear length l are given in figure 2.23. These calculations

are made at a constant forward velocity V ∗ = 150; the additional parameters are I∗p = 0.2
and R∗

e = 1. It can be observed that the gyroscopes result in a system becoming unstable
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Fig. 2.20: Influence of yaw damping on stability (V ∗=150, k∗y=0, no gyroscopes).
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Fig. 2.21: Influence of lateral damping on stability (V ∗=150, k∗ψ=0, no gyroscopes).
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Fig. 2.22: Model of the trailing wheel system with lateral flexibility and roll (front view).

for small positive trail values, irrespective of the value of the yaw stiffness cψ. The

introduction of gyroscopes will also make the stability boundaries velocity dependent:

the effect of increasing the forward velocity is very similar to that of decreasing the gear

length l, as is to be expected from equation 2.26. The difference is that changing the

velocity also affects tyre dynamic behaviour, but for the landing gear configuration under

study this does not give rise to major changes in the e-cψ stability plot.

For a given effective gear length, a reduction of the lateral stiffness will result in

an increasing contribution of the gyroscopes; this is illustrated by figure 2.24. For the

configuration under study, a reduction of the lateral stiffness may have to be combined

with a lower yaw stiffness cψ and increased positive mechanical trail in order to maintain

stability. In particular for small positive values of the mechanical trail e, the yaw damping

and gyroscopes seem to have opposite contributions to the stability.

With increasing forward velocity the contribution of the gyroscopes will become more

dominant over the damping, making the system unstable for small positive trail and

relatively low values of the yaw stiffness as is shown in figure 2.25. If the yaw damping

is increased sufficiently, a stable configuration can be obtained again. In the current

example, increasing k∗ψ to 0.08 would result in a stable configuration up to V ∗ = 200

for the whole e-cψ plane, with the exception of the monotonous instability at negative

mechanical trail values combined with a low yaw stiffness (figure not shown).

In figure 2.25 the combination of a zero mechanical trail e and yaw stiffness cψ
represents a special case: the system is unstable at low forward velocity and will become

unstable again when extrapolating to velocities in excess of V ∗ = 200. This is illustrated

in more detail by figure 2.26: at low forward velocity mode 1 is unstable; at high forward

velocity mode 2 becomes unstable. This type of behaviour was also noted by Pacejka

when studying the shimmy behaviour of the front wheels of a light truck, reference [35].

The instability at the lower forward velocity is known as tyre shimmy and the instability

at higher forward velocity is named gyroscopic shimmy. In the example given here the

forward velocity at which gyroscopic shimmy occurs is rather high, a reduction of the

lateral stiffness, effective gear length or increase of the polar moment of inertia will

considerably reduce this velocity.
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Fig. 2.23: Influence of gyroscopic coupling on stability (V ∗=150, k∗ψ, k∗y=0).
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Fig. 2.24: Stability for different values of the lateral stiffness (V ∗=150, l∗=3, k∗ψ, k∗y=0).
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Fig. 2.25: Stability for varying forward velocity (l∗=3, k∗ψ=0.015, k∗y=0).
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Fig. 2.26: Stability as a function of forward velocity (l∗=3, k∗ψ=0.015, k∗y , c∗ψ, e∗=0).
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2.5 A frequency domain view

For an alternative view on the cause of the shimmy instability we may apply some control

theory. The landing gear can be considered as a feedback system: the tyre produces lateral

forces, which will result in a lateral and yaw motion of the gear structure. At a given

forward velocity these motions, combined with the tyre relaxation behaviour, will again

result in a lateral force. The closed-loop system may be stable or unstable, depending on

the amplitude and phase relation of the open-loop system.

α1

Fy

gear structure

H  (s)lg

+
-

tyre

H    (s)tyre

-1

Fig. 2.27: Feedback schematisation of the trailing wheel system.

For the trailing wheel model with lateral flexibility, as presented in section 2.2, the

tyre and gear structure will be separated, see figure 2.27. The input for the landing gear

structure is the lateral force generated by the tyres acting at the pneumatic trail, the output

is the wheel side slip angle α1 at the leading contact point. For α1 the following relation

holds:

α1 = ψ−a
ψ̇
V
− ẏc

V
(2.28)

The transfer function of the tyre then becomes (see equation 2.1):

Htyre(s) = HFy,α1
(s) =

C f α
σ
V

s+1
(2.29)

So the straight tangent tyre model behaves as a first order system with a time constant of
σ
V

and the gain equals the cornering stiffness C f α .

In general a state space description may be used to define the relations between the

input u(t) and output y(t) for a linear, dynamic, time-invariant system:

ẋ(t) = A ·x(t) + B ·u(t)

y(t) = C ·x(t) + D ·u(t)

}

(2.30)

The transfer function of this system is:

Hyu(s) = C(sI−A)−1B+D (2.31)

Where s is the Laplace variable, which may be replaced by jω. For the trailing wheel

model with lateral flexibility (sections 2.2 and 2.4) the input u(t) equals Fy(t) and the

output y(t) equals α1(t). The definition of the state vector is:

x(t) =
(

ẏ ψ̇ y ψ
)T

(2.32)
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The matrices A, B, C and D read:

A =



















−ky

m
−ky(e+q)

m
+

IpΩ
ml

−cy

m
−cy(e+q)

m

−ky(e+q)
Iz

− IpΩ
Izl

−ky(e+q)2+kψ
Iz

−cy(e+q)
Iz

−cy(e+q)2+cψ
Iz

1 0 0 0

0 1 0 0



















(2.33)

B =
(

1
m

(q−tp)
Iz

0 0

)T

(2.34)

C =
(

− 1
V

− (q+a)
V

0 1

)

(2.35)

D =
(

0

)

(2.36)

Consequently the transfer of the gear structure becomes:

Hlg(s) = Hα1,Fy
(s) = C(sI−A)−1B (2.37)

The Nyquist criterion can be used to study the stability of the closed-loop system using

the transfer function of the open-loop system. The open-loop transfer function reads:

◦
H (s) = −Hlg(s)Htyre(s) (2.38)

According to the Nyquist criterion the stability of the closed-loop system is ensured when

the point (-1,0) is on the left hand side of the open-loop transfer function in the polar

plot, when following this transfer function with increasing frequency. An additional

requirement for the Nyquist criterion is that each element of the open-loop transfer

function has to be stable, which will always be the case for a physically relevant tyre and

gear structure. Another note is that the Nyquist criterion will not detect a monotonical

instability, because transfer functions are only defined for steady-state periodic solutions.

A number of applications will be shown. The parameters of the trailing wheel model

will be used, with the exception that a small amount of damping is introduced, which

corresponds to about 0.5% damping in the gear structure. So we have the following set

of baseline parameters: m∗ = 1, I∗z = 0.5, I∗p = 0.2, a∗ = 0.4, σ∗ = 1.2, t∗p = 0.2, q∗ = 0,

R∗
e = 1, e∗ = 0.4, l∗ = ∞, C∗

f α = 10, c∗y = 15, c∗ψ = 15, k∗y = 25 · 10−4, k∗ψ = 5 · 10−4,

V ∗ = 150.

As an introductory example the effect of modifying the cornering stiffness C f α on the

shimmy stability will be investigated. Figure 2.28 gives the amplitude and phase relation

of the open-loop transfer function. The two peaks in the amplitude ratio correspond to

the eigenfrequencies of the structure without tyre (12.26 and 21.92 Hz). The cornering

stiffness is just a gain in the open-loop transfer function: the phase relation remains

unchanged, but the amplitude ratio increases with the magnitude of the cornering stiffness.

To judge system stability a Nyquist plot of the open-loop transfer function can be

created; see figure 2.29. Since damping in the open-loop transfer function is very low, it is

difficult to combine the peak of the transfer function and a visual check of the point (-1,0)

in one graph. Therefore it was decided to radially plot the square root of the amplitude

ratio; this transformation leaves the stability conditions for the point (-1,0) unchanged.
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Fig. 2.28: Bode plot of the open loop transfer function; varying cornering stiffness

(baseline parameters except for C f α).
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Fig. 2.29: Nyquist plot: varying cornering stiffness (baseline parameters except for C f α).
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When applying the Nyquist criterion to figure 2.28 or 2.29, it can be observed that the

system is unstable for the the highest value of the cornering stiffness: the amplitude just

exceeds the value one when the phase angle reaches -180 degrees. This is confirmed by

the eigenvalues of the closed system in terms of natural frequency and damping ratio, see

table 2.1. This example also illustrates that the actual shimmy frequency may be quite

different from the natural frequencies of the gear structure (17.87 Hz versus 12.26 and

21.92 Hz).

condition mode 1 mode 2

C∗
f α=4 13.36 Hz (1.27 %) 21.89 Hz (0.99 %)

C∗
f α=10 14.95 Hz (1.70 %) 21.83 Hz (1.95 %)

C∗
f α=22 17.87 Hz (-0.58 %) 21.69 Hz (5.84 %)

Table 2.1: Frequency and damping for different values of the cornering stiffness.

Next the influence of the yaw stiffness cψ will be investigated; three values are

considered: c∗ψ = 12, 18 and 24. The open-loop transfer functions are presented in figure

2.30 and the Nyquist plot is given in figure 2.31. As can be seen from the Nyquist plot,

the system is unstable for both the upper- and lower value of c∗ψ, which is to be expected

from figure 2.10 (mechanical trail e∗ = 0.4). The eigenvalues are listed in table 2.2.

condition mode 1 mode 2

c∗ψ=12 14.79 Hz (-2.57 %) 20.26 Hz (4.60 %)

c∗ψ=18 14.98 Hz (4.25 %) 23.39 Hz (0.66 %)

c∗ψ=24 15.02 Hz (7.01 %) 26.32 Hz (-0.33 %)

Table 2.2: Frequency and damping for different values of the yaw stiffness.

For the yaw stiffness c∗ψ = 18 it appears that the second resonance peak in the

amplitude-ratio of the open-loop transfer function has disappeared. This can be explained

by looking at the mode shapes of the gear structure, see figure 2.32. Since the damping

in the structure is very low the undamped eigenfrequencies and mode shapes are shown.

For the condition c∗ψ = 18 the pole of the second mode shape nearly coincides with the

location of the point of application of the lateral force Fy: the pneumatic trail t∗p which

is 0.20 behind the wheel centre in this example. This implies that it will be difficult to

”drive” this mode shape with the lateral tyre force Fy. From a control engineers point of

view one would state that this particular mode is not controllable: it cannot be excited

from the input to the system.

The effect of varying the relaxation length is shown in figure 2.33 and 2.34. In addition

to the previous nominal parameters the gyroscopic behaviour is included (l∗ = 3). The

main effect of introducing the gyroscopes is an increase of the amplitude of the second

resonance peak of the open-loop transfer function and a small phase lead with respect to

the system without gyroscopes. Increasing the relaxation length will result in an increased

phase lag of the open-loop transfer function: as can be verified from the Nyquist plot the

system will become unstable. For this particular system instability appears to occur also
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Fig. 2.30: Bode plot of the open loop transfer function; varying yaw stiffness

(baseline parameters except for cψ).
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Fig. 2.31: Nyquist plot: varying yaw stiffness (baseline parameters except for cψ).
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at a sufficient decrease of the relaxation length (σ∗ = 0.6), resulting in the other mode

(”mode 2”) becoming unstable. This is substantiated by the eigenvalues, see table 2.3.

condition mode 1 mode 2

σ∗=0.6 15.52 Hz (12.95 %) 21.21 Hz (-0.94 %)

σ∗=1.2 15.44 Hz (4.26 %) 21.40 Hz (1.24 %)

σ∗=2.0 14.71 Hz (-0.80 %) 21.71 Hz (1.59 %)

Table 2.3: Frequency and damping for different values of the relaxation length.

The Nyquist criterion may be quite useful in designing a stable and robust landing

gear; with robustness is meant that the system stability is not very sensitive to parameter

changes. Figure 2.35 shows the Nyquist diagram of a configuration which was optimised

by maximising the phase margin and amplitude margin.

Starting from the baseline parameters and including gyroscopic behaviour (l∗ = 3),

the modifications consist of selecting a negative trail (e∗ = −0.2), moving the centre of

gravity rearward (q∗ = 0.1), reducing the yaw stiffness (c∗ψ = 6) and increasing the yaw

moment of inertia (I∗z = 1). The eigenvalues are shown in figure 2.36. The damping of

both modes is positive for the velocity range under investigation.

Individual parameters have been varied to check the robustness. It was found that

for this configuration stability is maintained for any value of the cornering stiffness; the

stability actually improves for moderate increases of the cornering stiffness with respect

to the nominal value. Stability is also maintained for up to three times the nominal value

of the relaxation length. Also the yaw stiffness c∗ψ may have any value below 10; the

shimmy stability increases with the lower values of the yaw stiffness. On the other hand

there exists a lower boundary for the lateral stiffness c∗y : stability is only maintained for

values above 11. This requirement can be relaxed if the contribution of the gyroscopes is

reduced, e.g. by increasing l∗.

This example illustrates that it is possible to design a landing gear where the tyres may

be employed to increase system damping, instead of causing a (shimmy) instability of the

gear-tyre combination. A more detailed study will be given in the next chapter.
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Fig. 2.33: Bode plot of the open loop transfer function; varying relaxation length

(baseline parameters except for σ and l∗=3).
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Fig. 2.34: Nyquist plot: varying relaxation length (baseline parameters except for σ and l∗=3).
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Fig. 2.35: Nyquist plot of the improved gear design.
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Fig. 2.36: Damping and mode shapes of the improved gear design.
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Chapter 3

Landing gear application

The (extended) trailing wheel model, as introduced in the previous chapter, illustrates the

basic principles of shimmy stability. In this chapter an enhanced model will be developed

to describe the behaviour of a twin-wheeled cantilevered landing gear in more detail.

In the available literature a number of suggestions are given to suppress the shimmy

instability, but generally numerical results are hardly presented. The aim of this chapter

is to systematically explore various methods to eliminate the shimmy instability.

The model employed in this chapter is kept as simple as possible, with a minimal

number of degrees of freedom and a small set of parameters. This simplicity will also

imply that the model is quite useful for studying general trends in shimmy stability, but

may not be suited for a detailed analysis of the shimmy stability of a specific landing gear.

The requirements on a more elaborate (multi-body/finite element) model of a landing gear

will be discussed in chapter 5.

3.1 Equations of motion

The equations of motion presented here follow the work of Kluiters [23], though some

extensions have been made: e.g. an additional roll degree of freedom for wheel axle has

been included. The lay-out of the model is illustrated by figure 3.1. The model consists

of five bodies (strut, trail, wheel axle and two wheels) which are all connected by hinge

joints. Longitudinal, vertical and pitch dynamics are not considered; the forward velocity

V is constant. The cant angle θ is taken into account to study different orientations of

the landing gear, but it is not a dynamic degree of freedom. The rotational degrees of

freedom of both wheels are eliminated by the introduction of a kinematic constraint: the

assumption is made that the tyres have zero longitudinal slip. To separate the amount of

roll of the strut from the lateral stiffness, the lateral displacement y at wheel axle level is

taken as a coordinate rather than the roll angle of the strut. This finally results in a gear

representation with three mechanical degrees of freedom represented by the following

coordinates: lateral deflection ya at wheel axle level, yaw angle ψa and the absolute roll

angle of the wheel axle φa, as shown in figure 3.1.

Similar to the models presented in the previous chapter, the straight tangent tyre model

is used to include the tyre lateral behaviour. Two separate tyres on a rigid axle are taken

into account; the track width equals 2w and the tyres have a vertical stiffness cz. The rigid

wheel axle has a roll stiffness cφ with respect to the trail body.

Four mass items are considered: the point mass ms is located at the bottom end of

53
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Fig. 3.1: Schematic overview of the landing gear model.

the strut, representing the mass of the strut; the wheel mass mw is located at the wheel

centre of each wheel and ma represents the mass of the wheel axle and brake assembly.

The centre of gravity of these point masses is located at wheel axle level. In addition, the

moments of inertia of the wheels Iw and axle/brake assembly Ia about the axes parallel to

the yaw (ψa) and roll (φa) axes have been taken into account. The polar moment of inertia

of the wheels Ip will contribute to the yaw moment of inertia of the rigid axle due to the

kinematic constraint on longitudinal slip.

The equations of motion read in state-space form (ẋ = Ax, the dimension of A

equals 7x7):









ü

u̇

α̇′









=









−M−1K −M−1C M−1F

I 0 0

Wv Wp −V
σ









·









u̇

u

α′









(3.1)

where u =
(

ya φa ψa

)T

. The matrices contributing to the system matrix A will be

defined, matrix elements not explicitly defined are equal to zero. The matrix I is a 3x3
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unity matrix. The 3x3 mass matrix M reads:

M(1,1) = ma +ms +2mw

M(1,3) = −ma(e+q)−2mwe

M(2,2) = 2mww2 +2Iw + Ia +2Ip
w2

R2
e

sin2 θ

M(2,3) = −2Ip
w2

R2
e

sinθcosθ

M(3,1) = M(1,3)

M(3,2) = M(2,3)

M(3,3) = ma(e+q)2 + Ia +2mw(w2 + e2)+2Iw +2Ip
w2

R2
e

cos2 θ



























































(3.2)

The 3x3 damping matrix K consists of two parts: K = Kg + Km. The modal damping

matrix Km will be assessed later (equation 3.9). The gyroscopic matrix Kg reads:

Kg(2,2) = 2IpΩw2

R2
e

dRe

dδ sinθcosθ

Kg(2,3) = −2IpΩ+2IpΩw2

R2
e

dRe

dδ sin2 θ

Kg(3,2) = 2IpΩ+2IpΩw2

R2
e

dRe

dδ cos2 θ

Kg(3,3) = −2IpΩw2

R2
e

dRe

dδ sinθcosθ



























(3.3)

The 3x3 stiffness matrix C reads:

C(1,1) = cy + cφ
1
l2 −2Fz

cosθ
l

C(1,2) = −cφ
1
l

C(1,3) = 2Fz(e−Rsinθ)cosθ
l

C(2,1) = C(1,2)

C(2,2) = cφ+2czw
2 cos2 θ−2FzRcos2 θ

C(2,3) = 2czw
2 sinθcosθ

C(3,1) = C(1,3)

C(3,2) = C(2,3)

C(3,3) = cψ +2czw
2sin2θ+2Fz(e−Rsinθ)sinθ











































































(3.4)

The 3x1 matrix F reads (related to forces generated by the tyre):

F(1,1) = 2C f α

F(2,1) = 2C f α(Rcosθ+ tp sinθ)

F(3,1) = −2C f α(e−Rsinθ+ tp cosθ)















(3.5)

The 1x3 matrices Wv and Wp read (related to the tyre deformation angle):

Wv(1,1) = − 1
σ

Wv(1,2) = − 1
σ(Rcosθ−asinθ)

Wv(1,3) = 1
σ(e−Rsinθ−acosθ)

Wp(1,2) = −V
σ sinθ

Wp(1,3) = V
σ cosθ



































(3.6)
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Structural damping is introduced in the model by assuming a damping ratio κm which is

the same for all modes; a value of 0.02 will be used. Let T be the matrix containing the

eigenvectors (columnwise) when determining the eigenvalues of the matrix M−1C. Then

both the mass and stiffness matrix can be diagonalised:

diag(m1,m2,m3) = TT MT

diag(c1,c2,c3) = TT CT

}

(3.7)

A diagonal damping matrix diag(k1,k2,k3) can be determined:

ki = 2κm
√

mici i = 1 . . .3 (3.8)

Finally the 3x3 modal damping matrix Km is calculated:

Km =
(

TT
)−1

diag(k1,k2,k3)T−1 (3.9)

Using this approach each mode of the system consisting of M, Km and C will have a

damping ratio of κm.

The loaded tyre radius R gives the vertical distance between wheel centre and road;

by definition:

R = R0 −δ. (3.10)

where δ is the tyre deflection and R0 is the unloaded tyre radius. With the assumedly

constant vertical stiffness of the tyre the static deflection can be calculated:

δ =
Fz

cz
(3.11)

The forward velocity V and angular velocity of the wheels Ω are related by the effective

rolling radius Re:

Ω =
V

Re
(3.12)

The effective rolling radius is again a function of the tyre deflection δ and unloaded tyre

radius R0. According to reference [47] the following empirical equation is applicable:

Re = R0 −
1

3
δ (3.13)

The polar moment of inertia of the wheels contributes to the yaw moment of inertia of

the wheel axle, due to the zero longitudinal slip constraint for both tyres. In addition the

forces generated by changes in effective rolling radius have to be considered. This can

be illustrated as follows: when assuming a roll velocity of the wheel axle, the effective

rolling radius of the tyre on either side of the wheel axle will change continuously. Since

the assumption is made that no longitudinal slip occurs, the wheel angular velocity has to

increase or decrease as well. In order to accelerate or decelerate the wheel a longitudinal

force is required; the longitudinal forces acting on the tyre at either side of the landing

gear have opposite signs and consequently produce a moment about the vertical axis.

This gives rise to additional coefficients in the matrix Kg, equation 3.3. The longitudinal

forces generated by the tyre are applied at the effective rolling radius; this assumption is

supported by the work of Zegelaar [53].
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Another factor, which complicates the equations of motion, is the cant angle θ which

results in many coefficients depending on cosθ, sinθ or both. Furthermore the static

load on the landing gear is the source of geometrical stiffness effects and gives rise to

additional terms depending on Fz in the stiffness matrix. This may be of importance for

zero or very low values of the yaw stiffness cψ and roll stiffness cφ or small values of the

effective gear length l.

3.2 Baseline characteristics

In this chapter the behaviour of a realistic landing gear configuration will be investigated

and possible counter measures to suppress the shimmy instability will be studied. A

baseline configuration will be defined in this section and its stability will be evaluated.

The baseline parameter values are listed in table 3.1. With this data the frequency and

damping of the mode shapes have been calculated as a function of forward velocity, see

figure 3.2. It can be seen that this configuration is only marginally stable at the lower

forward velocities: the damping is already lower than the structural damping of 2%. For

V ∗ ≥ 150 the damping in mode 1 becomes negative, so the system will be unstable; the

shimmy frequency is approximately 17.5 Hz.

The mode shapes at the tyre-ground contact point can be plotted in a polar diagram as

introduced in section 2.3; the mode shapes are presented in figure 3.3. The wavelength of

each mode shape will also increase as the forward velocity increases, since the frequency

of the mode shapes remains fairly constant. For the velocity range under investigation,

V ∗ = 50 . . .200, the wavelength of mode 1 becomes λ = 7.5a . . .28a, mode 2: λ =
5.8a . . .29a and mode 3: λ = 3.5a . . .13a. In section 2.3 it was shown that for the straight

tangent tyre model a polar plot can be constructed, where at a given wavelength a circle

marks the stability boundary. At high forward velocity, mode 1 is clearly within the

accompanying circle (λ ≈ 30a) and thus this mode is unstable. Based on figure 3.3 one

might expect mode 1 to be already unstable at the lowest forward velocity considered, but

the stability criterion as derived in section 2.3 is based on a conservative gear structure

(so without energy dissipation). In the current example 2% structural damping is taken

into account; it has been verified that mode 1 is unstable over the velocity range under

investigation if the structural damping κm is set to zero.

Alternatively the Nyquist criterion can be applied to determine system stability, as

was shown in section 2.5. The open-loop transfer function for the baseline configuration

is presented in figure 3.4. The frequency range has now been extended to 40 Hz to include

the third mode of the model, which could be described as the ”roll” mode of the wheel

axle. At zero forward velocity and excluding lateral tyre forces (open-loop), the system

has three eigenfrequencies: 12.08 Hz, 22.22 Hz and 34.62 Hz. In the graph these three

eigenfrequencies of the gear can be recognised. Under the influence of the gyroscopes the

frequency of the second mode decreases and the frequency of the third mode increases.

It can also be observed that for increasing forward velocity the second peak in the open-

loop transfer function increases in magnitude and the amplitude ratio is raised above the

value one for frequencies in the neighbourhood of 180 degrees phase lag. This implies

that the system may become unstable at high forward velocities as is also illustrated by

the Nyquist plot, see figure 3.5.
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parameter description value

m∗
s strut mass 0.15

m∗
a mass axle/brake assembly 0.25

m∗
w mass wheel/tyre 0.30

I∗a moment of inertia axle/brakes 0.05

I∗w diametral moment of inertia wheel/tyre 0.07

I∗p polar moment of inertia wheel/tyre 0.10

κm modal damping of gear structure 0.02

l∗ effective gear length 2

e∗ mechanical trail 0.4

w∗ half of wheel track 0.6

q∗ offset c.g. axle mass 0

θ strut cant angle 0

c∗y lateral stiffness 15

c∗ψ yaw stiffness 15

c∗φ roll stiffness 30

a∗ half of contact length 0.4

t∗ pneumatic trail 0.2

σ∗ relaxation length 1.2

C∗
f α cornering stiffness 5

R∗
o unloaded tyre radius 1

dRe/dδ variation of effective rolling radius with tyre deflection −1
3

c∗z tyre vertical stiffness 7

F∗
z tyre vertical load 1

Table 3.1: Baseline parameters of the landing gear model
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Fig. 3.2: Eigenfrequencies and damping as function of forward velocity (baseline configuration).
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Fig. 3.4: Open-loop transfer function (baseline configuration).
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3.3 Improving stability by design modifications

The configuration introduced in the previous section is unstable if V ∗ > 150. In

this section a number of design changes will be investigated to suppress this shimmy

instability. In this analysis the tyre parameters will remain constant, since they are outside

the control of the designer of a landing gear. Furthermore the total mass is assumed to be

constant because wheel, tyre and brake assembly determine to a large extent the landing

gear mass.

A first important conclusion from the preceding analysis is that the gyroscopic effect

caused by the rotating wheels is an important factor in making the system stability velocity

dependent, possibly resulting in a shimmy instability at high forward velocities. This

is illustrated by figure 3.6: the shape of the unstable area changes considerably as the

velocity V ∗ is increased from 100 to 200 when gyroscopic effects are included. The

baseline configuration is indicated with the symbol ”o” and is unstable at V ∗ = 200

when gyroscopic effects are included. If the gyroscopic effects are excluded, the stability

boundaries are hardly velocity dependent. Under these conditions the baseline system

will be stable over the entire forward velocity range and the damping in the two lowest

modes is about 4% at V ∗ = 50 and gradually increases to about 7.5% when V ∗ = 200.

If gyroscopic effects are not present, the parameters of the system still will have to be

selected with care; this was already illustrated for the trailing wheel system in figure 2.9.
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Fig. 3.6: Effect of gyroscopes on stability (o: baseline mechanical trail and yaw stiffness).
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In practice it will prove to be difficult to sufficiently reduce the gyroscopic contribution

of the rotating wheels. One option is to modify the effective gear length l of the landing

gear; some results are shown in figure 3.7 and 3.8. These graphs illustrate that increasing

the effective gear length l is beneficial for the stability in case of small positive trail values.

It has been verified that the gear will be (marginally) stable for the velocity range V ∗ = 50

to 200 if the effective gear length l∗ is increased from 2 to 3. Furthermore it can be noted

that the gyroscopes stabilise the system at high forward velocities for the combination of

a large effective gear length, high yaw stiffness and negative trail.

As shown in the previous chapter, the lateral and yaw stiffness need to have a certain

relation in order to obtain a stable system. Combining figure 3.6 with figure 2.9 seems to

suggest that reducing lateral stiffness may improve system stability. Again the results are

calculated for two different forward velocities: figure 3.9 gives the results for V ∗ = 100

and figure 3.10 for V ∗ = 200. It can be observed that reducing the lateral stiffness (for

the baseline configuration otherwise) gives some improvement of the shimmy stability,

but it appears to be difficult to stabilise the baseline gear both at the low and high forward

velocity. It is obvious from the graphs that the gear will be stable over the entire forward

velocity range if the yaw stiffness and mechanical trail are increased with respect to the

baseline configuration in combination with a reduction of the lateral stiffness.

Increasing the wheel track has a large impact on the yaw moment of inertia, since over

50% of the total landing gear mass is located at the wheel centres. Due to the constraint on

longitudinal slip the polar moment of inertia also contributes to the yaw moment of inertia.

Both contributions are quadratically dependent on half of the track width w. Figures 3.11

and 3.12 show the effects of modifying w on the shimmy stability. For positive values

of the mechanical trail increasing the track width results in a less stable gear, but for a

negative trail value the opposite is true. It seems to be feasible to design a landing gear

with sufficient track width and a negative mechanical trail which is stable for low values

of the yaw stiffness.

In the graphs is shown that the baseline system is stable for the lowest value of the

track width (w∗ = 0.5). In practice it may prove to be very difficult to reduce the track

width to this value, because both the width of the tyres and the diameter of the main

fitting have to be considered. Another interesting case is to reduce the track width of the

system with baseline parameters to zero, which could represent the case where there is

only one single tyre which has twice the cornering stiffness of the original tyres. Not

surprisingly, considering the tendency observed in figures 3.11 and 3.12, it can be shown

that this configuration is stable over the forward velocity range under consideration.

The influence of the roll stiffness of the wheel axle with respect to the strut is shown

in figure 3.13 and 3.14. Though modifying the roll stiffness c∗φ certainly has its impact on

the shimmy stability, it appears to be impossible to select a value which would stabilise

the baseline gear at V ∗ = 200. It is difficult to extract generally applicable trends from the

graphs; but it is clear that optimising the roll stiffness may result in some gain in stability.



3.3. IMPROVING STABILITY BY DESIGN MODIFICATIONS 63

−1 −0.5 0 0.5 1
0

5

10

15

20

25

30

y
a

w
 s

ti
ff

n
e

s
s
 c

* ψ

l
*
=4

stable

unstable

unstable

−1 −0.5 0 0.5 1
0

5

10

15

20

25

30
l
*
=3

stable

unstable

unstable

−1 −0.5 0 0.5 1
0

5

10

15

20

25

30

mechanical trail e
*

y
a

w
 s

ti
ff

n
e

s
s
 c

* ψ

l
*
=2 (baseline)

stable

unstable

unstable

−1 −0.5 0 0.5 1
0

5

10

15

20

25

30

mechanical trail e
*

l
*
=1

stable

unstable

Fig. 3.7: Effect of effective gear length on stability (V ∗=100, o: baseline mechanical trail and yaw

stiffness).
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Fig. 3.8: Effect of effective gear length on stability (V ∗=200, o: baseline mechanical trail and yaw
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Fig. 3.9: Effect of lateral stiffness on stability (V ∗=100, o: baseline mechanical trail and yaw

stiffness).
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Fig. 3.10: Effect of lateral stiffness on stability (V ∗=200, o: baseline mechanical trail and yaw

stiffness).
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Fig. 3.11: Effect of track width on stability (V ∗=100, o: baseline mechanical trail and yaw

stiffness).
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Fig. 3.12: Effect of track width on stability (V ∗=200, o: baseline mechanical trail and yaw
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Fig. 3.13: Effect of roll stiffness on stability (V ∗=100, o: baseline mechanical trail and yaw

stiffness).
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Fig. 3.14: Effect of roll stiffness on stability (V ∗=200, o: baseline mechanical trail and yaw

stiffness).
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parameter description configuration 1 configuration 2

e∗ mechanical trail 0.6 -0.2

w∗ half of wheel track 0.6 0.8

c∗y lateral stiffness 10 20

c∗ψ yaw stiffness 20 10

c∗φ roll stiffness 20 30

Table 3.2: Parameters of the improved landing gear configurations

Based on this parameter study, two new configurations will be defined, which

represent a clear improvement in shimmy stability over the baseline system. The

modifications with respect to the baseline system are listed in table 3.2. Basically there

are two options:

• large positive trail (configuration 1).

An increase of the mechanical trail and a reduction of the lateral stiffness are

required to improve stability at high forward velocity (see figure 3.10). Increasing

the yaw stiffness will generally improve the shimmy stability of a gear with

a positive mechanical trail provided that some structural damping is present.

A limited reduction of the roll stiffness improves the stability at high forward

velocities (see figure 3.14). The yaw moment of inertia should be kept as small as

possible in case of a large positive mechanical trail (see figures 3.11 and 3.12): the

track width remains unchanged with respect to the baseline configuration, which

already represents the practical minimum. The frequency and damping of this

configuration are shown in figure 3.15, a Nyquist plot of the open-loop transfer

function is given in figure 3.16.

• small negative trail (configuration 2).

For a landing gear with a negative trail an upper boundary exists for the yaw

stiffness. The actual value of this stiffness may be quite low: for the baseline

configuration the yaw stiffness would have to be reduced almost by a factor 3 to

obtain a stable configuration with a negative trail. A relatively small increase in

track width relaxes this requirement considerably (see figure 3.12). If the absolute

value of the negative mechanical trail equals the pneumatic trail, there exists no

lower limit for the yaw stiffness to maintain stability. The effect of increasing

the lateral stiffness is quite similar to increasing the track width and improves the

shimmy stability in case of negative trail. System damping is not very sensitive

to the roll stiffness for values of c∗φ in the range of 20 . . .60, so the baseline value

was selected. Figure 3.17 shows the frequency and damping of configuration 2, the

Nyquist plot is given in figure 3.18.

In comparison to the baseline configuration, see figure 3.2, the proposed modifications

result in a major gain in stability. This illustrates that it may be possible to design a stable

conventional landing gear, provided that the combination of parameter values is selected

correctly.
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Fig. 3.15: Eigenfrequencies and damping as function of forward velocity (configuration 1: large

positive trail).
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Fig. 3.16: Nyquist plot of the open-loop transfer function (configuration 1: large positive trail).
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Fig. 3.17: Eigenfrequencies and damping as function of forward velocity (configuration 2: small

negative trail).
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Fig. 3.18: Nyquist plot of the open-loop transfer function (configuration 2: small negative trail).
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3.4 Strut cant angle

During take-off and landing the aircraft pitch angle may vary 10 to 20 degrees while the

main landing gear tyres are in contact with the runway. This implies that the applicable

orientations of the main landing gear have to be checked for stability. Furthermore it is

suggested by a number of authors that canting the gear forward (θ negative, see figure 3.1)

will improve shimmy stability [28], [29].

For the baseline system the influence of the cant angle is shown in figures 3.19 and

3.20. It can be observed that the stability boundary for monotonical instability changes

with the cant angle. For the case of zero yaw stiffness, the minimum trail length to avoid

the monotonous instability is determined by the distance of the point of intersection of

the swivel axis and ground plane and the application point of the lateral tyre force. When

canting the gear forward this distance is increased. For the baseline gear configuration the

stability is not improved by either canting the gear forward or backwards as shown in the

figures 3.19 and 3.20.

Based on figures 3.19 and 3.20 it appears that canting the gear may allow to design

a stable landing gear with zero mechanical trail e, provided that the contribution of the

gyroscopes remains limited. This is illustrated by the following numerical example. With

respect to the baseline values of table 3.1 the length of the mechanical trail e∗ is set to

zero, track width w∗ is increased to 0.8, the effective gear length l∗ is increased to 4 and

the yaw stiffness c∗ψ is reduced to 10. If the cant angle θ is zero, stability of the gear is

very marginal as is shown in figure 3.21. For the velocity range considered the damping

in the least damped mode is always below the structural damping of 2% and the gear is

unstable if V ∗ > 170. When introducing a forward cant angle of 20 degrees the stability

can be improved considerably, as is shown in figure 3.22.

This numerical example confirms that it is possible to improve the shimmy stability of

a landing gear by introducing a cant angle. On the other hand it has also been shown that

introducing a cant angle does not improve the stability of the baseline gear configuration.

So it has to be concluded that canting the gear may be beneficial for certain configurations,

but this does not apply in general.
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Fig. 3.19: Effect of cant angle on stability (V ∗=100, o: baseline mechanical trail and yaw

stiffness).
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Fig. 3.20: Effect of cant angle on stability (V ∗=200, o: baseline mechanical trail and yaw

stiffness).
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Fig. 3.21: Eigenfrequencies and damping as function of forward velocity (θ=0 deg., zero trail

system).
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Fig. 3.22: Eigenfrequencies and damping as function of forward velocity (θ=-20 deg., zero trail

system).
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3.5 Bob mass - tuned mass

In section 2.2 and figure 2.13 it was already shown that the location of the centre of gravity

affects the shimmy stability. Normally, the possibilities of moving the centre of gravity

are rather limited, since the brake stack and wheel/tyres determine to a large extent the

landing gear mass. On the other hand it is possible to introduce an additional mass item

offset of the shock strut centre line to improve stability at the cost of a weight increase.

θtop view (cant angle    =0)

tuned mass

bq

tc

bob mass

ee

mb mt

tk

qt

Fig. 3.23: Additional mass items.

bob mass

First, the addition of a mass item rigidly attached to the trail axle is considered, sometimes

denoted as ”bob mass” (see figure 3.23). Parameter qb gives the relative location of the

mass with respect to the shock strut centre line. The sign convention is the same as for the

mechanical trail: a negative value indicates that the mass is in front of the shock strut. In

figure 3.24 the stability is given as a function of the location qb and mass mb for a number

of different forward velocities. In order to stabilise a system at highest forward velocity

two combinations are possible: a location in front (qb ≈−2) or aft (qb ≈ 0.5) of the strut

centre line. Furthermore a significant mass is needed: about 15 to 20% of the total landing

gear mass. The impact of the bob mass on the open-loop transfer function is presented in

figure 3.25 for two different locations of the bob mass.

For a nose landing gear the weight penalty of the bob mass may still be acceptable:

reference [12] describes how a bob mass of 25 lb was added to a nose landing gear to

improve the shimmy stability. Reference [2] seems to represent a similar case regarding

the nose landing gear of a fighter aircraft. For operation on an aircraft carrier, using the

catapult system, the nose landing gear was equipped with a launch bar. At a later stage the

aircraft was converted to a land-based configuration and the launch bar was removed; this

version proved to be much more susceptible to shimmy. As a remedy, mass was added

again to the steering collar and the introduction of a dummy launch bar was considered.

Another reference states that a bob mass in the order of 100 lb per main landing gear

is required to produce even a small gain in stability and concludes that it generally will be

an unattractive alternative to improve stability [28].
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Fig. 3.24: Effect of bob mass magnitude and location on stability for different forward velocities

(baseline parameters).
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Fig. 3.25: Nyquist plot for various bob mass locations (V ∗=200, m∗
b=0.2).
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tuned mass

A tuned mass (or dynamic damper) may be used as an alternative to the bob mass;

according to Leve, reference [28], this solution will have a lower additional weight. The

tuned mass has a lateral degree of freedom and is connected to the trail via a spring-

damper combination, see figure 3.23. The required amount of mass will depend on the

degree of instability to be compensated for. For the baseline gear parameters used in

this example, a relatively small value appears to be sufficient: 2.5% of the total landing

gear mass. In order to have a positive contribution to the shimmy stability the stiffness

and damping constant have to be tuned appropriately, as is illustrated by figure 3.26. In

this graph the well-known expressions for the frequency and dimensionless damping of a

single degree of freedom mass-spring-damper system are used:

ft =
1

2π

√

ct

mt
, κt =

kt

2
√

mtct
. (3.14)

Again it can be observed that an offset with respect to the strut centre line is required:

either positive or negative. Figure 3.27 gives the stability as function of forward velocity

for the following set of parameters q∗t = −1.5, m∗
t = 0.025, k∗t = 0.002 and c∗t = 0.5.

These parameters correspond to a frequency ft of 15.9 Hz and dimensionless damping κt

of 0.2. Particularly at high forward velocity there is a major improvement in stability for

the modes below 30 Hz in comparison to the baseline system of figure 3.2.

The open-loop transfer function and Nyquist plot are given in figure 3.28 and 3.29

respectively. It can be observed that the major contribution of the tuned mass is a reduction

of the amplitude of the transfer function: the second resonance peak which is related to

the yaw vibration of the gear is suppressed almost completely. At -180 degrees phase

rotation the amplitude ratio is below one, so stability is obtained again according to the

Nyquist criterion.

A final remark is that both the bob and tuned mass generally have to be placed outside

of the wheel/tyre contour to be effective; this may result in interference and storage

problems while retracting the landing gear.
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Fig. 3.26: Effect of the spring/damper characteristics of the tuned mass on stability (V ∗=200,

m∗
t =0.025).
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Fig. 3.27: Stability with optimised tuned mass characteristics (q∗t =-1.5, m∗
t =0.025, k∗t =0.002,

c∗t =0.5).
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Fig. 3.28: Open-loop transfer function for a landing gear with optimised tuned mass

characteristics (V ∗=200, q∗t =-1.5, m∗
t =0.025, k∗t =0.002, c∗t =0.5).
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Fig. 3.29: Nyquist plot for a landing gear with optimised tuned mass characteristics (V ∗=200,

q∗t =-1.5, m∗
t =0.025, k∗t =0.002, c∗t =0.5).
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3.6 Shimmy damper

In the previous chapter it was shown for the trailing arm system, with and without lateral

flexibility, that yaw damping improves stability (see e.g. figures 2.4 and 2.20). The yaw

damping can be increased by introducing a shimmy damper at the apex joint of the torque

links, as shown in figure 1.2. Using the distance from the apex joint to the shock strut,

it is obvious that the translational characteristics of the shimmy damper can be converted

into equivalent torsional characteristics about the strut centre line. In this section only

linear spring and damper characteristics will be used to study the fundamentals; non-

linear behaviour of the shimmy damper will be discussed in section 5.6.

The shimmy damper operates in series with the stiffness cψ of the landing gear as

shown in figure 3.30. The shimmy damper consists of a damper and spring in parallel

having a damping constant ksd and stiffness csd . This situation is different from the

examples given in the previous chapter, where a damping kψ was introduced parallel to

the yaw stiffness cψ. Since a real landing gear is designed for minimum weight it is not

possible to neglect the yaw flexibility of the strut; providing a more stable attachment

point for the shimmy damper would be preferable, but also increases the weight of the

landing gear. Furthermore the shimmy damper is often introduced as a remedy to solve

shimmy problems on an existing main landing gear design; this generally leaves only very

limited possibilities to increase the yaw stiffness cψ.

csd,ksd

cψ

V
cψ

csd sdk shimmy
damper

e

ψ

side view

ψ

yaw stiffness

a
a

Fig. 3.30: Implementation of the shimmy damper in the landing gear model.

The shimmy damper parameters have to be selected with care, due to the series

connection with the yaw stiffness cψ of the landing gear. A very high value of the shimmy

damper stiffness csd will block the damper, so no improvement of the shimmy stability is

to be expected. Zero stiffness of the shimmy damper would result in maximum utilisation

of the damper; but to maintain a proper alignment of the wheels with the fuselage, a

minimum value for the stiffness csd is required to prevent free swivelling of the wheels.

Even more importantly, the damping constant has to be tuned: if the damping constant

ksd is too small the energy dissipation will be limited. Since the overall yaw stiffness

is reduced due to the series connection of springs, a too low damping constant ksd may

actually aggravate the shimmy problems. A very high value for the damping constant

on the other hand will effectively eliminate the contribution of the shimmy damper in

suppressing the shimmy vibrations.

The process of tuning the damping constant is illustrated by figure 3.31. The

parameters of the baseline gear are used in combination with a stiffness c∗sd = 3. The
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tuning process is performed at the highest forward velocity considered for this system,

V ∗ = 200, because the maximum obtainable gain in stability appears to decrease with

forward velocity. The optimum value of the damping constant k∗sd , which maximises the

damping in the least damped mode, equals 0.3 in this example. Figure 3.31 also illustrates

that if the damping constant is too low (k∗sd < 0.1), the landing gear may become highly

unstable. The choice of the damping coefficient is also a function of forward velocity:

at V ∗ = 100 the optimum value of k∗sd equals 0.15. Nevertheless the gear is also stable

at this velocity if k∗sd equals 0.3, as shown in figure 3.32. This figure also illustrates that

an additional, highly damped, oscillatory mode may occur at the lower forward velocities

(”mode 4”). Since the order of the system including shimmy damper is eight, it is possible

that four oscillatory modes are present. This highly damped mode at low forward velocity

was also observed by Van der Valk [49].

The contribution of a shimmy damper on the open-loop transfer function, in

comparison to the baseline system, is shown in figure 3.33; the corresponding Nyquist

plot is given in figure 3.34. It can be seen that the damper is quite effective in suppressing

the resonance peaks of both the lateral and yaw vibration. Also a reduction of the

amplitude ratio in the neighbourhood of -180 degrees phase lag is obtained, although

the improvement appears to be limited in this region.

Next, various combinations of the yaw stiffness cψ and mechanical trail e are

considered. For each combination of cψ and e the damping constant which maximises

the stability at the most critical velocity is selected. The results are presented in figure

3.35 and it confirms that the highest forward velocity represents the most critical case

with respect to stability. Furthermore it can be observed that already relatively small

negative values of the mechanical trail result in a monotonous instability (whole left hand

shaded area): the overall yaw stiffness is mainly determined by the shimmy damper with

c∗sd = 3, which is small in comparison to the gear yaw stiffness c∗ψ = 15. Another important

result is that the baseline system can still become unstable if the yaw stiffness cψ is too

small, particularly at high forward velocity. Figure 3.36 illustrates that for a reduced yaw

stiffness of the gear with respect to the baseline configuration (c∗ψ = 10), it appears not to

be possible to re-tune the shimmy damper to obtain a stable gear again.

The influence of varying the shimmy damper stiffness csd is shown in figure 3.37.

As is to be expected, the area where monotonous instability occurs decreases in size,

when increasing the stiffness of the shimmy damper. If the mechanical trail is positive,

increasing the shimmy damper stiffness will generally result in a less stable gear. In

this case a trade-off may have to be made between stability and the allowable steering

compliance.
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Fig. 3.31: Tuning of the shimmy damper damping constant ksd (V ∗=200, baseline parameters,

c∗sd=3).
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Fig. 3.32: Stability as function of forward velocity with the optimised damping constant (baseline

parameters, k∗sd=0.3, c∗sd=3).
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Fig. 3.33: Open-loop transfer function for the baseline system and baseline including shimmy

damper (V ∗=200, k∗sd=0.3, c∗sd=3).
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Fig. 3.34: Nyquist plot for the baseline system and baseline including shimmy damper (V ∗=200,

k∗sd=0.3, c∗sd=3).
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Fig. 3.35: Stability at various forward velocities for systems with optimised shimmy damper

damping coefficient ksd (o: baseline values for mechanical trail and yaw stiffness,

c∗sd=3).
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3.7 Co-rotating wheels

Interconnecting both wheels by means of a shaft will introduce an additional stiffness

opposing the yaw motion of the gear. This design is known as dual co-rotating wheels.

Referring to German research published in 1943, Moreland [32] already mentions the

possible gain in shimmy stability of this design. According to Stevens shimmy free

nose landing gear designs have been made using co-rotating wheels, but on a number

of occasions shimmy still occurs [48].

To study the contribution of co-rotating wheels a flexible shaft connecting both wheels

will be considered. After linearisation, the following expression can be derived for the

difference in angular velocity between both wheels:

ε̇a =
2w

Re

(

φ̇a sinθ− ψ̇a cosθ+(φa cosθ+ψa sinθ)Ω
dRe

dδ

)

(3.15)

It is interesting to note that angular velocity difference between the wheels is not only

a function of yaw velocity (perpendicular to the road) but also dependent on the roll angle

of the axle with respect to the runway. Roll of the wheel axle will result in different

effective rolling radii between the left and right side and consequently a different angular

velocity of the wheels. The moment in the shaft can be obtained by integration of the

angular velocity difference ε̇a and multiplication with the torsional stiffness of the shaft

ca. The resulting additional moments about the roll and yaw axis of the gear read:

Mφ = −2w

Re
caεa sinθ, Mψ =

2w

Re
caεa cosθ (3.16)

By introducing co-rotating wheels the instability occurring at high forward velocity

for the baseline system can be eliminated, as is shown in figure 3.38 (compare with

figure 3.2). Particularly at high forward velocity the results become sensitive to the value

of dRe/dδ. If this value is zero, the effective rolling radius remains constant, the shaft

only increases the yaw stiffness of the system and a clear improvement in stability can

be obtained, see figure 3.39. The value dRe/dδ = −1
3

is typically obtained for bias ply

tyres. In case of radial tyres it is expected to be closer to zero, but no experimental data

for aircraft tyres is available to support this. The shaft stiffness has to be tuned carefully

as is illustrated by figure 3.40 and confirms that simply introducing co-rotating wheels

does not guarantee shimmy stability.

In the current analysis longitudinal slip of the tyres is not considered; this assumption

may prove to be less accurate depending on the stiffness of the connection shaft and

tyre parameters. Some practical considerations concerning the co-rotating wheels design

should be recognised: the connecting shaft will experience considerable (fatigue) loading,

and it can be expected that the tyre wear will increase. For a main landing gear the shaft

may interfere with a proper operation of the anti-skid system, which normally operates on

each wheel individually.
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Fig. 3.39: Stability as function of forward velocity, baseline parameters, co-rotating wheels c∗a=4

and constant effective rolling radius dRe

dδ =0.
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3.8 Bogie configuration

A bogie is a very common main landing gear configuration for large aircraft. In section

2.1 an analytical expression was derived for this system, indicating that stability can

be obtained if the wheelbase is sufficiently large (equation 2.9). The landing gear

model introduced in this chapter is extended to a four-wheeled bogie and the effect of

lateral stiffness and gyroscopic behaviour of the rotating wheels on system stability is

investigated. Independent roll degrees of freedom for the front and rear axle are used in the

bogie model. Two first order differential equations for the two tyre pairs are considered.

The resulting system is of 10th order.

The baseline parameters are used, with the exception that a distance e∗ of 1.2 is

selected, see figure 2.6. With these parameters figure 3.41 is obtained. It can be seen

that the modes below 30 Hz are damped quite well at the lower and medium forward

velocities. At very high velocity the damping of mode 2 starts to decrease; this mode

becomes unstable for a velocity V ∗ in excess of 300. Figure 3.42 shows the impact of

lateral and yaw stiffness on the stability at V ∗ = 300; a lower boundary for the lateral

stiffness can be established.

Nevertheless it should be noted that this high speed already represents a rather extreme

case, far outside the normal operating range of the aircraft. If the maximum velocity V ∗

is limited to 200 it can be shown that the bogie gear under consideration is stable for

any combination of lateral and yaw stiffness, which is in agreement with the results of

section 2.1. It can be verified that the gyroscopic moment caused by the rotating wheels

is responsible for the instability at very high forward velocity. Consequently, to prevent

the instability the focus should be on minimising the roll of the wheel axle under lateral

loading. This can be achieved by e.g. increasing the lateral stiffness cy, track width w or

effective gear length l.

A general conclusion from this numerical example is that a bogie landing gear

configuration appears to be far less critical with respect to shimmy instability than the

twin-wheeled cantilevered design.
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Chapter 4

Tyre modelling

The tyres play an important role in causing the shimmy instability. In the previous

chapters the straight tangent tyre model, as developed by Pacejka, has been utilised. It

appears that the simple straight tangent tyre model becomes less accurate at low forward

velocity (short wavelength) and a more advanced tyre model with a proper inclusion of

the effect of the finite tyre contact length may be preferred to use.

In the literature various tyre models are available for application to the shimmy

problem. Smiley has already investigated different models from the early days of shimmy

analysis, reference [46]. In this chapter a comparison will be made between a number of

different tyre models, which are still in use today for analysing shimmy. The discussion

includes the model of Keldysh and Kluiters’ implementation of the Von Schlippe model.

These models may be relatively unknown, but are considered to be of importance.

A systematic comparison will be made, based on transfer functions, step response and

energy considerations. Using these results and a careful examination of the governing

differential equations, it appears to be possible to extract equivalence conditions between

some of the tyre models. Furthermore the impact of different tyre models on the shimmy

stability will be investigated for a number of relatively simple mechanical systems.

Finally some attention will be paid to the parameters of the tyre model. Available

measurement data is compared against empirical formulas, as developed by various

authors.

4.1 Slip definitions, sign convention

The interaction between tyre and road under various rolling conditions is a complex

contact problem. Forces and moments are developed at the contact patch due to the

relative motion between wheel and road. Standardised definitions may be used to describe

the tyre characteristics; a generally accepted approach is to consider the tyre and wheel as

a disk which coincides with the plane of symmetry of the tyre, see figure 4.1. The forces

generated by the tyre are assumed to act at the contact centre C. The point C is defined

as the point of intersection between wheel plane, road plane and plane through the wheel

spin axis and normal to the road. The distance R from the wheel centre to point C is

known as the loaded radius.

A local axis system is defined which is used to express the components of the forces,

moments and slip velocities: x-axis is parallel to the line of intersection of the road and

wheel plane; the y-axis is perpendicular to this line and parallel to the road plane; the

89
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Fig. 4.1: Disk representation of wheel and tyre (rear view).

z-axis is normal to the road. At the contact centre C three forces and moments can

be distinguished: longitudinal force Fx, lateral force Fy, vertical force Fz, overturning

moment Mx, rolling resistance moment My and self aligning moment Mz. These forces

and moments are a function of various input quantities: e.g. the vertical force Fz will be a

function of the tyre deflection. The other variables considered in this thesis are:

• longitudinal slip κ
The longitudinal slip is defined as:

κ = −Vsx

Vx
(4.1)

In this expression Vsx is the velocity of the imaginary slip point S with respect to

the road (see figure 4.1). The following equation holds:

Vsx = Vx −ΩRe (4.2)

By definition both κ and Vsx will be zero for a freely rolling wheel. If the wheel

is locked (Ω = 0) Vsx will be equal to Vx and κ will be −1. Generally the effective

rolling radius Re is larger than the loaded radius R and consequently point S will be

located below the road surface. A final note on the definition of longitudinal slip is

that some authors prefer to use an expression different from 4.1 to describe the case

of driving (κ > 0).

• slip angle α
The slip angle (or drift angle) is defined as:

tan(α) = −Vcy

Vx
(4.3)
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Instead of Vcy one may also use Vsy (the lateral component of the velocity of the

wheel at the slip point S); the differences will be very small to negligible.

• turn slip φ
Turn slip is given by:

φ= − ψ̇
Vx

(4.4)

Turn slip typically occurs when the wheel travels along a circular path with a

constant radius, as indicated in figure 4.2.

ψ.

ψ.
V V

=φ =-
1

-

Rc

yF Rc
x x

Mz

Fig. 4.2: Model showing a pure turn slip condition (top view).

• inclination angle γ
The inclination angle is calculated as:

sin(γ) = −nroad ·nwheel (4.5)

The vector nroad is the normal to the road, the vector nwheel is the normal to the

wheel plane and the ”·” denotes the dot product. The variable γ is often referred to

as the camber angle, but strictly speaking the definition of camber is only applicable

in the context of an axle: camber is considered positive when both wheels lean

outwards at the top and negative when they lean inwards [41]. This implies that for

one value of camber the tyres on either side of the axle will have opposite inclination

angles.

It is obvious that using this set of variables to describe tyre characteristics is still a

limited representation: the forces generated by the tyre will also be dependent on inflation

pressure, road roughness, temperature, etc.

Some of the slip definitions employed in this thesis deviate from the SAE and ISO

sign conventions; details are shown in figure 4.3. For the forces and moments the ISO

convention is selected: if the tyre is compressed a positive vertical load Fz is obtained.

The definition of the slip angle α is reversed with respect to ISO; in this way a positive

value for the cornering stiffness C f α is obtained when taking the derivative of the function

Fy(α) at zero slip angle; it also enhances the similarity between the longitudinal and lateral

slip characteristics. Also the sign of the inclination angle is reversed with respect to ISO:

in this way a positive inclination angle produces a positive overturning moment Mx and a

positive increase of the lateral force Fy and self aligning moment Mz. Finally the definition

of turn slip is reversed with respect to the original definition used by Pacejka [37]: with

the current definition a lateral force Fy and positive moment Mz are obtained when the

turn slip φ is positive.
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Following this approach a minus sign has to be applied consistently to the slip and

inclination angle definitions (equations. 4.1, 4.3, 4.4 and 4.5). The slip definitions given

here are only valid for a positive value of the forward velocity Vx. In case of backwards

driving some corrections are required, but the discussion of these modifications is outside

the scope of this thesis and irrelevant for the shimmy phenomenon. The following set

of equations could be used to describe the linearised, steady-state behaviour of a tyre

operating at small values of the inclination angle and slip:

Fx = C f κκ
Fy = C f αα +C f γγ+C f φφ
Mz = Cmαα +Cmγγ+Cmφφ















(4.6)

With the current definitions of slip and inclination angle all C-coefficients, except Cmα ,

will be positive for a regular tyre operating at small values of slip and inclination angle.

When considering the full non-linear characteristics as given in figure 4.3, it is clear that

the derivative of the self aligning moment Mz with respect to the side slip angle α is

negative; consequently also the self aligning stiffness Cmα will be negative:

Cmα =
∂Mz

∂α

∣

∣

∣

∣

α=0

(< 0) (4.7)

To accurately describe shimmy, the dynamic behaviour of the tyre has to be included.

On page 22 the straight tangent tyre model was introduced: the lateral force Fy and self

aligning moment Mz depend on lateral velocity ẏc, yaw angle ψ and yaw velocity ψ̇. For

small values of ẏc and ψ the slip angle equals (see figure 4.4):

α = ψ− ẏc

V
(4.8)

V

α

wheel plane
y

ψ

cx

c

Fig. 4.4: Sign convention of the slip angle α, yaw angle ψ and coordinates xc, yc (road level).

A formulation using side and turn slip is not restricted to small deviations from a

straight line motion of the wheel and thus better suited for a generic implementation of

a tyre model in a multi-body program. In the next sections various tyre models will

be compared using transfer functions, which relate the lateral force Fy and self aligning

moment Mz to side and turn slip. The response of the tyre to pure side slip is given by the

transfer functions HFy,α(s) and HMz,α(s); for turn slip the transfer functions HFy,φ(s) and

HMz,φ(s) are applicable.
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Using equations 2.1, 4.4 and 4.8 the following transfer functions can be obtained for

the straight tangent tyre model:

HFy,α(s) = C f α

(

1

σ s
V

+1

)

(4.9)

HMz,α(s) = Cmα

(

1

σ s
V

+1

)

(4.10)

HFy,φ(s) = C f α

(

a

σ s
V

+1

)

(4.11)

HMz,φ(s) = Cmα

(

a

σ s
V

+1

)

(4.12)

Another important response of the tyre can be obtained when the wheel centre is forced

to move in a straight line and a steering angle is applied to the wheel. We will refer to this

case as pure yaw: ẏc = 0, α = ψ, φ= −ψ̇/V . The accompanying transfer functions are a

combination of the transfer functions with respect to side and turn slip:

HFy,ψ(s) = HFy,α(s)− s
V

HFy,φ(s)

HMz,ψ(s) = HMz,α(s)− s
V

HMz,φ(s)

}

(4.13)

The transfer functions with respect to pure yaw have been verified experimentally using a

yaw oscillation test stand on top of a drum (see e.g. [20], [39]).

4.2 Stretched string model and derivatives

The first tyre models used in a shimmy analysis were based on a single contact point

approach (e.g. Kantrowitz, Wylie [46]). In 1941 Von Schlippe introduced the concept of

a stretched string with a finite contact length to describe the mechanics of a rolling tyre

[45]. For a detailed discussion on the stretched string model reference is made to [35].

In this section a summary will be given of the mathematics governing the stretched string

model and its derivatives.

In the stretched string approach the tyre is considered as a massless string of infinite

length under a constant pre-tension force and it is uniformly supported elastically in

the lateral direction. Some authors prefer to start their analysis with a string of finite

length in a circular shape, which resembles the actual tyre more closely. Nevertheless on

deriving the expressions for the forces generated by the tyre, simplifying assumptions are

introduced whereby the model is effectively reduced to a plane model of a string with

infinite length, see e.g. reference [43]. Furthermore the equilibrium of forces acting on

the circular string is somewhat more complicated: Pacejka noted that in the expression

for the self aligning torque derived by Von Schlippe a corrective factor was introduced,

which would not exist if the point of application of all forces acting on the string had been

take into account correctly [35]. Consequently a plane description of the stretched string

will be considered.

The region where the string is in contact with the road has a length of 2a; for points

in the contact region the assumption is made that no sliding occurs with respect to the

road. Furthermore it is assumed that the angles under consideration remain small. First



4.2. STRETCHED STRING MODEL AND DERIVATIVES 95

c

no sliding

string

1 2

ground contact

wheel plane tFtF
c

σ σa a

v v

Fig. 4.5: Deflection of the string upon application of a lateral displacement of the wheel centre

(non-rolling tyre, top view).

a lateral movement of the rim is considered for a non-rolling tyre. For the free portion

of the string (not in contact with the road) the solution to the partial differential equation

governing the deflection of the string is an exponential function. The constant σ relates

the lateral deflection and slope in the fore and aft point of the contact region, see figure

4.5. The following formula is applicable:

σ =

√

Ft

cc
(4.14)

where Ft is the tension force in the string and cc is the lateral carcass stiffness per unit of

length.

Next a rolling tyre will be considered: a point on the circumference of the tyre will

enter, travel through and leave the contact region. On entering the contact region the zero

sliding condition has to be fulfilled. The lateral deflection of the string in the leading

contact point with respect to the wheel plane equals v1; the location y1 of the leading

contact point in the ground frame is given by (see figure 4.6):

y1 = yc +aψ+ v1 (4.15)

When regarding the boundary condition that the slope of the string deflection remains

continuous at the leading edge, the following differential equation can be obtained for the

string deflection in the leading contact point with respect to travelled distance st :

dv1

dst
= ψ− v1

σ
− dyc

dst
−a

dψ
dst

(4.16)

Assuming a constant forward velocity V , we may assume st = Vt and the equation for the

deflection at the leading edge becomes:

v̇1 = V
(

ψ− v1

σ

)

− ẏc −aψ̇ (4.17)

After differentiation of 4.15 with respect to time, while assuming a constant contact length

a, and substitution in 4.17, we obtain for the lateral position of the leading edge:

σ
V

ẏ1 + y1 = yc +(σ+a)ψ (4.18)

As stated before, the assumption is made that no sliding occurs for all points in the

contact region: their position with respect to the road will remain unchanged. In his paper
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Von Schlippe points out the analogy with a train consisting of a tractor and several trailers:

the tractor travels along a certain path and the trailers have to follow it. Similarly the

ground contact line follows the leading contact point; the lateral position of the leading

point with respect to the ground is governed by equation 4.18. On leaving the contact

region the lateral string deflection will gradually tend to zero again. Generally a kink

will occur in the deflection of the string at the aft contact point because the string has no

bending stiffness. The lateral force and self aligning moment applied to the rim can be

determined by integrating the lateral tyre deflection of the string with respect to the rim

or by considering the forces acting on the part of the string in contact with the road.

The retardational behaviour of points on the ground contact line (trailing the leading

contact point), poses mathematical difficulties which limit the general usage of the

stretched string model in shimmy stability analysis studies. Nevertheless it is possible

to obtain analytical expressions for the forces and moments developed by the tyre in

response to prescribed motions of the rim. Higuchi determined analytical expressions

for various step responses of the tyre [18]. Segel derived analytical expressions for the

transfer functions of the stretched string tyre model [43], [37]. These transfer functions

read:

HFy,α(s) = cc

(

2(σ+a)
s
V

−
(

1+
σ s

V
−1

σ s
V

+1
e−2a s

V

)

1
(

s
V

)2

)

(4.19)

HMz,α(s) = −cc





a
(

1+ e−2a s
V

)

+ s
V

(

1− e−2a s
V

)(

σ(σ+a)−
(

s
V

)−2
)

(

σ s
V

+1
)(

s
V

)2



 (4.20)

HFy,φ(s) = cc

(

2(σ+a)
(

s
V

)2
−
(

1+
σ s

V
−1

σ s
V

+1
e−2a s

V

)

σ+a+
(

s
V

)−1

(

s
V

)2

)

(4.21)

HMz,φ(s) = cc

(

2a
(

σ(σ+a)+ 1
3
a2
)

s
V

)

+HMz,α(s)

(

σ+a+
( s

V

)−1
)

(4.22)

The following relations can be obtained when considering steady-state side slip

conditions; under these conditions the ground contact line will be straight:

C f α = 2cc (σ+a)2

Cmα = −2cca
(

σ(σ+a)+ 1
3
a2
)

}

(4.23)
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Assuming σ = 3a the corresponding pneumatic trail would read 37
48

a ≈ 0.77a.

To allow time domain simulation of the stretched string tyre attached to a flexible

structure, Sharp developed a discretised string model with about 50 elements in the

contact region [44]. This approach may still be considered as being nearly exact;

other researchers have used different methods to simplify the mathematics involved.

In particular their aim has been to obtain a set of differential equations with constant

coefficients; this allows the application of standard stability calculation methods like the

eigenvalue analysis. A number of approximations to the stretched string tyre model will

now be discussed.

v2

y1

1v

σ

V

a
a

y

wheel plane

s

2y

t

path

string

ψ

c

cv βc

Fig. 4.7: The Von Schlippe approximation (top view).

Von Schlippe

In the Von Schlippe approximation the contact line is considered to be a straight line

connecting the leading and aft contact point, see figure 4.7. Due to the retardational (non-

sliding) behaviour, the lateral position of the aft contact point will be identical to the

leading contact point, once the tyre has moved a distance 2a forward. In the time domain

this equation becomes:

y2(t) = y1

(

t − 2a

V

)

(4.24)

The lateral force and self aligning moment can be determined from the deflection of the

contact patch with respect to the wheel plane:

Fy = cv

(

v1 + v2

2

)

= cv

(

y1 + y2

2
− yc

)

Mz = cβ

(

v1 − v2

2a

)

= cβ

(

y1 − y2

2a
−ψ

)



















(4.25)

In these equations cv and cβ represent the lateral and yaw stiffnesses of the centre of the

contact patch with respect to the rim. For a straight contact line, the relation with the

distributed stiffness carcass stiffness cc of the stretched string is given by:

cv = 2cc (σ+a)

cβ = 2cca
(

σ(σ+a)+ 1
3
a2
)

}

(4.26)

The lateral position of the leading contact point is governed by equation 4.18. Combined

with equations 4.23 to 4.26 the transfer functions can be determined:
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HFy,α(s) = C f α

(

2σ s
V

+1− e−
2as
V

2(σ+a)(σ s
V

+1) s
V

)

(4.27)

HMz,α(s) = Cmα

(

1− e−
2as
V

2a(σ s
V

+1) s
V

)

(4.28)

HFy,φ(s) = C f α

(

(σ−a) s
V

+1−
(

1+(σ+a) s
V

)

e−
2as
V

2(a+σ)(σ s
V

+1)
(

s
V

)2

)

(4.29)

HMz,φ(s) = Cmα

(

−2aσ
(

s
V

)2
+(σ−a) s

V
+1−

(

1+(σ+a) s
V

)

e−
2as
V

2a(σ s
V

+1)
(

s
V

)2

)

(4.30)

Smiley

Smiley made an extensive overview of the different tyre models used in shimmy analyses

and developed a summary theory [46], which will be discussed here. If equation 4.18 is

transformed to the distance domain, we obtain:

σ
dy1

dst
+ y1 = yc +(σ+a)ψ (4.31)

Smiley uses a Taylor series to approximate the lateral position of the centre of the contact

patch y0. The following relations can be obtained:

y1 = y0 +a
dy0

dst
+

a2

2!

d2y0

ds2
t

+ . . . (4.32)

dy1

dst
=

dy0

dst
+a

d2y0

ds2
t

+
a2

2!

d3y0

ds3
t

+ . . . (4.33)

The following generic formula can be obtained when substituting these series in 4.31:

n

∑
i=1

(nσ+a)an−1

n!
· dny0

dsn
t

+ y0 = yc +(σ+a)ψ (4.34)

The expressions for the lateral force and self aligning torque read:

Fy = cv (y0 − yc)

Mz = cβ

(

dy0

dst
−ψ

)











(4.35)

It can be noted that the tyre is reduced to a single ground contact point; its position

and orientation are governed by 4.34. Once these are known, the lateral force and self

aligning moment can be calculated easily from the deflection with respect to the wheel

plane (equation. 4.35).

An obvious question is the required order of the Taylor expansion to achieve sufficient

accuracy. In his paper Smiley suggests using n = 3 when the shimmy wavelength is larger

than four times the tyre radius. This value is also used in a recent paper by Krabacher
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[26]; confusing is the fact that the model is referred to as ”Von Schlippe”. The transfer

functions for this particular case (n = 3) read:

HFy,α(s) = C f α





a2
(

3σ+a
6(σ+a)

)

(

s
V

)2
+a
(

2σ+a
2(σ+a)

)

s
V

+1

a2
(

3σ+a
6

)(

s
V

)3
+a
(

2σ+a
2

)(

s
V

)2
+(σ+a) s

V
+1



 (4.36)

HMz,α(s) = Cmα

(

1

a2
(

3σ+a
6

)(

s
V

)3
+a
(

2σ+a
2

)(

s
V

)2
+(σ+a) s

V
+1

)

(4.37)

HFy,φ(s) = C f α





a2
(

3σ+a
6(σ+a)

)

s
V

+a
(

2σ+a
2(σ+a)

)

a2
(

3σ+a
6

)(

s
V

)3
+a
(

2σ+a
2

)(

s
V

)2
+(σ+a) s

V
+1



 (4.38)

HMz,φ(s) = −Cmα

(

a2
(

3σ+a
6

)(

s
V

)2
+a
(

2σ+a
2

)

s
V

a2
(

3σ+a
6

)(

s
V

)3
+a
(

2σ+a
2

)(

s
V

)2
+(σ+a) s

V
+1

)

(4.39)

Pacejka

The exponential function occurring in the transfer functions of Segel or the Von Schlippe

approximation can be developed in a Taylor series:

e
−2as

V = 1− 2as
V

+ 1
2

(

2as
V

)2
+ · · ·+ 1

n!

(−2as
V

)n
(4.40)

The transfer functions of the straight tangent approximation are obtained when

substituting the exponential functions in the transfer functions of either Segel or Von

Schlippe with the n = 1 Taylor approximation, as was done by Pacejka [35]. The transfer

functions of the straight tangent tyre model are given by equations 4.9 to 4.12.

Pacejka also developed a parabolic approximation by including one additional

coefficient in the Taylor expansion (n = 2) and using the transfer functions obtained by

Segel. The corresponding differential equations read [37]:

σ
V

Ḟy +Fy = C f α

(

ψ− a
V

ψ̇− 1
V

ẏc +
(

a
V (σ+a)

)2 (
σ+ 2

3
a
)

((σ+a) ψ̈+ ÿc)

)

σ
V

Ṁz +Mz = Cmα

(

ψ− a
V

ψ̇− 1
V

ẏc + a
V 2 ((σ+a) ψ̈+ ÿc)

)























(4.41)

It can be noticed that if we omit the second derivatives with respect time on the right hand

side of this equation again the equations for the straight tangent tyre model are obtained.

The transfer functions of the parabolic approximation read:

HFy,α(s) = C f α

(

− s
V

(

σ+ 2
3
a
)(

a
σ+a

)2
+1

σ s
V

+1

)

(4.42)

HMz,α(s) = Cmα

(−a s
V

+1

σ s
V

+1

)

(4.43)

HFy,φ(s) = C f α

(

a− a2

σ+a

(

σ+ 2
3
a
)(

s
V

+ 1
σ+a

)

σ s
V

+1

)

(4.44)
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HMz,φ(s) = −Cmα

(

a(σ+a) s
V

σ s
V

+1

)

(4.45)

Both approximations of Pacejka have a clear geometrical interpretation as shown in

figure 4.8. For the parabolic approximation a parabola is used to approximate the string

deflection in the ground contact region; the straight tangent approximation only uses the

slope in the leading contact point.

path

wheel plane

ground contact (2a)
Von Schlippe
parabolic
straight tangent

leading contact point

Fig. 4.8: Three approximations to the string deflection (top view).

Kluiters

In his shimmy analysis Kluiters used the Von Schlippe approach, but replaced the pure

time delay of the aft contact point (equation 4.24) with a Padé filter [23]. Kluiters made

the observation that a Padé filter has better convergence properties when approximating

the pure time delay compared to the Taylor expansion employed by e.g. Smiley and

Pacejka. The general expression for the transfer function of a Padé filter with a time delay

τ and order n is:

H (s) =
a0 −a1τs+a2 (τs)2 + . . .+an (−τs)n

a0 +a1τs+a2 (τs)2 + . . .+an (τs)n
(4.46)

The following (recursive) formula is applicable for the coefficients:

ak =
(n− k +1)

(2n− k +1)k
ak−1, a0 = 1, k = 1 . . .n (4.47)

Kluiters investigated the required order of the Padé filter and found that for his problem a

second order filter (n = 2) was sufficient: increasing the order of the filter did not alter the

results significantly. The accompanying transfer function then becomes (note: τ = 2a
V

):

Hy2,y1
(s) =

1− as
V

+ 1
3

(

as
V

)2

1+ as
V

+ 1
3

(

as
V

)2
(4.48)

Combining this result with equations 4.18, 4.23, 4.25 and 4.26 the following transfer

functions can be obtained:

HFy,α(s) = C f α





1
3

a2σ
(a+σ)

s2

V 2 + aσ
(a+σ)

s
V

+1

1
3
a2σ s3

V 3 +(aσ+ 1
3
a2) s2

V 2 +(a+σ) s
V

+1



 (4.49)
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HMz,α(s) = Cmα

(

1

1
3
a2σ s3

V 3 +(aσ+ 1
3
a2) s2

V 2 +(a+σ) s
V

+1

)

(4.50)

HFy,φ(s) = C f α





−1
3

a3

(a+σ)
s
V

+ aσ
(a+σ)

1
3
a2σ s3

V 3 +(aσ+ 1
3
a2) s2

V 2 +(a+σ) s
V

+1



 (4.51)

HMz,φ(s) = −Cmα

(

1
3
a2σ s2

V 2 +(aσ+ 1
3
a2) s

V

1
3
a2σ s3

V 3 +(aσ+ 1
3
a2) s2

V 2 +(a+σ) s
V

+1

)

(4.52)

Rogers

Initially, Rogers developed an empirical formula to fit measured transfer functions [39].

At a later stage an analytical model was developed based on the stretched string concept,

which substantiated the basic assumptions of the empirical model. For a detailed

discussion of this analytical model reference is made to [40], only the results will be

presented here. Using a Taylor series expansion to approximate the deflection of the

string, Rogers arrived at the following set of differential equations:

aσ
V 2 F̈y + a+σ

V
Ḟy +Fy = C f α

(

ψ− 1
V

ẏc − aσ
(a+σ)V 2 ÿc

)

aσ
V 2 M̈z + a+σ

V
Ṁz +Mz = Cmα

(

ψ+ ε
V

ψ̇+ aσ
V 2 ψ̈− 1

V
ẏc

)











(4.53)

The parameter ε could not be justified on a theoretical basis using a single stretched string,

but was introduced in the equations to improve turn slip behaviour. Using side and turn

slip as inputs to the model, the set of transfer functions becomes:

HFy,α(s) = C f α

(

aσ
(a+σ)

s
V

+1

aσ s2

V 2 +(a+σ) s
V

+1

)

(4.54)

HMz,α(s) = Cmα

(

1

aσ s2

V 2 +(a+σ) s
V

+1

)

(4.55)

HFy,φ(s) = C f α

(

aσ
a+σ

aσ s2

V 2 +(a+σ) s
V

+1

)

(4.56)

HMz,φ(s) = −Cmα

(

aσ s
V

+ ε

aσ s2

V 2 +(a+σ) s
V

+1

)

(4.57)

It would also be possible to obtain these results, assuming that ε = 0, using the Von

Schlippe approximation (equations 4.18, 4.25) and a first order Padé filter (n = 1) which

replaces equation 4.24:

Hy2,y1
(s) =

1− as
V

1+ as
V

(4.58)

In section 4.4 a detailed comparison will be made between the responses of the various

tyre models discussed above.
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4.3 Point contact tyre models

In this section two tyre models will be discussed which are not derived from the stretched

string model, but are based on the concept of a single contact point.

Keldysh

Keldysh developed a non-stationary tyre model with the aim of preventing shimmy on an

aircraft; the tyre model equations presented here were first published in 1945 [22]. Since

the publication is in Russian, the Keldysh tyre model has remained relatively unknown

for many years in the Western world. The author became aware of the details of this tyre

model through the publications of Goncharenko [13], [14].

st

y

wheel plane

v contact patch

p
a
th

V

Rc

ψ

β

cv
cβ

Fig. 4.9: The Keldysh point contact tyre model (top view).

In the tyre model of Keldysh the tyre contact patch has two degrees of freedom with

respect to the rim: the lateral degree of freedom v and yaw degree of freedom β, see also

figure 4.9. The forces applied on the rim are linear functions of the local deformations:

Fy = kvv̇+ cvv (4.59)

Mz = kββ̇+ cββ (4.60)

No sliding occurs between contact point and road; when assuming small angles the

following formula can be obtained:

v̇ = V (ψ+β)− ẏc = V (α +β) (4.61)

Path curvature is assumed to be a linear function of lateral deflection and deformation

angle of the contact patch and inclination angle of the tyre:

1

Rc
=

d(ψ+β)

dst
= −pαv− pββ+ pγγ (4.62)

Substituting the equation st = Vt results in:

β̇ = V (pγγ− pαv− pββ)− ψ̇ (4.63)

The following transfer functions can be determined for the Keldysh tyre model:

HFy,α(s) = (cv + kvs)

(

s
V

+ pβ
s2

V 2 + pβ
s
V

+ pα

)

(4.64)
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HMz,α(s) =
(

cβ + kβs
)

(

−pα
s2

V 2 + pβ
s
V

+ pα

)

(4.65)

HFy,φ(s) = (cv + kvs)

(

1

s2

V 2 + pβ
s
V

+ pα

)

(4.66)

HMz,φ(s) =
(

cβ + kβs
)

(

s
V

s2

V 2 + pβ
s
V

+ pα

)

(4.67)

It can be shown that these transfer functions may be equivalent to the model of Rogers

(equations 4.54 to 4.57) under the assumption that the damping parameters kv, kβ, ε and

inclination angle γ are equal to zero. The equivalence conditions are:

pα =
1

aσ
, pβ =

a+σ
aσ

, cv =
C f α

a+σ
, cβ = −Cmα (4.68)

This is a surprising result: despite following a different approach to modelling the tyre

the resulting differential equations may be completely identical.

The model of Keldysh also includes the inclination angle γ; the following transfer

functions can be derived:

HFy,γ(s) = (cv + kvs)

(

pγ
s2

V 2 + pβ
s
V

+ pα

)

(4.69)

HMz,γ(s) =
(

cβ + kβs
)

(

pγ
s
V

s2

V 2 + pβ
s
V

+ pα

)

(4.70)

Considering steady-state operating conditions, some alternative expressions can be

derived; they may clarify the nature of the coefficients pβ and pγ:

pβ =
C f α

C f φ
, pγ =

C f γ

C f φ
(4.71)

Moreland

The first publication of this tyre model appears in the paper ”The story of shimmy” by

W.J. Moreland in 1954 [32]. Over the years the Moreland tyre model has been quite

popular for application in aircraft landing gear shimmy studies (e.g. [2], [3], [15], [28],

[29]), though its validity has also been subject of discussion ([12], [39], [46]).

Similar to the model of Keldysh, the contact patch has a lateral v and yaw β degree

of freedom with respect to the rim, see figure 4.9. Equations 4.59, 4.60 and 4.61 are

applicable; the only exception being that the damping kβ is always taken equal to zero.

The main difference with the Keldysh tyre model is that Moreland makes the assumption

that the twist angle β responds with some delay to changes in the lateral equilibrium:

β̇ = −1

τ

(

Fy

C f α
+β
)

(4.72)

In this equation τ is the tyre time constant. In the equations presented here the cornering

stiffness C f α is used, which is just the inverse of the tyre yaw coefficient used by Moreland.
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For this tyre model the following transfer functions can be determined (assuming that

Cmα=−cβ):

HFy,α(s) = C f α

(

kvτs2 +(kv + cvτ)s+ cv

C f α
V

τs2 +(kv +
C f α
V

)s+ cv

)

(4.73)

HMz,α(s) = Cmα

(

kvs+ cv

C f α
V

τs2 +(kv +
C f α
V

)s+ cv

)

(4.74)

HFy,φ(s) = 0 (4.75)

HMz,φ(s) = 0 (4.76)

For the self aligning moment a different formula may be used; the lateral force may be

applied directly at the pneumatic trail:

Mz = −tpFy =

(

Cmα
C f α

)

Fy (4.77)

This formulation, in combination with equations 4.59, 4.61 and 4.72, is known as the

modified Moreland tyre model. For the modified Moreland tyre model the transfer

function of the self-aligning moment with respect to side slip becomes (the other functions

remain unchanged):

HMz,α(s) = Cmα

(

kvτs2 +(kv + cvτ)s+ cv

C f α
V

τs2 +(kv +
C f α
V

)s+ cv

)

(4.78)

The Moreland model has always been criticised for the existence of the tyre time

constant τ. As was shown with the stretched string model tyre behaviour is essentially

path dependent, so the apparent tyre time constant must be a function of the forward

velocity. Figure 4.10 gives an overview of Moreland tyre time constants used by a number

of researchers; it is obvious from this graph that a wide range of values is being used and

apparently it is difficult to determine this parameter experimentally. A similar graph was

presented in reference [12].

An interesting result can be obtained when both the tyre time constant τ and lateral

tyre damping kv are taken equal to zero. When a = 0 and σ = C f α/cv are introduced

for the straight tangent tyre model, it appears that the Moreland and straight tangent tyre

model have identical transfer functions. The Moreland tyre model will still show phase

lag, despite the fact that the tyre time constant is equal to zero. So the name tyre time

constant appears to be misleading since it does not reflect the actual (first order) time

constant in the force and moment response with respect to side slip variations.

The Moreland and Keldysh tyre models are very similar, apart from the expression

for the time derivative of the twist angle β, equations 4.63 and 4.72. The Keldysh model

includes contributions of the inclination angle γ and yaw velocity of the wheel ψ̇, which

are absent in the Moreland model. Under the restrictions that γ, ψ̇, kv and kβ are all zero,

we may write:

β̇ = −V (pαv+ pββ) = −1

τ

(

cvv

C f α
+β
)

(4.79)
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Fig. 4.10: Values for the tyre time constant τ of the Moreland model (based on references [2], [7],

[8], [26], [28], [29], [32]).

The aim is to find a value for the tyre time constant τ, which would provide identical

results for the Moreland model and Keldysh model, given the restrictions concerning

damping and wheel motion. Equation 4.79 results in two conditions for the tyre time

constant τ:

τ =
1

V pβ

τ =
cv

C f αV pα















(4.80)

It remains unclear if both conditions can be satisfied at the same time. Equation 4.68

provides equivalence conditions between the Keldysh and Rogers tyre models; after

substitution of pα and pβ in equation 4.80 it appears that only one equation remains for

the tyre time constant:

τ =
aσ

(a+σ)V
(4.81)

Using this value for the tyre time constant will give an identical response of the Rogers and

Moreland tyre models under the absence of tyre damping and turn slip. This can also be

verified directly by substituting equation 4.81 in the expressions for the transfer functions

(equations 4.73, 4.74) and additionally using the expressions for the stiffnesses cv and cβ
from equation 4.68; then the transfer functions of Rogers will be obtained (equation 4.54

and 4.55). Equation 4.81 requires the tyre time ”constant” not only to be a function of

the forward velocity V , but also of the relaxation length σ and contact length a. In the

available literature only Leve makes τ inversely proportional to the forward velocity [28],

other researchers opting for a constant value or τ increasing with forward velocity.
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4.4 Model comparison

Various tyre models have been introduced in the previous sections. A schematic overview

is given in figure 4.11, which shows the relations between these tyre models. Another

important classification can be made by considering the additional number of states,

which are required by the tyre model when a state space description of the mechanical

system is used:

• one additional state: straight tangent, Moreland (τ = 0)

• two additional states: parabolic, Rogers, Keldysh, (modified) Moreland

• three additional states: Smiley (n = 3), Kluiters (n = 2)

Using this classification may be interesting to observe if introducing more states improves

the accuracy of the tyre model.

In this section a number of comparisons will be made; in order to limit the number

of variants to be studied, only path dependent behaviour will be considered. This implies

that damping coefficients kv, kβ and the tyre time constant τ of the Moreland model are

assumed to be zero. Path dependent behaviour can also be obtained for the Moreland tyre

model by using equation 4.81, but then the response to side slip will be identical to the

model of Rogers. Lacking experimental data on the Keldysh tyre model it is assumed that

the equivalence conditions (equation 4.68) apply. The turn slip coefficient ε of the model

of Rogers is taken equal to zero; under these assumptions the models of Keldysh and

Rogers are equivalent. The Moreland and modified Moreland model will have identical

behaviour, because the tyre time constant τ is taken equal to zero.
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Fig. 4.11: Schematic overview of tyre models.
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Transfer functions

The transfer functions of the lateral tyre force Fy and self-aligning moment Mz are given

for side slip, turn slip and pure yaw excitation of the tyre, see figures 4.12, 4.13 and 4.14

respectively. From the graphs it can be observed that for side slip and yaw all models will

have the same steady-state response (a/λ ≤ 0.01). This is not the case for turn slip. The

lateral force response of the Moreland model with respect to turn slip excitation is always

equal to zero; the steady state turn slip responses of some of the other tyre models are

different. Following the adopted sign convention, the steady state coefficient Cmφ should

be positive for a regular tyre (see equation 4.6). For most tyre models presented here, with

the tread width effect disregarded, the steady state response of the self aligning moment

with respect to turn slip is zero and thus Cmφ = 0. The behaviour of the self aligning

moment of the straight tangent tyre model with respect to turn slip is rather different.

For steady state conditions a negative value is obtained. This may result in unexpected

behaviour for some specific simulation conditions when turn slip is dominant.

In the neighbourhood of a/λ ≈ 0.1 a dip occurs in the amplitude of the self aligning

moment response with respect to yaw, see figure 4.14. The existence of this dip has been

verified experimentally. A test can be performed on a drum using sinusoidal steering

input signals with a fixed low frequency (e.g. 1 to 3 Hz) and constant steering amplitude;

different wavelengths can be obtained by varying the drum angular velocity. A complete

description of the test set-up and experimental results can be found in ref. [20]. From

the graphs of figure 4.14 it is obvious that the ”simpler” tyre models, straight tangent and

Moreland, are not capable of describing this dip; the assumption of a constant pneumatic

trail does no longer hold.

For short wavelengths (a/λ > 0.1) the behaviour of the various models is different,

particularly the response to yaw. If our aim is to use differential equations with constant

coefficients to describe the dynamic tyre behaviour, then the approach of Kluiters provides

a very good match to the exact (Segel) and Von Schlippe approximation up to fairly short

wavelengths.
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Fig. 4.12: Transfer functions of the lateral force Fy and self aligning moment Mz for various linear

tyre models with respect to side slip.
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Fig. 4.13: Transfer functions of the lateral force Fy and self aligning moment Mz for various linear

tyre models with respect to turn slip.
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Fig. 4.14: Transfer functions of the lateral force Fy and self aligning moment Mz for various linear

tyre models with respect to pure yaw.
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Step response

The response of the various tyre models has been calculated with respect to three different

step inputs: a step in side slip, turn slip and yaw angle. In the graphs the step is applied

when the travelled distance equals zero. The results for a step in side slip are given in

figures 4.15 and 4.16. From figure 4.15 it is obvious that response of the lateral force

Fy of the different tyre models is hardly different. For the self aligning moment Mz two

groups can be distinguished: for the models having a constant pneumatic trail the shape of

the curve is identical to the lateral force response. The other models display an increased

lag with respect to the step input and the slope of Mz on application of the step in side slip

is zero.

It is important to note that the additional delay in the self aligning moment Mz is

dependent on the relative magnitude of the relaxation length with respect to the contact

length. For aircraft tyres the relaxation length may be in the order of three times half the

contact length (σ ≈ 3a), whereas for a passenger car tyre the relaxation length may be

in excess of ten times half the contact length (σ > 10a). Consequently the additional Mz

delay phenomenon is clearly visible for aircraft tyres, see figures 4.21 and 4.22, but for

passenger car tyres this phenomenon may be hardly noticeable, as is illustrated by figure

4.23. Furthermore the experimental data confirms that the first order delay of the lateral

force Fy on a step in side slip is correct.

The results for a step in turn slip are given in figures 4.17 and 4.18. As already

noted before, the Moreland tyre model has zero response to turn slip and the steady-

state values of the some of the models are different. From theoretical considerations and

measurements, see figure 4.23, it appears that under steady-state turn slip conditions a

positive moment should be generated. So one has to conclude that none of the models

discussed so far is capable of describing this condition accurately.

In figures 4.19 and 4.20 the lateral force Fy and self aligning moment Mz to a step

in yaw is given. From these graphs it is obvious that the responses of both Moreland

and straight tangent are clearly different from the other models, in particular immediately

after application of the step input. From a physical point of view the response of the

self aligning moment Mz of the Von Schlippe model appears to be quite plausible. The

assumption is made that no sliding of the contact points with respect to the road occurs.

Then the application of a step in yaw angle on the rim will result in the same deflection of

the contact patch with respect to the rim. The yaw stiffness of the contact patch with

respect to the rim equals the self aligning stiffness, so on application of the step we

may expect the full steady-state moment to be present. As the tyre rolls forward some

relaxation phenomena occur in the contact patch area leading to a successive decrease

and increase of the moment, before the steady-state condition is reached again.

The experimental results, as shown in figure 4.23, confirm that the response of the

lateral force Fy on a step in yaw has a small delay with respect to the step response on

side slip. The measured response of the self aligning moment Mz on a step in yaw shows

the same trends a the theoretical models, though the initial peak is clearly different from

the steady state value.
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data provided by the Michelin Aircraft Tire Corporation).
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Fig. 4.23: Measured step responses of a passenger car tyre; results for turn slip were obtained by

integration of the measured impulse response (Fz=4 kN, data provided by Akira Higuchi
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Energy

In section 2.3 the energy balance for a single tyre was considered. Sinusoidal variations of

the lateral and yaw motion were considered on top of a straight line motion with a constant

forward velocity. An amplitude ratio η and phase angle ξ between lateral and yaw motion

of the tyre were introduced. It was shown that for the straight tangent tyre model a circle

represents the zero energy dissipation condition when creating a polar plot using η and ξ.

The location of this circle is a function of the wavelength λ of the sinusoidal motion.

This technique can also be used to identify differences between the various tyre

models, which have been introduced in the previous sections. Four different wavelengths

have been considered: λ = 80a, 20a, 10a and 5a; the results are given in figures 4.24,

4.25, 4.26 and 4.27 respectively. Firstly it can be noted that for all tyre models considered

the zero energy dissipation case is represented by a circle in the polar diagram. When

the wavelength is sufficiently long all models, with the exception of the Moreland model,

agree. As the wavelength is reduced differences start to develop; it can be noted that the

models of Smiley and Kluiters remain relatively close to the Von Schlippe approximation

and exact solution of the straight tangent tyre model (Segel). It can be observed that

three points exist in the polar diagram, which are invariant with respect to changes in λ:

(−(σ+ a),0), (−σ,0) and (tp,0). For all tyres, except the Moreland tyre model, the zero

energy dissipation circles will include the basis point (−(σ+ a),0). The straight tangent

model will have an additional basis point: (tp,0). The two basis points of the Moreland

model are: (-σ,0) and (tp,0).
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Fig. 4.24: Polar plot showing zero energy dissipation for various tyre models, sinusoidal excitation

(λ=80a, σ=3a, tp=0.5a).
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Fig. 4.25: Polar plot showing zero energy dissipation for various tyre models, sinusoidal excitation

(λ=20a, σ=3a, tp=0.5a).
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Fig. 4.26: Polar plot showing zero energy dissipation for various tyre models, sinusoidal excitation

(λ=10a, σ=3a, tp=0.5a).
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Fig. 4.27: Polar plot showing zero energy dissipation for various tyre models, sinusoidal excitation

(λ=5a, σ=3a, tp=0.5a).
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Fig. 4.28: Stability for the free swivelling trailing wheel system with a rigid lateral support.
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4.5 Impact on shimmy stability

In the previous section a comparison was made between various tyre models based on

transfer functions, step response and energy considerations. Though these results are

very useful to understand the differences between the tyre models, the actual impact on

shimmy stability may remain unclear. In this section a number of simple mechanical

systems will be employed to compare the shimmy stability of the different tyre models

while using the same tyre parameters.

In this comparison the damping of the tyre (kv, kβ, ε) is taken equal to zero. The tyre

time constant τ of the Moreland tyre model is included. After introducing σ = C f α/cv

equation 4.72 may be replaced by:

β̇ = −1

τ

( v

σ
+β
)

(4.82)

The value of the tyre time constant τ is taken equal to 0.01 seconds; this relatively large

value will enhance the visibility of possible differences in stability.

Trailing wheel system without lateral flexibility

In chapter 2 the trailing wheel model was introduced to investigate shimmy fundamentals,

see figure 2.1 on page 21. Its stability will now be studied for different tyre models. First

a free-swivelling system with a positive mechanical trail will be considered (kψ and cψ
equal to zero); the other parameters remain unchanged with respect to section 2.1. The

results in the velocity-trail plane are shown in figure 4.28. The behaviour of the straight

tangent and Moreland model is rather different from the other tyre models at low forward

velocity (V ∗ < 20); in particular the stable area for small positive mechanical trail values

combined with a low forward velocity is absent.

The existence of this area could already have been deducted from the energy balance,

see e.g. figure 4.27. For the trailing wheel system without lateral flexibility, the lateral and

yaw motion are fixed and have a 180 degrees phase difference following the adopted sign

convention (ξ =180 degrees); the mechanical trail is proportional to the amplitude ratio η.

As the wavelength is decreased, similar to decreasing forward velocity, the zero energy

circle starts to rotate around the basis point (−(σ+ a),0) for the ”advanced” models; the

energy dissipation may become positive in the range 0 < η < σ+ a. This behaviour is

in contrast to the ”simpler” Moreland and straight tangent tyre models which include

two basis points and will remain unstable for short wavelengths and small values of the

amplitude ratio η.

Next a yaw stiffness is introduced, c∗ψ = 15. The results are given in figure 4.29.

With respect to figure 4.28 the velocity range has been extended considerably: due to the

introduction of the yaw stiffness the shimmy frequency is much higher. The differences

between the tyre models, which are typically a function of wavelength, will still be present

at higher velocities. Negative values for the mechanical trail are included, because by

introducing a yaw stiffness the boundary for monotonous instability is shifted towards

increasing negative values of the mechanical trail. This boundary appears to be the same

for the majority of tyre models. Again we find that at the lower forward velocities

combined with small positive mechanical trail that the straight tangent and Moreland

model yield unstable results, whereas the other tyre models result in a stable system.
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Fig. 4.29: Stability for the trailing wheel system with rigid lateral support, yaw stiffness c∗ψ=15.
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Trailing wheel system with lateral flexibility

The trailing wheel system with lateral flexibility of the support is shown in figure 2.7. An

analytical expression for the stability can be derived when a straight tangent tyre model is

used, see figure 2.9. Using the parameters of section 2.2 we will now study the impact of

different tyre models. Already when the lateral support is rigid the stability is a function

of forward velocity for the majority of the tyre models, so the results in the mechanical

trail versus yaw stiffness plane have been determined at two forward velocities: V ∗ = 50,

see figure 4.30, and V ∗ = 150 as shown in figure 4.31.

The differences between the various models remain limited, except for the straight

tangent and Moreland tyre model. As shown before, the results of the straight tangent

tyre model in a system without damping are independent of forward velocity. The models

of Rogers/Keldysh, Kluiters, Smiley and parabolic approximation indicate that for the

lower forward velocity stability will improve for high values of the yaw stiffness. It can

be noted that the boundary which separates the stable from the unstable area at positive

trail values is the same for all models (except Moreland).

The results of the various Moreland tyre models are clearly different from the others.

The inclusion of a time constant generally seems to make the model more unstable. But if

the time constant is excluded the results are not conservative with respect to the other tyre

models: e.g. the required yaw stiffness to obtain a stable gear with a positive mechanical

trail is too low. Furthermore the Moreland model seems to get more unstable at the lower

forward velocities, which is opposite to the majority of the other models.

As the velocity is decreased the wavelengths will get shorter; from the polar plots

concerning the energy dissipation (e.g. figure 4.27) it is already obvious that the

differences between the various tyre models will get larger. Also the location of stable

and unstable areas may change rather dramatically with the wavelength (or velocity) in

this low speed or short wavelength regime. This is illustrated in figure 4.32, where the

velocity range V ∗=5 up to 40 is covered. There hardly seems to be any configuration

which would be stable for all forward velocities in this range.

Nevertheless the results may be less dramatic in reality. Probably the most important

factor to stabilise the system at these low velocities is the damping moment generated

by the tyre due to turn slip. This moment is not present in the tyre models discussed in

this thesis, but is also commonly ignored in most shimmy analyses available in literature.

The apparent damping constant associated with this yaw motion is inversely proportional

with the forward velocity, and may be sufficient to stabilise the system. Nevertheless

an important conclusion form this exercise is that one may have to be cautious with the

interpretation of the results at low values of forward velocity.
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Fig. 4.30: Stability for the trailing wheel system with lateral flexibility, V ∗=50.
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Fig. 4.31: Stability for the trailing wheel system with lateral flexibility, V ∗=150.
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Fig. 4.32: Stability for the trailing wheel system with lateral flexibility as a function of forward

velocity, Kluiters (n=2) tyre model.
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4.6 Tyre parameters

For the tyre models discussed in this chapter four characteristics are required:

• half of the contact length a

• relaxation length σ

• cornering stiffness C f α

• self-aligning stiffness Cmα

In addition, a tyre-time constant τ is needed for the Moreland model. Figure 4.10 gives

an impression of the values used by various researchers, but it is recommended to use

equation 4.81.

Obtaining valid tyre data is a problem on its own. Physical models of the tyre are

not (yet) accurate enough to provide the required tyre characteristics, so these have to

be determined experimentally. Experience has shown that accurate measurement of tyre

characteristics is rather difficult. In a recent study differences over 30% in cornering

stiffness were found between various tyre testing facilities, while using the same car

tyres from a single production batch [34]. Measurements performed on an external drum

generally result in a shorter contact length, lower cornering stiffness and a much lower

self aligning stiffness compared to measurements on a flat surface.

On the other hand one could argue if it actually is possible to measure the tyre

characteristics for a particular tyre: the behaviour will be a function of inflation pressure,

wear, road roughness, forward velocity, temperature, production tolerances, ageing, etc.

For commercial aircraft the use of retreaded tyres is common practice: the tread surface

may be replaced multiple times. It is unclear to which extent this affects the tyre

characteristics.

The following analysis is intended to provide some rules of thumb and to prevent

major errors in the tyre parameters. In this respect the work of Smiley and Horne [47]

remains important. Data from numerous experiments on aircraft tyres was collected and

empirical formulas were developed to describe the tyre behaviour. In this way a reference

frame is provided which can be used e.g. to check the experimental data supplied by a

tyre manufacturer or to get an estimate for a missing parameter. Unfortunately, the work

of Smiley and Horne was never updated since its creation in 1960. Some of the data may

be out of date and could prove to be less accurate in describing the characteristics of tyres

currently in use, in particular for radial aircraft tyres.

We will now discuss the required parameters and ”check” the empirical expressions

available from literature, using experimental data for a number of different makes of

aircraft tyres, all having the same dimensions.

contact length

Smiley and Horne provide the following formula for half of the contact length of the tyre:

a = 1.7R0

√

δ
2R0

−
(

δ
2R0

)2

(4.83)
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where δ is the vertical deflection of the tyre and R0 the unloaded tyre radius. Zegelaar

uses the following formula in his thesis [53]:

a = qa1

√

Fz +qa2Fz (4.84)

Measurements are required to fit the coefficients qa1 and qa2. A disadvantage of this

formula is that it will be limited to only one specific inflation pressure and tyre radius; the

formula of Smiley and Horne is of a much more generic nature.

Using the experimental data available it appears that the contact length predicted by

Smiley and Horne is generally somewhat too large, see figure 4.33. In order to get a better

representation of the contact length a modified formula is suggested:

a = ra1R0





δ
R0

+ ra2

√

δ
R0



 (4.85)

As can be seen from figure 4.33 this formula gives a fair representation of the contact

length for aircraft tyres when taking the coefficient ra1 equal to 0.4 and ra2 equals 2.25.

An additional check on the new formula is made using some passenger car data measured

on a drum and flat road surface, see figure 4.34. From this graph it can be concluded

that different tyre pressures can be described quite well using the same coefficients.

Furthermore it confirms again that on an external drum the contact length, at a given

vertical deflection, will be smaller compared to measurements on a flat surface. It appears

that for a passenger car tyre slightly different coefficients are needed to match the data.

Obviously, to really substantiate the expressions for the contact length more experimental

data is required, preferably a wide range of tyres with different dimensions. A final remark

is that the contact patch may have the shape of an ellipsoid or a somewhat more boxy

shape. This leaves us with the problem how to exactly define the contact length; in this

respect also its application within the tyre model has to be considered.

cornering stiffness

Smiley and Horne provide the following empirical formula for the cornering stiffness:

C f α = 57w2
t (p+0.44pr)

(

1.2 δ
2R0

−8.8
(

δ
2R0

)2
)

δ
2R0

≤ 0.0875

C f α = 57w2
t (p+0.44pr)

(

0.0674−0.34 δ
2R0

)

δ
2R0

≥ 0.0875











(4.86)

where wt is the width of the tyre, p tyre pressure and pr rated tyre pressure.

For road vehicles the Magic Formula is a widely used empirical model to describe

the steady-state tyre characteristics under various slip conditions [38]. Within the Magic

Formula the next expression is used to describe the cornering stiffness (the contribution

of the inclination angle is not considered):

C f α = pKy1Fz0 sin

(

2arctan

(

Fz

pKy2Fz0

))

(4.87)

The coefficients pKy1 and pKy2 are fitted using measured data, Fz0 is the nominal (rated)

load of the tyre.
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Figure 4.35 shows experimentally determined cornering stiffness as a function of

vertical load together with the results from Smiley and Horne for this particular tyre

size and inflation pressure. In addition two characteristic shapes using a Magic Formula

approach have been included. It is clear that Smiley and Horne provides a reasonable first

guess for an average tyre, but on the other hand it can be concluded that a large range exists

which leaves a fair amount of uncertainty about the actual value. The main deficiency of

the Magic Formula approximation appears to be that the slope after reaching the peak

value is not sufficiently degressive. This could be modified by increasing the factor 2 in

the sin−arctan expression and possibly make it a variable in the fitting process.

A crude first estimate for the cornering stiffness can be obtained by dividing

the maximum occurring cornering stiffness (C f α,max) with corresponding vertical load

(Fz,max). For passenger car and motorcycle tyres this number is about 10 rad−1; for truck

and aircraft tyres it is closer to 5 rad−1; this is illustrated by figure 4.36

relaxation length

Smiley and Horne developed the following formula for the yawed relaxation length:

σ = wt

(

2.8−0.8 p
pr

)

11
(

δ
2R0

)

δ
2R0

≤ 0.053

σ = wt

(

2.8−0.8 p
pr

)

(

64
(

δ
2R0

)

−500
(

δ
2R0

)2

−1.4045

)

0.053 ≤ δ
2R0

≤ 0.068

σ = wt

(

2.8−0.8 p
pr

)(

0.9075−4
(

δ
2R0

))

δ
2R0

≥ 0.068



























(4.88)

Recently Alsobrook developed a different formula [1]:

σ = 3.106R0

(

100
δ

δmax

)0.624

(4.89)

Where δmax equals the maximum tyre deflection, where bottoming of the tyre occurs.

Figure 4.37 shows the experimental data combined with the empirical formulas. The

relaxation length calculated with the formula of Alsobrook appears to be too large and

the formula of Smiley and Horne has a marked kink at a tyre deflection of 0.12; beyond

this value the formula appears to be less accurate. As indicated in the graph, the measured

relaxation length is approximately within a range of 2a to 3.5a. It should be noted that this

is quite different to passenger car tyres; the experimental results of e.g. Higuchi indicate

that for these tyres the relaxation length may be in excess of five times the contact length

(σ ≥ 10a) [18].

Using the expressions of the stretched string model, equations 4.23 and 4.26, the

following formula can be obtained for the relaxation length:

σ =
C f α

cv
−a (4.90)

Since the measured lateral stiffness cv is also available, it is possible to perform a

redundancy check on the relaxation length. First the measured lateral stiffness is shown in

figure 4.38. Also the empirical formula of Smiley and Horne for the tyre lateral stiffness

is plotted; this formula reads:

cv = 2wt (p+0.24pr)

(

1−0.7
δ
wt

)

(4.91)
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It appears that the tyre lateral stiffness obtained by Smiley and Horne is somewhat

too large, but correctly identifies that in general the lateral stiffness decreases with

increasing tyre deflection. The relaxation length can be calculated using formula 4.90

and a comparison can be made with the relaxation length determined in a yawed rolling

test of the tyre. For the limited experimental data available it appears that the calculated

relaxation length tends to be too small, as is shown in figure 4.39.

self-aligning stiffness

The self aligning stiffness Cmα can be calculated by multiplying the cornering stiffness and

pneumatic trail. Smiley and Horne suggest a pneumatic trail equal to 0.8a for small side

slip angles. This compares quite well to the value of 0.77a, which can be calculated for

the stretched string model under the assumption that σ = 3a, see page 96. The available

experimental data for aircraft tyres is shown in figure 4.40; it is clear that a large range

exists, varying between 0.3a to 0.9a. It was confirmed that the tyre having the smallest

pneumatic trail (indicated with a triangle) was tested on a drum having a diameter of

approximately three times the tyre diameter.

For small slip angles (and ignoring the contribution of an inclination angle) a

polynomial is used to describe the pneumatic trail in the Magic Formula [38]:

tp = Fz

(

qDz1 +qDz2

(

Fz −Fz0

Fz0

)

)

(4.92)

Considering the measurement data, physical modelling consideration and extrapolation

properties, another feasible solution would be to use the formula for the contact length

(e.g. equation 4.84 or 4.85) as a basis for the calculation of the pneumatic trail.
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0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

tyre deflection δ/R
0

la
te

ra
l 
s
ti
ff

n
e

s
s
 c

* v

Smiley & Horne

Fig. 4.38: Measurement and empirical formula for the tyre lateral stiffness, aircraft tyres.



134 CHAPTER 4. TYRE MODELLING

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.2

0.4

0.6

0.8

1

1.2

tyre deflection δ/R
0

ra
ti
o
 c

a
lu

la
te

d
 v

s
. 
m

e
a
s
u
re

d
 r

e
la

x
a
ti
o
n
 l
e
n
g
th

, 
(C

fα
/c

v
−

a
)/

σ

Fig. 4.39: Ratio of the calculated (using equation 4.90) and measured relaxation length, aircraft

tyres.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

tyre deflection δ/R
0

p
n

e
u

m
a

ti
c
 t

ra
il 

t p
/R

0

0.3a

0.9a

Fig. 4.40: Measured pneumatic trail as a function of tyre deflection, aircraft tyres.



Chapter 5

Detailed modelling and validation

This chapter describes the development of a detailed model, which was used to solve the

shimmy problems occurring on an existing landing gear. In particular this chapter will

focus on modelling the landing gear structure; tyre modelling has already been discussed

in the previous chapter. Relatively simple models have been used to study the general

trends in shimmy stability in the chapters 2 and 3; with respect to these models the

deflection of the shock absorber has to be included.

The flexibility of the landing gear structure is a function of the shock absorber

deflection. The normal load on the tyres will also depend on the shock absorber deflection

and will result in changes of the tyre characteristics, as shown in section 4.6. Therefore

the shimmy stability will become a function of the shock absorber deflection due to the

changes in both structural stiffness and tyre properties. Other aspects which need to be

considered in a detailed model are the non-linear behaviour due to free-play and friction.

Also the shimmy damper may have a highly non-linear characteristic. Various tests are

required to support and validate the model. Dedicated tests may be required to determine

the characteristics of various components of the landing gear. Full-scale tests will also

allow some validation of the model. Some practical information regarding these tests will

be given and the ”lessons learned” will be discussed.

5.1 Shock absorber

A very important function of the landing gear is the energy absorption during landing

impact. A shock absorber with a large stroke is required in order to limit the forces

occurring in this process; typically the available travel is in the range of 0.3 to 0.6 meter.

The shock absorber is an integral part of the load carrying structure for a cantilevered

landing gear. Nitrogen (”air”) is used as the springing medium for nearly all aircraft and

an oil flow through orifices provides the damping function. Figure 5.1 gives a schematic

view of the internals of a shock absorber; this is an example of an open shock absorber,

there are no provisions to separate the oil from the nitrogen. The metering pin is used to

control the orifice area as a function of stroke.

Simple calculations on the shock absorber spring characteristics can be made

assuming incompressible oil and polytropic compression of an ideal gas [31]. The

resulting expression for the spring force Fs reads:

Fs = P0A0

(

V0

V0 −A0∆l

)n

−PbA0 (5.1)
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Fig. 5.1: Internal lay-out of the shock absorber (not to scale).
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where P0 is the precharge pressure, Pb is the ambient pressure, A0 the piston area, V0 the

initial air volume, ∆l the shock absorber deflection and n the polytropic coefficient. For a

slow, isothermal compression of the strut n equals one; in case of a rapid compression of

the strut the polytropic coefficient n will be typically 1.1 for an open shock absorber. The

polytropic coefficient n will be approximately 1.4 if a piston is present to separate the oil

from the nitrogen (adiabatic process).

The oil flow Q through the orifices is turbulent and may be described by the next

equation:

Q = Cda

√

2∆P

ρ
(5.2)

where ∆P is the pressure drop across the orifice, Cd is the orifice discharge coefficient, a

is the orifice area and ρ is the mass density of the hydraulic oil. The end result will be a

quadratic damping coefficient which may be a function of the stroke due to the metering

pin. A rebound ring reduces the orifice size on extension of the strut, so the damping

coefficient will be much larger for this condition.

The shock absorber characteristics are validated by a drop test programme, which

consists of landing tests in a laboratory environment. Generally the drop test programme

focuses on the high descent velocity cases, which are important from a design loads point

of view and for verification purposes of the energy absorption capability. The drop test

results can generally be simulated with sufficient accuracy using the modelling approach

as described above.

Nevertheless for average landing conditions the behaviour may be somewhat different.

A number of tests have been performed with an instrumented landing gear, where

the internal pressures and temperatures are recorded during landing impact and the

consecutive roll-out of the aircraft. A typical test result is shown in figure 5.2. On touch-

down the shock absorber is compressed and extends again, before the lift dumpers are

activated and the static deflection is reached. The compression and expansion of the

nitrogen is a thermodynamic process and the temperature responds accordingly, whereas

the oil temperature remains nearly constant.

The internal pressures of the strut are shown in figure 5.3. It can be seen that the

theoretical curve is quite accurate on initial compression of the strut, but the differences

become much larger when the gear settles for a static position. Under these conditions it

is clear that using the shock absorber deflection combined with the theoretical air spring

curve will not be a reliable measure for the actual pressures inside the shock absorber. An

explanation for the observed behaviour may be that under the increased pressure some of

the nitrogen dissolves in the oil with a certain time constant [42]. A detailed model of the

shock absorber was created, using some modelling aspects of the work of Verbeek [50],

which proved to be fairly accurate in predicting the observed air spring behaviour. The

discussion of this model is outside the scope of this thesis.

Figure 5.3 also shows the pressures of the damper and recoil chamber. It can be

observed that the pressure drop across the orifices, which is a direct measure for the

magnitude of the damping force, remains relatively small. The damping is tuned for high

descent velocity cases and the damping forces will be small for normal landing conditions

since they are quadratically dependent on velocity. This also implies that a metering

pin will have little contribution to the reduction of loads under normal, average landing

conditions.

In the shimmy analysis the shock absorber characteristics are important because they
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relate the vertical load on the tyres with the shock absorber deflection. Tyre characteristics

are a function of the vertical load, see section 4.6, and the stiffness of the landing gear is

a function of the shock absorber deflection, as will be illustrated in the next section.

5.2 Landing gear flexibility

From the studies performed in chapters 2 and 3, it is obvious that the stiffness and

geometrical lay-out of the landing gear may be decisive factors for shimmy stability. In

the previous chapters simple, straightforward models have been used when analysing the

shimmy fundamentals. For a detailed analysis of the landing gear stiffness a finite element

model will be required. In order to understand and explain the results of the finite element

model (or stiffness measurements) some important aspects, which determine the landing

gear flexibility, will be discussed.

Figure 5.4 provides a schematic view of a landing gear. Since the aircraft and landing

gear are designed for minimum weight, it is a good starting point to assume that all parts

are flexible. The landing gear is attached to the wing via three spherical joints; the local

reinforcement in the wing to support the landing gear is known as the back-up structure.

The gear is retracted by folding the side-stay and a sideways rotation of the strut about

the pintle points. Figure 5.4 also displays the changes in overlap and apex point location

on compression of the strut. The assumption can be made that no bending moments are

transferred between the main fitting and sliding member at the upper and lower bearing.

Since the forward pintle point is not restricted in longitudinal direction it can be concluded

that this landing gear may be considered as a statically determined structure: the reactions

on the various components can be calculated from static equilibrium.

overlap

On compression of the strut the landing gear shortens and the distance between upper

and lower bearing increases. This has a marked influence on the flexibility of the landing

gear in the directions perpendicular to the strut centre line. This will be illustrated by

considering a prismatic cantilever beam and a second prismatic beam, which are allowed

to move with respect to each other, see figure 5.5. The deflection δ and rotation angle

θ are considered as a function of the force F and moment M for varying shock absorber

deflections.

For the geometry given in figure 5.5 and the assumption that the flexural rigidity of

the cantilever beam is twice the value of the moving beam (EIm = 2EIs), the results of

figure 5.6 can be obtained. Please note that the results have been normalised with respect

to the fully closed condition. Figure 5.6 makes clear that the deformations may be over

twice as large for a fully extended gear compared to the fully closed condition for a given

load. The rotation angle under the influence of a moment M is less sensitive to the shock

absorber deflection, but still an increase of 60% can be noted for a fully extended gear.

The model as presented here typically reflects the fore/aft stiffness of a landing gear. In

the lateral direction the situation is somewhat more complicated due to the presence of the

lateral support via the side stay. It should be noted that the model presented here is just

a conceptual model to illustrate the main effects; in a real landing gear the cross-sections

may be non-prismatic and additional braces may be present.
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torque link geometry

The torque links prevent rotation of the sliding member with respect to the main fitting

about the shock absorber centre line. If a yaw moment is applied the torque links will be

loaded and the deflection of the torque links will contribute in the overall yaw flexibility

of the landing gear. The upper and lower torque link are connected by a hinge with the

main fitting and sliding member respectively; at the apex point they are connected by a

spherical joint. In this mechanism the location of the apex joint will be a function of the

shock absorber deflection.

A representative numerical example will be given to show the influence of the torque

link geometry on the yaw stiffness. Two configurations are considered: short and long

torque links, see figure 5.7. In this example it is assumed that only the torque links are

flexible and that their bending stiffness is proportional to their length raised to the power

three. Some results are given in figure 5.8. It is fairly obvious that the distance between

the centreline of the strut and apex joint (ltor) will be larger if the long torque links are

used. Combined with the reduced bending stiffness, the net result is still an increase in

yaw stiffness for a fully extended gear. For the fully closed condition the long torque links

lead to approximately 25% reduction of the yaw stiffness with respect to the short torque

links in this numerical example. On a real landing gear this effect may be less pronounced

due to the local flexibility of the lugs.

Figure 5.8 also illustrates that using short torque links will lead to a stronger

dependency of the yaw stiffness on the shock absorber deflection; in this example a factor

3.4 is found between the fully extended and fully closed position. This dependency can

be reduced to less than a factor 2 by introducing longer torque links, but this comes at

the price of increased mass: just by its dimensions a longer torque link will be heavier.

Furthermore the bending stiffness has to be increased in order to maintain the same yaw

stiffness in the closed position, this will lead to an additional weight penalty.

effective trail

The mechanical trail e is a very important parameter for shimmy stability. From a

flexibility point of view, the ratio between the lateral and yaw motion at the wheel axle

centre upon application of a moment about the vertical axis, could be considered as an

effective trail. For the models employed in chapter 2 and 3, the effective trail will always

equal the mechanical trail. This may not be true for a landing gear as shown in figure

5.4, where an offset exists between the side stay attachment on the main fitting and strut

centre line.

This can be illustrated by the following example, see figure 5.9. The main fitting

can rotate in the lateral direction about the pintle points (or pintle axle); in this way the

gear will be retracted. The support in the lateral direction is provided by the side stay

attachment point. In this example we assume that no bending of the main fitting or sliding

member occurs when a moment Mz is applied at the wheel axle centre. It is important

to note that the moment Mz is only reacted in the pintle points and not at the side stay

attachment point. This implies that the torsional deflection above the side stay attachment

point will result in a lateral deflection of the strut.

The total lateral deflection at the wheel axle centre now consists of two contributions:

the torsional deformation about the strut centre line multiplied with the mechanical trail

plus the contribution of the strut lateral displacement. In this particular example the offset
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of the side stay will result in the effective trail being larger than the mechanical trail.

Due to changes in the torque link geometry large variations in torsional stiffness are to be

expected for the part below the side stay attachment, as shown previously. This implies

that the effective trail will be a function of the shock absorber deflection and will increase

with increasing deflection. This is confirmed by figure 5.10, which is based on a validated

finite element model of a landing gear.

Generally the location of the side stay is determined with packaging requirements in

mind. It has been shown here that the location of the side stay will also affect the effective

trail and therefore shimmy stability. In the available literature, Leve notes that having the

side stay attachment point aft of the strut centreline may be beneficial, when trying to

obtain a negative effective trail [28].

attachment stiffness

The stiffness at wheel axle level is not only determined by the landing gear, but also by the

supporting structure (e.g. local back-up structure, wing and/or fuselage). For a specific

aircraft Black notes that 24% of the lateral deflection is caused by fuselage motion [3].

Similarly Krabacher indicates that deflections of the back-up structure may result in a

lateral stiffness decrease by a factor 1.5 to 3 [26].

Deflections of the supporting structure are not only present on the aircraft but also

when the gear is mounted in a test rig to perform static stiffness tests. For a landing

gear lay-out as shown in figure 5.4 it can be expected that the fore/aft motion may be

particularly sensitive to deflections of the attachment structure: the distance between the

pintle points is relatively small in comparison with the overall gear length. A drag load

will result in high differential loading of both pintle points and small deflections of the

pintle points may contribute significantly to the total deflection of the landing gear at

wheel axle level. In order to obtain the ”true” stiffness of the gear, the test results have

to be corrected for deflections of the test rig. This also implies that additional (accurate)

instrumentation is required to measure these test rig deflections. Experience gained with

one specific landing gear, indicates that the situation will be somewhat less critical for the

lateral stiffness and that the test rig may be considered almost infinitely stiff in yaw.

To determine the overall lateral and yaw flexibility and to asses the contribution of

the aircraft back-up structure and wing dedicated full-scale tests were performed. The

results of these tests were used to validate and improve the FE model. In general, both the

application of external forces and the support of the aircraft have to be selected with care

in order to create a realistic loading case and not to damage the aircraft. In this particular

stiffness test the aircraft was put on jacks and a hydraulic actuator was used to apply an

opposite lateral load on both main landing gears at the wheel axle centre, see figure 5.11.

In order to include the yaw stiffness an offset case was defined, whereby the lateral load

was applied aft of the wheel axle. Wheels and brakes were removed and a special rig was

constructed to facilitate this offset loading case. The maximum applied lateral load was

approximately 25% of the static vertical load on one landing gear. Deformations of the

landing gear were measured at wheel axle level and various other interesting locations.

Reviewing this test, there is some room for improvement. Application of the lateral

load at the wheel axle ends may result in some geometrical stiffness effects due to the yaw

motion of the wheel axle. Although these effects were taken into account in the model

and found to be relatively small, it would be preferable to eliminate them by applying the

load close to the centre of the wheel axle. Furthermore, to obtain a clearer distinction
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Fig. 5.11: Set-up for landing gear stiffness testing on the aircraft (drawing not to scale).
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Fig. 5.12: Flexibility of the landing gear in lateral (y), roll (rx) and yaw (rz) direction at the wheel

axle centre as a function of shock absorber deflection, excluding and including fuselage

flexibility (validated FE model).
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between the lateral and yaw load case one could decide to apply the lateral load at a point

in front of the wheel axle in order to limit the yaw deflection. If this distance is close to

the effective trail, the yaw rotation will be small to negligible. To enhance the yaw load

case the actuator not only has to operate with an offset to the wheel axle, but a second

beam (equipped with a load cell) connecting both landing gears could be introduced to

restrict the lateral motion, see figure 5.11. By testing in this way more distinctive test

results can be expected.

The influence of aircraft back-up structure deformations on the flexibility at the wheel

axle centre is presented in figure 5.12. Note that this figure only shows the lateral (y), roll

(rx) and yaw (rz) components, which are the most relevant for shimmy. It can be seen

that the back-up structure flexibility mainly affects the lateral and roll motion of the gear

under lateral loading (or vice versa: the lateral motion of the gear when a roll moment is

applied). For yaw, the back-up structure is relatively stiff compared to the landing gear,

so its contribution to the total gear deflection will be limited.

Furthermore figure 5.12 illustrates the dependency of the landing gear flexibility on

shock absorber deflection. From the preceding analysis it is obvious that the flexibility

decreases with increasing shock absorber deflection. The conceptual models introduced

in this section may also be helpful in understanding the shape of the various curves.

5.3 Free-play

Various parts of the landing gear and back-up structure have to move with respect to each

other; not only during landing impact but also when the gear is retracted in the wing and

fuselage. Most connections are plain bearings, so some tolerances are required to allow a

relative motion and assembly. Typical examples are the torque link assembly (torque link

hinges, apex joint), upper and lower bearing between main fitting and sliding member,

various hinges in the side stay assembly and pintle lugs. Summing the contributions of

the various connections a fair amount of free-play can be expected at the wheel axle

centre, typically in the order of millimetres in lateral and fore/aft direction and less than

one degree in yaw.

Due to the changes in torque link geometry and overlap, it can be expected that the

amount of free-play at the wheel axle centre in fore/aft, lateral and yaw direction will

be a function of the shock absorber deflection. This has been verified experimentally by

determining the amount of free-play from the stiffness measurements. For the simulation

model development, it was found that the overall free-play as a function of shock absorber

deflection can be represented fairly accurately by lumping the lateral free-play in the side-

stay and the yaw free-play as a translational degree of freedom at the apex joint.

Free-play is modelled as a non-linear spring, see figure 5.13. Some deflection is

possible before a force develops and if the amplitude remains within the free-play band

the spring force will be zero. Grossmann suggests two different formulas to determine

an equivalent linear stiffness ceq as a function of amplitude outside the free-play band

(am > a f p) [15]:

ceq = c

(

1− a f p

am

)

(5.3)

ceq = c

(

1−
(

a f p

am

)2
)

(5.4)
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Fig. 5.13: Modelling free-play.

With am the amplitude of the motion and a f p half of the free-play. Obviously the stiffness

has become a function of the amplitude of the motion and will increase with the amplitude

of the motion, see figure 5.14. In the shimmy analyses performed by Grossmann equation

5.3 gave a better correspondence with the non-linear simulations than equation 5.4. This

is confirmed by simulations with a single degree of freedom mass-spring system with

the free-play included, as shown in figure 5.13. The equivalent linear stiffness ceq is

defined as the stiffness which will result in the same resonance frequency as the non-

linear simulation. These simulation results are also shown in figure 5.14 and suggest that

the equivalent stiffness may even be lower than the estimated values using equation 5.3.

From the results presented in chapter 2 and 3 it will be clear that any change to the

stiffness will affect shimmy stability. For example the equivalent yaw stiffness will be

reduced by introducing yaw free-play; for a gear with a positive mechanical trail this

may easily result in shimmy vibrations. This has been reported in the available literature

various times, see e.g. references [2], [12], [15], [29], [51]. Less well known seems to be

the fact that introducing lateral free-play may actually be beneficial for some landing gear

configurations; this is illustrated by figure 5.15.

Free-play will increase with the number of flights due to wear. Though it may be

possible to solve shimmy vibration problems in the prototype phase by applying tight

tolerances, the problems will often reoccur after a certain number of flights on the aircraft

in service. Furthermore it is possible that the balance between the lateral and yaw free-

play is modified by replacing certain components, which potentially can make the gear

more unstable.

5.4 Friction

The relative motion of the sliding member with respect to the main fitting will be opposed

by friction forces at the upper and lower bearing. The main component of these friction

forces originates from Coulomb friction on the bearing surface and will be proportional to

the normal force on the bearing surface; a commonly used value for the friction coefficient

µ is 0.05. The seals will also contribute to the total friction force. As shown in figure 5.1

the pressurised shock absorber is an integral part of the landing gear and various seals

are present to prevent the loss of oil and to maintain the pressure differences across the

bearings.



148 CHAPTER 5. DETAILED MODELLING AND VALIDATION

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

amplitude a
m

/a
fp

s
ti
ff

n
e

s
s
 C

e
q
/C

C
eq

=C(1−a
fp

/a
m

)              

C
eq

=C(1−(a
fp

/a
m

)(a
fp

/a
m

))

non−linear simulation               

Fig. 5.14: Effective stiffness as a function of motion amplitude for a system with free-play.

0

0.2

0.4

0.6

0.8

1

0

2

4

6

8

10

0

1

2

3

4

5

yaw free−play [deg.]
lateral free−play [mm]

a
m

p
lit

u
d
e
 y

a
w

 m
o
ti
o
n
 [
d
e
g
.]

Fig. 5.15: Limit cycle amplitude as a function of yaw and lateral free-play.



5.4. FRICTION 149

Coulomb friction is a highly non-linear phenomenon. If the tangential forces in the

contact area remain below the friction force Fw, both parts will be locked and the relative

motion will be blocked. If a relative motion occurs, the friction force will be opposite to

the relative velocity but the magnitude will be independent of this velocity. Friction may

be approximated by an equivalent linear damping constant using linearisation techniques.

A sinusoidal motion will be considered:

x(t) = am sinωt (5.5)

The energy dissipation during one cycle should be the same for the friction force and the

equivalent damper:

W =
Z T

0
Fw sgn(ẋ(t)) ẋ(t)dt =

Z T

0
keqẋ(t) ẋ(t)dt (5.6)

Solving this integral gives the following result:

keq =
4Fw

πωam
=

2Fw

π2 f am
(5.7)

So the resulting equivalent damping keq is inversely proportional to the amplitude of the

motion.

For normal rolling conditions, in the absence of e.g. spin-up or braking forces and the

strut centre line perpendicular to the ground, the normal force Fn on the bearings will read

(see also figure 5.16):

Fn = Fz

(

e

lb

)

(5.8)

The friction force Fw reads:

Fw = µFn (5.9)

So it is obvious that also the length of the mechanical trail e and overlap lb will affect the

magnitude of the friction forces. It can also be noted that the overlap increases with shock

absorber deflection, see figure 5.4.

Fn

Fn

Mw

Mw

ψ.

Fw,z

Fw,z

lb

lower bearing

overlap

upper bearing

rb

Fz

e mechanical trail

z,
.

Fig. 5.16: Friction forces acting on the sliding member.

The Coulomb friction force will be opposite to the local, relative velocity on the

bearing surfaces when the sliding member moves with respect to the main fitting. This is
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illustrated by figure 5.16. In case of a pure axial motion, ψ̇ = 0, the friction forces will be

oriented parallel to the strut centre line. For a pure yaw motion, ż = 0, the friction forces

are oriented tangentially and a friction moment Mw will be generated which opposes the

yaw motion. Obviously, also combinations of axial and yaw motion are possible in which

case the magnitude of the friction force Fw will remain constant, but the components in

the different directions will depend on the relative magnitude of the velocity:

Fw,z = µFn

(

ż
√

ż2 +(rbψ̇)2

)

(5.10)

Mw = µFn

(

r2
bψ̇

√

ż2 +(rbψ̇)2

)

(5.11)

In these equations rb is the radius of the bearing. As indicated in figure 5.16 the radius of

the upper bearing will be larger than the lower bearing radius; for a real landing gear this

difference will be about 15%. It seems permissible to use an average value for the bearing

radius considering the relative inaccuracy of the friction coefficient.

From equation 5.11 it can be seen that by increasing the axial velocity component ż,

it is possible to reduce the friction moment in yaw Mw. This result has a rather important

implication: in the first seconds after landing impact the shock absorber deflection will

vary in a dynamic way, before settling for a static position as is illustrated by figure 5.2.

This also implies that the friction moment Mw will be relatively small and the (equivalent)

damping of the yaw motion will be reduced under these conditions. This mechanism has

also been described in reference [16].

The importance of friction on the shimmy stability should not be under estimated. For

a certain landing gear instrumented taxi tests were performed up to very high forward

velocities, without any indication of a possible shimmy instability. Nevertheless the same

gear experienced a very severe shimmy instability just shortly after landing impact. The

forward velocity during this particular landing was well within the range covered by the

taxi tests. Apparently the reduced friction in yaw in the first seconds after landing impact,

combined with a yaw disturbance due to asymmetrical spin-up of the wheels, see section

5.8, may have triggered the shimmy instability.

5.5 Eigenfrequencies and mode shapes

Modal testing can be performed on the landing gear with the aim of identifying

eigenfrequencies and the accompanying mode shapes. These results can be used again

in the process of validation of the landing gear structural model; the underlying idea is

that the static stiffness tests are used to verify the flexibility and the modal tests can be

used to verify the mass and inertia properties of the landing gear. Modal tests on the

landing gear were performed both on the aircraft and test rig.

The main problem with modal testing of the landing gear is the strong dependency

of the results on the excitation level. Some experimental results to illustrate this are

presented in figure 5.17. In particular the yaw resonance frequency is highly dependent on

the excitation level: the experimentally determined resonance frequency varies between

14 and 24 Hz. Obviously the mass and inertia of the gear are independent of the amplitude,

so this behaviour has to be caused by non-linear stiffness characteristics of the gear.
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In particular for the yaw resonance frequency different stages can be identified.

Friction forces at the upper and lower bearing will lock the relative motion between sliding

member and main fitting for small amplitude excitation. The yaw stiffness obtained in

this way will be about a factor 2 to 3 higher compared to the normal condition, when

the entire load is transferred through the torque links; this results in a high resonance

frequency. As the amplitude is increased the friction forces will not be able to lock the

sliding member and main fitting and gradually the load will be passed though the torque

links. Since a large portion of the free-play will be located in the torque link assembly, the

effective stiffness will again be a function of the amplitude (see figure 5.14). The effective

stiffness increases with increasing amplitude and this will again result in an increase of

the resonance frequency as can be seen in figure 5.17. These phenomena have also been

reported independently by Woerner [51].

Despite understanding the experimental results, the question remains how to utilise

them for validation of the FE model of the landing gear. Since the majority of the test

results were available for a low level excitation it was decided to lock the sliding member

and main fitting in the FE model and make a comparison between the calculated and

experimental results. At that stage the stiffness of the model had already been tuned

to give the best match with the experimental results and the mass and inertia properties

of various components had already been assessed. It was found that the results (both

frequency and mode shapes) matched quite well, so no modifications were made to

improve the model. This means that the modal tests were only used to gain additional

confidence in the model, but may not be strictly necessary in the development of the

landing gear model.

For the large amplitude excitation results, also a comparison can be made between test

and model; in this case without locking sliding member and main fitting in the FE model,

obviously. It appeared that in the modal tests the amplitude was not large enough in

comparison to the free-play; the measured resonance frequencies tended to be too low

compared to model results. This could have been prevented by either increasing the

amplitude further, which was impossible for actuators in use, or by eliminating free-play.

Despite the logic of testing the landing gear ”as is”, it can be argued that more useful

results could have been obtained for model validation purposes by eliminating free-play

as much as reasonably possible.

The four lowest eigenfrequencies of the landing gear model are shown in figure 5.18;

these eigenfrequencies will again be a function of the shock absorber deflection due to

the varying stiffness. The accompanying mode shapes are shown in figure 5.19 up to

figure 5.22, they apply to 87.5% shock absorber deflection. These results have been

calculated including the aircraft back-up structure, the wheels locked on the wheel axle

and no locking of the main fitting with respect to the sliding member.
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Fig. 5.19: Lateral mode of the landing gear.
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Fig. 5.20: Fore/aft mode of the landing gear.
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Fig. 5.21: Yaw mode of the landing gear.
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Fig. 5.22: Roll mode of the landing gear.
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5.6 Non-linear behaviour of the shimmy damper

In section 3.6 the introduction of a linear shimmy damper to improve shimmy stability

was discussed. Shimmy dampers can be found on the main landing gears of e.g. the

Boeing 737, Airbus A-320, McDonnell Douglas MD-80 and Fokker 100. The shimmy

damper is installed at the apex joint, see figure 1.2, and operates in series with the torque

links.

The shimmy dampers in use on various aircraft have a non-linear spring and damping

characteristic. The internal lay-out of the shimmy damper is illustrated by figure 5.23.

The centring springs combined with the spring cage will result in a preload, see figure

5.24. Flexibility of the spring cage will mainly attribute to the high stiffness about the

centre position. Furthermore the overall stroke of the damper is limited. The damping

force is generated by a turbulent oil flow through an orifice with constant dimensions,

which will result in a velocity squared damping force. This is identical to the operation

of the shock absorber as discussed in section 5.1.

The non-linear shimmy damper characteristics may be linearised using a harmonic

balance. A sinusoidal input signal will be assumed:

x(t) = am sinωt (5.12)

The expression for the equivalent stiffness using the harmonic balance:

ceq =

Z T

0
Fs(t)x(t)dt

Z T

0
x(t)2dt

(5.13)

The spring is assumed to be a piecewise linear function as indicated in figure 5.24, with c1

the stiffness near the centre position, c2 the off-centre stiffness and Fp the preload force.

We will now consider motions about the centre position within the maximum damper

stroke but outside the preload, xp < am < xm. Solving equation 5.13 results in:

ceq =

a2
mc1 (2θp − sin2θp)+a2

mc2 (π−2θp + sin2θp)+4Fpamcosθp

(

1− c2

c1

)

a2
mπ

(5.14)

with:

θp = arcsin

(

Fp

amc1

)

(5.15)

The damping force is quadratically dependent on velocity:

Fd = ksd,q ẋ|ẋ| (5.16)

Again the harmonic balance can be applied:

keq =

Z T

0
Fd(t)ẋ(t)dt

Z T

0
ẋ(t)2dt

(5.17)
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It may be noted that in this particular case the harmonic balance is identical to

requiring that the work done in one cycle is equal for the non-linear and the equivalent

linear damper:

W =
Z T

0
Fd(t) ẋ(t)dt =

Z T

0
keqẋ(t) ẋ(t)dt (5.18)

Solving equation 5.17, the next expression for the equivalent linear damping constant can

be obtained:

keq =
8

3π
amksd,q ω=

16

3
amksd,q f (5.19)

From equations 5.14 and 5.19 it can be concluded that both the equivalent stiffness and

damping will be a function of the amplitude of the motion of the shimmy damper am.

A representative example is shown in figure 5.25, which also illustrates the difference

in equivalent stiffness when the damper motion is off-centre and does not encounter the

preload.

In section 3.6 a linear shimmy damper was investigated. Summarising the results it

can be observed that the damping constant ksd requires tuning (figure 3.31) and that the

stiffness of the shimmy damper csd should be sufficiently low to allow the damper to

work (figure 3.37). In this section it is shown that the behaviour of a real shimmy damper

may be highly amplitude dependent. In particular for small amplitudes this may become

apparent: the equivalent damping constant will be low and the stiffness will be high, so

despite the presence of a shimmy damper, the system could still be unstable. But as the

amplitude grows, due to the instability, the equivalent stiffness will drop and the damping

constant increases and a stable limit cycle may be encountered.

The existence of this limit cycle has been confirmed by simulations; in these particular

simulations the shimmy damper is the only non-linear element. Two typical time histories

are shown in figure 5.26, using either a small or large initial disturbance. The validity of

the linearisation techniques as described in this section is illustrated by figure 5.27. For

each damper amplitude the system can be linearised and damping of the least damped

mode can be calculated. As shown in figure 5.27 the amplitude where the damping equals

zero corresponds fairly well to the limit cycle amplitude in the non-linear simulation.

A final note is that coulomb friction in the yaw direction may prevent the development

of a limit cycle. Friction may be approximated by an equivalent damping constant as

was shown in section 5.4. This equivalent damping constant is inversely proportional

to the amplitude of the motion, see equation 5.7 and may stabilise the system for small

amplitudes.
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Fig. 5.26: Simulation results with non-linear shimmy damper model showing a limit cycle.
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5.7 Model development

Traditionally, the equations of motion of landing gear and tyre are derived by hand. The

next step is translating these equations into software in order to perform time-domain

simulations or to calculate the eigenvalues. Generally, these in-house developed software

programmes are written in FORTRAN, possibly using a numerical library in addition (e.g.

NAG-library). Nowadays, the MATLAB/Simulink environment (or equivalent software

packages) is a more natural choice; much of the required functionality is readily available:

integrators, eigenvalue analysis, plotting facilities, etc. Furthermore this environment

tends to be more flexible compared to in-house developed software. It should be noted

however, that these new tools do not provide support for the derivation of the equations

of motion.

In the design of a landing gear, finite element models are used primarily for the

stress analysis, but these models may also be used for the assessment of the landing gear

stiffness. The origin of the finite element model used in this thesis dates back about

ten years. The model may be classified as a ”beam” model: the various parts of the

landing gear are almost exclusively represented by beam elements. At a later stage in the

design process more detailed ”volume” FE models were introduced in the stress analysis

to study details of the torque link attachment lug on the main fitting. The varying shock

absorber deflection, which results in changes of the overlap and torque link geometry

as shown before, poses a special challenge for classical finite element packages, like

e.g. NASTRAN. Generally, these packages cannot cope with mechanisms and would

only allow to create a model for one fixed shock absorber deflection; multiple models

have to be created when analysing a number of different shock absorber deflections.

Reference [21] reports on the development of a truck model in NASTRAN, which would

be suitable for shimmy analyses. The equations of the straight tangent tyre model were

introduced by modifying the mass, damping and stiffness matrix.

Multi-body software packages, with ADAMS being the most well known example,

are used for the analysis of mechanisms and vehicle dynamics studies, to name a few

applications. In a multi-body package the simulated system consists of rigid bodies,

which are interconnected by springs and/or joints (e.g. revolute joint, spherical joint,

translational joint, etc.). When modelling the landing gear the main problem would be to

accurately incorporate the changing overlap and resulting variations in stiffness. Although

the majority of the multi-body packages allows the introduction of flexible bodies, the

flexible characteristics generally have to be constant and does not allow large changes in

geometry.

The SAMCEF MECANO software package, reference [5], provides an interesting mix

of multi-body and finite element techniques to overcome the problems noted above. The

key element is the so-called ”flexible slider” which consists of a regular beam element,

extended with a third node which is allowed to move along the deformable beam, see

figure 5.28. The third node may also move from one beam element to another; so e.g.

a multiple supported flexible rail can be modelled with a contact point moving along

it. The sliding node only transfers forces, not moments. A friction force Fw can be

introduced along the deformable trajectory, using the normal force Fn of the sliding node

and a constant friction coefficient, see figure 5.28.

The flexible slider element allows a convenient modelling of the sliding member, main

fitting and the continuously varying overlap, see figure 5.29. Since MECANO can be used

to analyse mechanisms, the varying torque link geometry does not pose any particular
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Fig. 5.28: The MECANO flexible slider element.
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Fig. 5.29: Schematic view of the usage of the flexible slider to model the main fitting and sliding

member.
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problem. Based on a detailed NASTRAN model a simplified beam model was developed

for usage with MECANO, aiming at the same overall stiffness at wheel axle level. The

motivation for reducing the number of beams is that the MECANO model was also

used for the dynamic simulation of landing events; this requires some limitation on the

number of degrees of freedom in order to maintain acceptable calculation times. The tyre

model and shock absorber were introduced as ”user” elements; they were programmed in

FORTRAN and linked to the MECANO solver.

Summarising the implementation of the various items, as discussed in the previous

sections, in the MECANO model:

• tyres (chapter 4)

The non-linear vertical spring characteristic is implemented using a look-up table

and includes bottoming of the tyre. The longitudinal slip characteristic is introduced

using a non-linear function, similar to the Magic Formula, describing the friction

coefficient µx as a function of the longitudinal slip κ. The straight tangent model is

used to include the lateral behaviour of the tyre. Various look-up tables are required

to describe the tyre characteristics as a function of the vertical force on the tyre. The

straight tangent model was selected because of the ease of implementation in the

MECANO program. Furthermore it was shown in chapter 4, that it is conservative

with respect to detecting shimmy compared to other tyre models as e.g. the Von

Schlippe model. The interaction between lateral and longitudinal tyre behaviour is

not considered.

• shock absorber (section 5.1)

The non-linear air spring behaviour as described in section 5.1 is taken into account,

including the mechanical stops both on compression and extension. Also the com-

pressibility of the oil and expansion of the main fitting is taken into account, but the

discussion of these phenomena is outside the scope of this thesis. The metering pin

profile is included using a look-up table describing the orifice area as a function of

shock absorber deflection.

• flexibility (section 5.2)

The landing gear structure is modelled using beam and flexible slider elements, see

figure 5.29. The continuously changing torque link geometry and varying overlap

can be described quite satisfactory using MECANO. Flexibility of the back-up

structure is included by introducing a stiffness matrix at the landing gear attachment

points, which was derived from a detailed FE model of the fuselage and wing. It

should be noted that various cross coupling terms exist, in particular between the

forward and aft pintle point.

• free-play (section 5.3)

The free-play present at wheel axle level is ”lumped” at two locations: the lateral

free-play is included by introducing a non-linear normal stiffness of the side stay,

free-play in yaw is included at the apex joint. Following this approach the free-play

at wheel axle level becomes a function of shock absorber deflection; the validity of

this approach was confirmed by experimental results.

• friction (section 5.4)

Though the flexible slider is very convenient for modelling the varying overlap,
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Fig. 5.30: Full MECANO model of the landing gear.
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simplifications with respect to section 5.4 are required, when including friction.

The main problem is that the flexible slider does not allow to transfer moments,

so it is not possible to directly include the friction moment in yaw Mw depending

of the normal load Fn. Also the interaction with the axial friction force cannot be

modelled. An approximation was found by using a non-linear damper element to

account for the friction in yaw. In the landing simulations a small, constant value

for the friction in yaw is used and a high constant value during taxiing.

• shimmy damper (section 5.6)

The non-linear behaviour of the shimmy damper, as shown in figure 5.24, is

included using a non-linear spring and damper element.

An impression of the MECANO model and a summary of the various modelling issues

can be found in figure 5.30.

5.8 Test programme and parameter assessment

Various aspects of the development of a landing gear model suitable for a shimmy analysis

have been discussed. We may distinguish between questions regarding modelling issues

(e.g. which tyre model is to be used, how to model the varying overlap?) and the

assessment of parameters for the model (e.g. obtaining realistic values for the relaxation

length, friction values, etc.). Obviously these aspects are related: a very detailed model

will require many parameters. On the other hand, if the problem is governed by a limited

set of parameters which cannot be determined very accurately, it can be questioned if the

development of a very detailed and complicated model can be justified.

Also the scope and application of the model are important when determining the

required level of detail. The shimmy incidents occurred very shortly after landing impact;

the aim of the MECANO model is to simulate the complete landing event starting from

the first contact between tyre and runway. This implies that it also has to be possible to

simulate spin-up of the wheels and the fore/aft dynamics of the landing gear have to be

included.

Various tests have been performed (or were already available) to determine parameters

for the MECANO model or to validate its characteristics. We may distinguish between

component and full-scale testing.

component tests

• tyre characteristics

Tyre parameters are supplied by the tyre manufactures and generally consist of

a load-deflection curve, the cornering stiffness, self aligning stiffness, relaxation

length and contact length for the entire vertical load range. Accurate assessment of

tyre parameters is difficult. Since the tyre dimensions and inflation pressure remain

unchanged, various cross checks can been made between the data from different

sources to identify extreme or unusual behaviour. The data can also be checked

against the empirical formulae developed by Smiley and Horne [47]. More details

are given section 4.6.

• shock absorber characteristics

The spring and damping characteristics are validated using the results from the
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regular drop test programme and free extension tests. When performing full-

scale aircraft tests, additional instrumentation was installed to record pressures and

temperatures inside the strut. This information can also be used to validate the

shock absorber characteristics, see e.g. figure 5.3.

• flexibility

Initial estimates for the stiffness of the landing gear were based on a FE model.

At a later stage dedicated stiffness tests were performed in a test rig to check

these results, and modify the model to improve its accuracy. Up to four different

shock absorber deflections were considered in this measurement programme.

Furthermore, stiffness tests were performed on the aircraft, to determine the overall

flexibility of the landing gear including the flexibility of back-up structure and wing,

see figure 5.11.

• modal testing

Following the stiffness tests, modal tests were performed on the landing gear in the

stiffness test rig. Due to the problems described in section 5.5, the results were only

used to gain additional confidence in the model.

• free-play

The stiffness tests may be used to extract some numbers on free-play, but these are

unlikely to represent the most extreme case since the gear under study was new. The

landing gear manufacturer has provided the tolerances on the various components

for a fully worn condition, and using this information the ”overall” free-play at

wheel axle level can be estimated.

• friction

Numbers on friction are rather hard to obtain. A limited number of tests was

performed on an unpressurised landing gear, but this gave only a crude indication

of magnitude of the friction forces to be expected. Assuming the friction to be

zero will generally be conservative in detecting shimmy, but on the other hand this

will not allow an accurate simulation of the landing gear behaviour under various

conditions.

• shimmy damper

The spring and damping characteristics of the shimmy damper were determined

using a dedicated hydraulic test rig.

full-scale tests

By performing tests on various subsystems of the landing gear, confidence will be gained

that various aspects of the landing gear behaviour are modelled accurately. But the all

important question will be if the full model also behaves as the real landing gear and how

will this be shown?

Full-scale tests on the landing gear can be performed in a laboratory environment

on a dynamometer. There may exist a number of reasons for discrepancies between the

laboratory tests and the results obtained on the actual aircraft. Firstly, the curvature of the

drum will affect various aspects of the tyre behaviour and may result in a configuration

which is more stable. Also attention should be paid to the attachment stiffness and friction

levels. An advantage of laboratory testing is that the excitation of the landing gear can
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be closely controlled and repeated for runs with different configurations. In addition, no

aircraft is needed which clearly reduces safety risks and possible damage in case of a

shimmy event. The past experience for one particular landing gear showed that it was not

possible to provoke shimmy in the laboratory environment, although the gear experienced

a torque link failure on the aircraft due to shimmy instability.

When performing full-scale aircraft tests, it will be necessary to introduce some

(external) disturbances to excite the landing gear in order to obtain a dynamic response.

A yaw pulse can be obtained by taxiing over a plank, which is diagonally placed and

fastened to the runway, see reference [33]. Another way of exciting the landing gear is

by introducing a relatively large unbalance mass on one of the wheels and performing

taxi-runs with a sweep in forward velocity; the excitation frequency will correspond with

the angular velocity of the wheels. Reference [49] describes how this method was used to

validate the operation of a shimmy damper.

Asymmetrical braking of the landing gear is yet another possibility to generate a yaw

input to the landing gear. This was achieved by modifying the braking system so that

only the inboard brake is used. The pilot applies full brakes for a very short period by

briefly kicking on the brake pedal; this may provoke a deep-skid on the braked wheel.

When the anti-skid system detects the rapid deceleration of the braked wheel, the locked

wheel protection will momentarily dump the brake pressure and the wheel will spin-up

again. Using this technique it was possible to obtain some limited dynamic response from

landing gear as shown in figure 5.31. This particular measurement was also simulated

using the MECANO model, see figure 5.32. In this simulation it is assumed that the

measured brake pressure can be translated directly into a brake torque. Considering the

rather rough conversion of the brake pressure into a brake moment the results are fairly

good, in particular the sequencing of the various events.

Instrumented landings were also part of the test programme and may also be used for

model validation purposes. Under these conditions the yaw excitation originates from

asymmetrical spin-up of the wheels. The asymmetrical spin-up is again a result of roll

of the aircraft and/or crown (transverse slope) of the runway. Figure 5.33 shows the

recordings for a soft landing at a relatively low forward velocity. The largest dynamic

response is seen immediately after touch-down; figure 5.34 zooms in on the first 0.5

seconds of the landing event. It can be seen that the inboard wheel spins up more quickly

than the outboard wheel. This also results in a difference in longitudinal acceleration

between the inboard and outboard wheel, and consequently some yaw motion and shimmy

damper displacement. The MECANO simulation results for this particular landing are

shown in figure 5.35. The asymmetrical spin-up is represented with a reasonable accuracy,

but some of the lateral and yaw dynamic behaviour appears to be missing in the MECANO

model when the wheels have spun-up. The asymmetrical spin-up was achieved by

introducing a transversely sloped runway in the simulation model. This example also

illustrates that it may be very difficult to exactly recalculate a landing event.

A final remark is that it will be very difficult to get a rigorous proof of shimmy stability

from full-scale testing; this is also an important driver for the development of simulation

models.
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Fig. 5.31: Measured landing gear response during an asymmetrical braking event

(flight 853 rec. 45, left hand gear).
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Fig. 5.32: Simulated landing gear response during an asymmetrical braking event.
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Fig. 5.33: Measured landing gear response during landing impact

(flight 856 rec. 29, left hand gear).
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Fig. 5.34: Measured landing gear response, zooming in on initial phase

(flight 856 rec. 29, left hand gear).
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Fig. 5.35: Simulated landing gear response during initial phase of landing impact.



Chapter 6

Evaluation of a shimmy event

In this chapter a shimmy event will be analysed, which occurred on a test aircraft. In this

particular case some instrumentation was available, which recorded the unstable shimmy

vibration. This information allows a much more detailed analysis of the unstable motion

than normally possible. In chapter 5 the development and validation of a detailed landing

gear model is described. The MECANO model will be used to evaluate shimmy stability

of this particular landing gear. In addition a linear derivative of the MECANO model has

been developed, which allows scanning the various operating conditions of the aircraft

more quickly.

6.1 Analysis of recorded data

Experience indicates that main landing gear shimmy is most likely to develop very shortly

after landing impact. Under these conditions the friction in yaw direction will be reduced

and asymmetrical spin-up of the wheels may serve as an initial disturbance. The pilot

may notice a landing gear vibration, which can develop from many sources and does not

necessarily have to be caused by shimmy. In severe cases, shimmy may result in structural

damage; in particular a torque link failure is likely to happen. Generally the torque links

will be designed to include a break spot, which fails in case of an overload condition. In

this way the main fitting and sliding member remain undamaged and will still be able to

carry the weight of the aircraft. In addition the replacement of a torque link is a minor

task compared to replacing a sliding member and/or main fitting.

In case of a shimmy event only limited data will be available to investigate the

vibration and establish the boundary conditions (e.g. forward velocity, shock absorber

deflection, etc.). The flight data recorder may be used to determine the indicated air speed

and vertical acceleration on touch down. The velocity with respect to the ground (”ground

speed”) may be different from the air speed, but normally this difference can be ignored.

Furthermore the mass of the aircraft and flap settings will be known. Nevertheless

this information can only give a crude idea of the type of landing which is performed,

details on the shimmy vibration itself can be even harder to obtain. The tyres may leave

sinusoidal marks on the runway which are very characteristic for a shimmy instability,

see figures 6.1, 6.2 and 6.3. The wavelength of these marks will be several meters. In

some cases, data from the cockpit voice recorder can be used to establish the frequency

of the vibration. So normally only very limited data is available, which makes a detailed

assessment difficult.
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Fig. 6.1: Tyre marks on the runway (1).
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Fig. 6.2: Tyre marks on the runway (2).

Fig. 6.3: Tyre marks on the runway (3).
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Fig. 6.4: Instrumentation of the right hand main landing gear (flight 228, rec. 23).

We will now discuss a shimmy event which occurred on a test aircraft and resulted

in a torque link failure. This event is particularly interesting because the landing gear

was instrumented with several accelerometers and other measurement equipment, thus

revealing more details of the shimmy instability. Details on the instrumentation are given

in figure 6.4. It should be noted that this configuration of the landing gear was never taken

into production and never used by any airline.

The aircraft ground speed and shock absorber deflection are shown in figure 6.5.

The forward velocity of 60 m/s at touch-down is relatively low and the landing is a bit

bumpy considering the shock absorber deflection. Furthermore, it can be noted that the

shock absorber remains almost fully extended for about 5 seconds. At approximately

t=22 seconds the lift dumpers and thrust reversers are activated, resulting in an increased

deceleration of the aircraft and increasing shock absorber deflection.

The angular velocity of the wheels is shown in figure 6.6. It can be seen that this

particular landing represents a rather extreme case of asymmetrical spin-up. On the first

touch, the inboard wheel spins up completely, but the outboard wheel reaches only 35% of

the angular velocity corresponding to aircraft forward velocity. Then the aircraft becomes

fully airborne for almost two seconds before the second ground contact. At that stage

the outboard wheel also spins up completely. Recorded accelerations are shown in figure

6.7 and 6.8. The unstable vibration starts at about t=16 seconds and continues until the

torque link fails at t=23.5 seconds, the frequency of the vibration ranges from 12.5 to 14

Hz. Some of the signals may show a discontinuity, either due to a failure of the transducer

or clipping of the measurement amplifier.

The lateral acceleration signal is unusable after t=18 seconds. We will focus now on

the time interval from 16 to 17.6 seconds: in this period the amplitude grows about a

factor seven and there are no particular external disturbances to the landing gear. The

accelerations of the jacking dome and wheels are shown in figure 6.9. The longitudinal

accelerations of the wheel centres are in counter phase indicating a yaw motion of the

axle; the outboard longitudinal acceleration being slightly larger compared to the inboard

acceleration. This is confirmed by the fact that the longitudinal acceleration of the jacking

dome remains limited. The lateral acceleration of the jacking dome increases at nearly

the same rate as the longitudinal accelerations of the wheels, though it differs in phase.

The acceleration signals may be integrated twice with respect to time in order to get
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an impression of the amplitude of the motion. This process also suppresses some of the

higher frequency noise present in the acceleration signal. A high pass filter is applied on

the integrated signals in order to eliminate static drift. The lateral position of the wheel

axle centre is calculated using the various acceleration signals and their locations. The

sign of the lateral displacement is reversed in order to agree with the sign convention

adopted in this thesis. The result is shown in figure 6.10, which clearly illustrates the

phase difference between the lateral and yaw motion. In the time interval considered, the

amplitude reaches already more than 5 degrees in yaw and 35 mm in lateral direction.

Taking into account the growth of the longitudinal wheel accelerations, it can be expected

that the peak amplitudes reached during this shimmy event will be more than twice these

values.

The motion shown in figure 6.10 can be analysed in more detail; figure 6.11 lists

a number of results. The frequency varies between 12.2 and 13.5 Hz; the changes

in frequency correspond fairly well with differences in the shock absorber deflection.

Similarly, the wavelength varies between 4.2 and 4.7 meter. Figure 6.10 clearly indicates

that the lateral motion lags the yaw motion; this phase lag is in the order of 140 degrees (or

equivalently a phase lead of 220 degrees). The amplitude ratio between lateral and yaw

motion decreases somewhat when the overall amplitude grows; the order of magnitude of

this ratio is 0.45 meter. Taking into account the factor seven increase in magnitude, it can

be concluded that the ratio between lateral and yaw amplitude remains fairly constant.

In section 2.3 various combinations of lateral and yaw input to the tyre contact

centre at road level were studied. It was found that instability may occur for certain

combinations of the amplitude ratio η and relative phase angle ξ for a particular

wavelength λ, see figure 2.15 on page 35. In this figure the various parameters have

been made dimensionless using half of the contact length a. For the shimmy event

studied in this chapter, a may be calculated using the measured (oil) pressure in the

strut and the characteristics supplied by the tyre manufacturer. For the time interval

under consideration, half of the contact length is on average 85 mm. Combining the

data available in figure 6.11 we get: 50a < λ < 60a, 5a < η < 6a and 215 < ξ < 235

degrees. Plotting these combinations of η and ξ in figure 2.15 it is clear that they will

always reside inside the λ = 50a or λ = 60a circle; thus indicating that this particular gear

motion is potentially unstable.

Two remarks can be made regarding this analysis. Firstly, some assumptions have

been made regarding the tyre parameters in figure 2.15: σ = 3a and tp = 0.5a. Considering

the experimental data shown in section 4.6, this seems to be a reasonable approach.

Secondly, figure 2.15 applies to input at the tyre contact centre at road level, whereas

the data shown in figure 6.11 is determined for the wheel axle centre. So the contribution

of roll of the wheel axle is not taken into account: no measurement data is available to

determine the amount of roll of the wheel axle during the shimmy event, but the simulation

results presented in the next section indicate that the contribution of roll will be relatively

small in this particular case.



178 CHAPTER 6. EVALUATION OF A SHIMMY EVENT

12 14 16 18 20 22 24
50

52

54

56

58

60

62

[m
/s

]

ground speed (gsirs)

12 14 16 18 20 22 24
−20

0

20

40

60

80

100

time [s]

[%
 o

f 
fu

ll 
s
tr

o
k
e

]

shock absorber deflection (dsan2)

Fig. 6.5: Forward velocity and shock absorber deflection (flight 228, rec. 23).
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6.2 Model results

Apart from the MECANO simulation model, a linear model was developed to quickly

assess system stability for different shock absorber deflections and forward velocities.

This linear model follows a similar modelling approach as the model discussed in section

3.1 and uses three mechanical degrees of freedom: a lateral, yaw and roll motion of the

wheel axle centre. To improve the accuracy, the stiffness properties of the MECANO

model are incorporated using look-up tables (see figure 5.12). The vertical load on the

tyres is calculated using the theoretical air spring curve (see equation 5.1) and the tyre

parameters are a function of the vertical load (see section 4.6). For each combination

of forward velocity and shock absorber deflection the eigenvalues are calculated; the

frequency and damping of the least damped mode below 30 Hz will be plotted.

For the shimmy event the forward velocity V is in the range of 50 to 60 m/s and the

shock absorber deflection is less than 10%. The linear model indicates an unstable gear, as

shown in figure 6.12: the frequency will be in the range of 13 to 14.5 Hz and damping will

be 3 to 5% negative. Furthermore it can be observed that the gear would become stable

again when the shock absorber deflection is sufficiently large. Therefore, it is possible that

during a normal landing the instability does not reach a level where structural damage

occurs, because the shock absorber will enter a stable area again when settling for the

static deflection. The landing event described in section 6.1 is rather special, because the

landing gear remained almost fully extended for about five seconds. Combined with the

extreme asymmetrical spin-up this may have triggered the shimmy instability.

The MECANO model is used to recalculate the shimmy event. The simulation is

started on the second ground contact, when the outboard wheel also spins up (t ≈ 14.8

seconds in the measurement data). A number of time histories are shown in figures 6.13

to 6.16, which may be compared with the measurements shown in figures 6.5 to 6.8.

Obviously, the MECANO simulation also shows the instability. The lateral load at the

apex joint is shown in figure 6.17. The maximum value of 300 kN occurring in the

simulation, is well above the static strength design load. So it can be expected that a

torque link failure occurs due to a static overload condition.

A more detailed view on the unstable motion is shown in figure 6.18, which can be

compared to figure 6.10. In figure 6.18 the roll angle of the wheel axle is also shown;

this angle remains relatively small. In the simulation the instability has an exponential

growth, whereas the measurements show a more or less linear increase in vibration

amplitude. Similar to figure 6.11, the unstable shimmy vibration has been analysed in

detail, see figure 6.19. When comparing the results it can be noted that, at least initially,

the frequency tends to be too low and the wavelength is somewhat too large, but this error

is reduced as the amplitude grows. The phase relation between lateral and yaw motion of

the simulation appears to be quite accurate when compared to the measured results. The

largest error can be found in the amplitude ratio at the wheel axle centre: in the simulation

the lateral motion is too small relative to the yaw angle.

It should be noted that the results presented here cover just one specific condition.

The simulation results appear to be quite sensitive to e.g. the amount of free-play, but

the actual values are unknown. Within reasonable free-play limits, it is possible to select

a combination of lateral and yaw free-play which would result in a far more unstable

landing gear. It is also possible to select a combination which maintains stability during

this landing event; the trends are similar as discussed in section 5.3 (figure 5.15).
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Chapter 7

Conclusions and recommendations

7.1 Conclusions

Shimmy of landing gears is potentially dangerous and may result in severe damage to the

aircraft. Therefore, it should be an important consideration in the design of a landing gear.

Experience has shown that it is difficult to reliably demonstrate shimmy stability from

laboratory or flight tests. For that reason much effort has to be put in the development

of computer simulation models in order to make reliable stability predictions and to

understand the mechanisms governing shimmy.

The shimmy stability of a main landing gear is a function of many design variables

and involves both the dynamic behaviour of the tyre and landing gear structure. The

approach followed in this thesis is to start with relatively simple models to understand

the phenomenon and gradually increase their complexity for a more detailed analysis.

Analytical expressions for the shimmy stability can be derived for the trailing wheel

system with lateral flexibility of the support. Essentially two stable areas exist:

• small negative trail combined with a low yaw stiffness and high lateral stiffness.

• large positive trail combined with a high yaw stiffness and low lateral stiffness.

A lower boundary on the yaw moment of inertia exists for both configurations to maintain

shimmy stability. These results have also been confirmed when using a more detailed

twin-wheeled landing gear model. Gyroscopic effects, caused by the rotating wheels

and tyres, and structural damping make the stability boundaries velocity dependent. The

gyroscopic effects tend to increase the instability for small positive trail values at higher

forward velocities.

Apart from optimising the gear stiffness and geometry, various other methods exist to

solve shimmy instability; the shimmy damper and a tuned mass being the most promising

options. Since a shimmy damper will operate in series with the yaw stiffness of the

gear, this stiffness has to be sufficiently high in order to allow the damper to function

properly. Furthermore it is shown that a bogie configuration is inherently more stable

than a cantilevered design.

The Nyquist criterion can be applied to investigate shimmy stability in the frequency

domain by considering the gear structure and tyre as a feedback system. The shimmy

frequency may be quite different from the eigenfrequencies of the gear structure.

An important advantage of the Nyquist criterion is that it allows a better physical
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interpretation of the cause of the shimmy phenomenon compared to e.g. the calculation

of eigenvalues or Hurwitz criterion.

A comparison between various linear dynamic tyre models has been made. It is

shown that the different approaches are closely related and that in some cases equivalence

conditions can be established. For the wavelengths normally encountered in aircraft

main landing gear shimmy, the straight tangent tyre model is conservative with respect to

detecting instability. It appears that the results obtained using the models of Von Schlippe,

Rogers, Keldysh and Smiley are quite similar. The Moreland tyre model may be notably

different, depending on the choice of the tyre time constant. An expression has been

derived for the tyre time constant, which will result in more physically plausible path

dependent behaviour for the Moreland model. Based on an energy balance, it can be

shown that shimmy will only occur for certain combinations of lateral and yaw input to

the wheel plane at road level.

In the design process a detailed landing gear model is required to evaluate and ensure

shimmy stability. This model should have the following features:

• a load (or deflection) dependent set of tyre characteristics

• an accurate representation of the gear stiffnesses as a function of shock absorber

deflection

• account for the flexibility of the attachment structure

• inclusion of the gyroscopic effects of the rotating wheels/tyres

• possibility to introduce free-play in lateral and yaw direction

• consideration of Coulomb friction on the bearings, including the interaction

between axial and yaw motion

Apart from full-scale aircraft tests, various component tests, most notably the

measurement of tyre characteristics and structural stiffness, are required to establish a

quantitatively correct model.

7.2 Recommendations for future research

Though the modelling approach presented in this thesis has been applied successfully

in explaining and solving shimmy problems on a particular landing gear, various items

require further attention:

• tyre parameters

Shimmy stability is dependent on tyre characteristics and reliable tyre data is

required to make accurate predictions. Though the work of Smiley and Horne

(reference [47]) and section 4.6 of this thesis may provide some guidelines, more

data is required; in particular radial and retreaded aircraft tyres should be evaluated.

In addition, the effects of inflation pressure, wear and road surface texture should

be addressed.
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• tyre modelling

In this thesis the discussion of various tyre models to describe dynamic tyre

behaviour is limited to linear models. As already shown in figure 4.3, the forces

generated by the tyre will be a non-linear function of the side slip angle. The

Magic Formula is a generally accepted method of describing the steady-state tyre

behaviour. In recent years extensions have been made towards dynamic behaviour

using a rigid ring approach (references [53] and [30]). Following this modelling

approach, the gyroscopic moment generated by the tyre belt and the reduction of

the relaxation length with increasing side slip angle can be incorporated in a very

natural way. Nevertheless turn slip is not yet fully included and subject of on-going

research. These enhanced tyre models will also require additional data, which may

currently not be available for aircraft tyres.

• friction

The friction between sliding member and main fitting is important for shimmy

stability. In section 5.4 the basic mechanism is explained, but no experimental data

is available to substantiate this. Differences between break-out and sliding friction

may need to be addressed. Also the influence of external disturbances, e.g. tyre

unbalance or road irregularities, may prove to be of importance.

• brakes

The possible impact of the brakes on shimmy stability has not been touched in this

thesis. The main landing gear is equipped with disk brakes, consisting of a stack

of rotors (connected to the wheel) and stators (connected to the axle) which are

compressed by the brake cylinders upon application of the brakes. As shown in

figure 6.7 very high lateral accelerations are to be expected in case of a shimmy

instability, which could potentially result in a cyclic brake excitation due to the

lateral vibration of the landing gear. Nevertheless it is believed that this mechanism

is unimportant for the initiation of shimmy, but research needs to be performed to

positively confirm this.

• dynamic behaviour of the wing and fuselage

In the detailed landing gear model, as described in chapter 5, only the static

stiffness of the back-up structure is considered. As already pointed out by Black

(reference [3]) it may be necessary to include the dynamic behaviour of the

supporting structure. Depending on the general configuration, the bending modes

of the wing could have some impact on the shimmy stability of the main landing

gear; the resonance frequency of the lowest bending modes of the wing are typically

below the frequency of the shimmy vibration.

As already pointed out in the introduction, section 1.2, there is a general need for

guidelines to design a shimmy-free landing gear. Though this thesis may contribute to

the understanding of the shimmy phenomenon, more work needs to be done to achieve

this goal. In particular it would be important to evaluate various existing landing gear

designs for shimmy stability. Though the trend in the industry is to only start developing

shimmy models once problems occur, it will be very useful to develop models of landing

gears which are known to have no shimmy problems. This will improve the general

understanding of the shimmy phenomenon and may also provide additional confidence in

the simulation techniques.
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Summary

Shimmy of Aircraft Main Landing Gears - I.J.M. Besselink

The landing gear is an important aircraft system, which has to meet many different

design requirements. It is a highly loaded structure, which is designed for minimum

weight. Shimmy is a dynamic instability of the landing gear, which is caused by the

interaction of the dynamic behaviour of the landing gear structure and tyres. The unstable

lateral and yaw vibration of the landing gear can reach considerable amplitudes and may

even result in severe damage to the aircraft. Shimmy is easily ignored in the design

process, which may be caused by a of lack of knowledge on the shimmy phenomenon,

absence of suitable analysis tools or the non-availability of e.g. tyre characteristics.

Computer simulations are very important to evaluate the shimmy stability of a landing

gear. Experience has shown that it will be very difficult to rigorously prove shimmy

stability from experiments, e.g. full-scale flight tests or laboratory tests using a drum.

Three fields of research are covered in this thesis:

• shimmy fundamentals

• modelling of the tyre dynamic behaviour

• the development and validation of a detailed landing gear model

Analytical expressions for the shimmy stability have been derived for a number of

relatively simple systems using the Hurwitz criterion. In particular, an analytical solution

has been found for a system where the wheel has a mechanical trail and both the yaw

and lateral stiffness of the hinge point are taken into account. The stability boundaries

can be represented by two shifted parabolas in the mechanical trail versus yaw stiffness

plane; this analytical result is very important to understand the interaction between the

different variables. The model may be enhanced by including the gyroscopic behaviour

of the rotating wheel and structural damping. The shimmy stability can also be analysed

in the frequency domain by considering the landing gear structure and tyre as a feedback

system and applying the Nyquist criterion.

A design study is performed using a twin wheeled landing gear, having three

mechanical degrees of freedom (lateral, roll and yaw). The stability of the baseline

configuration can be improved considerably by modifying the length of the mechanical

trail, lateral stiffness, yaw stiffness and wheel track. It appears that a small positive

mechanical trail is better avoided; this is substantiated by the analytical results. Other

methods to improve the stability have been investigated: modification of the cant angle,

the introduction of a bob mass, tuned mass, shimmy damper or co-rotating wheels.

Furthermore the stability of a bogie landing gear has been evaluated both analytically

and using a more complex model; the results indicate that this configuration is far less

susceptible to shimmy.
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Different linear tyre models have been developed for application in a shimmy analysis;

in particular the models of Von Schlippe, Smiley, Pacejka (straight tangent and parabolic

approximation), Kluiters, Rogers, Keldysh and Moreland are discussed. Expressions

for the transfer functions with respect to side and turn slip are derived and equivalence

conditions can be established between some of the tyre models. A comparison is made

using transfer functions, step response and energy considerations. In addition, the impact

of the tyre model on system stability is studied for a number of simple mechanical

systems. Some guidelines regarding the values of different tyre parameters are given

using measurement data and literature.

A detailed model will be required to assess shimmy stability in the design stage or

when solving actual shimmy problems. The stiffness of a landing gear is dependent

on the shock absorber deflection due to changes in torque link geometry and distance

between upper and lower bearing. The flexibility of the back-up structure and wing

results in a significant reduction of the lateral stiffness of the landing gear at wheel axle

level. Modal testing can be performed to assess eigenfrequencies and mode shapes of the

landing gear, but measurements show that the results may be highly amplitude dependent

due to free-play and friction. Free-play and friction are also important for the shimmy

stability and will have to be included in a detailed model. The shimmy damper may have

a non-linear characteristic consisting of a preloaded spring and velocity squared damping

force. Various component tests will be required to determine parameters or to validate

the characteristics of the model. A detailed simulation model was developed using the

MECANO multi-body software package. The flexible slider element proved to be very

convenient for modelling the landing gear structure.

Full-scale tests on the aircraft may be used to perform a limited validation of the

simulation model. During taxi runs an external disturbance is required to provoke a

dynamic response of the landing gear. This may be achieved by running over a diagonally

positioned plank, introducing an unbalance mass or asymmetrical braking. In a landing

event the asymmetrical spin-up of the wheels is the main excitation source. Generally,

only limited data will be available when a shimmy event occurs, which makes it difficult

to perform a detailed assessment. An interesting exception is a shimmy vibration which

occurred on a test aircraft, equipped with an instrumented landing gear. The unstable

motion is analysed in detail. This event has also been simulated using the MECANO

model, aiming to match the landing conditions as closely as possible. A reasonable

agreement can be obtained between simulation model and measurement.

Future research may aim at an accurate determination of tyre characteristics and

correlation between different tyres. The dynamic tyre model can be extended to describe

the non-linear tyre behaviour at large side slip angles more accurately. Also some

enhancements of the landing gear and airframe model are possible, in particular the

dynamic behaviour of the wing and brakes may be included. Friction may be rather

important for an accurate simulation of the landing gear behaviour; in this field both

additional experimental data and improved modelling techniques may be required.
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