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Ship Collision Avoidance and COLREGS
Compliance using Simulation-Based Control
Behavior Selection with Predictive Hazard

Assessment
Tor A. Johansen∗, Tristan Perez∗∗, Andrea Cristofaro∗,∗∗∗

Abstract—This paper describes a concept for a collision avoid-
ance system for ships, based on model predictive control. A finite
set of alternative control behaviors are generated by varying two
parameters: offsets to the guidance course angle commanded to
the autopilot, and changes to the propulsion command ranging
from nominal speed to full reverse. Using simulated predictions
of the trajectories of the obstacles and ship, the compliance
with COLREGS and collision hazards associated with each
of the alternative control behaviors are evaluated on a finite
prediction horizon, and the optimal control behavior is selected.
Robustness to sensing error, predicted obstacle behavior, and
environmental conditions can be ensured by evaluating multiple
scenarios for each control behavior. The method is conceptually
and computationally simple and yet quite versatile as it can
account for the dynamics of the ship, the dynamics of the steering
and propulsion system, forces due to wind and ocean current,
and any number of obstacles. Simulations show that the method
is effective and can manage complex scenarios with multiple
dynamic obstacles and uncertainty associated with sensors and
predictions.

Index Terms—Autonomous Ships; Collision Avoidance; Trajec-
tory optimization; Hazard; Safety; Control Systems.

I. INTRODUCTION

A. Background

Rules for ship collision avoidance are given by the Conven-

tion on the International Regulations for Preventing Collisions

at Sea (COLREGS), by the International Maritime Organi-

zation (IMO), [1]. Whilst COLREGS were made for ships

operated by a crew, their key elements are also applicable

for automatic collision avoidance systems, either as decision

support systems for the crew or in autonomously operated and

unmanned ships [2], [3], [4]. In an autonomous system imple-

mentation, COLREGS implicitly impose requirements on the

information that must be provided by sensor systems, and the

correct actions that should occur in hazardous situations.

Autonomous operation of a ship requires that guidance,

navigation and control is performed with high reliability, fault-

tolerance, and safety, including real-time perception of the
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ship’s surroundings in order to avoid grounding and collision

with other ships, vessels, people, marine mammals or other

obstacles that may be encountered. Larger ships are expected

to carry an automatic identification system (AIS) transmitting

radio signals containing position and other information about

the ship, that can be received by other ships and authorities. In

order to be able to detect the wide range of potential obstacles,

onboard sensors such as radar, LIDAR and camera can be used

to scan the environment of the ship, [5], [6], [7].
In this paper, we address the design of the collision avoid-

ance control algorithm, that must decide on the control actions

required to ensure compliance with COLREGS and minimize

hazard to an acceptable level based on the available sensor

information.

B. Literature review and motivation

A wide range of ship collision avoidance control algorithms,

many of them implementing compliance with the main rules

of COLREGS, are reviewed in [8] and [9]. They generally

do not scale very well to manage a large number of highly

dynamic obstacles in dense traffic and at the same time can

accurately take into consideration the dynamics of the ship,

steering and propulsion system, as well as environmental

disturbances such as winds and ocean currents. The systematic

extension of the existing algorithms to account for such

complex situations does not appear to be straightforward. This

motivates our investigation on a new approach that employs

ideas from optimization-based control and can directly exploit

the availability of a simulation model for predictions.
Model Predictive Control (MPC) is a very general and pow-

erful control method that can compute an optimal trajectory

based on predictions of obstacles’ motion, robustly account for

their uncertainty, employ a nonlinear dynamic vehicle model

including environmental forces, and formalize risk, hazard

and operational constraints and objectives as a cost function

and constraints in an optimization problem. In fact, MPC has

been extensively studied for collision avoidance in automotive

vehicles [10], [11], aircraft and air traffic control [12], ground

robots [13] and underwater vehicles [14]. Although some

elements of optimization and optimal control are used in [15],

[16], [17], the authors are not aware of the use of MPC for

ship collision avoidance with COLREGS compliance.
MPC can compute optimal trajectories using numerical

optimization methods, e.g [18]. Its main challenges are re-
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lated to the convergence and computational complexity of the

numerical optimization. It is widely recognized that complex

collision avoidance scenarios may lead to non-convex opti-

mization formulations exhibiting local minimums, and that

shortest possible computational latencies is highly desirable

for real-time implementation. This makes it challenging to im-

plement an MPC for collision avoidance, and the formulation

of models, control trajectory parameterization, discretization,

objectives, constraints, and numerical algorithms need to be

carefully considered along with issues such as dependability

[19].

In order to reap the main benefits of MPC, and mitigate the

issues related to local minimums, computational complexity

and dependability, one can take a rather simple approach that

turns out to be very effective in terms of high performance and

low complexity of software implementation. In the literature

on robust MPC the concept of optimization over a finite

number of control behaviors is well known, e.g. [20], [21],

[22]. In its simplest form, it amounts to selecting among a

finite number of control behaviors based on a comparison of

their cost and feasibility, e.g. [23], [24], [25], although most

approaches also incorporates optimization over some control

parameters.

C. Contributions

In this paper, we consider MPC with a relatively small

finite number of control behaviors, parameterized by off-

sets to course and propulsion command, and merely require

evaluation of their performance by simulation. Hence, we

completely avoid numerical optimization and the associated

computation of gradients that is inherent in conventional MPC.

This certainly restricts the degrees of freedom available for

control, and the set of alternative control behaviors must be

carefully crafted in order to achieve the required control per-

formance and effectiveness of the collision avoidance system

and COLREGS compliance.

We propose to implement collision avoidance functionality

through a finite horizon and finite scenario hazard minimiza-

tion problem over a finite number of control behaviors. The

MPC optimization problem is solved in a receding hori-

zon implementation with a re-optimization based on updated

information at regular intervals, e.g. every 5 seconds. The

hazard associated with the ship trajectory resulting from a

given control behavior is evaluated using a ship simulator

to make predictions that takes into account the dynamics of

the ship, steering and propulsion system, the current position

and velocity, the control behavior, as well as wind and ocean

current. Robustness can be enhanced by considering additional

scenarios resulting from perturbation of the input data. An

MPC cost function considers the constraints and objectives of

collision avoidance and compliance with the rules of COL-

REGS, using velocity and line-of-sight vectors to express the

COLREGS rules. The constraints are implemented as penalties

in order to ensure that the best possible control behavior can

be chosen also when collision with at least one obstacle seems

unavoidable.

II. SYSTEM OVERVIEW

Figure 1 illustrates the overall concept with its main sub-

systems and the information flow between them. The nominal

input to the ship’s Autopilot from the Mission Planner is

assumed to be the propulsion or speed-over-ground command,

and the desired path given as a sequence of way-points. The

Collision Avoidance System (CAS) searches for COLREGS

compliant and collision-free trajectories close to the ship’s

nominal trajectory, given the measured positions and predicted

trajectories of obstacles. The CAS outputs a course angle

offset and a modified propulsion command that are given

to the autopilot. We notice that the CAS needs to consider

trajectories (with explicit representation of time) while in

the autopilot there is a decoupling of position and time into

path guidance (steering) and propulsion control. The speed

is normally kept close to a nominal cruise speed, but may

be reduced, set to zero, or reversed, upon command from the

Collision Avoidance System (CAS). The CAS can also provide

alarms such as sound and light signals. In-depth descriptions

of the CAS functionality are given in section III. The ship’s

on-board navigation system provides measurements (usually

from a global navigation satellite system (GNSS)) of position

and velocity. The accuracy of GNSS position measurements

is typically 10 meters or better, which is sufficient for this

application. However, the integrity of the GNSS measurements

should be analyzed for larger errors such as multi-path, jam-

ming and spoofing. In new systems such as GALILEO this is

better handled than in GPS.

In order to support the collision avoidance we assume the

following information and capacities are available:

• List of obstacle’s positions and velocities, from radar,

lidar, AIS, camera or infrared thermal imager, or similar

sensors and tracking systems. A detailed description and

survey of such systems is beyond the scope of the paper,

and we refer to [26], [5], [6], [7] as well as recent results

from automotive industry [27], [28].

• Mapped hazards from an electronic map.

• A desired nominal path to the target destination.

• Mathematical model of ship for prediction of future

trajectory in order to evaluate the effect of steering

and propulsion commands, as well as winds and ocean

currents.

• Real-time measurement of the ship’s position, velocity,

heading and yaw rate.

• Estimates of wind and ocean current forces on the ship.

The proposed architecture implies that the collision avoid-

ance functionality is separated from the mission planning

functionality, and the commands from both these systems are

executed by the ship’s autopilot. This leads to a highly modular

architecture that admit the collision avoidance system to be

added on top of existing functionality, and such that reliability

and safety can be ensured through additional independent and

redundancy systems and functions.

A brief overview of the main rules of COLREGS are given

in Appendix A.



3

Fig. 1. Block diagram illustrating the information flow between the main modules in the system.

Fig. 2. Summary of the collision avoidnace control algorithm.

III. COLLISION AVOIDANCE SYSTEM (CAS)

An overview of the proposed CAS control algorithm is given

in Fig. 2. The collision avoidance functionality is realized by a

finite horizon and finite scenario hazard minimization problem

defined over a finite number of control behaviors in combi-

nation with multiple scenarios resulting from uncertainties in

predicted obstacle trajectories and weather. The optimization

problem is solved in a receding horizon implementation with

a re-optimization based on updated information at regular

intervals, e.g. every 5 seconds. The hazard associated with

the ship trajectory resulting from a given control behavior is

evaluated using a ship simulator to make predictions that takes

into account the dynamics of the ship, steering and propulsion

system, the current position and velocity, the control behavior,

as well as wind and ocean current. Robustness is attained by

setting an appropriate safety margin and possibly by evaluating

additional scenarios resulting from perturbation of the input

data to represent uncertainty in obstacle’s future trajectories.

A cost function measures the predicted grounding and collision

hazards, and compliance with the rules of COLREGS, using

velocity and line-of-sight vectors to express the COLREGS

rules. The proposed optimization is deterministic and guaran-

tees that the global minimum is found after a known finite

number of cost function evaluations.
In this section we describe in some detail the main compo-

nents of the CAS, and their interactions.

A. Obstacle trajectory prediction

The collision avoidance problem is linked with considerable

uncertainty, as the obstacles’ future motions must be predicted.

The simplest short-term predictions of the obstacles’ trajecto-

ries are perhaps straight line trajectories

ηlati (t) = η̂lati + klatv̂
N
i (t− τi) (1)

ηlongi (t) = η̂longi + klong v̂
E
i (t− τi) (2)

where klat and klong are constants that convert from meters

to degrees in the given area, t is a future point in time, and

τi is the time of last observation.
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B. Control behaviors and scenarios

Whilst COLREGS define a set of traffic rules that leads to

expected behaviors, one must also be prepared for the fact

that some vessels will not be able, or choose not, to comply

with these rules. Based on this, we make some choices and

assumptions.

The CAS decides its control behavior by evaluating a finite

number of alternative control behaviors in some scenarios

using a ship simulator that operates much faster than real

time. Each scenario is defined by the current state of the ship,

the predicted trajectories of the observed obstacles, a control

behavior that is either assumed to be fixed on the prediction

horizon or by a sequences of control behaviors that are used in

different parts of the prediction horizon. The nominal scenario

(guidance along the nominal path with no course offset and at

nominal speed) is accepted if the hazard is sufficiently low. If

not, the least hazardous control behavior is selected among the

alternatives that represent a finite number of evasive control

behaviors. The predictive simulation should include effects of

winds and currents that may have a significant effect on the

ship, in particular if the decided control action is to stop. The

hazard minimization criterion is based on an evaluation of

collision hazard, grounding hazard and COLREGS compli-

ance. The strategy recognizes that there may be conflicting

objectives and constraints, such that a sound compromise must

be made to determine minimum hazard.

The set of alternative control behaviors should be as exten-

sive as computation time allows, since this will increase the

performance of the system. The following set of alternative

control behaviors is to be considered as a minimum in a typical

implementation:

• Course offset at -90, -75, -60, -45, -30, -15, 0, 15, 30,

45, 60, 75, 90 degrees

• Keep speed (nominal propulsion), slow forward, stop and

full reverse propulsion commands.

and all the combinations of the above leading to 13 · 4 = 52
control behaviors. Assuming the control behavior is kept

fixed on the entire prediction horizon, this corresponds to 51

possible evasive maneuvers in addition to the nominal control

behavior with zero course offset, and nominal forward propul-

sion. Clearly, considering the possibility to change control

behavior on the horizon may lead to a ship trajectory with

less hazard. However, with one planned change in control

behavior on the horizon this leads to a much larger number

of 522 = 2704 scenarios. From a safety point of view it is

clearly desirable to evaluate as many alternative scenarios as

possible, while from a computational point of view the number

of scenarios needs to be kept smaller than the computational

capacity. There is clearly also a trade-off between the number

of scenarios and the computational complexity of the sim-

ulations in terms of high-fidelity time-discretization, length

of prediction horizon, detail of ship model, control update

interval and computational latency. Robustness to uncertainty

in the prediction of the obstacle’s trajectories may also be

represented by additional scenarios being perturbations of the

obstacles’ predicted trajectories, see Section IV-A.

C. Prediction of own ship trajectory

In order to predict the ship’s motion in response to the

different control behaviors as well as wind and ocean current

disturbances, we propose to employ the standard 3-degrees of

freedom horizontal plane ship dynamics model, neglecting the

roll, pitch and heave motions [29]

η̇ = R(ψ)v + vc
Mv̇ + C(v)v +D(v)v = τ +R(ψ)T τw

(3)

where η = (x, y, ψ) represents position and heading in the

earth-fixed frame, v = [vx, vy, r] includes surge and sway

relative velocities and yaw rate decomposed in the body-

fixed frame, M is the vessel inertia matrix, C(·) and D(·)
model, respectively, Coriolis and damping terms, R(ψ) is the

rotation matrix from body-fixed to earth-fixed frame, the input

τ represents the commanded thrust and moments, and vc is the

ocean current velocity and τw is the wind force, both expressed

in the earth-fixed frame.

The simulation should account for the dynamics of the

propulsion and steering system, an autopilot that accept a

course command to implement the steering control. We assume

the autopilot is executing a LOS guidance control with a

pre-defined look-ahead distance, [29]. This leads to a course

command χLOS that guides the ship towards the straight path

between the previous and the current selected way-points. The

CAS can provide a course angle offset χca such that the

actual course command is χc = χLOS + χca. A PI controller

for the course steering is then implemented to compute the

commanded rudder angle

δ = Kp(χc − χ) +Ki

∫ t

0

(χc − χ)dt (4)

where Kp and Ki are controller gains. The autopilot operates

with a constant propulsion command P ∈ [−1, 1] where 1 is

(nominal) forward propulsion, 0 is stop, and -1 is full reverse.

A highly useful property of these control behaviors is that

they represent meaningful actions when the control behavior is

kept constant on the whole prediction horizon. Another useful

property is that since the course offset comes in addition to

the LOS guidance, then simply setting the course offset to

zero will recover the LOS guidance control and the ship will

go back to the nominal path without any further planning or

guidance.

D. COLREGS compliance

An important factor in the evaluation of collision hazards

is the prediction horizon used to evaluate the result of the

simulation scenarios described in Section III-B. COLREGS

rules 8 and 16 demand that early action is taken, so the

prediction horizon should be significantly larger than the time

needed to make a substantial change of course and speed.

The main information used to evaluate COLREGS compli-

ance and collision hazard at a given future point in time, on

a predicted ship trajectory generated by a candidate control

behavior, is illustrated in Figure 3, and detailed as follows:

• The blue curve illustrates the own ship’s predicted trajec-

tory, which is a function of the current position, velocity
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Fig. 3. The main information used for hazard evaluation at a given future
time t in scenario k, where the blue dot denotes the predicted position of the
own vehicle, and the red dot denotes the predicted position of an obstacle
with index i.

and heading, as well as the control behaviors, nominal

path given by the way-points, and environmental forces,

cf. Section III-B.

• The red curve illustrates the predicted trajectory of the

obstacle with index i, which is a straight line based on

the most recent estimate of position and velocity, cf. (1)-

(2).

• The blue and red dots denote the predicted position at

some future time instant t, while the blue and red vectors

illustrate the predicted velocity of own ship and obstacle

with index i in scenario k, denoted by the vectors ~vk0 and

~vi respectively.

• The black vector is a unit vector in the LOS direction

from own ship to the obstacle with index i in scenario k,

denoted ~Lk
i .

• The obstacle with index i is said to be CLOSE to own

ship at time t in scenario k if dk0,i(t) ≤ dcli . Here dk0,i(t)
is the predicted distance between own ship and obstacle

with index i at time t in scenario k, taking into account

the shape, size and heading of the obstacle and own

ship. Moreover, dcli is the smallest distance where the

COLREGS responsibility for stay away is considered to

apply. This distance may depend on the obstacle’s and

own ship’s speed, sensor and prediction uncertainty, as

well as other factors.

• The ship is said to be OVERTAKEN by the obstacle with

index i at time t in scenario k if

~vk0 (t) · ~vi(t) > cos(68.5◦)|~vk0 (t)||~vi(t)| (5)

and it has higher speed, and is close to own ship.

• The obstacle with index i is said to be STARBOARD of

own ship at time t in scenario k if the bearing angle of
~Lk
i (t) is larger than the heading (yaw) angle of own ship.

• The obstacle with index i is said to be HEAD-ON at time

t in scenario k if it is close to own ship, and the obstacle

speed |~vi(t)| is not close to zero and

~vk0 (t) · ~vi(t) < − cos(22.5◦)|~vk0 (t)||~vi(t)| (6)

~vk0 (t) · ~L
k
i (t) > cos(φahead)|~v

k
0 (t)| (7)

where φahead is an angle to be selected.

• The obstacle with index i is said to be CROSSED at time

t in scenario k if it is close to own ship and

~vk0 (t) · ~vi(t) < cos(68.5◦)|~vk0 (t)||~vi(t)| (8)

where 68.5◦ could be replaced by a more suitable angle

depending on the velocity and type of obstacle.

E. Hazard evaluation criterion

Based on these definitions, we define the collision risk factor

Rk
i (t) =

{

1
|t−t0|p

(

d
safe
i

dk
0,i

(t)

)q

, if dk0,i(t) ≤ dsafei

0, otherwise

where t0 is the current time, t > t0 is the time of prediction.

The distance dsafei and the exponent q ≥ 1 must be chosen

large enough to comply with COLREGS rule 16, i.e. to take

substantial action to keep well clear. This implies that dsafei

may depend on the uncertainty of the prediction of obsta-

cle i’s trajectory. Moreover, dsafei should take into account

COLREGS rule 18 by ensuring sufficient safety distance to

ships that are fishing, sailing, or appear to not be under

command or with restricted ability to maneuver. The exponent

p ≥ 1/2 describes how risk is weighted as a function of the

time until the event occurs. The inverse proportionality with

the time until occurrence of the event means that avoiding

collision hazards that are close in time is being prioritized

over those that are more distant. This is important as the short-

term predictions of the obstacle trajectories are usually more

accurate than long-term predictions, and there is less time to

take action. Typical choices are q = 4 and p = 1.

We choose the cost associated with collision with obstacle

with index i at time t in scenario k as

Ck
i (t) = Kcoll

i |~vk0 (t)− ~vki (t)|
2

This cost scales with the kinetic energy as given by the squared

relative velocity of the obstacle and own ship, which may

be important to consider if ending up in a situation with

multiple obstacles and collision may be unavoidable. The

factor Kcoll
i (t) may depend on several properties such as the

type of the obstacle and its size (domain), and own ship’s right

to stay on or responsibility to keep out of the way.

Let the binary indicator µk
i ∈ {0, 1} denote violation of

COLREGS rule 14 or 15 between own ship and the obstacle

with index i at time t in scenario k, respectively, where the

logic expressions are given by

µk
i (t) = RULE14 or RULE15

RULE14 = CLOSE & STARBOARD & HEAD-ON

RULE15 = CLOSE & STARBOARD & CROSSED

& NOT OVERTAKEN

This incorporates rule 13 which states that it is the overtaking

vessel that shall keep out of the way.
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The hazard associated with scenario k, as predicted based

on the available information at time t0, is then

Hk(t0) = max
i

max
t∈D(t0)

(

Ck
i (t)R

k
i (t) + κiµ

k
i (t)

)

+f(P k, χk
ca) + g(P k, χk

ca)

where t0 is the current time, and the discrete sample times are

given in D(t0) = {t0, t0 + Ts, ..., t0 + T}, where Ts is the

discretization interval, T is the prediction horizon, and κi are

tuning parameters. Moreover,

f(P, δ) = kP (1− P ) + kχχ
2
ca +∆P (P − Plast)

+∆χ(χca − χca,last)

where ∆P and ∆χ are penalty functions that are positive

at the origin, and the positive tuning parameters kP and kχ
influences the priority of keeping nominal speed and course.

The parameters kχ and ∆χ are generally asymmetric and

give a higher penalty on course offset commands to port

than starboard, in compliance with COLREGS rules 14, 15

and 17. The term g(·) represents a grounding penalty that

should be defined based on electronic map data and possibly

ship sensor data. The term f is included in order to favor

a predictable straight path with constant cruising speed, if

possible, as required by COLREGS rule 17. The two last

terms in f are included to ensure that the control behavior

is not changed unless it gives a significant reduction in the

hazard, in order to further enhance the predictability of the

ship’s control actions.

F. Collision avoidance control decision

The control behavior with minimal Hk(t0) is selected

among the scenarios k ∈ {1, 2, ..., N} at time t0:

k∗(t0) = argmin
k

Hk(t0) (9)

This minimization is executed by evaluating all the scenarios

and comparing their hazard. The optimal control behavior is

commanded to the autopilot that executes the action. The min-

imization is repeated at regular intervals, e.g. every 5 seconds,

in order to account for new sensor information that has been

acquired and processed since the previous optimization was

executed.

There are several tuning parameters involved. The selec-

tion of these parameters is critically important, one need to

consider other factors in their tuning, such as technological,

economical, ethical and legal aspects beyond COLREGS.

The new method takes advantage of some formulations

and ideas in [30], [31], [15] that are embedded into the

optimization formulation. We emphasize that the proposed

optimization is deterministic and guarantees that the global

minimum is found after a pre-defined number of cost function

evaluation, in contrast to e.g. evolutionary algorithms where

the convergence cannot in general be guaranteed in a finite

number of cost function evaluated. Scalability and computa-

tional performance can be managed using parallel processing

since each simulation and their individual evaluations can be

made completely independently.

IV. ROBUSTNESS ENHANCEMENTS

There are several ways for uncertainties to affect the algo-

rithm and, consequently, to increase the hazard of the selected

maneuvers. It may therefore be necessary to enhance the

algorithm by letting it be capable of evaluating uncertain cases.

The main aspects to be taken care of are uncertainty in the

obstacle motion prediction, and uncertainty in environmental

disturbances. The robust schemes to be adopted for dealing

with such situations will be discussed in this section.

A. Uncertainty on obstacle motion prediction

The prediction of the obstacle motion is a critical point

in the algorithm performance, but it is naturally prone to

uncertainty. Assuming that the obstacles move along a straight

path at a constant speed is sufficient to avoid hazardous

maneuvers in many cases, but, in certain scenarios, this might

turn out to be a poor and potentially dangerous assumption.

A straightforward way to account for uncertainties, and still

affordable in terms of computational burden, is to include

some additional scenarios, corresponding to the inclusions

|~vi(t)| ∈ Vi, βi ∈ Zi where |~vi(t)|, βi are respectively the

speed and the bearing of the ith obstacle and Vi, Zi are

discrete sets that include the “straight path” scenario. For

instance, given the predicted values v∗i and β∗
i , a possible and

simple choice for the sets Vi, Zi is

Vi = {v∗i − 1 m/s, v∗i , v
∗
i + 1 m/s},

Zi = {β∗
i − 3◦, β∗

i , β
∗
i + 3◦}.

It must be pointed out that an additional source of uncertainty

comes from maneuvers performed by other ships, especially in

a multi-obstacle scenario. As a matter of fact, configurations

are admissible such that the application of COLREGS by one

of the obstacles might lead to a scenario with a greater hazard

compared to the one occurring when all the incoming vessels

follow standard straight paths. For this reason, it might be

worth to enhance the hazard evaluation scheme by considering

some additional scenarios, corresponding to situations like

“ith obstacle alters its course to STARBOARD”.

Clearly, one major challenge is the uncertainty on the time-

step when the action is taken by the vessel.

The algorithm extension can be formally done evaluating,

in addition to the standard cases, also the following set of

obstacle maneuvers, corresponding to a change of course taken

at any time-step in the prediction horizon:











SCENARIO Ni,k, k = 1, ..., N :

βi(t0 + k) = βi(t0 + k − 1) + δβ
βi(t0 + ℓ) = βi(t0 + k) ∀ℓ ≥ k











where δβ is a fixed course offset to STARBOARD. Such

parameter may depend on vessel size and type, as well as

from the distance between other vessels and/or grounding haz-

ards. The enhanced algorithm will be referred to as extended

COLREGS-compliant framework.
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B. Wind and ocean current

Let us finally analyze the case of environmental distur-

bances. Even though the autopilot is generally capable of

compensating for the effect of wind and ocean current while

the vehicle is in motion, the presence of disturbances cannot

be neutralized when the ship is commanded to stop or to

make a sharp turn: drifts or limited turning capabilities are

likely to have a significant effect on the ship’s trajectory.

Thus, when evaluating the best control action, it is worth to

take into account the additional input provided by the overall

environmental disturbance in order to prevent the selection

of scenarios with a potential hazard in the case of perturbed

motion, e.g. the natural drift when the vehicle is stopped.

Suppose that an estimate of the environmental disturbances

ṽc and τ̃w is made available at any admissible position for the

ship. Including such terms in the ship motion prediction, some

noticeable changes in the evaluation of the control behaviors

arise:

• The action P = 0 corresponds to the ship predicted

response to the estimated disturbances ṽc and τ̃w without

any control input.

• The action “Course offset” includes the effect of the

external inputs ṽc and τ̃w on the turning capacity.

V. SIMULATION STUDY

The purpose of the simulation study is to illustrate the per-

formance of the closed loop control behaviors. The simulations

consider a wide range of cases, from single obstacle avoidance

to multi-obstacle avoidance, and from predictable obstacle

trajectories to complex and random obstacle trajectories that

are more difficult to predict. In all simulations, the same

parameter settings are used, although the robustness extensions

described in Section IV are enables only in some cases in order

to illustrate their impact. The simulation results are illustrated

in figures representing snapshots of situations. The following

symbols and color codes are applied:

• In the North-East position plots, the black straight line is

the path between the two way-points. The black curve is

the path of the own ship up to a final time. The small

circle denotes dsafei while the larger circle denotes the

dcli distance. The green curves denote the paths of the

obstacles up to a final time marked by a small red circle.

If there are multiple obstacles, their paths are identified by

a number. The thick red curve denotes the anti-grounding

constraint.

• The Steering and Propulsion plot shows the propulsion

command (dark blue) and rudder angle (black) as a

function of time.

• The Hazard plot shows the selected (optimal) hazard

Hk∗(t0)(t0), with the selected control behavior, as a

function of time.

The same tuning parameters of the hazard criterion is used

in all cases. In general, the tuning is chosen to give a sound

tradeoff between the objectives. For example, it is chosen such

that course change is prioritized over speed reduction when

this does not lead to significantly higher hazard, in compliance

Fig. 4. Single obstacle head-on simulation.

with COLREGS rule 8. The tuning can be easily changed to

modify this tradeoff.

A. Single obstacle collision avoidance

Simulations with single obstacle head-on scenarios are given

in Figure 4. It can be seen that the ship behavior complies with

COLREGS rule 14 and changes course to starboard and passes

with the obstacle on her port side when this is safe with respect

to collision and grounding. If the distance between the ship

and obstacle is so large that COLREGS are considered not to

apply, the ship changes course to port and have the obstacle

on her starboard side since this path is closer to the nominal

path and avoids the grounding hazard. The tuning could easily

be changed to slow down or stop instead of change course to

port, if desired.

Simulations with single obstacle crossing scenarios are

given in Figure 5. The two first cases show an obstacle arriving

from the starboard side such that the own ship shall keep

away. The ship can either pass ahead or abaft of the obstacle,

depending on which low-hazard and COLREGS-compliant

trajectory gives smallest deviation from the nominal path. In

the two last cases the obstacle arrives from the port side such

that the own ship has right to stay on. In these scenarios the

obstacle does not respect its responsibility to keep away and

the ship makes a maneuver to starboard to avoid collision
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Fig. 5. Single obstacle crossing simulation.

Fig. 6. Single obstacle overtaking simulation.

with some margin and also to avoid a hazardous situation if

the obstacle would change course to starboard in compliance

with its responsibility to keep clear according to COLREGS.

Figure 6 shows the result of a simulation where the obstacle

arrives from abaft and overtakes the own ship. The obstacle

makes no attempt to keep away, so the own ship makes a

maneuver to avoid collision, and crosses abaft of the obstacle.

In all these cases the own ship continued on nominal

propulsion command, as COLREGS compliance and collision

avoidance was achieved by change of course only.

B. Collision avoidance with multiple obstacles

In Figure 7 a head-on scenario with several vessels is pre-

sented. The optimal control behavior corresponds to a course

offset toward starboard side until all the obstacles are passed at

a safe distance on own ship’s port side. The option of changing

course towards port side is not chosen since it will give an

additional cost due to the term µk
i that measures violation of

COLREGS rule 14 in the hazard evaluation criterion.

A scenario with multiple obstacles crossing from starboard

side is illustrated in Figure 8. According to COLREGS, the

own vessel is requested to stay away. The optimal control

behavior corresponds to a course offset toward starboard

side until all the obstacles are passed at a safe distance on

own ship’s port side. Again, the option of changing course

towards port side is eventually not chosen since it will give

an additional cost due to the term µk
i that measures violation

of COLREGS rule 15 with obstacles #4, 5, 6 in the hazard

evaluation criterion.

Figure 9 illustrates a similar situation with multiple obsta-

cles crossing from starboard side. In this case, the optimal

control strategy is make a change in course towards port, since

this does not lead to violation of COLREGS rule 15 due to

the closest distances being larger than dcli . The effect of this

control behavior is that own ship passes at a safe distance

in front of obstacles #1, 4, 3, 6, 2 (in this order) while at a

safe distance abaft of obstacle #5. With a lower penalty on

the deviation from nominal propulsion command, the control
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behavior could be change to make own ship slow down or

stop in order to let all obstacles pass in front of her.

Figures 10 illustrates a case when the obstacles arrive from

the port side, and the own ship has the right to stay on.

Since none of the obstacles make any effort to avoid collision,

the own ship makes a course change to avoid it. The course

change is to starboard, since a course change to port might

increase the hazard if one of the obstacles would change course

to starboard (in compliance with COLREGS). The optimal

control behavior then leads to own ship passing just in front

of obstacles #2, 5, 3 (in this order), and then pass abaft of

obstacles #1, 4 and in front of obstacle #6 (assuming they

keep course and speed).

C. Robustness enhancement

Figure 11 represents a challenging case which is quite

similar to the one presented in Figure 10. While the resulting

trajectory is safe, it cannot be said to be very robust. The

control behavior selection suffers from the fact that there is

no obvious optimal solution and early sub-optimal decisions

are taken on the basis on the incomplete information available

due to the finite prediction horizon (some obstacles are seen

before the others). A more robust control behavior selection is

enforced by adding four new scenarios that are generated as

perturbations to the predicted obstacle trajectories. The four

new scenarios for each obstacle consider ±1 m/s error in

speed, and ±3◦ error in bearing angle. It can be seen in Figure

12 that the resulting control behavior is more cautious and

conservative, as the ship stops to wait for the obstacles to

pass.

The evaluation of the extended COLREGS-compliant

framework described at the end of Section IV-A is depicted

in Figure 13. The considered scenario is characterized by

the own vessel that is overtaken by a faster vehicle while

simultaneously is facing a starboard crossing. In the nominal

case, the selected control behavior in the simulation would

have been given by a sequence of course offsets to cope

with the course offset of the overtaking vessel, this resulting

in a very unpredictable path. However, using the extended

framework and taking into account in the predictions also

the possible application of COLREGS by the other vessels, a

smoother path is achieved by temporarily reducing the speed

and then applying a single course offset.

D. Wind and ocean current disturbances

Figure 14 illustrates a critical scenario: while the own vessel

is overtaking a slower vehicle, two vessels are approaching

from port side and other two vessel are approaching from

starboard side. Moreover, a side-wind is assumed to blow at

5 m/s in the NW direction. In such overtaking and crossing

scenario, the nominal algorithm would have commanded the

ship to stop for a sufficiently long amount of time. However,

if one adopts the disturbance-sensitive algorithm introduced in

Section IV-B, the action P = 0 is no longer considered safe

due to possible drift, and the selected less-hazard scenario is

instead characterized by two subsequent turns on the starboard

side.

Fig. 7. Multiple obstacles head-on simulation.

E. Obstacles with random motion

Finally, the case of obstacles moving along a random path is

proposed in order to emphasize that, even if the obstacle mo-

tion predictions are made on the basis of a straight trajectory,

the method is still capable to successfully handle the presence

of obstacles with unpredictable motion dynamics due to the

use of the receding horizon control strategy that re-evaluates

the optimal control behavior at regular (5 second) intervals in

order to account for new measurements and other information.

Figures 15-18 illustrate different scenarios where the relatively

low-speed obstacles have random changes in speed and course.
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Fig. 8. Multiple obstacles crossing simulation, where own vessel has
responsibility to stay away.

In the scenario in Figure 15 own ship changes course to

starboard in order to keep away from the obstacles that are

moving close to the planned path. The own ship then passes

with obstacles #2, 3, 4, 5, 6, 7 on her port side, while obstacles

#1, 8 are considered to be sufficiently far away (according

to dclc ) to that they are passed on her starboard side. At the

snapshot shown in Figure 15 the own ship has chosen the

nominal control behavior (no course offset) and is heading

back towards the nominal trajectory according to the LOS

guidance law.

Fig. 9. Multiple obstacles crossing simulation, where own vessel has
responsibility to stay away.

In the scenario in Figure 16, the own ship was a t = 11 min

making a course change to the port since all obstacles are

primarily on the starboard side of the nominal path. Then

obstacle #7 starts to move towards North-West along a trajec-

tory that would intercept with own ship’s planned trajectory.

Since own ship would then overtake or cross with obstacle

#7 on her starboard side, it is responsible to keep away. It

therefore makes a course change to starboard in order to keep

away and pass with obstacles #7, 8, 6, 5, 2 at safe distance

(according to dsafei on her port side and with obstacles #3, 1, 4
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Fig. 10. Multiple obstacles crossing simulation, where own vessel has right
to stay on.

on her starboard side at at distance where COLREGS is not

considered to apply (according to dcli ).

In the scenario in Figure 17 the own ship changes course

to starboard in order to keep away from all obstacles. When

obstacle #1 then changes course and speed so as to intercept

the trajectory of the own ship, then the own ship has the option

of further changing course towards starboard, or stopping.

Since the course change would have to be very large and

would take own ship far away from the nominal path, the

optimal control behavior given by the tuning parameters is to

Fig. 11. Multiple obstacles crossing simulation, where own ship has right to
stay on.

slow down and eventually stop to let obstacle #1 pass in front

of her.

In the scenario in Figure 18 the initial control behavior

is also to change course towards starboard. When obstacles

#5, 6, 7 change their speed and course to intercept the planned

trajectory, the own ship chooses to make a sharp turn to port

since it allows her to pass all close obstacles at a distance

closer than dcli on her starboard side. The alternative would

be to stop, but this is not chosen due to the tuning that favors

to keep nominal cruise speed as long as the path does not
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Fig. 12. Multiple obstacles crossing simulation, where own ship has right to
stay on, with robustness enhancement.

deviate too much from the nominal path.

VI. DISCUSSION

For situations with few obstacles, it seems to be sufficient

to consider scenarios where there is no change in control

behavior on the horizon. When the number of obstacles

increase, the CAS would benefit from a more fine-grained set

of control behaviors to choose from in order to find a smooth

way out rather than making an emergency stop. Also, less

Fig. 13. Multiple obstacles crossing and head-on simulation, extended
COLREGS-compliant framework.

conservative safety margins could be possible to achieve by

evaluating more scenarios with alternative control behaviors.

There is an extensive set of tuning parameters and functions

involved in the CAS. The algorithm can be tuned to exhibit a

range of different priorities and behaviors by changing these

parameters and functions. Tuning can be time-consuming as

the tuning parameters are not completely independent.

The presentation of the method and simulator has focused

on the key/main rules of COLREGS, and we have not con-

sidered certain special cases such as narrow channels, traffic
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Fig. 14. Multiple obstacles with environmental disturbances evaluation

separation schemes, nor the modifications needed to operate

in extreme weather conditions. We believe these extensions

are possible and can be managed by additional logic or

dedicated selection of tuning parameters to use under such

special conditions.

VII. CONCLUSIONS

A collision hazard avoidance method based on simulation

and optimization is studied. It implements compliance with

the main rules of COLREGS and collision hazard avoidance

through the evaluation of a performance function along the

Fig. 15. Multiple obstacles making random changes in course and speed.

predicted ship and obstacle trajectories. Environmental dis-

turbances and ship dynamics can be incorporate through the

simulation model, and uncertainty in obstacle predictions and

behaviors can be accounted for by defining multiple scenarios

corresponding to possible realizations of the uncertainty.

Simulations illustrate that the method can be tuned to select

acceptable control behaviors for a wide range of cases. The

method is conceptually and computationally simple and yet

quite versatile as it can account for the dynamics of the ship,

its steering and propulsion system, forces due to wind and

ocean current, and any number of obstacles. Simulations show
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Fig. 16. Multiple obstacles making random changes in course and speed.

that the method is effective and can safely manage complex

scenarios with multiple dynamic obstacles and uncertainty

associated with sensors and predictions.

The method can be refined further by considering an even

richer set of control behaviors and more detailed representa-

tions of uncertainty resulting from sensor fusion and obstacle

predictions. This would lead to higher computational complex-

ity as the optimization is based on brute force evaluation of

all scenarios. Since the algorithm is trivial to implement with

parallel processing and the ship dynamics is relatively slow,

this is not considered to be an important practical limitation.

Fig. 17. Multiple obstacles making random changes in course and speed.

Systematic methods for selection of tuning parameters and

verification (see e.g. [32]) are considered to be important

topics of future research.

APPENDIX

This section provides a brief overview of the main technical

and operational requirements from COLREGS, [1], relevant

for our purpose:

• Rule 6 - Safe speed. The following should be considered:

Visibility, traffic density, stopping distance and turning
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Fig. 18. Multiple obstacles making random changes in course and speed.

ability, wind/waves/current, navigational hazards, draught

vs. depth, radar/sensor state.

• Rule 8 - Actions to avoid collision. Actions shall be

made in ample time. If there is sufficient sea-room, alter-

ation of course alone may be most effective. Safe distance

required. Reduce speed, stop or reverse if necessary.

Action by the ship is required if there is risk of collision,

also when the ship has right-of-way.

• Rule 13 - Overtaking. Any vessel overtaking any other

shall keep out of the way of the vessel being overtaken.

A vessel shall be deemed to be overtaking when coming

up with another vessel from a direction more than 22.5

degrees abaft her beam.

• Rule 14 - Head-on situation. When two power-driven

vessels are meeting on nearly reciprocal courses so as to

involve risk for collision, then alter course to starboard

so that each pass on the port side of each other.

• Rule 15 - Crossing situation. When two power-driven

vessels are crossing so as to involve risk of collision, the

vessel which has the other on her own starboard side shall

keep out of the way.

• Rule 16 - Actions by give-way vessel. Take early and

substantial action to keep well clear.

• Rule 17 - Actions by stand-on vessel. Keep course and

speed (be predictable) if possible. If it is necessary to take

action, then the ship should try to avoid to alter course

to port for a vessel on her own port side.

• Rule 18 - Responsibilities between vessels. Except for

Rules 9, 10, and 13, a power-driven vessel shall keep

out of the way of: a vessel not under command, a vessel

restricted in her ability to manoeuvre, a vessel engaged

in fishing, and a sailing vessel.

• Rule 19 - Conduct of vessels in restricted visibility.

Avoid alteration of course to port for a vessel forward of

the beam, and avoid alteration of course towards a vessel

abeam or abaft the beam, if possible.

In addition, there are requirements for light and sound signals,

as well as some rules that apply in special areas denoted as

narrow channels and traffic separation schemes.
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