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Abstract: - The paper presents the technique of artificial neural networks used as classifier of hydroacoustic signatures 

generated by moving ship. The main task of proposed solution is to classify the objects which made the underwater 

noises. Firstly, the measurements were carried out dynamically by running ship past stationary hydrophones, mounted 

on tripods 1 m above the sea bottom. Secondly to identify the source of noise the level of vibration were measured on 

board by accelerometers, which were installed on important components of machinery. On the base of this 

measurement there was determined the sound pressure level, noise spectra and spectograms, transmission of acoustic 

energy via the hull into water. More over it was checked by using coherence function that components of underwater 

noise has its origin in vibrations of ship’s mechanisms. Basing on this research it was possible to create the 

hydroacoustic signature or so called “acoustic portrait” of moving ship. Next during the complex ships’ measurements 

on Polish Navy Test and Evaluation Acoustic Range hydroacoustic noises generated by moving ship were acquired. 

Basing on these results the classifier of acoustic signatures using artificial neural network was worked out. From the 

technique of artificial neural networks the Kohonen networks which belongs to group of self organizing networks 

where chosen to solve the research problem of classification. The choice was caused by some advantages of mentioned 

kind of neural networks like: they are ideal for finding relationships amongst complex sets of data, they have 

possibility to self expand the set of answers for new input vectors. To check the correctness of classifier work the 

research in which the number of right classification for presented and not presented before hydroacoustic signatures 

were made. Some results of research were presented on this paper. Described method actually is extended and its 

application is provided as assistant subsystem for hydrolocations systems of Polish Naval ships. 
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1   Introduction 
Classification is a procedure in which individual items 

are placed into groups based on quantitative information 

on one or more characteristics inherent in the items 

(referred to as traits, variables, characters, etc) and based 

on a training set of previously labeled items [7, 8]. 

Formally, the problem can be stated as follows: given 

training data  produce a classifier 

 which maps an object  to its 

classification label . Classification algorithms are 

very often used in pattern recognition systems [5]. 
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While there are many methods for classification, they are 

solving one of three related mathematical problems. The 

first is to find a map of a feature space (which is 

typically a multi-dimensional vector space) to a set of 

labels. This is equivalent to partitioning the feature space 

into regions, then assigning a label to each region. Such 

algorithms (e.g., the nearest neighbor algorithm) 

typically do not yield confidence or class probabilities, 

unless post-processing is applied. Another set of 

algorithms to solve this problem first apply unsupervised 

clustering to the feature space, then attempt to label each 

of the clusters or regions [7]. 

The second problem is to consider classification as an 

estimation problem, where the goal is to estimate a 

function of the form: 
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where:  
r

is the feature vector input; 

)(⋅f

θ

 is the function typically parameterized by 

some parameters 
r

.  

 

In the Bayesian approach to this problem, instead of 

choosing a single parameter vector θ
r

, the result is 

integrated over all possible thetas, with the thetas 

weighted by how likely they are given the training data 

D : 
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The third problem is related to the second, but the 

problem is to estimate the class-conditional probabilities 

)( classxP
r

 and then use Bayes' rule to produce the class 

probability as in the second problem. 

The most widely used classifiers are the Neural Network 

(Multi-layer Perceptron, Self Organizing Maps), Support 

Vector Machines, k-Nearest Neighbours, Gaussian 

Mixture Model, Gaussian, Naive Bayes, Decision Tree 

and RBF classifiers. 

In this paper the hydroacoustics signals classification is 

understood as the process of automatically recognition 

what kind of object is generating acoustics signals on the 

basis of individual information included in generated 

sounds. Hydroacoustics signal classification is a difficult 

task and it is still an active research area. Automatic 

signal classification works based on the premise that 

sounds emitted by object to the environment are unique 

for that object. However this task has been challenged by 

the highly variant of input signals. The ship own noise is 

combined with technical environmental noise coming 

from remote shipping, ship-building industry ashore or 

port works. There exists also the noise of natural origin: 

waves, winds or rainfalls. Additional obstruction in the 

process of spectral component identification can be the 

fact that various ship’s equipment may be the source of 

hydroacoustical waves of similar or same frequencies. 

The propeller is the dominant source of the 

hydroacoustical waves at higher vessel speeds. It 

generates the driving force that is balanced by the 

resistance force of the hull. It also stimulates the 

vibrations of the hull’s plating and all elements mounted 

on it. It should be noticed that, sounds signals in training 

and testing sessions can be greatly different due to above 

mentioned facts and because of object sounds change 

with time, efficiency conditions (e.g. some elements of 

machinery are damaged), sound rates, etc. There are also 

other factors that present a challenge to signal 

classification technology. Examples of these are 

variations of environment conditions such as depth and 

kind of bottom of area were measured take place, the 

water parameters such as salinity, temperature and 

presence of organic and non organic pollutions. 

Acoustic signatures have the great significance because 

its range of propagation is the widest of all physics field 

of ship. Controlling and classification of acoustic 

signature of vessels is now a major consideration for 

researchers, naval architects and operators. The advent 

of new generations of acoustic intelligence torpedoes 

and depth mines has forced to a great effort, which is 

devoted to classify objects using signatures generated by 

surface ships and submarines. It has been done in order 

to increase the battle possibility of submarine armament. 

Its main objectives are to recognize the ship and only 

attack this one which belongs to opponent.  

In the paper the Kohonen Neural Networks were 

discussed as hydroacoustic signals, generated by moving 

ship, classifier. 

 

 

2   Ship’s Hydroacoustic Signatures 
2.1 Transmission of acoustic energy 
People, who has spent time aboard a ship known that 

vibration and related with them noise is a major problem 

there. First off all it should be proved that underwater 

radiated noise has its origin in vibration of ships 

mechanism [2]. This can be done by simultaneous 

measurements of underwater noise and vibrations and 

then comparison of results using coherence function. 

Such result are gain over during research on stationary 

hydroacoustic range where a measured vessel is 

anchored between buoys which determine the area of 

range (see figure 1). In this form of measurements the 

array of hydrophones is positioned one meter above the 

sea bottom and under the hall of the ship. 

Accelerometers are installed inside important rooms of 

ship (engine and auxiliary rooms) to measure vibration. 

The points of positioning the accelerometers are such 

chosen to have adequate measurements of transmission 

vibration energy into water as sound energy. Mostly this 

points are the places of foundation of main engines, 

auxiliary engines or set of current generator. 

 

 
Fig. 1. Schema of hydroacoustic range during 

measurements using statical method; 1) sensors of 

acoustic signatures – array of hydrophones, 2) sensors of 

vibrations – accelerometers. 

 

The directional radiation from the vessel is injected into 

the water medium, where not only the source but also 

refraction and boundaries influence the acoustic 

propagation. At long ranges, the low frequency noise 

originates mainly from a very narrow sector [11]. The 

ambient noise due to long – range shipping indicates that 

shipping noise constitutes a 20 to 30 dB elevation of the 

ambient noise levels in the low frequencies. What more 

the level of noise radiated to the sea environment in the 
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all frequencies is increasing due to both the increased 

number of vessels at the sea and the increased engine 

power of the modern ships. Ship noise does not transmit 

acoustic energy uniformly in all directions, but has a 

characteristic directional pattern in the horizontal plane 

around the radiating ship as it is shown on figure 2. 

More noise is radiated in the aft direction, because of the 

working propellers and because the hull is screening in 

the forward direction and the wake at the rear. 

 

 
Fig. 2. Equal pressure  level contours of noise around a 

ship 

 

It have to be determined how much total acoustic power 

is radiated by a running ship and how it compares with 

the power used by the vessel for propulsion through the 

water. This can be done by measuring vibration aboard 

the ship (inside the engine room) and compare it into the 

underwater sound. The similarities between the vibration 

signals of chosen elements within the hull and of the 

ship and the underwater acoustical pressure in the water 

are represented by the coherence function. For two 

signals of pressure  and vibration  the coherence 

function is described ass follow [3]:   
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where:  

p
G  and  denote the corresponding spectral 

densities of signals ,  respectively; 

v
G
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pv
G  denotes the cross spectral density. 

 

Coherence function is a real function accepting 

arguments from the range of: 
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Therefore, the zero value occurs for signals that do not 

have the cause association and the one value for signals 

coming from the same source. Using the dependence (3)  

the coherence function between the signals can be 

determined. The components in the coherence spectrum 

determined this way reflect qualitative correlations 

associated with particular frequencies coming from a 

working piece of equipment. 

Coherence coefficient function is convenient in this kind 

of research because it allows to determine the similarity 

between the spectra of particular signals. In the table 1 it 

can be seen a series of discrete components for which the 

coherence values are maximum that means from 0.8 to 1. 

The interpretation of the underwater noise of a vessel 

was conducted by analyzing the spectra of consecutively 

powered up machines and comparing them with the 

corresponding underwater noise. In the first phase the 

measurements of vibration velocities and aggregate 

noise (primary engines not working) were carried out. 

Then, the measurements were continued for the left, 

right and both main engines. 

 

Table 1. Vibration and coherence function of 

hydroacoustic pressure and vibration. 

Frequency 

[Hz] 

Coherency 

function 

Vibration 

on the 

hull 

[ / ]
16.5 0.8 13 

25 1 80 

37.5 0.8 69 

50 1 42 

62.5 0.9 8.4 

75 1 72 

87.5 1 64 

100 0.8 23 

112.5 1 55 

125 1 28 

150 1 66 

162.5 1 35 

175 0.7 69 

200 0.9 19 

 

The comparison of vibrations velocities registered at the 

ship’s hull and at the fundament of the power generators 
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with the underwater noise were presented in table 2. 

Analogically, the research was conducted for the ship’s 

main engine. The results of narrow-band spectral levels 

and  the coherence function were shown on figure 3. 

 

Table 2. Basic frequencies and harmonics of vibration. 

Frequency 
Vibration 

Formula [Hz] 
Harmonics 

Unbalanced 

parts 0n
kff =  25 

50, 75, 100, 125, 

150, 175, 200, … 

Diesel firing 

rate 4

sfkz
f oc

s
=  12.5 

25, 37.5, 50, 62.5, 

75, 87.5, 100,112.5, 

125, 137.5, 150, … 

 

where:  

K,2,1=k  is the number of next harmonics; 

0
f  is the main frequency; 

s  is the coefficient of stroke (equal 0.5 for four 

stroke engines); 

c
z  is the number of cylinder; 

 

 
Fig. 3. Narrow-band spectra and coherence function of 

underwater acoustic pressure and vibration of a 

stationary ship 

 

Relations between mechanical vibration and 

hydroacoustic field of a ship is presented by 

transmission coefficient of the mechanical vibration α : 
 

cv

L
Hzm

ρ
α 1,1=                                                                       (5) 

 

where: 

Hzm
L

1,1
 is sound pressure level relative to 1μPa  

at 1 m for 1 Hz; 

ρ  is fluid density for sea water; 

v  is vibration velocity; 

c  is propagation velocity of sound wave. 

fRLL
Hzm

Δ−+= log10log20
1,1

                                            (6) 

 

where:   

L  is acoustic pressure level under ship (dB re μPa); 

R  is the distance between a ship and a sensor (m); 

fΔ  is the width of an applied filter (Hz). 

 

The results of the acoustic levels, vibration speeds and 

coefficient α  are shown in table 3. 

 

Table 3. The energy transmission coefficient calculated 

for consecutive frequencies 

f (Hz) L (Pa) v (m/s) α 

12.5 3.14 0.001 2.2  10-3

25 6.3 0.00032 1.4  10-2

37.5 14.1 0.00028 3.4  10-2

75 56.2 0.0005 7.7  10-2

 

The proportionality factor cρ  is the acoustic resistance 

(specific impedance) of the fluid and for sea water is    

1.5 10
5
 g/cm

2
 s.    

Though radiated sound is frequently expressed in 

spectrum levels, that is, in 1 Hz bands (shown in ), 

frequency analyses are more conveniently made in wider 

bands so the results are reduced to a band of 1 Hz.  The 

results are reduced to a band of 1 Hz by applying a 

bandwidth reduction factor equal to 10 log of the 

bandwidth used. The distance in this case is the 

horizontal distance, while the actual source-to-receiver 

range, the radial distance, was used for these 

measurements. Therefore here should be calculated as 20 

log range (spherical) spreading loss applies in the 

acoustic field at all frequencies. 

Hzm
L

1,1

 

2.2 Sources of ship noise and its 

deviations 
Several sources of noise radiation from a ship exist. 

They have the characteristic frequency bands and are 

mainly dependent on speed. Among the main sources of 

ship noises are: 

– propeller, 

– machinery, 

– hydrodynamic processes. 

The sources of ship underwater sounds are diverse and a 

given source changes its sound output with ship speed. 

Therefore ship noises are variable complex and sound 

components are distributed through the entire frequency 

range. 

The main source is the hull, which transmits the 

vibrations of the machinery into the water. The 

propellers also radiates high level of noise because of 

hydrodynamic streams and cavitations.  
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Machinery noise originates as mechanical vibrations of 

many devices inside a moving vessel. They create 

underwater noise in the following ways: 

– rotating unbalanced shafts, 

– repetitive discontinuities, 

– explosions in cylinders, 

– cavitation and turbulence in the fluid flow in 

pumps, pipes and  valves, 

– mechanical friction in bearings. 

The first three of these sources radiate sounds of a 

discrete spectrum in which the noise is dominated by 

tonal components at the basic frequencies and their 

harmonics [11]. 

The harmonic structure of radiated noise is complex, and 

even a discrete component generated by a single source 

of noise is irregular and variable. With changing 

conditions of the ship it can be observed variations of 

level and frequencies. 

There are various paths of sound transmission such as 

the mounting of the main engine or diesel generator, 

which connect the vibrating parts to the hull. Radiation 

at discrete components, caused by low frequency hull 

vibrations, excited by the machinery is easily detected. 

In the noise reduction control, it must be reduced as 

much as possible.  

One of the methods of identification of underwater 

noises generated by moving ship is by investigation of 

its spectrum. Basing on the conducted analysis it is 

possible to isolate discrete components in the spectra 

associated with the work of mechanisms and equipment 

on board along with the broad band spectrum reflecting 

the work of the cavitating propeller, turbulent flow in 

piping and ventilators or bearing frictions. 

 

 
Fig. 4. The underwater noise spectrum or so called 

“acoustic portrait” of a moving ship; 1) shaft, 2) diesel 

generator, 3) propeller blades, 4) main engines, 5) 

propeller. 

 

Figure 4 shows a keel aspect narrow-band power 

spectrum in 0.5 Hz bands of a typical ship going with the 

speed of 3.8 knots. The radiated noise data show high-

level tonal components which are from the ship’s service 

diesel generator, main engine firing rate and blade rate. 

A ship’s service diesel generator creates a series of 

harmonics which amplitudes and frequencies are 

independent of ship speed. Propellers generate cavitation 

especially at high speeds of a vessel (above 8 kn) which 

creates noise having a continuous spectrum. The 

cavitation is production and collapse of cavities and 

bubbles produced by the propeller action. Cavitation 

noise consists of a large number of random small bursts 

formed by bubble collapse. As it was mentioned earlier 

cavitation noise has a continuous spectrum. At the higher 

speed of the vessel the propeller noise increases and the 

main energy shifts to lower frequencies [10]. 

The sound level spectrum constitutes a mixture of the 

continuous and discrete lines. The former are 

characterized by a maximum in the area from 50 to 200 

Hz, which is a typical feature in ship noise spectra. At 

frequencies greater than 200 Hz, sound pressure level 

(SPL) falls by 6 dB, when the frequency is doubled. It 

means that SPL is inversely proportional to the square of 

the frequency. The discrete components are the most 

visible in a ship’s spectra since they are detected even at 

low speeds (shown on figure 4). Moreover these discrete 

components of noise spectra are called “acoustic 

portrait”, which is unique for each ship. This acoustic 

portrait is used to reveal the location and to identify the 

source of noise. 

It can’t be forgot that hydroacoustic signatures of ship is 

mainly generated by phenomena of vibrations of vessel 

working machinery. Therefore changing the speed of 

moving ship cause, first of all, the changes in sound 

volume which is described by sound pressure levels 

(shown on figure 5) what has the essential influence on 

the range of sound propagation.  
 

 
Fig. 5. The sound levels radiated by moving ship with 

different speeds; 1) 3.8 kn, 2) 8 kn, 3) 11 kn. 

 

But not only the sound level radiated by moving ship 

change with speed but also the distribution on frequency 

in hydroacoustic signature of ship is changing (shown on 

figure 6).  

Hydroacoustic signatures changes also with time (shown 

on figure 7). After few years of exploitation the 

conditions of mechanical elements of ship’s mechanism 

aren’t the same as after general renovation. Elements 
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like bearings, pistons and other movable elements are 

using up. So it has influence on vibrations and the same 

the distribution of frequency in hydroacoustic signatures. 

 

 
Fig. 6. The spectograms received during ship running 

over hydrophones with different speeds; 1) 3.8 kn, 2) 8 

kn, 3) 11 kn. 

 

 
Fig. 7. The spectograms received during ship running 

over hydrophones in different phase of exploitation; 1) 

after general renovation, 2) 2 years after general 

renovation. 

 

 

3 Classification Method 
3.1 Literature review 
In literature there is no description of method of 

classification hydracoustic signatures. It is caused 

because very narrow group of scientists are interesting in 

this kind of problem. Most of these scientists are related 

with military scientific center because this problem from 

military point of view is very important, so their research 

works are mostly confidential. Therefore as method of 

classification of hydroacoustic signatures are used 

mostly general methods of classification like minimal-

distance classifier, feature correlation, decision tree, 

Bayesian method or radial basis function classifiers. 

Another group establish methods such as hidden 

Markov’s model where classification is bring to problem 

of determine the model of signal.  

Because of similarity of hydroacoustic to acoustic there 

exists some basis to use methods of speech recognition 

as method of hydroacoustic signature’s classification. To 

solve problems of speech recognition or widely acoustic 

signal recognition with successful are used linear 

predictive coding method or artificial neural networks. 

 

3.2 Kohonen Neural Network 
Kohonen neural network, also known as The Self-

Organizing Map (SOM) is a computational method for 

the visualization and analysis of high-dimensional data, 

especially experimentally acquired information [2, 4, 5]. 

One of the most interesting aspects of SOMs is that they 

learn to classify data without supervision. With this 

approach an input vector is presented to the network and 

the output is compared with the target vector. If they 

differ, the weights of the network are altered slightly to 

reduce the error in the output. This is repeated many 

times and with many sets of vector pairs until the 

network gives the desired output. Training a SOM 

however, requires no target vector. 

For the purposes of this paper the two dimensional SOM 

will be discussed. The network is created from a 2D 

lattice of 'nodes', each of which is fully connected to the 

input layer.  Figure 8 shows a very small Kohonen 

network of 44×  nodes connected to the input layer 

(shown as rectangle) representing a two dimensional 

vector. 

 

 
Fig. 8. A simple Kohonen network. 

 

SOM does not need a target output to be specified unlike 

many other types of network. Instead, where the node 

weights match the input vector, that area of the lattice is 

selectively optimized to more closely resemble the data 

for the class the input vector is a member of. From an 

initial distribution of random weights, and over many 
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iterations, the SOM eventually settles into a map of 

stable zones. Each zone is effectively a feature classifier, 

so the graphical output can be treated as a type of feature 

map of the input space. 

Training occurs in several steps and over many iterations 

[5]: 

1) Each node's weights are initialized. 

2) A vector is chosen at random from the set of 

training data and presented to the lattice. 

3) Every node is examined to calculate which 

one's weights are most like the input vector. 

The winning node is commonly known as 

the Best Matching Unit (BMU). 

4) The radius of the neighborhood of the BMU 

is now calculated. This is a value that starts 

large, typically set to the 'radius' of the 

lattice, but diminishes each time-step. Any 

nodes found within this radius are deemed 

to be inside the BMU's neighborhood. 

5) Each neighboring node's (the nodes found in 

step 4) weights are adjusted to make them 

more like the input vector. The closer a node 

is to the BMU, the more its weights get 

altered. 

6) Repeat step 2 for  iterations. N
To determine the best matching unit, one method is to 

iterate through all the nodes and calculate the distance 

between each node's weight vector and the current input 

vector. The node with a weight vector closest to the 

input vector is tagged as the BMU.  

There are many methods to determine the distance for 

example [7]: 

– the most popular Euclidean distance is given as: 
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– the scalar product is given as: 
 

),cos(11),(
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– the measure according to norm L1 (Manhattan) is 

given as: 
 

∑ −=
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– the measure according to norm L can be written 

as: 
 

)(max),(
ijj

j
i

wxwxd −=                                                 (10) 

where:  

x  is the current input vector; 

w  is the node's weight vector.  

Each iteration, after the BMU has been determined, the 

next step is to calculate which of the other nodes are 

within the BMU's neighborhood. All these nodes will 

have their weight vectors altered in the next step.  

Figure 9 shows an example of the size of a typical 

neighborhood close to the commencement of training. 

A unique feature of the Kohonen learning algorithm is 

that the area of the neighborhood shrinks over time. This 

is accomplished by making the radius of the 

neighborhood shrink over time. 

To do this the exponential decay function can be used as 

follow: 

 

K,2,1,0exp)(
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where:  

0
σ  denotes the width of the lattice at time ; 

0
t

λ  denotes a time constant; 

t  is the current time-step (iteration of the loop).  

 

Every node within the BMU's neighborhood (including 

the BMU) has its weight vector adjusted according to the 

following equation: 

 

 ))()()(()()()1( twtxtttwtw
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where: 

t  represents the time-step; 

η  is a small variable called the learning rate, which 

decreases with time.  

 

The decay of the learning rate is calculated each iteration 

using the following equation: 
 

K,2,1,0exp)(
0

=⎟
⎠
⎞

⎜
⎝
⎛−= t

t
t

λ
ηη                                     (13) 

 

In equation 12, not only does the learning rate have to 

decay over time, but also, the effect of learning should 

be proportional to the distance a node is from the BMU. 

Indeed, at the edges of the BMUs neighborhood, the 

learning process should have barely any effect at all. 

Ideally, the amount of learning should fade over distance 

similar to the Gaussian decay according to the formula: 

 

K,2,1,0
)(2

exp)(
2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= t

t

dist
t

σ
θ                                 (14) 

 

where: 

dist  is the distance a node is from the BMU; 

σ  is the width of the neighborhood function as 

calculated by equation (11). 
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Fig. 9. The BMU's neighborhood. 

 

Another method of learning Kohonen’s neural networks 

is learning with strain. The learning with strain is special 

modification of concurrent learning. This learning 

method allows to use Kohonen’s network in cases when 

the vectors of desired output signals of neural networks 

are known. This learning method has the character of 

straining the correct answers of network despite of what 

network want to do. This method needn’t to calculate 

the values of errors made by neural network as it has 

place in classic feed forward networks, what makes 

possible to speed up the learning process. The following 

methods of learning with strain can be pointed:  

j
z

– method of autoassociation:  

 

))()()(()()()1( tztxtttwtw
jjijij
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– method of incremental autoassociation:  
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– method of bringing nearer the weight’s vector to 

the desired output vector: 

 

))()()(()()()1( twtztttwtw
ijjijij

−Θ+=+ η                        (17) 

Each time the choice of presented above method must be 

done basing on usefulness in concrete task. It must be 

noticed that because of lack of general theory in this 

case there are necessary the experiments and research 

leaning on empirical investigations. 

 

 

4   The Results of Research 
4.1 The measurements 
During research the five ships were measured on the 

Polish Navy Test and Evaluation Acoustic Ranges which 

schema was presented on figure 10.  Ships No. 1 was 

minesweeper project 206FM, ship No. 2 was 

minesweeper project 207D, ship No. 3 was salvage ship 

project 570, ship No. 4 was minesweeper project 207P, 

and ship No. 5 was racket corvette project 1241RE. 

The recordings were carried out by means of the array of 

hydrophones. Several hydrophones were strung in a line 

along the bottom in shallow water. The depth was about 

10 m. During the ship measurements, the average see 

wave height was less than 1 m and wind speeds less than 

5 m/s, so the ambient noise level was low. At the time of 

the measurements the sound velocity profile was typical 

for the summer. This curve was smooth with gradually 

decreasing gradient without mixed layers. The ship 

under test was running at a constant speed and course 

during cross over hydrophones. The array of 

hydrophones was mounted about 1 m above sea bottom 

on tripod. The bottom-mounted hydrophones range is 

very useful for measuring the noise of surface ships. 

What more when they are used bottom-fixed 

hydrophones the irrelevant low-frequency wave-induced 

noise is also eliminated. Throughout this measurement, 

the signal-to-noise ratio for the spectrum data was 

greater then 28 dB.  

 

 
Fig. 10. Schema of hydroacoustic range during 

measurements; 1) sensors of acoustic signatures – array 

of hydrophones, 2) measured ship, 3) ship – base with 

mounted hydroacoustic measuring system. 

 

All of investigated ships were measured at the similar 

hydrological and metrological conditions. Every ship 

was measured with few, various speed of crossing. 

Data form hydrophones were recorded on digital 

recorder designed by crew of Radiolocation and 

Hydrolocation Department of Polish Naval Academy. 
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This system has possibility to simultaneous recording in 

16 channels with resolution of 16 bits and sampling 

frequency up to 250 kHz per channel. Digital recorder 

has possibility to make in real time transformation and 

analysis of acquired data. More over it is possible to 

create own programs for special use. As a sensors of 

acoustic field of moving ship were used hydrophones 

produced by Reson model TC4032. This hydrophones 

has omnidirectional characteristic in horizontal 

directivity so they were positioned parallel to the plane 

of sea bottom. Other parameters which cause that these 

sensors are proper to acquire data for classification 

systems are: high sensitivity equal -170 dB re 1V/μPa, 

preamplifier gain of 10 dB and broad usable frequency 

range from 5 Hz to 120 kHz. Mentioned above digital 

recorder has possibility to direct connections of 

hydrophones TC4032. 

 

4.2 Preparing data for classification 
The best solutions to detect a ship are the discrete 

components in the low frequency part of the ship’s noise 

spectrum and that only narrow band filters can be used. 

This must be done because there are no components 

discrete lines at frequencies range grater than 200 Hz in 

the modern submarines and surface warships. In the 

Baltic’s shallow waters an the conditions under which 

the measurements were made, the area of optimal 

frequencies for the propagation of sound lies in the band 

from several Hz up to 5 kHz. 

Recorded during research signals were sampled on 

digital recorder with frequency of 250 kHz. From the 

theoretical point of view (Shanon-Kotielnikow Law) it is 

enough for used sensors which has the upper band of 

frequency equal 120 kHz. From the practical point of 

view it is advisable to have 10 samples per period of 

highest frequency of analyzed signals. In this case we 

have usable band of signals up to 25 kHz. In research we 

need signal of band frequency from 5 Hz (because of 

used hydrophones) up to 200 Hz (because of existence of 

discrete lines in spectrum). So used measured system is 

suitable for this research. 

To cut off signals above 200 Hz it can be used some 

digital or analog filters. In other hands using filters may 

cause to raise the noise-to-signal ratio. Therefore in 

research we do not use filters but after calculation of 

spectrum we will use only data which are above 5 Hz 

and below 200 Hz. To calculate the spectrum of recorded 

signals Discrete Fourier Transformation DFT was used. 

Discrete Fourier transform is one of the specific forms of 

Fourier analysis. DFT requires an input function that is 

discrete and whose non-zero values have a limited 

(finite) duration. Such inputs are often created by 

sampling a continuous signal like in this case 

hydroacoustic signal. The DFT is described as discrete 

series of  in frequency domain as follow: )(mX
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where: 

)(nx  is discrete series of sampled values in time 

domain of continuous variable . )(tx

 

The values of frequency of succeeding points on 

frequency axis, in which the strips of DFT are 

calculated, are described as follow: 
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where: 

s
f  denotes frequency of sampling of input signal. 

 

The Discrete Fourier Transformation was used because 

the recorded signals are archived in discrete form (after 

sampling) and because used recorder has digital 

architecture so discrete form is much more easily to be 

calculated. To obtain suitable frequency resolution of 

calculated DFT Fourier transform was calculated for 

time windows of 1 second length. More over to 

minimize to influence of leakage of DFT the chosen 

fragment of signal is multiplying with Hanning window 

before DFT calculations. Hanning window, named also 

as window of upraised cosinus, window of Hann or von 

Hann is described by following equation: 
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The beginning of time windows were chosen randomly 

from the whole recorded signals, so in this way the effect 

of distance change of ship from sensors were simulated. 

After Discrete Fourier Transformation and before 

creating vector which will be presented as input for 

Kohonen network the result was normalized according to 

the follow equation [10]: 
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Used Kohonen network has two dimensional 

architecture. Its characteristic parameters are: number of 

neurons, beginning size of area of the neighborhood, 

beginning learning rate and methods to determine the 

distance between neuron weights and input vectors. 

Because there is no theory about beginning setup of 

mentioned above neural network’s parameters there were 
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made few experimental research. For this case because 

of speed of learning, possibilities to classify data and 

possibilities to generalize the knowledge it seems that 

follows values are the best: number of neurons: 30x30 

neurons map, beginning size of area of neighborhood: 3, 

beginning learning rate: 0.35 and method to determine 

the distance: Euclidean distance.  

 

4.3 Results of research 
After about 35 000 cycles of neural network learning, 

was obtained the map of memberships for every 

presented ship as it is shown on figure 11. All areas 

activated by signals generated by considered ships were 

clearly separated. The example results of classifier work 

out after learning process was presented on figure 12. 

These results were received for data which where 

presented during neural network learning process. To 

find out if the building classifier is properly configured 

and learned some data which weren’t presented before 

were calculated. The example results were presented on 

figure 13. 

The table 4 shows number of correct classification of 

presented data relatively to the type of ship. The number 

of correct answer is presented as percent of all answers. 

The research was made for data which were presented 

during learning process and data which weren’t 

presented before. 

 

 
Fig. 11. The map of partition for area of activation for 

researched ships 

 

 

Table 4. The number of correct classifications. 

Ship no. 

Data 
1 2 3 4 5 

presented before 94.5% 96.0% 92.3% 95.3% 92.8%

not presented 

before 
72.1% 69.4% 75.8% 73.5% 77.2%

 

 

 
Fig. 12. The results of classifier work out -  maps of 

memberships for data which were presented during 

learning process; 1) for ship no. 1, 2) for ship no. 2,  

3) for ship no. 3, 4) for ship no. 4, 5) for ship no. 5. 
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Fig. 13. The results of classifier work out -  maps of 

memberships for data which weren’t presented during 

learning process; 1) for ship no. 1, 2) for ship no. 2,  

3) for ship no. 3, 4) for ship no. 4, 5) for ship no. 5. 

After this part of researches the new ship No. 6 which 

was rocket corvette project 1241.1MP was presented. In 

few first presentations it was classified as ship No. 5 

what was comprehensible because ship No. 5 is the 

oldest version of this vessel. Next the new group was 

created, which was separated from the area activated 

before by ship No. 5. The new map of partition for area 

of activation looks like is presented on figure 14. The 

example results of classification results are presented on 

figure 15. 
 

 
Fig. 14. The new map of partition for area of activation 

for researched ships after introducing new ship 

 

 

5   Conclusion 
As it is shown on results the used Self-Organizing Map 

is useful for ships classification based on its 

hydroacoustic signature. Classification of signals that 

were used during learning process, characterize the high 

number of correct answer (above 90%) what was 

expected. This result means that used Kohonen network 

has been correctly configured and learned. Presentation 

of signals that weren’t used during learning process, 

gives lowest value of percent of correct answer than in 

previous case but this results is very high too (about  

70 % of correct classification). This means that neural 

network has good ability to generalize the knowledge. 

More over after presentation of new ship which weren’t 

taking into account during creating classifier, the 

Kohonen networks was able to create new group 

dividing the group which belongs to the similar type of 

ship. After few cycles used neural networks expand its 

output vector or in other words map of membership 

about new area of activation. This means that used 

Kohonen networks has possibility to develop its own 

knowledge so it cause that presented method of 

classification is very flexible and is able to adaptation to 

changing conditions.   

Presented case is quite simple because it not take into 

account that object sounds change with time, efficiency 

conditions (e.g. some elements of machinery are  
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Fig. 15. The results of classifier work out -  maps of 

memberships after adding the new ship; 1) for ship no. 1, 

2) for ship no. 2, 3) for ship no. 3, 4) for ship no. 4, 5) 

for ship no. 5, 6) for ship no. 6. 

damaged), sound rates, etc. It doesn’t consider the 

influence of changes of environment on acquired 

hydroacoustic signals. In next step of research the proper 

work of this method will be checked for enlarged vector 

of objects. In few weeks we should have results of using 

Kohonen Networks to classify the ships which number 

exceed fifty. The hydroacoustic signatures of ships were 

acquired in different environmental conditions and in 

different stage of ship operating. Therefore the cases of 

changing hydroacoustic signatures which were 

mentioned before should be investigated too.  

In future research the influence of network configuration 

on the quality of classification should be checked. More 

over some consideration about feature extracting from 

hydroacoustic signature should be made. In this time we 

have got some results about using Mel-Frequency 

Cepstral Coefficient as method of creating some kind of 

indexes for hydroacoustic signals [12]. 

Described method after successful research mentioned 

above and after preparation for work in real time will be 

extended and its application is provided as assistant 

subsystem for passive hydrolocations systems of Polish 

Naval ships. 

The aim of presented method is to classify and recognize 

ships basing on its acoustic signatures. This method can 

found application in intelligence submarine weapon and 

in hydrolocation systems. In other hand it is important to 

deform and cheat the similar system of our opponents by 

changing the “acoustic portrait” of own ships. From the 

point of ship’s passive defense view it is desirable to 

minimize the range of acoustic signatures propagation. 

Noise isolation systems for vessels employ a wide range 

of techniques, especially double-elastic devices in the 

case of diesel generators and main engines. Also, 

rotating machinery and moving parts should be 

dynamically-balanced to reduce the noise. In addition, 

the equipment should be mounted in special acoustically 

insulated housings (special kind of containers). One of 

the method to change the hydroacoustic signatures is to 

pump the air under the hull of ship. It cause the offset of 

generated by moving ship frequency into the direction of 

high frequency, the same the range of propagation 

become smaller. 
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