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Introduction. Let V be an n-dimensional row vector space over a to-
tally real algebraic number field F , and let ϕ be a totally positive definite
symmetric matrix with entries in F . Put ϕ[x] = xϕ · tx for x ∈ V . By a g-
maximal lattice L with respect to ϕ, we understand a g-lattice L in V which
is maximal among g-lattices on which the values ϕ[x] are contained in g.
Here g is the ring of integers of F . Put Gϕ = {α ∈ GLn(F ) | αϕ · tα = ϕ}
and let {Li}ki=1 be representatives of classes in the genus of L with respect
to Gϕ. Then we define the mass of the genus of a g-maximal lattice L with

respect to ϕ by
m(L) =

k∑

i=1

[Γi : 1]−1,

where Γi = {γ ∈ Gϕ | Liγ = Li}. Shimura’s mass formula for orthogonal
groups determines m(L) for an arbitrary totally real algebraic number field
F and arbitrary ϕ ([6, Theorem 5.8]).

In this paper, we consider only the case where F is a real quadratic field
Q(

√
m), and ϕ is the unit matrix 1n of size n (n > 1). The purpose of this

paper is to digest Shimura’s mass formula, applying it to the case of real
quadratic fields, and to state the formula in a simpler form, from which we
can compute m(L). Applying this formula to the case where F = Q(

√
5) and

ϕ = 14, we see that the genus belonging to a g-maximal lattice L with respect
to ϕ consists of one class, and further give the number N(L, h) = #{x ∈ L |
ϕ[x] = h} for a totally positive element h in g by specializing the formula
due to Shimura [7, Theorem 1.5] to the present situation (Section 4). At the
end of this paper, we give a numerical table of m(L) for several quadratic
fields F (Section 5).

Applying the formula in [6, Theorem 5.8] to our case, we can reduce
the calculation of the mass to the following two arguments. One is to com-
pute the special values of the Dedekind zeta function of F and the L-function
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of F with the Hecke character of F corresponding to F (
√
−1)/F (Section 2).

These values can be obtained by calculating the values of the Riemann zeta
function and Dirichlet L-functions, since F (

√
−1)/Q is an abelian extension.

The other is to determine a Witt decomposition for 1n over the local field Fv
at a nonarchimedean prime v of F (Section 3). To do this, we first take an
anisotropic part θp of a Witt decomposition for 1n over Qp for the rational
prime v | p. Then we decompose θp on Fv. In particular, nontrivial cases are
v | 2 and n ≡ ±3, 4 (mod8). In these cases, we can determine a Witt de-
composition for θp over Fv by using the local theory of quaternion algebras.
Summing up these results, we obtain the mass m(L) of the orthogonal group
Gϕ of ϕ = 1n over real quadratic fields F (Theorem 3.6).

We end this introduction with the following remark: As was mentioned
in [6], maximal lattices were introduced by Eichler. This maximal lattice
differs from a unimodular lattice in general. Shimura gave the mass formula
for the case of maximal lattices with respect to an arbitrary ϕ exactly in
[6, Theorem 5.8]. We use this formula to compute the mass in our case. Clear-
cut explanation why we work on maximal lattices is given in the introduction
of [6] and also in that of [7].

Finally, I would like to thank my advisor Professor Koji Doi for suggest-
ing this work and for guiding it to completion. I wish to thank Dr. Kaoru
Okada for much help during the preparation of this paper. I also thank Dr.
Yoshio Hiraoka for supporting our calculations in the numerical table.

Notation. If R is an associative ring with identity element and if M is
an R-module, then we write R× for the group of all invertible elements of R,
and Mm

n for the R-module of m×n-matrices with entries in M . We write 1n
for the identity element of the matrix ring Rnn. We put GLn(R) = (Rnn)

×. We
denote by tx and det(x) the transpose and determinant of a matrix x ∈ Rnn.
If x1, . . . , xr are square matrices, diag[x1, . . . , xr] denotes the matrix with
x1, . . . , xr in the diagonal blocks and 0 in all other blocks. For a finite set X,
we denote by #X the number of elements in X. For a symmetric matrix
A ∈ Rnn, we put

A(x, y) = xA · ty and A[x] = xA · tx (x, y ∈ R1
n).

Let F be a number field. We denote by a and h the sets of archimedean
primes and nonarchimedean primes of F . We identify v with the prime ideal
of F corresponding to v. For v ∈ h, πv and qv denote a prime element of
Fv and the norm of the prime ideal at v. We denote by Bl and Bl,ψ the
lth Bernoulli number and lth generalized Bernoulli number associated with
a Dirichlet character ψ. For a rational prime p,

(
p

)
denotes the Legendre

symbol.
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1. Preliminaries. Throughout the paper, F is a real quadratic field
and ϕ = 1n. Let g be the ring of integers of F and put V = F 1

n . We
put

G = Gϕ = {γ ∈ GLn(F ) | γϕ · tγ = ϕ} = {γ ∈ GLn(F ) | γ · tγ = 1n}.
For a g-lattice L in V , which is a finitely generated g-submodule in V con-
taining a basis of V , and h ∈ g, we put

N(L, h) = #{x ∈ L | ϕ[x] = h},
L̃ = {y ∈ V | 2ϕ(x, y) ∈ g for every x ∈ L}.

Let GA be the adelization of G.

For α ∈ GA, we denote by Lα the g-lattice in V such that (Lα)v = Lvαv
for any nonarchimedean prime v of F . Here Lv is the gv-lattice in (Fv)

1
n

which is spanned by L over gv. We call {Lα | α ∈ GA} (resp. {Lα | α ∈ G})
the genus (resp. class) of L with respect to G. We put

C = {α ∈ GA | Lα = L}, Γα = G ∩ αCα−1 (α ∈ GA).

The mapping GαC 7→ Lα−1 gives a bijection of G\GA/C onto the set
of classes in the genus of L. It is known that G\GA/C is a finite set
([5, Lemma 8.7(4)]). Thus the genus of L is decomposed into a disjoint
union of finitely many classes. Let B be a complete set of representatives
for G\GA/C. We then put

m(L) = m(G,C) =
∑

α∈B

[Γα : 1]−1,

R(L, h) =
∑

α∈B

[Γα : 1]−1N(Lα−1, h).

We call m(G,C) the mass of G relative to C.

By a g-maximal lattice L with respect to ϕ, we understand a g-lattice
L in V which is maximal among g-lattices on which the values ϕ[x] are
contained in g. The genus of a g-maximal lattice L consists of all g-maximal
lattices (cf. [5, Lemma 5.9]).

Let v ∈ a ∪ h. For symmetric matrices A and B in GLn(Fv), we say
that A is equivalent to B over Fv if there exists X ∈ GLn(Fv) such that
XA · tX = B. We call A isotropic over Fv if there exists 0 6= x ∈ (Fv)

1
n

such that xA · tx = 0. Otherwise we say that A is anisotropic over Fv.
Put

ηr =

[
0 1r

1r 0

]
.

Then ηr is a symmetric matrix of GL2r(Fv). For every x ∈ (Fv)
1
r, we have

ηr
[
[x 01

r ]
]

= 0, and so ηr is isotropic over Fv.
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For ϕ and v ∈ a ∪ h there exists αv ∈ GLn(Fv) such that

(1.1) αvϕ · tαv =




0 0 1rv

0 θv 0

1rv 0 0




with an anisotropic symmetric matrix θv ∈ GLtv(Fv) over Fv. We call (1.1)
a Witt decomposition for ϕ over Fv. Then n = 2rv + tv. It is known that
tv ≤ 4 for v ∈ h (cf. [5, Proposition 5.2]). In Section 3, we determine a Witt
decomposition for ϕ over Fv (v ∈ h).

2. Mass formula for ϕ = 1n over real quadratic fields. Let L be
a g-maximal lattice in V with respect to ϕ. The formula of m(L) for G is
given in [6, Theorem 5.8]. In fact, we can apply this formula to the case of
the maximal lattices with respect to an arbitrary totally definite quadratic
form over an arbitrary totally real algebraic number field.

We first define a constant λv in [6, Theorem 5.8]. Let e be the product

of all nonarchimedean primes v satisfying L̃v 6= Lv. For v | e, put

(2.1) λv =





1 if tv = 1,

2−1(1 + qv)
−1(1 + q1−uv )(1 + q−uv )

if tv = 2, dv = rv, and cv ∈ πvg
×
v ,

2−1 if tv = 2, dv 6= rv,

2−1(1 + qv)
−1(1 − q1−nv ) if tv = 3,

2−1(1 + qv)
−1(1 − q1−uv )(1 − q−uv ) if tv = 4,

where u = 2−1n, and if tv = 2, then rv is the maximal order of Kv =
Fv(

√
−det(θv)), dv is the different of Kv relative to Fv, and cv is a constant

from [6, §3.2]. Here cv can be taken as follows: Let θv be as in (1.1). This
is equivalent to a matrix diag[av, bv] over Fv with a suitable basis {ei} such
that av = θv[e1], bv = θv[e2] ∈ F×

v and θv(e1, e2) = 0. We may assume that
bv ∈ g×v ∪ π−1

v g×v . The mapping y1e1 + y2e2 7→ bvy2 + y1

√
−avbv yields an

isomorphism (Fv)
1
2
∼= Kv such that

θv[y1e1 + y2e2] = b−1
v ·NKv/Fv

(bvy2 + y1

√
−avbv).

Here NKv/Fv
(x) = xx̺, where ̺ is the nontrivial automorphism of Kv

over Fv. Then we can take cv = b−1
v . Notice that v ∤ e if tv = 0, or tv = 2,

dv = rv and cv ∈ g×v (see (3.6) below).

Applying [6, Theorem 5.8] to the case where F is a real quadratic field
and ϕ = 1n, we have the following

Proposition 2.1. Let F = Q(
√
m) with a square free positive integer m,

and let n > 1. Put V = F 1
n and ϕ = 1n. Let L be a g-maximal lattice in V
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with respect to ϕ, e the product of all nonarchimedean primes v satisfying

L̃v 6= Lv, and χ the Dirichlet character corresponding to F/Q.

(1) Suppose n is odd; let f be the product of all nonarchimedean primes

v satisfying tv = 3. Then

(2.2) m(L) = 21−n
( (n−1)/2∏

k=1

(4k)−2B2kB2k,χ

)
[L̃ : L](n−1)/2

∏

v|f

1 − q1−nv

2(1 + qv)
.

(2) Suppose n is even; put F ′ = Q(
√
−1) and F ′′ = Q(

√−m), and de-

note by χ′ (resp. χ′′) the Dirichlet character corresponding to F ′/Q
(resp. F ′′/Q). Let λv be as in (2.1).

(i) If n ≡ 0 (mod4), then

m(L) = n−2Bn/2Bn/2,χ

( [(n−1)/2]∏

k=1

(4k)−2B2kB2k,χ

)
(2.3)

×[L̃ : L](n−1)/2
∏

v|e
λv.

(ii) If n ≡ 2 (mod4), then

m(L) = n−2Bn/2,χ′Bn/2,χ′′(2.4)

×
( [(n−1)/2]∏

k=1

(4k)−2B2kB2k,χ

)
[L̃ : L](n−1)/2

×
∏

v|e
λv ·





22(1−n) if m ≡ 1 (mod4),

21−n if m ≡ 2 (mod4),

1 if m ≡ 3 (mod4).

Proof. By [6, Lemma 5.6(1)], we have

m(G,C) =
1

2
m(G+, C

+),

where

G+ = {γ ∈ G | det(γ) = 1}
and C+ = C ∩ (G+)A with the adelization (G+)A of G+. Taking g as an
ideal c of F in [6, Theorem 5.8], we have C+ = D+, where D+ is a subgroup
of (G+)A in that theorem (cf. [6, (5.7.3), (5.7.4), and (5.7.5)]). Since ϕ
is anisotropic over F and satisfies the condition [6, (5.7.1)], we can apply
[6, Theorem 5.8] to m(G+, C

+). Hence we obtain

m(G+, C
+) = mn(g)[L̃ : L]µ

∏

v|e
λv,
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where

mn(g) = 2D
[µ2]
F

[µ]∏

k=1

{D1/2
F ((2k − 1)!(2π)−2k)2ζF (2k)}

×
{

2−2µ if n is odd,

D
1/2
F ((u− 1)!(2π)−u)2L(u, ψK/F ) if n is even.

Here µ = (n − 1)/2, and DF is the discriminant of F ; if n is even, put
u = n/2, K = F (

√
(−1)u), and denote by ψK/F the Hecke character of F

corresponding to K/F .

Suppose n is odd. Then we have D
[µ2]
F =

∏[µ]
k=1D

2k−1
F , and hence

(2.5) mn(g) = 2−(n−2)

[µ]∏

k=1

D
2k−1/2
F ((2k − 1)!(2π)−2k)2ζF (2k).

Put ζ̂F (s) = π−sΓ (s/2)2ζF (s), where Γ (s) is the gamma function (s ∈ C).

By the functional equation ζ̂F (s) = |DF |1/2−sζ̂F (1 − s), we have

ζF (2k) = |DF |1/2−2kπ4k

(
22k−1

(2k − 1)!

)2

ζF (1 − 2k).

Thus

D
2k−1/2
F ((2k − 1)!(2π)−2k)2ζF (2k) = 2−2ζF (1 − 2k).

Since

ζF (s) = ζQ(s)L(s, χ),

ζQ(1 − 2k) = −B2k/2k,

L(1 − 2k, χ) = −B2k,χ/2k,

we have

D
2k−1/2
F ((2k − 1)!(2π)−2k)2ζF (2k) = (4k)−2B2kB2k,χ.

Substituting this into (2.5) gives

mn(g) = 2−(n−2)

[µ]∏

k=1

(4k)−2B2kB2k,χ,

and hence we obtain (2.2).

Suppose n is even. Since D
[µ2]
F = Du−1

F

∏[µ]
k=1D

2k−1
F , we have

mn(g) = 2Dµ
F ((u− 1)!(2π)−u)2L(u, ψK/F )

[µ]∏

k=1

(4k)−2B2kB2k,χ.
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Then

m(L) = Dµ
F ((u− 1)!(2π)−u)2L(u, ψK/F )(2.6)

×
( [µ]∏

k=1

(4k)−2B2kB2k,χ

)
[L̃ : L]µ

∏

v|e
λv.

Next, we compute the value L(u, ψK/F ). If n ≡ 0 (mod4), then K = F , and
so L(u, ψK/F ) = ζF (u). Since this value can be obtained as above, we easily
deduce (2.3) from (2.6). Let n ≡ 2 (mod4). Then K is a totally imaginary
quadratic field F (

√
−1) = Q(

√
m,

√
−1) over F . In this case, the functional

equation is R(s, ψK/F ) = R(1−s, ψK/F ) by [5, Theorems A6.2, A6.3], where

R(s, ψK/F ) = |DFN(DK/F )|s/2(π−(s+1)/2Γ ((s+ 1)/2))2L(s, ψK/F ).

From this,

L(s, ψK/F ) = |DFN(DK/F )|(1−2s)/2π2s−1

(
Γ ((2 − s)/2)

Γ ((s+ 1)/2)

)2

L(1 − s, ψK/F ).

Now, since K/Q, F/Q, and K/F are abelian extensions, we have

ζK(s) = ζQ(s)L(s, χ)L(s, χ′)L(s, χ′′),

ζF (s) = ζQ(s)L(s, χ),

ζK(s) = ζF (s)L(s, ψK/F ).

Hence we obtain

(2.7) L(s, ψK/F ) = ζK(s)ζF (s)−1 = L(s, χ′)L(s, χ′′).

It is known that L(1 − k, ω) = −Bk,ω/k for a positive odd integer k with
ω = χ′ or χ′′. Combining this with (2.7), we find that L(1 − u, ψK/F ) =

u−2Bu,χ′Bu,χ′′ . Observing

Γ ((2 − u)/2)

Γ ((u+ 1)/2)
=

(−1)(u−1)/22u−1π1/2

(u− 1)!
,

we see that

Dµ
F ((u− 1)!(2π)−u)2L(u, ψK/F ) = n−2N(DK/F )−µBu,χ′Bu,χ′′ .

It is known that DK = DFDF ′DF ′′ . Since DK = N(DK/F )D2
F , we have

N(DK/F ) = D−1
F DF ′DF ′′ = 4D−1

F DF ′′(2.8)

=





24 if m ≡ 1 (mod4),

22 if m ≡ 2 (mod4),

1 if m ≡ 3 (mod4).

Substituting these into (2.6), we obtain (2.4).
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3. Computation of the mass

3.1. Local Witt decompositions for ϕ = 1n. Throughout this section,
L is a g-maximal lattice in V with respect to ϕ. To compute m(L), we need

to obtain e, f, [L̃ : L], and λv of Proposition 2.1. First of all, we determine
a Witt decomposition for ϕ = 1n at each nonarchimedean prime v of F
(Lemma 3.3). For this purpose, we use a quaternion algebra for v | 2 and
n ≡ ±3, 4 (mod8). By Wedderburn’s theorem, every quaternion algebra
over Fv is isomorphic to the matrix algebra (Fv)

2
2 or a division algebra. For

a quaternion algebra B over F and v ∈ a ∪ h, we say that B is ramified at
v if B ⊗F Fv is a division algebra, and that B is unramified at v if B ⊗F Fv
is isomorphic to (Fv)

2
2. It is well known that B is ramified at v if and only if

the reduced norm of B ⊗F Fv is anisotropic over Fv, and that the reduced
norm of the matrix algebra (Fv)

2
2 is equivalent to the isotropic symmetric

matrix η2.

Lemma 3.1. Let p be a rational prime. Then we can take an anisotropic

symmetric matrix θp of a Witt decomposition for ϕ over Qp of the following

form:

(1) If p ≡ 1 (mod4), then

θp =

{ ∅ if n is even,

1 if n is odd.

(2) If p ≡ 3 (mod4), then

θp =





∅ if n ≡ 0 (mod4),

±1 if n ≡ ±1 (mod4),

12 if n ≡ 2 (mod4).

(3) If p = 2, then

θp =





∅ if n ≡ 0 (mod8),

±1 if n ≡ ±1 (mod8),

±12 if n ≡ ±2 (mod8),

±13 if n ≡ ±3 (mod8),

14 if n ≡ 4 (mod8).

Here θp = ∅ means that tp = 0, i.e. ϕ is equivalent to ηn/2 over Qp, and

“ θp = ±1 if n ≡ ±1 (mod4)” means that θp = 1 (resp. θp = −1) if n ≡ 1
(mod4) (resp. n ≡ −1 (mod4)). The other double signs should be read

similarly.

This fact can be seen by [6, Examples 5.16] or [8, (1.2)]. We remark
that the constant cp in [8, (1.2)] is determined by the determinant of the
decomposition.
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We next give a Witt decomposition for ϕ over Fv for a totally real number
field F , though we are interested in real quadratic ones. To do this, we define
the Hilbert symbol (a, b)Fv

over Fv by

(a, b)Fv
=

{
1 if diag[a, b,−1] is isotropic over Fv,

−1 otherwise,
(3.1)

for a, b ∈ F×
v . We can verify that (a, b)Fv

= 1 if and only if there exists
0 6= [x y] ∈ (Fv)

1
2 such that ax2 + by2 = 1.

Lemma 3.2. Let F be a totally real number field. Let v ∈ h, and let p
be the rational prime which lies below v. Then we can take an anisotropic

symmetric matrix θv of a Witt decomposition for ϕ over Fv of the following

form:

(1) Suppose v ∤ 2.

(i) If p ≡ 1 (mod4), then

θv =

{ ∅ if n is even,

1 if n is odd.

(ii) If p ≡ 3 (mod4) and
√
−1 6∈ Fv, then

θv =





∅ if n ≡ 0 (mod4),

±1 if n ≡ ±1 (mod4),

12 if n ≡ 2 (mod4).

(iii) If p ≡ 3 (mod4) and
√
−1 ∈ Fv, then

θv =

{ ∅ if n is even,

1 if n is odd.

(2) Suppose v | 2.
(i) If n ≡ 0 (mod8), then θv = ∅.
(ii) If n ≡ ±1 (mod8), then θv = ±1.
(iii) If n ≡ ±2 (mod8), then

θv =

{ ∅ if
√
−1 ∈ Fv,

±12 if
√
−1 6∈ Fv.

(iv) If n ≡ ±3 (mod8), then

θv =

{±13 if (−1,−1)Fv
= −1,

∓1 if (−1,−1)Fv
= 1.

(v) If n ≡ 4 (mod8), then

θv =

{
14 if (−1,−1)Fv

= −1,

∅ if (−1,−1)Fv
= 1.

Here θv = ∅ means that tv = 0.
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Proof. (1) Suppose v ∤ 2. Let θp be as in Lemma 3.1. If p ≡ 1 (mod4),
then we can take θv = θp, and thus we have (i).

To prove (ii) and (iii), let p ≡ 3 (mod4). We show only the case of n ≡ 2
(mod4), since the other cases are trivial. In this case,

12 is isotropic over Fv ⇔
√
−1 ∈ Fv,(3.2)

which proves (ii) and (iii).

(2) Suppose v | 2. If n ≡ 0, ±1, or ±2 (mod8), then we can determine a
decomposition for ϕ over Fv in the same way as in (1), which proves (i)–(iii).

To prove (iv) and (v), we take the quaternion algebra B0 of [6, Exam-
ples 5.16] which is only ramified at 2 and infinity: B0 = Q+Qa+Qb+Qab,
where a2 = b2 = −1 and ba = −ab. Then the reduced norm of B0 is equiva-
lent to 14 over Q. Put B = B0 ⊗Q F . Then it can be verified that

(−1,−1)Fv
= 1 ⇔ −1 ∈ NFv(

√
−1)/Fv

(Fv(
√
−1)×)

⇔ the reduced norm NB/F of B is isotropic over Fv,

which leads to (v). Furthermore, set W = {x ∈ B | TrB/F (x) = 0} and let
ψ be the restriction of NB/F to W . Then ψ is equivalent to 13 over F , and
it can be verified that NB/F is isotropic over Fv if and only if ψ is isotropic
over Fv, which proves (iv).

Returning to real quadratic fields, we have

Lemma 3.3. Let F = Q(
√
m) with a square free positive integer m. Let

v ∈ h, and let p be the rational prime which lies below v. Then we can take

an anisotropic symmetric matrix θv of a Witt decomposition for ϕ over Fv
of the following form:

(1) Suppose v ∤ 2.

(i) If p ≡ 1 (mod4), then

θv =

{ ∅ if n is even,

1 if n is odd.

(ii) If p ≡ 3 (mod4) and
(
DF

p

)
6= −1, then

θv =





∅ if n ≡ 0 (mod4),

±1 if n ≡ ±1 (mod4),

12 if n ≡ 2 (mod4).

(iii) If p ≡ 3 (mod4) and
(
DF

p

)
= −1, then

θv =

{ ∅ if n is even,

1 if n is odd.
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(2) Suppose v | 2.
(i) If n ≡ 0 (mod8), then θv = ∅.
(ii) If n ≡ ±1 (mod8), then θv = ±1.
(iii) If n ≡ ±2 (mod8), then

θv =

{ ∅ if m ≡ −1 (mod8),

±12 if m 6≡ −1 (mod8).

(iv) If n ≡ ±3 (mod8), then

θv =

{±13 if m ≡ 1 (mod8),

∓1 if m 6≡ 1 (mod8).

(v) If n ≡ 4 (mod8), then

θv =

{
14 if m ≡ 1 (mod8),

∅ if m 6≡ 1 (mod8).

Here θv = ∅ means that tv = 0.

Proof. First, we note that
√
d ∈ Qp if and only if p splits in the quadratic

field Q(
√
d). We see that if p 6≡ 1 (mod4), that is,

√
−1 6∈ Qp, then

√
−1 ∈ Fv ⇔

√
−m ∈ Qp.(3.3)

To show this equivalence, we may assume that [Fv : Qp] = 2. Let
√
−1 ∈ Fv.

As
√
m ∈ Fv, there exist x, y ∈ Qp such that

√−m = x + y
√
m. Thus

−m = x2 + my2 + 2xy
√
m. If x = 0, then

√
−1 ∈ Qp. This contradicts√

−1 6∈ Qp. Hence y = 0 and x2 = −m. The converse is trivial.
(1) Suppose v ∤ 2. Let θp be as in Lemma 3.1. If p ≡ 1 (mod4), then we

can take θv = θp, and thus we have (i).
To prove (ii) and (iii), let p ≡ 3 (mod4). We show only the case of n ≡ 2

(mod4), since the other cases are trivial. In this case, θp = 12. If p splits
in F , then

√
−1 /∈ Qp = Fv. If p does not split in F , then

p remains prime in F ⇔
(−m

p

)
= −

(
DF

p

)
= 1 ⇔

√
−m ∈ Qp,

since DF = m or 4m,
(

2
p

)
6= 0, and

(−1
p

)
= −1. Thus, by (3.3) and (3.2), if

p splits or ramifies in F , then 12 is anisotropic over Fv. If p remains prime
in F , then 12 is isotropic, and equivalent to η1 over Fv by

α12 · tα = η1 with α =

[
1

√
−1

1/2 −
√
−1/2

]
.

(2) Suppose v | 2. We note that
√
−1 /∈ Q2. By (3.3) and (3.2), we know

that m ≡ −1 (mod8) if and only if
√
−1 ∈ Fv. In this case, using the same

method as in case (1)(iii), we can find a decomposition for ϕ over Fv, since
1 is equivalent to −1 over Fv.



136 M. Murata

We assume m 6≡ −1 (mod8) until the end of this proof. If n ≡ 0, ±1,
or ±2 (mod8), then we can take the decomposition for ϕ over Fv as in
Lemma 3.2 because of (3.3), which proves (i)–(iii) for m 6≡ −1 (mod8).

To prove (v), though we have given a decomposition for 14 by using
the Hilbert symbol in Lemma 3.2, we now determine it in another way. We
again take B0 and B as in Lemma 3.2. Since B0 ⊗Q Q2 is a division algebra,
14 is anisotropic over Q2. By the local theory of quaternion algebras over
algebraic number fields, a quaternion algebra over a nonarchimedean local
field splits over an arbitrary quadratic field over the local field (cf. [1, VII,
§2, Satz 4]). From this fact, we obtain

B ⊗F Fv ∼= (B0 ⊗Q Q2) ⊗Q2
Fv

∼=
{
B0 ⊗Q Q2 if 2 splits in F ,

(Fv)
2
2 if 2 ramifies or remains prime in F .

Therefore we have
{

14 is anisotropic over Fv if m ≡ 1 (mod8),

14 is equivalent to η2 over Fv if m 6≡ 1 (mod8).

Next, we prove the case n ≡ 3 (mod8); the proof of the case n ≡ −3
(mod8) can be obtained in the same way. Then we have

{
13 is anisotropic over Fv if m ≡ 1 (mod8),

13 is equivalent to diag[η1,−1] over Fv if m 6≡ 1 (mod8).

To show this, we first assume that m ≡ 1 (mod8). Since 14 is anisotropic
over Fv, so is 13. Next assume m 6≡ 1 (mod8). Then there exists an element
βv in GL4(Fv) such that βv14 · tβv = η2. We identify (Fv)

1
3 with the subspace

of (Fv)
1
4 by the mapping [x1 x2 x3] 7→ [x1 x2 x3 0]. Put H = (Fv)

1
4β

−1
v and

W = (Fv)
1
3β

−1
v . Now W∩(Fv)

1
2 6= {0} in H. Hence there exists 0 6= y ∈ (Fv)

1
3

such that yβ−1
v ∈ W ∩ (Fv)

1
2. Then 13[y] = 14[y] = η2[yβ

−1
v ] = 0, and

so 13 is isotropic over Fv. Put y = [y1 y2 y3]. Then y2
1 + y2

2 + y2
3 = 0.

We may assume that y2 6= 0. Then we have NFv(
√
−1)/Fv

(z) = −1 with

z = y1

√
−1(y2 + y3

√
−1)−1 ∈ Fv(

√
−1). From this, 12 is equivalent to −12

over Fv. Thus 13 = diag[1, 12] is equivalent to diag[η1,−1], which is the
desired decomposition.

3.2. The relative discriminant DK/F . Put K = F (
√
−1). We give the

relative discriminant DK/F and the relative different dK/F of K/F , which
is needed in the proof of Lemma 3.4:

DK/F =





4g if m ≡ 1 (mod4),

2g if m ≡ 2 (mod4),

g if m ≡ 3 (mod4),

(3.4)
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dK/F =

{ ∏
v vr if m ≡ 1, 2 (mod4),

r if m ≡ 3 (mod4),
(3.5)

where r is the ring of integers of K, and the product runs through primes
v in F dividing 2. To show these, we first determine DK/F . We see that

v |DK/F only if v | 2 by (2.8). If m ≡ 5 (mod8), then DK/F = 22g, since 2
remains prime in F and (2.8) holds. If m ≡ 2 (mod4), then DK/F = 2g,
since 2 ramifies in F and we have (2.8). If m ≡ 3 (mod4), then DK/F = g

by (2.8). Letm ≡ 1 (mod8). Then 2 splits in F . For every σ ∈ Gal(K/Q), we
have dσK/F = dσK/Q/(dF/Qr)σ = dK/Q/dF/Qr = dK/F , since K/Q is an abelian

extension. Thus Dσ
K/F = DK/F , which implies DK/F = 22g by (2.8).

Next we prove (3.5). The case m ≡ 3 (mod4) is clear. If m 6≡ 3 (mod4),
then v is ramified in K for any v | 2 from (3.4) and Dedekind’s discriminant
theorem, that is, there exists a prime w in K such that vr = w2. If m ≡ 1
(mod8), then DK/F = NK/F (dK/F ) = 22g =

∏
v v

2 by (3.4), and hence we

have dK/F =
∏
v|2

∏
w|v w

2 =
∏
v vr. The other cases can be shown in the

same way.

3.3. The index [L̃v : Lv]. The index [L̃v : Lv] for v ∈ h is given by
[6, (3.2.1)]:

(3.6) [L̃v : Lv] =





1 if tv = 0,

[gv : 2gv] if tv = 1 and v | 2,

1 if tv = 1 and v ∤ 2,

q2v if tv = 2, dv = rv, and cv ∈ πvg
×
v ,

1 if tv = 2, dv = rv, and cv ∈ g×v ,

[rv : dv] if tv = 2 and dv 6= rv,

[gv : 2gv]q
2
v if tv = 3,

q2v if tv = 4.

Here rv, dv, and cv are as in (2.1), and L̃v = {y ∈ (Fv)
1
n | 2ϕ(x, y) ∈ gv

for every x ∈ Lv}. Using this result, we have the following

Lemma 3.4. Let L be a g-maximal lattice in V with respect to ϕ. Let

v ∈ h.

(1) Suppose v ∤ 2. Then [L̃v : Lv] = 1.

(2) Suppose v | 2.
(i) If n ≡ 0 (mod8), then [L̃v : Lv] = 1.

(ii) If n ≡ ±1 (mod8), then

[L̃v : Lv] =

{
2 if m ≡ 1 (mod8),

22 otherwise.
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(iii) If n ≡ ±2 (mod8), then

[L̃v : Lv] =





1 if m ≡ 3 (mod4),

24 if m ≡ −3 (mod8),

22 otherwise.

(iv) If n ≡ ±3 (mod8), then

[L̃v : Lv] =

{
23 if m ≡ 1 (mod8),

22 otherwise.

(v) If n ≡ 4 (mod8), then

[L̃v : Lv] =

{
22 if m ≡ 1 (mod8),

1 otherwise.

Proof. (1) There exists a g-maximal lattice M in V with respect to

ϕ including g1
n. Then g1

n ⊂ M ⊂ M̃ ⊂ g̃1
n. Since g̃1

n = 2−1g1
n, we have

(̃gv)1n = (gv)
1
n for every v ∤ 2, so that M̃v = Mv. Since M is in the genus of L,

there exists α ∈ GA such that Lα = M . Thus we have Lvαv = Mv. Hence

[L̃v : Lv] = [M̃v : Mv] = 1 if v ∤ 2.

(2) Suppose v | 2. (i) If n ≡ 0 (mod8), then 1n is equivalent to ηn/2
over Fv, that is, tv = 0 for every v ∈ h by Lemma 3.3. Thus the assertion
(i) can be easily obtained by (3.6).

(ii) If n ≡ ±1 (mod8), then tv = 1 for every v ∈ h by Lemma 3.3. Thus,

by (3.6), we have

[L̃v : Lv] = [gv : 2gv]

=





[g : v] if 2 splits in F ,

[g : 2g] if 2 remains prime in F ,

[g : v]2 if 2 ramifies in F

=

{
2 if m ≡ 1 (mod8),

22 otherwise.

Thus we have (ii).

(iii) If m ≡ −1 (mod8), then tv = 0 by Lemma 3.3, and so [L̃v : Lv] = 1.
If m 6≡ −1 (mod8), then tv = 2 by Lemma 3.3. In this case, by Dedekind’s
discriminant theorem and (3.4), Fv(

√
−1)/Fv is a ramified (resp. an unram-

ified) quadratic extension if m ≡ 1, 2 (mod4) (resp. m ≡ 3 (mod8)). Let
m ≡ 3 (mod8). Then tv = 2 and dv = rv. Since we can take θv = ±12

in Lemma 3.3, we have cv = b−1
v = ±1 ∈ g×v as shown below (2.1). Thus

[L̃v : Lv] = 1 by (3.6). If m ≡ 1, 2 (mod4), then dv = π2
Kv

rv by (3.5).

Here πKv
is a prime element of Kv = Fv(

√
−1). Thus by (3.6), we have

[L̃v : Lv] = [rv : dv] = [rv : π2
Kv

rv]. Since v ramifies in K, we have



Shimura’s mass formula 139

rv/π
2
Kv

rv ∼= gv/πvgv, and hence [rv : π2
Kv

rv] = q2v . Therefore

[L̃v : Lv] = q2v =

{
22 if m ≡ 1, ±2 (mod8),

24 if m ≡ −3 (mod8).

(iv) Let n ≡ ±3 (mod8). Combining Lemma 3.3 with (3.6), we have

[L̃v : Lv] =

{
[gv : 2gv]q

2
v if m ≡ 1 (mod8),

[gv : 2gv] if m 6≡ 1 (mod8),

and hence we get (iv).

(v) Let n ≡ 4 (mod8). Then

[L̃v : Lv] =

{
q2v if m ≡ 1 (mod8),

1 if m 6≡ 1 (mod8)

by Lemma 3.3 and (3.6), which proves (v).

We note that [L̃v : Lv] 6= 1 if and only if v |DK/F when n ≡ ±2 (mod8).

It is well known that [L̃ : L] =
∏
v∈h

[L̃v : Lv]. Combining this with
Lemma 3.4, we have the following

Lemma 3.5. Let L be a g-maximal lattice in V with respect to ϕ.

(1) If n ≡ 0 (mod8), then [L̃ : L] = 1.

(2) If n ≡ ±1 (mod8), then [L̃ : L] = 22.

(3) If n ≡ ±2 (mod8), then

[L̃ : L] =





1 if m ≡ 3 (mod4),

24 if m ≡ −3 (mod8),

22 otherwise.

(4) If n ≡ ±3 (mod8), then

[L̃ : L] =

{
26 if m ≡ 1 (mod8),

22 otherwise.

(5) If n ≡ 4 (mod8), then

[L̃ : L] =

{
24 if m ≡ 1 (mod8),

1 otherwise.

3.4. Formula for computation. Summing up Lemmas 3.3–3.5 and Pro-
position 2.1, we obtain the following

Theorem 3.6. Let F = Q(
√
m) with a square free positive integer m,

and let n > 1. Let L be a g-maximal lattice in V with respect to ϕ. Let χ, χ′,
and χ′′ be the Dirichlet characters corresponding to F/Q, Q(

√
−1)/Q, and

Q(
√−m)/Q, respectively.
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(1) If n ≡ 0 (mod8), then

m(L) = n−2Bn/2Bn/2,χ

( [(n−1)/2]∏

k=1

(4k)−2B2kB2k,χ

)
.

(2) If n ≡ ±1 (mod8), then

m(L) =

(n−1)/2∏

k=1

(4k)−2B2kB2k,χ.

(3) If n ≡ ±2 (mod8), then

m(L) = n−2Bn/2,χ′Bn/2,χ′′

( [(n−1)/2]∏

k=1

(4k)−2B2kB2k,χ

)

×





2−2 if m ≡ 1 (mod8),

1 if m ≡ 3 (mod4),

2−1 otherwise.

(4) If n ≡ ±3 (mod8), then

m(L) =
( (n−1)/2∏

k=1

(4k)−2B2kB2k,χ

)

×
{

2−2 · 3−2(2n−1 − 1)2 if m ≡ 1 (mod8),

1 otherwise.

(5) If n ≡ 4 (mod8), then

m(L) = n−2Bn/2Bn/2,χ

( [(n−1)/2]∏

k=1

(4k)−2B2kB2k,χ

)

×
{

2−2 · 3−2(2n/2−1 − 1)2(2n/2 − 1)2 if m ≡ 1 (mod8),

1 otherwise.

Proof. (1) If n ≡ 0 (mod8), then substituting e = g and [L̃ : L] = 1
into (2.3), we obtain (1).

(2) If n ≡ ±1 (mod8), then tv = 1 for every v ∈ h and f = g by Lem-
ma 3.3. By Lemma 3.4, we have e =

∏
v|2 v. Hence by Lemma 3.5 and (2.1),

[L̃ : L](n−1)/2
∏

v|e
λv = 2n−1.

Substituting this into (2.2), we obtain (2).

(3) Suppose n ≡ ±2 (mod8). If m ≡ 1, 2 (mod4) and v | 2, then tv = 2
by Lemma 3.3. By (2.1) and Lemma 3.4, we have λv = 2−1 and e =

∏
v|2 v.
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If m ≡ 3 (mod4), then e = g. Thus by Lemma 3.5,

[L̃ : L](n−1)/2
∏

v|e
λv =





22(n−2) if m ≡ 1 (mod8),

22n−3 if m 6≡ −3 (mod8),

2n−2 if m ≡ 2 (mod4),

1 if m ≡ 3 (mod4).

Combining this with (2.4), we obtain (3).

(4) Let m ≡ 1 (mod8). By Lemma 3.3, we have tv = 3 if v | 2. Thus, by
Lemma 3.4, e =

∏
v|2 v = f. If m 6≡ 1 (mod8), then f = g and e =

∏
v|2 v.

Hence by Lemma 3.5,

21−n[L̃ : L](n−1)/2
∏

v|e
λv =

{
2−2 · 3−2(2n−1 − 1)2 if m ≡ 1 (mod8),

1 otherwise.

(5) Suppose n ≡ 4 (mod8). If m ≡ 1 (mod8), then tv = 4 for v | 2
and e =

∏
v|2 v by Lemmas 3.3 and 3.4. If m 6≡ 1 (mod8), then e = g. By

Lemma 3.5,

[L̃ :L](n−1)/2
∏

v|e
λv =

{
2−2 ·3−2(2n/2−1−1)2(2n/2 − 1)2 if m≡ 1 (mod8),

1 otherwise,

which proves (5).

4. Numerical example. In this section, we take F = Q(
√

5) and
ϕ = 14, and as an application of Theorem 3.6 we show that the genus of
a g-maximal lattice in V = F 1

4 with respect to ϕ consists of one class; more-
over, we give a formula for N(L, h) by using this fact and the formula due
to Shimura in [7, Theorem 1.5].

Let g = Z + Zω with ω = (1 +
√

5)/2. We note that ω is a fundamental
unit of F . We consider a g-maximal lattice L with respect to ϕ. Set

L =

4∑

i=1

gαi = g1
4α, α =




α1

...

α4


 ∈ GL4(F ).

A g-lattice L in V is g-maximal with respect to ϕ if and only if ϕ[x] ∈ g

for every x ∈ L and [L̃v : Lv] = 1 for every v ∈ h. These conditions are
equivalent to

{
ϕ[αi] ∈ g (1 ≤ i ≤ 4), 2ϕ(αi, αj) ∈ g (i 6= j),

det(α) ∈ 2−2g×.
(4.1)
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The last condition can be seen by using elementary divisors. Put

α =




1 0 0 0

0 1 0 0

1/2 (1 + ω)/2 ω/2 0

1/2 1/2 1/2 1/2




;(4.2)

then α satisfies (4.1). Hence L = g1
4α is a g-maximal lattice with respect

to ϕ. We remark that L contains g1
4.

We shall calculate the order of Γ = {γ ∈ G | Lγ = L} for this L. We
take the subgroup

Γ1 = {γ ∈ Γ | e1γ = e1},
where {ei}4

i=1 is the standard basis of V . We will calculate [Γ : Γ1] and
[Γ1 : 1]. For γ = t[tγ1 · · · tγ4] ∈ F 4

4 , γ ∈ Γ1 if and only if




γi ∈ n(L, 1) (1 ≤ i ≤ 4), γi · tγj = 0 (i 6= j),

2−1(γ1 + (1 + ω)γ2 + ωγ3) ∈ n(L, 1 + ω),

2−1(γ1 + γ2 + γ3 + γ4) ∈ n(L, 1).

(4.3)

Here n(M,h) = {x ∈M | ϕ[x] = h} for a g-lattice M in V and h ∈ F . This
can be verified as in [2].

We need n(L, 1) to use condition (4.3). As g1
4 ⊂ L, we see that L ⊂ L̃

⊂ g̃1
4 = (2−1g)14. So we only have to determine n((2−1g)14, 1), and find the ele-

ments in the set satisfying the following condition: For y = [x1/2 · · · x4/2] ∈
(2−1g)14 and xi = ai+biω, the condition y ∈ L is equivalent to the conditions

{
a2 + b3 + a4 + b4 ≡ b2 + a3 + b3 + a4 ≡ 0 (mod2),

a1 + a3 + b3 + b4 ≡ b1 + a3 + a4 + b4 ≡ 0 (mod2).
(4.4)

The set n((2−1g)14, 1) can be determined in the following way: Let x/2 be an

element of (2−1g)14, and solve the equation ϕ[x] = 4 instead of ϕ[x/2] = 1.

Furthermore, ϕ[x] is of the form

ϕ[x] =

[
14 0

0 14

]
[x̂] +

[
0 14

14 14

]
[x̂] · ω.

Here we set x̂ = [a1 · · · a4 b1 · · · b4] ∈ Z1
8 for x = [x1 · · · x4] ∈ g1

4 and
xi = ai + biω. Calculating x̂ in Z1

8 satisfying the conditions




[
14 0

0 14

]
[x̂] = 4,

[
0 14

14 14

]
[x̂] = 0,
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we get n((2−1g)14, 1). Employing condition (4.4) for this set, we find

n(L, 1) = n((2−1g)14, 1) ∩ L
= {±ei | 1 ≤ i ≤ 4} ∪ {(δ1/2, . . . , δ4/2)}

∪{(0, δ2/2, δ3ω/2, δ4ω̺/2)} ∪ {(0, δ2ω/2, δ3ω̺/2, δ4/2)}
∪{(0, δ2ω̺/2, δ3/2, δ4ω/2)} ∪ {(δ1/2, 0, δ3ω̺/2, δ4ω/2)}
∪{(δ1ω/2, 0, δ3/2, δ4ω̺/2)} ∪ {(δ1ω̺/2, 0, δ3ω/2, δ4/2)}
∪{(δ1/2, δ2ω/2, 0, δ4ω̺/2)} ∪ {(δ1ω/2, δ2ω̺/2, 0, δ4/2)}
∪{(δ1ω̺/2, δ2/2, 0, δ4ω/2)} ∪ {(δ1/2, δ2ω̺/2, δ3ω/2, 0)}
∪{(δ1ω/2, δ2/2, δ3ω̺/2, 0)} ∪ {(δ1ω̺/2, δ2ω/2, δ3/2, 0)}.

Here we allow δi to take the values ±1 at random in each set, and ω̺ =
1 − ω = −ω−1 with the nontrivial automorphism ̺ of F over Q.

We compute [Γ : Γ1]. For γ, δ ∈ Γ , we denote by γ1 the first row vector of
γ ∈ Γ . Since Γ1γ = Γ1δ if and only if γ1 = δ1, we see that [Γ : Γ1] ≤ N(L, 1);
moreover, for any γ1 ∈ n(L, 1) there exists an element of Γ which has γ1

as the first row vector. This can be verified by using n(L, 1) and taking an
element of Γ satisfying (4.3). Thus

[Γ : Γ1] = N(L, 1) = 120.

To compute [Γ1 : 1], we use the condition

2−1(ω−1γ1 + ω−1(1 + ω)γ2 + γ3) ∈ n(L, 1)

instead of

2−1(γ1 + (1 + ω)γ2 + ωγ3) ∈ n(L, 1 + ω)

in (4.3), because n(L, 1 + ω) = ω · n(L, 1). From this, Γ1 consists of all
elements γ = t[te1

tγ2
tγ3

tγ4] ∈ F 4
4 such that





γi ∈ n(L, 1) (2 ≤ i ≤ 4), γi · tγj = 0 (i 6= j),

2−1(ω−1γ1 + ω−1(1 + ω)γ2 + γ3) ∈ n(L, 1),

2−1(γ1 + γ2 + γ3 + γ4) ∈ n(L, 1).

(4.5)

Since n(L, 1) has been determined, we can choose the pair (e1, γ2, γ3, γ4)
satisfying (4.5). After some calculations, we obtain [Γ1 : 1] = 120. Thus
[Γ : 1] = 120 · 120 = 26 · 32 · 52.

On the other hand, we see that m(L) = 2−6 · 3−2 · 5−2 by Theorem 3.6.
Therefore the genus of L consists of one class.
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Next, to introduce the formula in [7, Theorem 1.5(II)], we define γv(s)
by the following formulas (cf. [7, §1.6]):

γv(s) =





1 − q
(ν+1)(1−s)
v

1 − q1−sv
if tv = 0,

1 − (−q1−sv )ν+1

1 + q1−sv
if tv = 2, dv = rv, and cv ∈ g×v ,

1 − (−q1−sv )ν+2 + q2−sv (1 − (−q1−sv )ν)

(1 + q−sv )(1 + q1−sv )
if tv = 2, dv = rv, and cv ∈ πvg

×
v ,

1 + ψv(cvh)(|h|−1
v N(dv))

1−s if tv = 2 and dv 6= rv,

1 − q
(ν+2)(1−s)
v − q2−sv (1 − q

ν(1−s)
v )

(1 − q−sv )(1 − q1−sv )
if tv = 4,

where ν ∈ Z is determined by |h|−1
v = qνv with the normalized valuation | |v

at v of Fv.

Theorem 4.1 (Shimura). Let F be a totally real algebraic number field ,
and put n = 2u and V = F 1

n . Let ϕ be a totally positive symmetric matrix

of GLn(F ), L a g-maximal lattice in V with respect to ϕ, and h a totally

positive element of g. Put K = F (
√

(−1)n/2 det (ϕ)), and denote by d the

different of K/F and by ψK/F the Hecke character of F corresponding to

the extension K/F . Then

R(L, h)

m(L)
=

NF/Q(h)u−1

D
(n−1)/2
F N(d)1/2N(f){(u− 1)!(2π)−u}2L(u, ψK/F )

(4.6)

×
∏

v|he

γv(u).

Here e is the product of all primes v satisfying L̃v 6= Lv, f is the product of

prime factors of e unramified in K, and γv(s) is given as above.

We specialize this formula to the case where F = Q(
√

5), V = F 1
4 , and

ϕ = 14. We easily see that K = F . By Lemma 3.4, we have e = g. Since
tv = 0 for every v ∈ h by Lemma 3.3, γv(2) is given by

γv(2) =
1 − q

−(ev+1)
v

1 − q−1
v

for a totally positive element h of g, where the principal ideal of h is
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(h)F =
∏
v v

ev . Now, the genus of a g-maximal lattice with respect to ϕ con-
sists of one class. Thus N(L, h) = R(L, h)m(L)−1. Hence by Theorem 4.1,
we obtain

N(L, h) =
NF/Q(h)

53/2(2π)−4ζF (2)

∏

v|h

1 − q
−(ev+1)
v

1 − q−1
v

(4.7)

= 120
∏

v|h

( ev∑

i=0

qiv

)
.

Thus N(L, h)/120 coincides with the Fourier coefficient of the Eisenstein
series E2 in the space M(2,2)(g, id) of all Hilbert modular forms for GL(2)

over F = Q(
√

5) of weight (2, 2), level g, and with the identity character. It
is known that the dimension of this space is 1 (see [3, §3.4], for example),
that is, M(2,2)(g, id) = C ·E2 in this case.

5. Numerical table of m(L). Let F = Q(
√
m) with a square free

positive integer m, and let ϕ = 1n. Using Theorem 3.6, we give a table of
m(L) for several quadratic fields F .

We note that the lth generalized Bernoulli number Bl,ψ associated with
a Dirichlet character ψ can be computed by the following recursion formula
(cf. [4]):

Bl,ψ =
1

f

f∑

a=1

ψ(a)al −
l−1∑

k=1

f l−k

k

(
l

k − 1

)
Bk,ψ (0 < l ∈ Z),

B0,ψ = 0.

Here f is the conductor of ψ and we put
(
l
r

)
= l!/(l − r)!r!.

m nH
H

H
2 3 4 5 6

2 1

24

1

24
·3

1

28
·32

11

29
·32

·5

11

213
·3·5

3 1

23
·3

1

23
·3

1

26
·32

23

27
·32

·5

23

29
·34

·5

5 1

23

1

23
·3·5

1

26
·32

·52

1

27
·32

·52

1

210
·3·5

6 1

23

1

23

1

26

3·29

27
·5

3·23·29

210
·5

7 1

23

1

2·3

1

22
·32

113

23
·32

·5

113

22
·32

·5·7

10 1

23

7

23
·3

7
2

26
·32

7·19·83

27
·32

·5

7·19·79·83

210
·32

·5

11 1

23

7

23
·3

7
2

26
·32

7·2153

27
·32

·5

7·2153

29
·3·5

13 1

23

1

23
·3

1

26
·32

29

27
·32

·5

29·151

210
·32

·5

14 1

22

5

22
·3

5
2

24
·32

2503

25
·32

11·2503

27
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m
nH

H
H

2 3 4 5 6

15 1

22

1

2

1

22

3·179

23
·5

3·179

22
·5

17 1

23

1

24
·3

1

26
·32

5·41

27
·32

41·53

28
·3·5

19 1

23

19

23
·3

19
2

26
·32

19·109·137

27
·32

·5

11·19·109·137

29
·32

·5

21 1

22

1

22
·3

1

24
·32

7·11

25
·32

·5

7·11·263

27
·32

·5

22 1

23

23

23
·3

23
2

26
·32

23·24889

27
·32

·5

13·23·43·24889

210
·32

·5

23 3

23

5

2·3

5
2

22
·32

41·173

23
·32

41·173

22
·3

26 3

23

5
2

23
·3

5
4

26
·32

5·31·1409

27
·32

5·31·311·1409

210
·3

29 3

23

1

23

1

26

157

27
·5

3·11·37·157

210
·5

30 1

22

17

22
·3

17
2

24
·32

17·36451

25
·32

·5

17·127·36451

27
·32

31 3

23

5

3

5
2

32

10357

2·32

2·10357

3

33 1

23

1

24

1

26

3·5·47

27

3·11·47·73

28
·5

34 1

22

23

22
·3

23
2

24
·32

23·57241

25
·32

·5

7·11
2
·23·57241

27
·32

·5

35 1

22

19

22
·3

19
2

24
·32

7·19·8819

25
·32

·5

3·7·19·8819

26
·5

37 1

23

5

23
·3

5
2

26
·32

1129

27
·32

23·89·1129

210
·32

38 3

23

41

23
·3

41
2

26
·32

23·41·1429

27
·32

7·23·41·113·1429

210
·3

39 1

2

13

2·3

13
2

22
·32

5·13·31·59

23
·32

5·11·13·31·59

22
·32

41 1

22

1

22
·3

1

22
·32

2
2
·5·7

32

2
2
·3

4
·7

5

42 1

22

3
2

22

3
4

24

3
4
·5

3
·7

25

3
4
·5

3
·7

2
·11·19

27

43 1

23

3·7

23

3
2
·7

2

26

3·7·11·7873

27
·5

3·7·11·83·7873

29
·5

46 1

22

37

22
·3

37
2

24
·32

37·164999

25
·32

·5

37·359·164999

27
·32

47 5

23

7

3

7
2

32

7·43223

2·32
·5

2·7·43223

5

51 1

22

13

22

13
2

24

3·13·5197

25

3·13·67·5197

26

53 3

23

7

23
·3

7
2

26
·32

5
2
·7·31

27
·32

5
2
·7·13·31·139

210
·3

55 1

2

23

2·3

23
2

22
·32

23
2
·6689

23
·32

·5

5·23
2
·6689

22
·32

57 1

23

7

24
·3

7
2

26
·32

5·7·47·61

27
·32

7·31·47·61·101

28
·32

·5

58 1

23

3·11

23

3
2
·11

2

26

3·11·246839

27
·5

3·11·1259·246839

210

59 3

23

5·17

23
·3

5
2
·17

2

26
·32

17·271·2837

27
·32

17·67·271·2837

29
·3

61 3

23

11

23
·3

11
2

26
·32

11·17·383

27
·32

·5

3·11·17·271·383

210
·5

62 1

2

7

2

7
2

22

7·15193

23

3·7·673·15193

24

65 1

22

1

2·3

1

32

5·1123

22
·32

11·23·1123

22
·5

66 1

2

2·7

3

2
2
·7

2

32

7·29·4967

32
·5

7·29·2309·4967

2·32
·5
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m
nH

H
H

2 3 4 5 6

70 1

22

67

22
·3

67
2

24
·32

5·7·67·4091

25
·32

5
2
·7·67·1019·4091

27
·32

71 7

23

29

2·3

29
2

22
·32

11·29·101·331

23
·32

·5

11·17·29·101·331

22
·3·5

73 1

23

11

24
·3

11
2

26
·32

5
2
·7·11·197

27
·32

5·7
3
·11·23·197

28
·32

74 5

23

41

23

41
2

26

31·41·101·181

27
·5

3
2
·17·31·41·83·101·181

210
·5

77 1

2

1

2

1

22

1193

23
·5

3·1153·1193

24
·5

78 1

22

23

22

23
2

24

3·23·31·3697

25
·5

3·13·17·23·31
2
·3697

27
·5

79 5

23 7 72 7·37·2467

2·5

2·7·31·37·2467

5

82 1

22

3
3

22

3
6

24

3
3
·179·463

25

3
3
·17·179·443·463

27

83 3

23

43

23

43
2

26

7
3
·43·2459

27
·5

3·7
3
·31·43·2459

29

85 1

22

3

22

3
2

24

3·3463

25
·5

3·3463·8263

27
·5

86 5

23

5·31

23
·3

5
2
·31

2

26
·32

11·29
2
·31·311

27
·32

7·11·29
2
·31·293·311

210

87 3

22

13

2

13
2

22

3·13·83903

23
·5

3
5
·13·83903

22
·5

89 3

23

13

24
·3

13
2

26
·32

5
2
·13·37·73

27
·32

13·37·73·3371

28
·3

91 1

22

103

22
·3

103
2

24
·32

7·13·103·19739

25
·32

·5

5·7·11·13·103·19739

26
·32

93 1

22

3

22

3
2

24

3·4679

25
·5

3·4679·10631

27
·5

94 1

2

53

2·3

53
2

22
·32

41·53·24527

23
·32

·5

13·41·53·83·24527

24
·32

95 1 43

2·3

43
2

22
·32

43·1017299

23
·32

·5

7·43·1017299

22
·3

97 1

23

17

24
·3

17
2

26
·32

5·17
2
·1097

27
·32

17
2
·29·79·1097

28
·32
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