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Abstract— In order to analyze synthetic aperture radar (SAR)
images of the sea surface, ship wake detection is essential for
extracting information on the wake generating vessels. One
possibility is to assume a linear model for wakes, in which
case detection approaches are based on transforms such as
Radon and Hough. These express the bright (dark) lines as
peak (trough) points in the transform domain. In this article,
ship wake detection is posed as an inverse problem, with the
associated cost function including a sparsity enforcing penalty,
i.e., the generalized minimax concave (GMC) function. Despite
being a nonconvex regularizer, the GMC penalty enforces the
overall cost function to be convex. The proposed solution is
based on a Bayesian formulation, whereby the point estimates
are recovered using a maximum a posteriori (MAP) estimation.
To quantify the performance of the proposed method, various
types of SAR images are used, corresponding to TerraSAR-X,
COSMO-SkyMed, Sentinel-1, and Advanced Land Observing
Satellite 2 (ALOS2). The performance of various priors in solving
the proposed inverse problem is first studied by investigating the
GMC along with the L1, L p, nuclear, and total variation (TV)
norms. We show that the GMC achieves the best results and
we subsequently study the merits of the corresponding method
in comparison to two state-of-the-art approaches for ship wake
detection. The results show that our proposed technique offers
the best performance by achieving 80% success rate.

Index Terms— Generalized minimax concave (GMC) regu-
larization, inverse problem, maximum a posteriori (MAP) esti-
mation, ship wake detection, synthetic aperture radar (SAR)
imagery.

I. INTRODUCTION

ACCURATE characterization of sea surface condition is
not only important in isolation but also in the detec-

tion and characterization of ship wakes. These provide key
information for tracking (illegal) vessels and are also useful in
classifying the characteristics of the wake generating vessel.
Until recently, one of the main factors hampering research
into sea surface modeling was the lack of data of sufficiently
high resolution (pixels need to be typically smaller than a few
meters) and accuracy. SAR technologies have however shown
remarkable progress in recent years, and the availability of
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remotely sensed data of the Earth and sea surface is continu-
ously growing. Several European missions (e.g., the Italian
COSMO-SkyMed, the German TerraSAR-X, or the British
NovaSAR mission) have developed a new generation of satel-
lites exploiting SAR to provide spatial resolutions previously
unavailable from space-borne remote sensing.

In all SAR images, bright areas correspond to high radar
cross section per unit area and dark areas to low radar cross
section. When imaging sea surface, high returns are caused by
enhanced surface roughness or large wave steepness, either
via specular reflection or Bragg scattering. On the other
hand, specular reflections are usually caused by breaking
waves. Sea waves become visible in SAR images due to the
Bragg scattering of SAR electromagnetic waves by small-scale
capillary and gravity-capillary waves that propagate on the
surface of larger waves [1]. These include swells, coherent
Kelvin waves, random sea waves, as well as their mixture [2],
[3]. SAR images of moving ships exhibit some characteristic
patterns that are directly determined by different ship wake
formations. These are typically considered to fall in one of
three categories: 1) turbulent wakes; 2) surface waves created
by ships; and 3) ship-generated internal waves. Ship-generated
surface waves can, in turn, be split into two subcategories [4],
[5], the first being the short (centimeter scale) waves, while
the second includes the (decameter scale) waves forming the
classical Kelvin wake system [6]. The former is observed
in SAR images through the Bragg scattering mechanism
and appear as bright, narrow V-wakes due to the resonant
interaction of the transmitted radar waves and ocean surface
waves [7]. The two-scale composite model has been employed
to simulate SAR images of rough sea surfaces with embed-
ded Kelvin wake structures in [8], while Fujimura et al. [9]
performed a validation study for simulated ship wakes via
computational dynamics.

Since ship wakes can be modeled as linear structures,
corresponding detection methods are mostly based on linear
feature extraction approaches, such as the Hough or Radon
transforms, both of which create bright peaks in the transform
domain for bright lines and troughs for dark lines. Due to its
high computational cost, the Hough transform has attracted
less interest than the Radon transform [10]. Thanks to the
lower computational complexity of its inverse, the Radon
transform is widespread in ship wake detection applications
and has been first utilized by Murphy [11]. The Radon
transform has, however, a couple of drawbacks, e.g., bright
pixels belonging to ships may cause false detections [12].
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To address this, enhancing the Radon domain information
is a common practice in the literature. Rey et al. [13] have
proposed a method that combines the Radon transform and
the Wiener filtering to increase the detectability of the peaks
in the Radon domain. Tunaley [14] used a method that restricts
the search area in the Radon domain. Eldhuset [15] proposed
an automatic ship and wake detection method, whereby the
detection performance is characterized by the number of lost
and false wakes (wakelike features). Based on ship beam and
speed estimation, Zilman et al. [16] have applied an enhance-
ment operation to the Radon transform of the observed (noisy)
image. Courmontagne [17] used a method based on a combi-
nation of Radon transform and stochastic matched filtering for
wake detection. Kuo and Chen [18] have proposed a ship wake
detection method using wavelet correlators. Zilman et al. [8]
proposed a SAR image simulator, including ship wakes, and
studied the performance of their ship wake detection method
previously published in [16]. Recent studies based on L2
regularized logistic regression [19] and low-rank plus sparse
decomposition [20] also addressed the ship wake detection
problem in SAR images. Graziano et al. [10], [12], [21], [22]
have proposed wake detection methods that deal directly
with the noisy image without performing any preliminary
enhancement. The authors have first created ship-centered-
masked image tiles and performed a restricted area search in
their Radon representation. The restricted area is the area that
lies between two sine waves, the peak points of which have
been selected using real ancillary data, local map, ship clusters,
and the local traffic statistics.

The inverse problem formulation for line detection has
been first proposed by Aggarwal and Karl [23]. The main
advantage of formulating line detection as an inverse problem
is the subsequent use of a regularization framework, which
allows the incorporation of prior information about the object
of interest. Anantrasirichai et al. [24] have further investi-
gated the inverse problem formulation for B-line detection
in lung ultrasound images. Although the inverse problem
solution creates an enhanced image, this step is different
from operations like despeckling, which require statistical
assumptions [25], [26] or statistical model selection [27] and
is well studied in [28]–[32].

In this article, we propose a novel approach to ship wake
detection in SAR images, which is based on an inverse
problem formulation. The main contribution of this article is to
propose an innovative approach based on sparse regularization
to obtain the Radon transform of the image, in which the
linear features are enhanced. The solution to the inverse prob-
lem involves Bayesian methodology, which leads to a MAP
estimator. Our proposed cost function uses the GMC penalty
of Selesnick [33] as regularization term and investigates its
merit in comparison to the TV, nuclear, L1, and L p norms.
The use of the GMC penalty demonstrates the advantages
of nonconvex sparse regularization while allowing the cost
function to remain convex. We use SAR images of the sea sur-
face from different sources, including TerraSAR-X, COSMO-
SkyMed, SENTINEL-1, and ALOS2 to test the performance
of the proposed method. For the ship wake detection step,
we use a method that performs detection in the Radon domain

as proposed in [10] and [22]. In this study, contrary to [10]
and [22], the proposed method detects ship wakes, indepen-
dently of real information about the ships and the environment,
by selecting the required parameters directly from the observed
SAR images. MAP estimates for the images are obtained using
the FB method and the TwIST algorithm [34].

The rest of this article is organized as follows: the image
formation model for ship wakes identification, the MAP
estimation, GMC regularization, and priors employed are
discussed in Section II. The detection algorithms and SAR
data sets are presented in Sections III and IV, respectively.
Experimental studies and results are provided in Section V.
Section VI concludes this article with a brief summary.

II. THEORETICAL PRELIMINARIES

A. Ship Wakes and Image Formation Model

As discussed briefly in Section I, a moving ship in deep sea
typically creates three different types of wakes. The central
dark streak is called turbulent wake. Generally, this central
dark streak is surrounded by two bright arms called narrow V-
wake, which lies either side of the turbulent wake within the
half-angle from 1.5◦ up to 4◦ [10], [16]. Finally, two outer
arms are known as Kelvin wake and limit the signatures of
the moving ship on each side of the turbulent wake with a
maximum half-angle of 19.5◦. The Kelvin wake half-angle
can be somewhat smaller in real SAR images, e.g., between
10◦ and 19.5◦ [2], [8].

For the purpose of this study, we consider each arm of
narrow-V and Kelvin wakes as a separate wake and refer
to them as the first and second wakes in the order of their
detection. Consequently, we attempt to detect five linear
wake-corresponding structures, which are the turbulent wake,
the first and second narrow V, and the first and second Kelvin
wakes. In most cases, not all five wakes are however visible in
SAR images as is generally the case with one of the narrow V
and/or Kelvin wakes. In Fig. 1, two example SAR images are
depicted. In particular, in the upper left image, all five wakes
are visible, whereas the one on the upper right does not have
a visible Kelvin wake.

Since we model ship wakes as linear features, the SAR
image formation can be expressed in terms of its Radon
transform as

Y = CX + W (1)

where Y is the M × M SAR image, X (r, θ) is the image in
Radon domain, W refers to the additive noise, and the operator
C = R−1 is the inverse Radon transform. X (r, θ) represents
lines as a distance r from the center of Y and an orientation
θ from the horizontal axis of Y .

In image processing applications, to compute an integral
of the intensities of image Y (i, j) over the hyperplane,
which is perpendicular to θ leads to the Radon transform
X (r, θ) of the given image Y . It can also be defined as a
projection of the image along the angles, θ . Hence, for a
given image Y , the general form of the Radon transform
(X = RY = CT Y ) is

X (r, θ) =
∫
R2

Y (i, j)δ(r − i cos θ − j sin θ)did j (2)
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Fig. 1. Example images including ship wakes and their Radon transform.
(Top Left) Image includes all five ship wakes. (Top Right) Image does not
include Kelvin wake. (Bottom row) Radon transforms of the images above.
Both images are TerraSAR-X Stripmap products with HH polarization and
3 m × 3 m resolution.

where δ(·) is the Dirac-delta function.
The inverse Radon transform (Y = CX) of the projected

image X can be obtained from the filtered backprojection [35]
algorithm as

g(r, θ) = F−1[|v|F [X (r, θ)]] (3)

Y (i, j) =
∫ π

0

∫
R

g(r, θ)δ(r − i cos θ − j sin θ)drdθ (4)

where v is the radius in Fourier transform, and F [·] and
F−1[·] refer to the forward and inverse Fourier transforms,
respectively. In this article, we use discrete operators R and C
as described in [36].

B. Bayesian Inference in Inverse Problems

Assume that the aim is to extract information about the
unknown signal x given an observation signal y. Then, sup-
pose a statistical model which defines the relation of y to x
can be expressed. This statistical model is referred to as the
likelihood p(y|x). Obtaining x from y might contain numer-
ous uncertainties and thus extracting information belonging to
x would be ill-posed and problematic. The Bayesian inference
framework helps to reduce these uncertainties by employing
knowledge on x , namely, the prior of x , which can promote
structural properties such as sparsity.

Hence, incorporating this prior in conjunction with the
observed statistical model creates the knowledge on x given y,
namely, the posterior distribution p(x |y) via Bayes’ theorem

p(x |y) = p(y|x)p(x)∫
p(y|x)p(x)dx

(5)

where the denominator
∫

p(y|x)p(x)dx is the marginal like-
lihood p(y), which is not related to x and assumed to be
constant according to x . Since the aim is to extract x , we can
write the unnormalized posterior distribution as

p(x |y) ∝ p(y|x)p(x). (6)

Generally, posterior distributions are assumed to be
log-concave as

p(x |y) ∝ exp {−F(x)} (7)

where F(x) is a convex function. Estimating x directly
using the posterior density can be intractable, especially for
high-dimensional cases. Hence, the MAP estimator maximizes
the posterior p(x |y) to obtain a point estimate x̂ . The MAP
estimator for the unknown x is

x̂MAP = arg max
x

p(x |y) = arg min
x

F(x). (8)

In cases when F(x) is not convex, i.e., the posterior will no
longer be log-concave, the minimizer will not be convex but
nevertheless can be solved via proximal operators [37].

According to the SAR image formation defined in (1),
the posterior distribution of the desired line image X with
respect to the observed noisy SAR image Y can be written
using (6) as

p(X |Y ) ∝ p(Y |X)p(X). (9)

Assuming an independent identically distributed (i.i.d.) stan-
dard normal noise case, the likelihood distribution p(Y |X) can
be expressed as

p(Y |X) ∝ exp
{ − ∥∥Y − CX

∥∥2
2

}
. (10)

In this article, we assume priors to be of exponential form as
p(X) ∝ exp{−λψ(X)}. Thus, the cost function in (8) becomes

F(X) ∝ ∥∥Y − CX
∥∥2

2 + λψ(X) (11)

where λ is the scale parameter, namely, the regularization
constant.

C. Generalized Minimax Concave Penalty

The GMC regularization has been proposed by
Selesnick [33] as a sparsity enforcing penalty in inverse
problems. It exploits the advantages of using nonconvex
penalties as well as preserving the convexity of the cost
function. It is based on L1-norm and the generalized Huber
function.

In particular, the MC penalty in the univariate case is

ψ(t) =

⎧⎪⎨
⎪⎩

|t| − 1

2
t2, |t| ≤1

1

2
, |t| ≥ 1.

(12)

The relation between the MC penalty and the Huber func-
tion s(t) can be written as

ψ(t) = |t| − s(t). (13)

For a scalar, b �= 0, the scaled MC penalty, ψb(t) can be
written as scaled Huber function, sb(t) as

ψb(t) = |t| − sb(t). (14)

All these definitions are based on the univariate case, but
they can be adapted to the multivariate case. If we assume
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a scaling matrix, B , then the generalized Huber function,
SB(t) can be defined as [33]

SB(t) = inf
v

{
‖v‖1 + 1

2
‖B(t − v)‖2

2

}
. (15)

Combining (14) and (15) gives the GMC penalty function
as

ψB(t) = ‖t‖1 − SB(t). (16)

The scaling matrix B should be selected in relation to the
inverse Radon operator C to provide the convexity of the cost
function as

B =
√
γ

λ1
C (17)

where λ1 is the scale parameter of the GMC prior and γ is
a parameter, which controls the nonconvexity. Note that for
0 ≤ γ ≤ 1, B ensures the convexity of the cost function. The
nominal range of 0.5 ≤ γ ≤ 0.9 should be used for better
performance [33].

Thus, the GMC sparse prior can be written as

p1(X) ∝ exp{−λ1ψB(X)} (18)

∝ exp{−λ1(‖X‖1 − SB(X))}. (19)

As GMC regularization does not have an explicit formula-
tion, the minimization problem with the cost function in (11)
can be solved using proximal operators. Thus, we rewrite the
cost function as

F(X, v) = ‖Y − CX‖2
2 + λ1‖X‖1

−λ1‖v‖1 − γ ‖C(X − v)‖2
2 (20)

which leads to a minimax optimization problem

X̂MAP-GMC = arg min
X

max
v

F(X, v). (21)

The solution to this problem can be obtained using the
FB algorithm [33]. The FB algorithm for GMC regularized
cost functions requires only a couple of computational steps
and soft-thresholding, which is the proximal operator for
L1-based regularization. The FB algorithm to solve (21) is
given in Algorithm 1. For the purpose of this study, we chose
the maximum number of iterations MaxIter = 1000, which
was experimentally set. The algorithm stops when the error
term reaches 10−3. This error term ε(i) is calculated for
iteration i as

ε(i) = ‖X (i) − X (i−1)‖
‖X (i−1)‖ . (22)

D. Alternative Sparse Priors

In this article, we also investigate other types of priors,
which are known to be sparse and common in optimization
problems. The first of which is Laplace (or L1 norm) prior,
which is log-concave and given by

p2(X) ∝ exp{−λ2ψ2(X)} (23)

∝ exp{−λ2‖X‖1}. (24)

Algorithm 1 Forward–Backward Algorithm for GMC
Regularized Cost Function
1: Input: Ship-centered-masked SAR image Y
2: Input: λ > 0
3: Input: 0.5 ≤ γ ≤ 0.9
4: Output: Radon image X
5: Set: 0 < μ < 1.9 and i = 0
6: do
7: w(i) = X (i) − μCT (C(X (i) + γ (v(i) − X (i)))− Y )
8: u(i) = v(i) − μγ CTC(v(i) − X (i))
9: X (i) = soft(w(i), μλ)

10: v(i) = soft(u(i), μλ)
11: i + +
12: while ε(i) > 10−3 or i < MaxIter

We further investigate the (nonconvex) L p-norm-based
prior, which is

p3(X) ∝ exp{−λ3ψ3(X)} (25)

∝ exp{−λ3‖X‖p
p} (26)

where 0 < p < 1.
Another important type of prior is the TV norm, T V (·),

which can be defined as [38]

T V (X) = ‖∇X‖1 (27)

where ∇ is the 2-D discrete gradient operator. Hence, the TV
norm-based prior is given by

p4(X) ∝ exp{−λ4ψ4(X)} (28)

∝ exp{−λ4T V (X)}. (29)

The nuclear norm is an important type of prior for data with
low-rank and low singular values. In particular, ‖X‖∗ is the
nuclear norm of X and is defined as the sum of its singular
values [38]. Here, we define the nuclear norm prior as

p5(X) ∝ exp{−λ5ψ5(X)} (30)

∝ exp{−λ5‖X‖∗}. (31)

Replacing ψ(X) in (11) with the previously defined priors
determines different MAP estimators as

X̂MAP−ψk = arg min
X

{‖Y − CX‖2
2 +λkψk(X)} (32)

where k = 2, 3, 4, 5.
Minimizations of (32) are subsequently carried out with

the TwIST algorithm [34]. The TwIST algorithm is given in
Algorithm 2 where MaxIter and the stopping criterion ε are
the same as in the GMC case.

The operator 	λk (·) in Algorithm 2 is a shrink-
age/thresholding/denoising function. In this article, we used
shrinkage/thresholding operators in minimizers with L1 and
L p for 	λk (·) as also used in [24]

	λk (u) =
∣∣proxλk

ψk
(u)

∣∣∣∣proxλk
ψk
(u)

∣∣ + λk
u for k = 2 or 3 (33)
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Algorithm 2 TwIST Algorithm
1: Input: Ship-centered-masked SAR image Y
2: Output: Radon image X
3: Set: λk > 0 and α = 1.96 (as in [34])
4: Set: X (1) = 	λk (X

(0)) and i = 1
5: do
6: w(i) = X (i) + CT (Y − CX (i))
7: Obtain 	λk (w

(i)) for ψk

8: X (i+1) = (1 − α)X (i−1) − αX (i) + 2α	λk (w
(i))

9: i + +
10: while ε(i) > 10−3 or i < MaxIter

Fig. 2. Block diagram of the proposed method.

and the denoising operators for the TV and nuclear norm priors

	λk (u) = proxλk
ψk
(u) for k = 4 or 5 (34)

where proxλk
ψk
(·) is the Moreau proximal operator for ψk(·).

The soft thresholding operation is the proximal operator
for L1-norm, whereas for L p-norm, the proximal operator
is computed with an iterative algorithm called generalized
soft thresholding (GST) [24], [39]. The proximal operator for
nuclear norm is obtained via singular value soft thresholding
as in [38], and for TV norm, it is efficiently computed by
using Chambolle’s method in [40].

III. SHIP WAKE DETECTION

Our detection algorithm includes three important steps
as shown with different colored rectangles in Fig. 2:
1) preprocessing and inverse problem solution (blue rectan-
gles); 2) detection of wakes in the Radon domain (gray

rectangles); and 3) validation in the spatial domain (green
rectangle). The blue rectangle within the red dashed-line shape
in Fig. 2 constitutes the main contribution of this article,
while the detection/validation steps are inspired by the method
in [10] with all changes explained in detail in the sequel.

The preprocessing step consists of two steps including the
creation of ship-centered and masked images and the inverse
problem to obtain X̂MAP as discussed in the previous sections.
For the masking operation by Graziano et al. [10], instead of
replacing the area of the ship location with the mean intensity
as is done in this article, only the unmasked pixels have been
taken into account and the area containing the ship and land
returns is ignored (for details see [10, p. 4]).

Upon obtaining the estimate X̂MAP, the first detection step is
to restrict the peak/trough searching area in the Radon domain
(r, θ ). Since the image is centered on the ship, we ensure that
the peaks/trough of all possible wakes are located between two
sine waves [10], [14] with: |r | ≤ A sin θ where the sine wave
peak point A refers to the maximum azimuth shift. Although
the antenna velocity and the ship velocity along the slant range
could be calculated using the slant range in the presence of
field data, we chose to select A depending on the number of
pixels in the image azimuth dimension M .

The value A has a crucial importance in the detection
process. Selecting a large value for A increases the searching
area, which is increasing the possibility of misdetecting noisy
peaks as wakes. Conversely, selecting it as a small value may
cause the ship wakes to fall outside the search area. Here,
we use A = M/10, which we have shown to lead to the best
results for a range of [M/15,M/5] in [41].

In the literature, it has been widely stated that the most
visible wake is the turbulent wake [4], [15] and as stated in
Section II-A, in most cases, it can be surrounded by bright
narrow V-wake. Hence, the next step is detecting a peak/trough
pair in the restricted area of X̂MAP that corresponds to the
turbulent and one arm of the narrow V-wake, respectively.
A window of size 4◦ for detecting turbulent/narrow V-wake
pair is then scanned. The pair which maximizes the difference
in amplitudes is selected as turbulent/narrow V-wake pair.
Following the detection of the turbulent/narrow V-wake pair,
the other arm of the narrow V-wake is searched on the other
side of the turbulent wake within the same window size. The
point with the maximum amplitude is selected as the second
narrow V-wake.

As discussed in the previous sections, the Kelvin wake is
outer signature of a moving vessel. In order to detect both
Kelvin arms, both sides of the detected turbulent wake are
searched with a half-angle window of size 10◦ starting from
±10◦ to ±20◦ [2], [8] and points with maximum amplitudes
on each side are then selected as Kelvin arms.

Up to this point, candidate wakes are detected by using the
inverse problem solution X̂MAP, and the next step consists
in validating the detected wakes, which includes removal
of half-lines and confirmation of detected wakes via mea-
sure indexes. The validation step is performed in the image
domain since it has been stated in [21] that validation in
the Radon domain might lead to erroneous results. Hence,
points detected in the Radon domain are instead transformed
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into lines in the image domain via the inverse Radon
transform.

The half of the lines is first removed. This has been
referred to as the 180◦ ambiguity problem in [10]. To solve
this ambiguity, only the detected turbulent wake is used.
The average intensity over the line representing the turbulent
wake is calculated, and the half-line having lower average
(since the turbulent wake is a dark line) is selected as the
un-confirmed half-line corresponding to the turbulent wake.
Half-lines belonging to the other detected wakes are selected
if they are located in ±45◦ on either side of the unconfirmed
turbulent wake.

Confirmation of the candidate half-lines is then per-
formed using a measure index FI , which is calculated as:
FI = Īw/ Ī − 1 and interpreted as a measure of the difference
between the average intensity over the unconfirmed wake, Īw,
and the average intensity of the image, Ī . The FI index is
positive for bright wakes and negative only for the turbulent
wake. Moreover, deciding a margin will help to reduce the
possibility of false confirmations. Thus, we assumed a mar-
gin of 10% after a trial-error procedure (see Section V-A).
Detected half-lines, which do not follow:

FI < 0 for turbulent wake

FI > 0.1 for narrow-V and Kelvin wakes (35)

are discarded, whereas the remaining half-lines are confirmed.

IV. SAR DATA SETS

In this section, we describe the data sets employed in
the experimental part of this article. These consist of both
simulated and real SAR images.

A. Simulated SAR Images of The Sea Surface

In order to generate simulated SAR images of the sea
surface, a numerical SAR image simulation software was
developed based on previous studies in [8], [42], and [43]. The
first part of the simulations consists in sea surface modeling,
where the linear theory of surface waves was used. The
ship wake modeling (Kelvin wake) considers ships as rigid
bodies moving in inviscid incompressible fluid. Here, basic
parameters belonging to ship such as length, beam, draft, and
the Froude number are used to model different types of wakes.

The SAR imaging mechanism is usually described via RAR
and specific SAR imaging. The RAR imaging is represented as
an NRCS backscattering with VV and HH signal polarization
modes and two linear modulations of tilt and hydrodynamic.
Specific SAR imaging is based on a velocity bunching mod-
ulation (for details see [8], [44], and references therein).

B. Real SAR Data

SAR images from four different satellite platforms, namely
TerraSAR-X, COSMO-SkyMed, Sentinel-1, and ALOS2, are
employed. All TerraSAR-X images [45] are X-band Stripmap
products with 3-m resolution for both azimuth and range
directions. We have used three images, two of which are in
HH polarization with the third in VV polarization. Of the

COSMO-SkyMed data sets, we have used 2 X-band images
including ship wake patterns. These are Stripmap products and
their resolution is 3 m for both azimuth and range directions,
in different polarizations. The Sentinel-1 images utilized in this
article are C-band SAR images and have 10-m resolution for
both azimuth and range directions. We have used four images,
all of which are in VV polarization. Finally, we have used
two ALOS2 images that are L-band and in HH polarization.
ALOS2 images have 3-m resolution. From all images, we have
selected 28 different ship wake patterns (28 different ships
with corresponding wakes) by visual inspection and used them
for experimental analysis.

We created ship centered image tiles and used them as input
for the ship wake detection procedure discussed in the previous
section. We assume that ship locations for the selected ships
are known. In practice, this step can be replaced with ship
detection techniques such as CFAR approaches (see [46]).

All ships in the created ship-centered image tiles are first
masked to remove the bright spots in the Radon domain
resulting from the ship itself. This allows us to discriminate
bright points as possible ship wakes in the Radon domain.
Following the preprocessing operations, the proposed inverse
problem-based ship wake detection algorithm has been tested
using the 28 aforementioned image tiles. In Table I, each
image tile is shown with their visible wakes and corresponding
details. As it can be seen, only two image tiles (1.1 and 2.6) out
of 28 have all five possible types of ship wakes. The remaining
images have less than five wakes, and the performance of the
proposed method and the reference methods are evaluated as
true detections of ship wakes. True detection in experimental
analysis implies detecting visible wakes and discarding invis-
ible wakes.

V. EXPERIMENTAL RESULTS

The proposed method was tested from three different
perspectives using both simulated and real data.

1) We first used simulated SAR images of the sea surface
including ship wakes.

2) Subsequently, we conducted experiments to determine
the best choice of prior for solving the inverse problem
in (1).

3) Finally, we compared the best method tested at
2) to state-of-the-art approaches for ship wake detection.

The performance comparison was carried out in terms of
receiver operation characteristics (ROC) as well as other mea-
sures, which are specifically described in Table II. Sensitivity
quantifies the number of true positive (TP) in proportion to
the total number of detections and specificity does the same
for true negatives (TNs). The percentage accuracy shows the
correct detection percentage over TP and TN values and
was used to assess the ship wake detection performance of
the method directly. The F1 score is also a metric, which
shows the accuracy of the methods. Positive likelihood ratio
(LR+) shows how likely (or suitable) the utilized model is
to detect correct classes. The last metric used in this article
is Youden’s J index, which shows the success of the test
with values between 0 and 1. The value 0 implies that the
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TABLE I

DETAILS FOR REAL SAR IMAGES

TABLE II

DESCRIPTIONS OF ALL PARAMETERS, PRIORS, AND

PERFORMANCE COMPARISON METRICS

“test is unsuccessful,” whereas 1 implies that “the test is
successful.”

A. Wake Detection in Simulated SAR Images

In the first set of experiments, we tested the proposed
method with simulated SAR images of the sea surface.
We generated two SAR images with VV polarization and a
4-m/s wind speed, 50 m size of ship, which is moving with a

velocity of 9 m/s. In addition, both images are with different
ship orientation, which effects the visibility of the wakes [47].
Inverse problem solution with all employed priors is obtained,
and the procedure described above for detecting ship wakes is
modified just to detect Kelvin arms instead of all five wakes
as simulated images only contain one or two visible Kelvin
arms.

A comparison study has been carried out for both images,
and all visible wakes are successfully detected for all types
of priors. Moreover, we apply different F index values to
determine the most suitable value for F in the confirmation
step, and we conclude that the F index value of 0.1 is enough
to discard wrong detections, which follows our assumption for
real SAR images in this article. In Fig. 3, simulated images and
the wake detection results for GMC, L1, and TV are depicted.
On examining the figure, it is clear that all three visible
Kelvin wakes are detected, and the invisible one in Fig. 3(a)
is discarded.

B. Inverse Problem Solution for Various Priors

In the second set of experiments, we tested the proposed
ship wake detection framework in the context of using different
types of priors. The results are presented in Table III. The
performance metrics in Table III correspond to all 28 real SAR
images in our data set. Examining the values in Table III, it is
obvious to state that the inverse problem approach based on
the GMC achieves the highest performance metrics among all
methods tested. The percentage accuracy is around 10% higher
than the TV, which is the second best.

ROC curves for all priors are depicted in Fig. 4, which
demonstrates ship wake detection performance via TPR (or
Sensitivity) versus FPR (or 1—Specificity). Examining the
plots in Fig. 4, it can apparently be seen that the proposed
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Fig. 3. Ship wake detection for simulated SAR images of the sea surface. (a) and (e) Simulated images. (b) and (f) GMC. (c), (d), (g), and (h) TV prior
detection results.

TABLE III

DETECTION PERFORMANCE OF DIFFERENT PRIORS OVER ALL DATA SETS

Fig. 4. Performance comparison of different priors in terms of receiver
operating characteristics (ROC) curves.

GMC-based inverse problem method outperforms all other
priors in terms of ROC analysis.

In Fig. 5, we show visual results to assess the ship wake
detection performance. In Fig. 5(a), the image for wake 2.2 is
shown. There are three visually detected wakes corresponding
to turbulent wake, one arm of narrow V-wake, and one Kelvin

arm. Specifically, in Fig. 5, for wake image 2.2, GMC and TV
detect two out of three visible wakes and discard all invisible
wakes, which leads to an 80% detection accuracy. For the rest
of the priors, detection accuracy is lower, e.g., for L0.5 and L1,
it is 60%.

C. Comparison to the State of the Art

In the third set of experiments, we used the best method
from the previous section, i.e., the one based on the GMC
and compared it to two state-of-the-art methods: 1) the ship
wake detection method proposed by Graziano et al. [10]
and 2) the log-regularized Hough transform-based
method (Log-Hough) [23]. The results are presented in
Tables IV and V.

The performance of all three methods over all data sets is
presented in Table IV in terms of the same metrics discussed
in the previous section. The proposed method outperforms
the reference methods by 10% in terms of accuracy and
to various degree about the other performance metrics pre-
sented. Specifically, the TP value is higher than for the
other methods, whereas the TN value is slightly lower than
Graziano et al. [10].
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Fig. 5. Visual ship wake detection results for different priors. (a) Ship centered tile (wake 2.2). (b) GMC. (c)–(g) TV. (h) Nuclear. Yellow, green and red
lines represent turbulent, narrow-V and Kelvin wakes, respectively. Ship wake image in (a) has only three visible wakes, which are turbulent, one narrow-V
and one Kelvin wakes. Detecting these three wakes and discarding two unimaged wakes at the same time has 100% accuracy.

TABLE IV

DETECTION PERFORMANCE COMPARISON OF METHODS OVER ALL DATA SETS

When examining the values in Table V for each data
source, the proposed method achieves at least 75% detec-
tion performance for each satellite platform. However, for
Sentinel-1, the method of Graziano et al. [10] achieves the
best detection results. The lower performance of the proposed
method for Sentinel-1 images can be explained in several
ways. First, the resolution of Sentinel-1 images is less than
that of the other platforms (i.e., 10 m). We believe that
the low resolution affects the performance of the proposed
method since the visibility of the wakes is reduced in low
resolution. Besides, as high frequency (smaller wavelength),
SAR sensors determine more surface scattering from rough
surfaces, images in L-band (ALOS2) and C-band (Sentinel-2)
include less sea surface details than X-band (TerraSAR-X and
COSMO-SkyMed). This directly influenced the performance
of the proposed method and determined the most accurate
results to be obtained for X-band images.

When examining the TN values in Table V for Sentinel-1
images, the proposed method achieves 37.5%, whereas the
method of Graziano et al. 50%, even though the TP value
of the proposed method is the highest. Enhancing the image
in Radon space using the proposed methodology increased
the detectability of the visible wakes (TP values) in the
images. However, in discarding the invisible wakes (TN
values), Graziano’s method is generally better than the pro-

Fig. 6. Performance comparison in terms of ROC curves.

posed method, whereas it falls short in detecting the vis-
ible wakes. The values of false positive (FP) and false
negative (FN) are also related to the Eldhuset’s [15] perfor-
mance metrics that quantify false and lost wakes. In partic-
ular, FP and FN can be defined as the percentage of false
and lost wakes, respectively. Examining FN and FP values,
we can clearly see that the proposed method is substantially
better than the reference methods in terms of FP results
(false wakes), which is obvious especially in TerraSAR-X
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Fig. 7. Visual ship wake detection results. (Top to Bottom) Each line represents wakes 1.1, 3.3, 4.1, 6.1, and 8.2., respectively. (a) Ship-centered tile.
(b) Proposed (GMC). (c) Graziano et al. [10]. (d) Log-Hough [23]. (e) Ship-centered tile. (f) Proposed (GMC). (g) Graziano et al. [10]. (h) Log-Hough [23].
(i) Ship-centered tile. (j) Proposed (GMC). (k) Graziano et al. [10]. (l) Log-Hough [23]. (m) Ship-centered tile. (n) Proposed (GMC). (o) Graziano et al. [10].
(p) Log-Hough [23]. (q) Ship-centered tile. (r) Proposed (GMC). (s) Graziano et al. [10]. (t) Log-Hough [23].

images where it results in 20% higher wake detection
accuracy. For all the methods, FN values (the number of lost

wakes) are relatively small and do not directly correlate with
performance.
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TABLE V

DETECTION PERFORMANCE COMPARISON OF METHODS FOR EACH DATA SET SEPARATELY

In Fig. 6, ROC curves for the methods tested in this
section are presented. The superiority of the proposed method
compared to existing ones is obvious. Graziano et al. [10]
is the closest to the proposed method in terms of the ROC
curve. The Log-Hough falls short compared to the proposed
method and Graziano et al., which is not surprising since
the log-regularization in [23] converges to an L p when p
tends to 0. Example detection results for various images are
presented in Fig. 7.

VI. CONCLUSION

In this article, we proposed a novel automatic approach for
ship wake detection in SAR images of the sea surface acquired
by various satellite platforms including TerraSAR-X, ALOS2,
COSMO-SkyMed, and Sentinel-1. The proposed approach
handles wake detection as an inverse problem to enhance
information in the Radon domain to promote linear features.
The solution to the corresponding optimization problem is
obtained via a Bayesian formulation using a MAP estimator.
The proposed method based on the GMC prior was first
compared to various benchmark priors that are based on L1,
L p , T V , and the nuclear norms. The GMC-based method
was then compared to two state-of-the-art methods including
Graziano et al. [10], [22] and Log-Hough [23]. The superior-
ity of the GMC-based method has been clearly demonstrated
in both sets of simulations with at least 10% accuracy gain
over all data sets.

We conclude that enhancing sea SAR images in Radon
space provides a more suitable platform for detecting
the peaks/through compared to the direct approach by
Graziano et al. Nevertheless, merely solving an inverse prob-
lem is not sufficient to obtain the most accurate results, since
the choice of the prior has a crucial effect on the results.
Indeed, only two priors (GMC and TV) lead to higher accuracy
than Graziano et al.

Furthermore, the proposed approach differs from other
approaches in the literature, which require the use of some

ad hoc thresholding for enhancing the image. The main tun-
able parameter in our method is the regularization constant, λ.
The need to adjust the scale parameter will be removed in
future studies, which will consider a hierarchical Bayesian
inference step. Investigating more complex sparsity enforcing
priors in conjunction with nonconvex optimization algorithms
is also one of our current endeavors.

APPENDIX

Abbreviation Description
SAR Synthetic aperture radar.
MC Minimax concave.
GMC Generalized minimax concave.
MAP Maximum a posteriori.
COSMO-SkyMed Constellation of small Satellites for the

Mediterranean basin Observation
ALOS2 Advanced Land Observing Satellite 2.
TV Total variation.
FB Forward-backward.
TwIST Two-step

iterative shrinkage/thresholding.
MCMC Markov Chain Monte Carlo.
p-MCMC Proximal Markov Chain Monte Carlo.
GST Generalized soft thresholding.
RAR Real asperture radar.
NRCS Normalized radar cross section.
VV Vertical–vertical.
HH Horizontal–horizontal.
CFAR Constant false alarm rate.
ROC Region of convergence.
TPR True positive rate.
FPR False positive rate.
Log-Hough Log-regularized

Hough transform
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KARAKUŞ et al.: SHIP WAKE DETECTION IN SAR IMAGES VIA SPARSE REGULARIZATION 1677
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of Technology (IZTECH), Urla, Turkey, in 2012 and
2018, respectively.

From October 2009 to December 2017, he was
with the Department of Electrical and Electronics
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