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[1] The growth rate, shoreline reflection, and dissipation of low-frequency waves are
investigated using data obtained from physical experiments in the Delft University of
Technology research flume and by parameter variation using the numerical model
Delft3D-SurfBeat. The growth rate of the shoaling incoming long wave varies with depth
with an exponent between 0.25 and 2.5. The exponent depends on a dimensionless
normalized bed slope parameter b, which distinguishes between a mild-slope regime and a
steep-slope regime. This dependency on b alone is valid if the forcing short waves are not
in shallow water; that is, the forcing is off-resonant. The b parameter also controls the
reflection coefficient at the shoreline because for small values of b, long waves are shown
to break. In this mild-slope regime the dissipation due to breaking of the long waves in the
vicinity of the shoreline is much higher than the dissipation due to bottom friction,
confirming the findings of Thomson et al. (2006) and Henderson et al. (2006). The energy
transfer from low frequencies to higher frequencies is partly due to triad interactions
between low- and high-frequency waves but with decreasing depth is increasingly
dominated by long-wave self-self interactions, which cause the long-wave front to steepen
up and eventually break. The role of the breaking process in the near-shore evolution
of the long waves is experimentally confirmed by observations of monochromatic free
long waves propagating on a plane sloping beach, which shows strikingly similar
characteristics, including the steepening and breaking.
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1. Introduction

[2] Short waves, with periods of O(10 s), incident on a
beach force longer-period waves (O(100 s)), which are
released from the short-wave groups in the shoaling and
breaking process. These low-frequency (hereinafter LF)
waves, also known as subharmonic gravity waves or infra-
gravity waves, (partially) reflect off the beach, propagate
seaward, and may become trapped at the coastline as edge
waves or propagate out to deeper water as leaky waves.
These waves can contain a significant portion of the total
energy in the nearshore zone (e.g., Wright et al. [1979] and
many studies thereafter) and are an important factor in the
design of coastal structures in nearshore morphology and
can induce low-frequency resonance in harbors [e.g.,
Bowers, 1977].

[3] The mechanism of the generation of infragravity
waves has been studied for the last fifty years. Biésel
[1952] and (independently) Longuet-Higgins and Stewart
[1962, 1964] found that wave groups propagating over a
horizontal bed force a second-order bound wave which is
phase-locked and in antiphase with the short-wave enve-
lope. Propagating over a sloping bed, the phase difference
between the wave groups and the bound wave shifts away
from 180 degrees, such that the long waves lag behind the
wave groups This was shown from field data by Masselink
[1985], numerically by List [1992] and theoretically by
Janssen et al. [2003], who showed that for shoaling waves
the bound wave travels slightly slower than the wave
groups, which causes an increasing phase lag as the depth
diminishes. This phase shift is crucial since it allows energy
transfer from short waves to the bound long wave [van
Dongeren, 1997] resulting in an amplitude growth stronger
than conservative shoaling (Green’s Law). Laboratory
experiments [e.g., Baldock et al., 2000], field data [e.g.,
Elgar et al., 1992] and numerical studies [e.g., Madsen et
al., 1997; van Dongeren, 1997] showed that the shoaling
rate of the incoming long-wave amplitude lies between
Green’s Law (amplitude increase proportional to h�1/4)
and the shallow-water equilibrium solution (amplitude in-
crease proportional to h�5/2) as a function of the ratio of the
bed slope and the infragravity wave frequency.
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[4] From an analysis of Boers [1996] laboratory data of
irregular waves, Battjes et al. [2004] found that the shoaling
of the incoming low-frequency wave is a function of the
normalized bed slope parameter

b ¼ hx

w

ffiffiffi
g

h

r
; ð1Þ

where hx is the bed slope, w is the radial frequency of the LF
waves, g is the gravitational acceleration and h is a
representative depth. Battjes et al. [2004] use a character-
istic shelf depth hs to calculate the normalized bed slope
parameter (denoted by bs). In the present paper we will use
a characteristic breaking depth hb instead (denoted by bb).
The b parameter is analogous to the surf similarity
parameter or Iribarren parameter [Battjes, 1974] and the
Symonds parameter [Symonds et al., 1982]. Battjes et al.
[2004] found from the data that for values of bs < 0.06
(corresponding to bb < 0.1), a ‘‘mild-slope regime’’ exists in
which the amplitude growth in the shoaling zone is large.
For values bs > 0.3 or bb > 0.45 (the ‘‘steep-slope regime’’),
the amplitude growth is weak.
[5] In the breaking region, the individual short waves

start to dissipate owing to breaking. In this region and in the
inner surf zone, infragravity wave generation can take place
owing to the moving breakpoint [Symonds et al., 1982] or
owing to groupiness in the surf zone itself [Foda and Mei,
1981; Schäffer and Svendsen, 1988]. Van Dongeren et al.
[2002] showed that the ratio of shoaling zone forcing to surf
zone forcing (the sum of generation by moving breakpoint
and inner surf zone forcing) is inversely proportional to bb.
For values of bb found for typical beaches in the U.S.
(Duck, NC and Monterey, CA) and the Netherlands (Petten
and Terschelling) shoaling-zone forcing dominates surf
zone forcing (Table 1).
[6] Battjes et al. [2004] found that b also governs

dissipation at the shoreline. While for large values of b
long waves are nearly fully reflected from the shoreline, for
small values of b (bs < 0.06, mild-slope regime) reflections
at the shoreline are small. They showed that the conven-
tional criterion used to distinguish breaking and nonbreak-
ing short waves on a slope also applies to low-frequency
waves near the shoreline, on the basis of which they
postulated that the observed energy losses are due to the
breaking of the long waves. This hypothesis was further
substantiated by van Dongeren et al. [2004] in a preliminary
analysis of the experimental data also used in the present
paper. Alternative dissipation mechanisms were presented
by Henderson and Bowen [2002], who had attributed (with
some reservations) the observed shoreline dissipation of
long-wave energy to bottom friction. However, Henderson
et al. [2006] showed that this was not the cause and

proposed a nonlinear transfer mechanism through triad
interactions from LF energy to high-frequency energy
instead.
[7] Few laboratory or numerical experiments have been

performed to study the infragravity wave generation (in the
shoaling zone) and dissipation mechanisms (at the shore-
line) in detail. Kostense [1984] only measured the ampli-
tudes of the incoming and outgoing long waves on the
horizontal part in front of a sloping beach. Baldock et al.
[2000] studied breakpoint forced waves on a very steep
beach (1:10) for large b values. Janssen et al. [2000]
performed measurements with high spatial resolution in
the surf zone but limited to short durations and without
second-order wave generation or active reflection compen-
sation. Boers [1996] did use higher-order wave control but
studied only irregular waves on a barred beach. Baldock and
O’Hare [2004] found a transfer of energy from the primary
wave components to subharmonics and superharmonics in
the surf zone, and an amplitude reduction of the long-wave
motion, which commenced at the breakpoint.

2. Objectives and Outline of the Paper

[8] The objectives of this paper are to verify and extend
the findings from Battjes et al. [2004] by analyzing the
growth rate of the incoming long waves, their shoreline
reflection properties and shoreline dissipation mechanism.
[9] In section 3 we describe a new data set with a very

high spatial resolution from laboratory experiments with
bichromatic waves conducted on a plane sloping beach. In
addition to the laboratory experiments, the influence of
variations in parameters of bed slope, difference frequency,
short-wave amplitude and steepness, and offshore depth has
been investigated using the one-dimensional mode of the
Delft3D-SurfBeat model [Roelvink, 1993]; see section 4.
[10] After decomposition of the total LF signal into

incoming and reflected long-wave components (Appendix A),
the shoaling rate as a function of the normalized bed slope
parameter is analyzed in section 5, while the shoreline reflec-
tion and dissipation are investigated in sections 6 and 7.
A preliminary analysis of this data was presented by van
Dongeren et al. [2004].

3. Laboratory Experiments

[11] The laboratory experiments have been performed in
the Long Research Flume in the Fluid Mechanics Labora-
tory of the Department of Civil Engineering at the
Delft University of Technology (TU Delft). The flume is
40 meters long and is equipped with a high-accuracy
Rexroth/Hydraudyne wave maker with WLjDelft Hydrau-
lics second-order wave generation and Active Reflection
Compensation (ARC), which minimizes reflections from
the wave maker. We refer to the work of van Noorloos
[2003] for details.
[12] An impermeable smooth concrete beach with a

1:35 slope was constructed. The toe of the beach was
located at 8.5 meters from the wave maker. Wave experi-
ments were run with a still water depth of 0.70 m over the
horizontal approach (Figure 1).
[13] The experimental program of the bichromatic wave

conditions is given in Table 2. The bichromatic experiments

Table 1. Nondimensional bb Parameter for Various Locations

Location bb
Monterey, California (USA) 0.25
Duck, North Carolina (USA) 0.2
Petten, Netherlands 0.08
Terschelling, Netherlands 0.1
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were run for 10 minutes including ramp-up time, which
yields an effective record length of about 5 minutes.
[14] Waves were measured using 11 wave gauges at a

sample rate of 25 Hz. Each experiment was run eight times
for different wave gauge locations. The eight sessions were
combined and synchronized into one data set with records
from 80 wave gauge locations for each experiment with a
resulting resolution of 0.5 m in the shoaling zone and 0.3 m
in the surf zone (bottom panel of Figure A1).
[15] In the experiments labeled ‘‘A’’ the frequencies of the

primary components f1 and f2 were varied, such that the
difference between the two (the difference frequency) as
well as the b parameter was varied but the mean frequency
was kept constant. In series B the amplitude of the f2
component and consequently the modulation and the am-
plitude of the generated incoming bound long wave was
varied. The departure from resonance for the LF forcing,
measured by

ms ¼ 1�
C2
g;s

ghs
; ð2Þ

is roughly O(1) in the shoaling region for all laboratory
cases. Here Cg,s is the group speed of the mean primary
wave frequency at a representative depth hs in the shoaling
region. Therefore we consider the forcing to be off-resonant
in the shoaling regime and assume the long-wave evolution
in that region to be governed by the relative bottom slope b
alone [Battjes et al., 2004].

4. Variation of Parameters With Delft3D-
SurfBeat

[16] The experimental results from the laboratory
were extended with results from the numerical model
Delft3D-SurfBeat [Roelvink, 1993], which solves the one-
dimensional short-wave averaged mass and momentum
equations with radiation stress forcing. The forcing is calcu-
lated from the group-resolving energy equation of the short
waves which is integrated concurrently. The energy equation
accounts for bottom friction dissipation [Putnam and
Johnson, 1949] with an estimate of the friction factor by
Swart [1974]. Dissipation due to depth-induced wave
breaking is modeled on the basis of a modification of the
Battjes and Janssen [1978] model. We refer to the work of
Steenhauer [2003] for details on the numerical experiments.

[17] The following parameters were varied in the numer-
ical experiments: beach slope, difference frequency, off-
shore (shelf) depth, short-wave modulation and primary
wave amplitude, see Tables 3–8 for details. As for the
physical experiments, for the numerical experiments the LF
forcing is off-resonant in the shoaling regime (m � O(1)),
with the notable exception of case D-1 where the forcing is
near-resonant [Janssen et al., 2003], which will be shown to
be a special case in the next section.
[18] The numerical experiments were run on a model grid

with the same layout (horizontal shelf and plane slope) as
the physical model with a grid resolution of 0.33 m. The
time step is 0.1 s, so that the maximum Courant number is

Cr ¼
ffiffiffiffiffi
gh

p Dt

Dx
¼ 0:8: ð3Þ

[19] At the wave-maker boundary, the time variation of
the energy on the wave group scale is specified and is
computed as follows. Utilizing the frequency and amplitude
from Tables 3–8, a realization of the short-wave surface
elevation h at the wave maker is constructed. The squared
surface elevation averaged over the short-wave period is
proportional to the group-varying energy as

E ¼ rgh2 ¼ 1

2
rgA2; ð4Þ

in which A is the time-varying amplitude of the surface
elevation (the short-wave envelope). Also specified at the
location of the wave maker is the time-varying set-down.
The wave-maker boundary is a weakly reflecting boundary
that allows waves propagating from the shore to the
boundary to leave the domain with a minimum of reflection
[Roelvink, 1993]. The shoreline boundary allows for time-
varying run-up [Roelvink, 1993] and the lateral boundaries

Figure 1. Side view of the experimental setup. Distances are in meters. From van Noorloos [2003].

Table 2. Bichromatic Wave Conditions in Physical Experimenta

ID f1, Hz f2, Hz Df, Hz a1, m a2, m bb d Symbol

A-1 0.6714 0.4761 0.1953 0.06 0.012 0.16 0.2 plus
A-2 0.6470 0.5005 0.1465 0.06 0.012 0.22 0.2 plus
A-3 0.6348 0.5127 0.1221 0.06 0.012 0.25 0.2 plus
A-4 0.6226 0.5249 0.0977 0.06 0.012 0.32 0.2 plus
B-1 0.6470 0.5005 0.1465 0.06 0.018 0.21 0.3 square
B-2 0.6470 0.5005 0.1465 0.06 0.024 0.21 0.4 square
B-3 0.6470 0.5005 0.1465 0.06 0.03 0.21 0.5 square
B-4 0.6470 0.5005 0.1465 0.06 0.036 0.20 0.6 square

aThe modulation factor d is the ratio a1 over a2.
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are straight, impermeable walls, which mimics the glass walls in the flume.

The initial condition is still water.

5. Growth Rate of Shoaling Incoming Long
Waves

[20] The measured signals are first decomposed into
incoming and reflected waves using subarrays of adjacent
wave gauges (Appendix A). After this decomposition the
growth rate of the amplitude of the incoming long waves
can be evaluated by fitting a function of local depth with an
unknown power a to the observed amplitude variation as

V̂ � h�a ð5Þ

in the shoaling region between x = 8 m and x = 25 m. This is
done for all numerical and physical experiments. The results
(Figure 2) show that the exponent decays sharply with
increasing bb from the value of around 1.8 at bb � 0.08 to a
value of 0.25 (Green’s Law, conservative shoaling) for the
case of relatively steep normalized slopes. The experiments
were conducted for cases with m values in a range such that
the short waves propagate in intermediate depth. This means
that, as bb approaches zero, the exponent a will have a
value less than 2.5 (the shallow water limit [Longuet-
Higgins and Stewart, 1962, 1964]).
[21] The numerical results for the same parameter settings

(cases A and B) give a 25% higher shoaling rate than the
physical experiment results. While the short-wave height
variation is predicted well by the numerical model (not
shown), the energy transfer from short waves to long waves
is not. The reason for this mismatch is not clear. Neverthe-
less, the trend is predicted well by the numerical model, and
we will use these results in the remainder.

Table 4. Bichromatic Wave Conditions in Numerical Simulations

in Addition to the Conditions in Table 2 With a Varying Bed Slopea

ID hx bb
C-1 1/10 0.89
C-2 1/20 0.44
C-3 1/30 0.30
C-4 1/40 0.22
C-5 1/50 0.18
C-6 1/60 0.15
C-7 1/70 0.13

aOther conditions are as those in experiment A-3. The symbol used in the
figures is a cross.

Table 5. Bichromatic Wave Conditions in Numerical Simulations

in Addition to the Conditions in Table 2 With a Varying Bed Slopea

ID hx bb
C-8 1/10 4.43
C-9 1/15 2.96
C-10 1/20 2.23
C-11 1/30 1.48
C-12 1/40 1.11

aOther conditions are as those in experiment A-6. The symbol used in the
figures is a cross.

Table 6. Bichromatic Wave Conditions in Numerical Simulations

in Addition to the Conditions in Table 2 With a Varying Bed Slope

and Very Small bb Values
a

ID hx f2, Hz Df, Hz bb
C-13 1/50 0.3906 0.1953 0.082
C-14 1/60 0.3906 0.1953 0.072
C-15 1/70 0.3906 0.1953 0.086

aOther conditions are as those in experiment A-6. The symbol used in the
figures is a cross.

Table 7. Bichromatic Wave Conditions in Numerical Simulations

in Addition to the Conditions in Table 2 With a Varying Offshore

Depth h0 With Other Conditions as in Experiment A-2a

ID h0, m

D-1 0.4
D-2 1.0
D-3 1.5
D-4 2.0
D-5 2.5

aThe symbol used in the figures is a circle.

Table 3. Bichromatic Wave Conditions in Numerical Simulations

in Addition to the Conditions in Table 2a

ID f1, Hz f2, Hz Df, Hz a1, m a2, m bb d

A-5 0.5945 0.5529 0.042 0.06 0.012 0.76 0.2
A-6 0.5859 0.5615 0.024 0.06 0.012 1.28 0.2

aThe symbol used in the figures is a plus.

Table 8. Bichromatic Wave Conditions in Numerical Simulations

in Addition to the Conditions in Table 2 With Varying Short-Wave

Amplitude With Other Conditions as in Experiment A-2a

ID a1 = a2, m

E-1 0.036
E-2 0.039
E-3 0.042
E-4 0.045
E-5 0.048

aThe symbol used in the figures is a diamond.

Figure 2. Growth rate a as a function of bb analyzed from
the physical (bold symbols) and numerical experiments (thin
symbols) with the following parameter variations: circles
indicate variation of offshore depth; pluses indicate variation
of difference frequency; crosses indicate variation of bed
slope; squares indicate variation of short-wave modulation;
and diamonds indicate variation of short-wave amplitude.
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[22] Relative to this trend, there is some variation with the
other parameters. The variation due to the short-wave
modulation (series B) and the short-wave amplitude (series
E) is rather small. A doubling of the modulation results in
only a ten percent increase in shoaling rate in both cases.
The offshore depth can have a large effect on the resulting
growth rate (series D). If the depth is large enough such that
the primary waves propagate in intermediate to deep water,
the variation of the shoaling rate is small relative to the
variation of the offshore depth. However, when the offshore
depth is small, m (equation (2)) is not small and the short
waves themselves propagate in shallow water already (the
near-resonant case of Janssen et al. [2003]). If the wave
field is then initiated with second-order uniform-depth
theory the forcing is only very slowly pushed away from
quadrature such that, over typical propagation lengths in the
laboratory, energy transfers will be minimal and the long
waves shoal almost according to Green’s Law, see the circle
at (bb,a = 0.25, 0.25).
[23] Despite the slight dependence on other parameters,

and for a sufficient offshore depth such that the interaction
is indeed off-resonant in the shoaling region, these results
confirm the findings by Battjes et al. [2004] that the b
parameter is the major controlling parameter for the shoal-
ing behavior. The present results further illustrate that while
the variation is gradual, it is possible to define a mild-slope
and a steep-slope regime, albeit that these results would
suggest the mild-slope regime in the range bb < 0.3 and the
steep-slope regime in the range of bb exceeding a value of
about 1, where there is a transition to conservative shoaling
(a = 0.25).

6. Shoreline Reflection

[24] Besides governing the shoaling of the incoming long
wave, the b parameter also seems to control shoreline
dissipation. This hypothesis can be substantiated from the

present data sets by plotting the reflection coefficient as a
function of the local b parameter.
[25] We define the shoreline reflection coefficient as the

ratio of the amplitude of the reflected wave to that of
the incoming wave at the shorewardmost subarray (see
Appendix A). This is in only a few centimeters of still-
water depth. The area beyond this point includes therefore
practically only the swash zone.
[26] The reflection coefficient is plotted in Figure 3

against bH, which is defined as

bH ¼ hx

w

ffiffiffiffi
g

H

r
; ð6Þ

in which H is the wave height of the incoming long wave
near the shoreline (in the center of the shorewardmost
array). The graph shows a clear dependency of the reflection
on bH. This parameter is directly related to the surf
similarity parameter x as

x ¼
ffiffiffiffiffiffi
2p

p
bH : ð7Þ

[27] For short waves, Battjes [1974] found a relation
between the reflection coefficient at the shoreline R and
the surf similarity parameter, which can be rewritten using
equation (7) as

R ¼ 0:1x2 ¼ 0:2pb2
H : ð8Þ

[28] This relationship (solid line in Figure 3) appears to
also apply to low-frequency waves, albeit that there is
considerable scatter. Again, there is a transition, now at
bH � 1.25, similar to the value found previously for the
onset of breaking of short waves [Battjes, 1974].
[29] Analysis of field data (see, e.g., the work of Sheremet

et al. [2002], Elgar et al. [1994], and older references
therein) has not shown a reflection coefficient at the
shoreline of the LF waves of much less than unity. In the
case of Elgar et al. [1994] this is owing to the fact that
instruments were not located close to the shoreline but
outside the surf zone. While propagating from the sensors
to the shoreline and back, the infragravity waves can still be
gaining energy in the surf zone. Sheremet et al. [2002] did
have sensors close to the shoreline and still measured
reflection coefficients at the shoreline of about unity. In
his case the local beach slope at the shoreline was very steep
(1/20). For the high-frequency end of the low-frequency
range they considered (0.05 Hz) and the low-frequency
wave height of 0.22 m (calculated from his Figure 3c), we
find bH = 1.1, which corresponds to a reflection coefficient
of 0.76. For a frequency in the middle of the regime (f =
0.03 Hz) we obtain bH = 1.8 and the reflection coefficient is
unity. The bulk reflection coefficient over the entire range
will then also be close to unity.
[30] Okihiro and Guza [1995] did find a dependency of

the reflection coefficient on the tidal level. While in this
case the sensors were also well outside the surf zone, they
ascribed this effect in part to the more complete reflection
on the high-tide (steeper) beach face. However, in a follow-
up study, Thomson et al. [2006] found from field data that
variation of the ratio of reflected and incoming LF energy
was not due to incomplete reflection but rather to nonlinear

Figure 3. Shoreline reflection coefficient R as a function
of bH. Equation (8) is plotted as the solid line. The other
symbols are the same as those in Figure 2.
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energy transfer to higher frequencies in the inner surf zone
very near to the shoreline. We will discuss this mechanism
in the next section. Their finding of full reflection from the
shoreline seems inconsistent with the present findings.
However, we define our reflection coefficient in about
3 centimeters of water depth, which would represent about
30 centimeters of depth or 15 meters from the shoreline,
scaled to the field site that Thomson et al. [2006] investigat-
ed. The squared reflection coefficient they find at that
location is about 0.2, judging from their Figure 2a or R =
0.44, which is close to R = 0.32, which we calculate from
equation (8) using f = 0.03 Hz, hx = 0.02, Hm0,low = 0.22 m
(calculated from their Figure 2a). It must be noted that the
reflection coefficients found in these field experiments may

be difficult to interpret because of the sparseness of the
measurement array. The above shows that while reflection
coefficients less than unity have not in fact been measured,
they may occur in the field.

7. Shoreline Dissipation Mechanism

[31] Figure 3 shows that the reflection coefficient at the
shoreline is much less than unity for small values of the
normalized bed slope parameter, which suggests that there
is some kind of dissipation which may also be a function of
this parameter. In this section, we will show that this
dissipation is due to long-wave breaking for small values
of b.

Figure 4. Time series of the filtered (low-frequency component and its higher harmonics) long wave
(thick solid line), and total measured time series (thin solid line) for consecutive gauge positions around
the still water line for case A-1. Tracks of converging wave crests are shown as dash-dotted lines.
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[32] Surface elevation records obtained in the laboratory
for one bichromatic case (case A-1 with bb = 0.16) have
been filtered in the Fourier domain such that only the
difference frequency (Df 	 f1– f2) between the primary
wave components and integer multiples of this difference
frequency (mDf, where the integer m = 2..fnyq/Df) remain.
(As will be shown below, the variance at mDf frequencies is
mostly due to self-self interactions of the difference fre-
quency and not due to interactions of higher-frequency
components.) The primary wave components themselves,
their superharmonics, and components due to triad inter-
actions between the primary components and the difference
frequency are filtered out. This filtering has been performed
on the measured wave data (not decomposed into incoming
and reflected components) from the gauges closest to the
shoreline.

[33] Figure 4 shows the filtered time traces (thick solid
lines) for various cross-shore locations (including some
shoreward of the still-water line) as well as the total
(unfiltered) time traces (thin solid lines). The filtered time
series show that the long wave steepens-up to a bore-like
front (in depths h > 3 cm) and then decays (in depths h <
3 cm), resembling short-wave breaking. The dash-dotted
line marked with the ‘‘1’’ indicates a short-wave crest in the
total time series which rides on the lee side of the long wave
and which is seen to propagate by itself. In contrast, the
other dash-dotted lines (marked ‘‘2,’’ ‘‘3,’’ and ‘‘4’’) indi-
cate a triplet of wave crests on either side of the long-wave
front, which are seen to converge on the long-wave bore
front. This is because a short wave just behind the bore
propagates in deeper water and experiences a following
‘‘current’’ induced by the long wave and will therefore
slowly catch up with the bore. A wave just in front of the

Figure 5. Same as Figure 4 but for case A-4.
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bore will propagate in shallower water and experience an
opposing ‘‘current’’ and be caught. This pattern of ‘‘single’’
wave decay, and ‘‘twin’’ or ‘‘triple’’ wave convergence can
be seen in the entire time series and reduces the number of
short waves as the depth decreases. This pattern of bore-
bore capture of short waves has been previously reported
by, for example, Sénéchal et al. [2001].
[34] For small water depths h 
 4.6 cm the fronts of the

breaking long waves coincide with (i.e., are part of) fronts
of the breaking short waves owing to the convergence
described above. It can also be seen that the highest short
waves ‘‘ride’’ on top of the long-wave crests, which
illustrates the positive correlation between the short-wave
envelope and the long waves near the shoreline as found by,
for example, Janssen et al. [2003]. Another way to view this
is that the highest short waves can only exist when the local
water depth is temporarily increased under a long-wave
crest. This filtering effect of the long wave on the short-
wave heights may have an important effect on the wave
attack of structures and dunes [e.g., Kamphuis, 1996].
[35] The results for cases A-2 and B-1 through B-4 show

similar patterns of long-wave steepening and dissipation as
depicted in Figure 4 and are not shown. In the case of A-3
and A-4 the shoreline reflection is stronger and the filtered
signal (thick solid line, Figure 5) exhibits no evidence of
long-wave steepening and breaking with the short waves
(thin solid line) propagating over the modulated mean water
level.

[36] The suggestion from Figure 4 is that steepening of
the wave fronts and then long-wave breaking (and not
bottom friction) is the likely dissipation agent (for small
values of the normalized bed slope parameter). This can be
substantiated by considering the cross-shore energy equa-
tion for linear, shoreward-propagating long waves:

d

dx

ffiffiffiffiffi
gh

p 1

8
rgH2

rms;lo

� �
¼ �Dbot � Dbr; ð9Þ

where r is the density and Dbot and Dbr are terms that
account for dissipation of wave energy due to bottom
friction and breaking, respectively. The dissipation rate due
to breaking [Battjes and Janssen, 1978] is modeled as

Dbr ¼ abrflowr g
H2

rms;lo

4
; ð10Þ

where abr is a tuning parameter. Here we have assumed that
the presence of high-frequency waves does not influence the
rate at which breaking dissipates long-wave energy.
Following Henderson and Bowen [2002], the bottom
friction dissipation rate is modeled as

Dbot ¼ fcwr
g

h

� �3=2 Hrmsffiffiffi
8

p
H2

rms;lo

8
; ð11Þ

Figure 6. (top) Low-frequency wave heights as a function of still water depth (solid line shows the
energy model; pluses are measurements). The dry beach is to the left. (middle) Dissipation due to
breaking (solid line) and due to bottom friction (dashed line). (bottom) Local ratio of the two local
dissipation rates.
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where fcw is the friction coefficient, and where we have
relaxed the assumption of weak low-frequency motions by
using Hrms instead of Hrms,hi. The ratio of the two
mechanisms yields

Dbr

Dbot

¼ 2
ffiffiffi
8

p
abr

fcwgb
flow

ffiffiffi
h

g

s
h 
 hb;low; ð12Þ

where gb = Hrms/h is the breaking index for the short waves.
The equation shows that dissipation due to breaking
becomes more important than bottom friction dissipation
for large values of the frequency flow. Using typical
parameter values abr = 1, fcw = 0.015 (using Swart
[1974]), and

gb ¼ 0:29þ 0:76kh ð13Þ

[Ruessink et al., 2003], the result for case A-1 is shown in
Figure 6. The modeled long-wave height transformation

(solid line, top panel) resembles the energy decay calculated
directly from the measurements (+), and shows the
importance of a sudden enhancement of spatial decay due
to breaking rather than a gradual decay due to bottom
friction. The dissipation due to bottom friction occurs in the
entire domain, but at a relatively low rate (middle panel,
dashed line). The dissipation due to breaking is much larger
(middle panel, solid line) in the region where the long
waves break. The bottom panel shows the ratio of the two
dissipation rates. Locally, dissipation due to breaking is
almost 20 times larger than the dissipation due to friction.
Integrated cross-shore, the ratio of breaker dissipation over
bottom friction dissipation is about 4.7 for this case.
[37] This confirms the work of Henderson et al. [2006]

and Thomson et al. [2006], who also concluded that bottom
friction is not the agent for LF energy dissipation. Instead
they attribute energy losses in the low-frequency spectral
range to energy transfer to the swell spectral range through
quadratic nonlinear coupling. In the present analysis (where

Figure 7. Frequency spectra of case A-1 at various depths. The most important frequency components
are indicated in the first and second panels. The frequency axis is normalized by Df = 0.1953 Hz.
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the primary frequencies represent the ‘‘swell’’ frequencies)
we also find that nonlinear effects are important for the
long-wave evolution in the surf zone. However, instead of
an interaction with the swell field directly as in the work of
Henderson et al. [2006], we particularly consider the self-
self interaction of the long waves (which were not consid-
ered by Henderson et al. [2006]). These interactions result
in enhancement of the long-wave harmonics, associated
with the steepening of the LF wave front (which starts at
a depth of about 10 centimeters, Figure 4), and the eventual
breaking of the long wave.
[38] To illustrate this further, we refer to frequency

spectra of the measured data at various depths (Figure 7),
which show that besides the primary components f1 and f2,
with their higher harmonics, and the difference frequency
Df with its integer multiples, there are other components
present which are, for example, due to triad interactions
between f1, f2 and Df, most notably f2 � Df and f1 + Df.
However, including, for example, the f2 � Df harmonic in
the filtered time series slightly changes the lee side of the
LF waves but not the bore-like front (not shown).
[39] Since breaking dissipation is initially more effective

in the more energetic higher frequency ranges, the primary
components f1, f2 and their higher harmonics dissipate
(Figure 7) and in very shallow water long-wave motion
dominates the wave field (in case A-1 this happens around
h = 5 cm; see also Figure 8). As a consequence, the
nonlinear coupling to the swell waves in shallow water is
relatively weak (Figure 7, bottom panels), while the com-
ponents due to self-self interactions become dominant there.
This indicates that the variance at integer multiples of the
difference frequency is primarily due to self-self interactions
of the LF-waves and not due to interactions between higher-
frequency components (e.g., the energy at 2Df is mostly the
result of the self-self interaction Df + Df and not by 2f1–2f2
or other difference contributions from the high-frequency
field). Through these self-self interactions the long-wave
fronts steepen on the slope until the waves become unstable

and break; this shoaling process is in many ways similar to
the nonlinear near-shore evolution of swell or wind waves
on a beach. The mechanisms of nonlinear energy transfers
through triad interactions between lf waves and swell, and
self-self interactions of the LF-waves appear thus to coexist
with the latter dominating in very shallow water, and being
the ultimate physical mechanism for shallow-water energy
losses in the lf ranges.
[40] To verify our inferences with respect to the nonlinear

transfer mechanisms and long-wave dissipation in shallow
water, we generated periodic (free) long waves in the flume
(Figure 1) withDf = 0.195 Hz (same as case A-1, see Table 2)
and wave height of 0.01 m, thus a (free) wave at the same
frequency as the lf waves in experiment A-1 but without the
primary waves. The time traces (Figure 9) show that on the
slope, and in shallow water, the initially sinusoidal long waves
produce higher harmonics, steepen up and transition into
turbulent bores. Most of the incident wave energy is dissipated
and reflection of wave energy from the shoreline appears weak.
[41] Frequency spectra at various depths (Figure 10)

show that only Fourier components at the free long-wave
frequency and its higher harmonics contain significant
variance, and that the distribution over the frequencies
and spatial evolution is similar to the bichromatic wave
case of Figure 7. Although the details of the breaking
process of the free long waves are slightly different, the
results are strikingly similar to the filtered results of
Figures 4 and 7. These findings thus corroborate our
conclusions with respect to the dominant role of self-self
interactions of the LF-waves and the dissipation of long
waves in the near-shore.
[42] Field evidence of shoreline breaking of LF waves is

scarce. Munk and Wimbush [1969] showed that a breaker
criterion similar to the one we use here could be success-
fully applied to long waves such as tsunamis and tides.
Nazaka et al. [1990] investigated long waves breaking over
a coral reef. Ruessink et al. [1998] showed that, for highly
dissipative conditions at a beach in the Netherlands, the
higher-frequency end of the infragravity wave spectra is
saturated, which implies (long) wave breaking and a reflec-
tion coefficient of less than unity. Likewise, for a highly
dissipative Oregon beach, Ruggiero et al. [2004] showed
that the higher-frequency region of the run-up spectra
(which variance was almost completely in the infragravity
band) was saturated and that these spectra were dependent
on beach slope, which indicates a dependence on b. As
mentioned above, Sénéchal et al. [2001] presented evidence
of the formation of wave fronts at the timescale of the low-
frequency waves.

8. Conclusions

[43] In this paper a high-resolution data set is presented of
bichromatic waves over an impermeable plane sloping
beach. The LF waves are separated into incoming and
reflected components using a multistep method, which
allows for a correction of the a priori assumed phase
velocity and accounts for shoaling (Appendix A).
[44] We find that the shoaling of the incoming long

wave and dissipation at the shoreline have a mild-slope
regime bb < 0.3 and a steep-slope regime for bb > 1. The
growth rate of incoming waves is strongly dependent

Figure 8. Measured Hrms wave heights (solid line shows
low-frequency; dashed line shows high-frequency; and
dash-dotted line shows total) as a function of still water
depth.
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on the bb parameter and varies between 0.25 and 2.0
(Figure 2). This dependency on bb is valid for the off-
resonant LF forcing, implying that the forcing short waves
are not in shallow water in the shoaling zone.
[45] The reflection of long waves on the shoreline is

dependent on bH with a transition to almost full reflection at
bH = 1.25 (Figure 3). For small values of b (mild-slope
regime) the LF waves appear to be breaking as they are
propagating with the short waves (Figure 4). The dominant
dissipation mechanism of long waves in the mild-slope
regime is indeed shown to be breaking (Figure 6). We
also confirm the findings of Thomson et al. [2006] and

Henderson et al. [2006] that bottom friction is not the
relevant dissipation agent. We find that the energy transfer
from low frequencies (in the field ‘‘infragravity waves’’)
to higher frequencies (in the field ‘‘swell’’) is partly due
to triad interactions between IG waves and swell (as found
by Thomson et al. [2006] and Henderson et al. [2006])
but is increasingly dominated by self-self interactions of the
LF-waves for very shallow water (Figure 7) which cause the
long-wave front to steepen up and break. This process of
long-wave breaking in the near-shore zone is confirmed by
laboratory observations of initially monochromatic, free
long waves with the same frequency as the difference

Figure 9. Time series of the total measured time series for consecutive gauge positions around the still
water line for a free long wave with a frequency equal to the difference frequency of case A-1.
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frequency of case A-1, propagating over a plane sloping
beach. The results show strikingly similar patterns of
steepening and breaking of the wave (Figure 9) with a
similar frequency distribution and spatial evolution
(Figure 10) as in the bichromatic, forced-wave case.

Appendix A: Decomposition of Low-Frequency
Waves

[46] The first step in the data analysis is to split the
measured wave records in a high-frequency part (which
contains the primary frequencies) and a low-frequency part
(which contains the difference frequencies) using a Fourier-
domain (high-pass/low-pass) filter with a cut-off frequency
at half the mean frequency. After that, the low-frequency
wave signal is decomposed into an incoming component
traveling toward the shoreline (which is primarily ‘‘bound,’’
since the generation of free long waves is suppressed at the
wave maker) and a reflected (free) component which

propagates to deeper water. This separation is done using
the method described by Battjes et al. [2004] with mod-
ifications for shoaling and phase speed effects, which are
described in this section. The method uses Fourier-
transformed measured wave information from a subarray
of (typically) seven adjacent wave gauges as input. The
complex amplitude after transformation can be written:

Zm;p ¼
1

N

XN
j¼1

z xp; tj

 �

e�i2pfmtj ; ðA1Þ

where Zm,p is the measured complex amplitude, p is the
gauge number in the local array with p = 1,. . .,P, with P the
total number of gauges in the local array which is centered
around gauge R, j is the time index, N is the total number of
points in the time series, z is the time series of the surface
elevation, and fm = m/D is the long-wave frequency, with D
the duration and m the two-sided frequency counter (0, ±1,
±2, . . .). This measured complex amplitude at the reference

Figure 10. Frequency spectra of the free long-wave case with a frequency equal to the difference
frequency of case A-1 at various depths. The most important frequency components are indicated in the
first panel. The frequency axis is normalized by Df = 0.1953 Hz.
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gauge R is considered as the sum of an incoming wave
component Zm,R,n

(i) , a reflected wave component Zm,R,n
(r) and an

error em,p,n, written as

Zm;p ¼ Q ið Þ
m;p;nZ

ið Þ
m;R;n þ Q rð Þ

m;p;nZ
rð Þ
m;R;n þ em;p;n; ðA2Þ

where superscript (i) indicates ‘‘incoming,’’ superscript (r)
indicates ‘‘reflected,’’ n is a step counter in the multistep
procedure (detailed below). The factors Qm,p,n

(i) and Qm,p,n
(r)

are complex shoaling and phase speed correction factors,
which are a function of frequency, location, center position,
and iteration step.
[47] The system (A2) consists of P equations per fre-

quency with two unknowns Zm,R,n
(i) and Zm,R,n

(r) . When P > 2,
this system is overdetermined and a solution is found using
the method of least squares. The system of equations can be
written as

Q
ið Þ
m;1;n Q

rð Þ
m;1;n

� � �
Q

ið Þ
m;R;n Q

rð Þ
m;R;n

� � �
Q

ið Þ
m;P;n Q

rð Þ
m;P;n

2
66664

3
77775

Z
ið Þ
m;R;n

Z
rð Þ
m;R;n

" #
¼

Zm;1
� � �
Zm;R
� � �
Zm;P

2
66664

3
77775þ

em;1;n
� � �

em;R;n
� � �

em;P;n

2
66664

3
77775: ðA3Þ

[48] In the first step (n = 1) the factors Q are set to

Q
ið Þ
m;p;1 ¼ eiF

ið Þ
m;p

Q
rð Þ
m;p;1 ¼ eiF

rð Þ
m;p

; ðA4Þ

where Fm,p
(i) and Fm,p

(r) are the initial estimates of the phase
functions based on linear theory. The incoming long waves
are initially assumed to propagate with the group speed cg,
so

F ið Þ
m;p ¼ �

Zx¼xp

x¼0

2pfm
cg;p

dx: ðA5Þ

[49] The reflected long waves are assumed to propagate
with the linear phase speed c or

F rð Þ
m;p ¼

Zx¼xp

x¼0

2pfm
cm;p

dx: ðA6Þ

[50] In this step we thus assume that the phase variation is
according to the initially estimated phase variation and that
there is no shoaling over the local array. This last assump-
tion does not preclude an amplitude variation between
subarrays.

Figure A1. The first panel shows the amplitude of the incoming long wave (upper solid line) and
reflected long wave (lower solid line). The initial estimate of the amplitude of the incoming and reflected
long wave is shown as the upper dashed and lower dashed lines, respectively. Green’s Law is shown as
the dash-dotted line (reflected waves only). The second panel shows the absolute error e normalized with
the measured amplitude Z for five iterations (first step, solid line; second step, dashed line; third step,
dash-dotted line; fourth step, dotted line; fifth step, circles). The third panel shows the Hrms of the short
waves. The fourth panel shows the bathymetry and gauge locations (pluses).
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[51] Solving equation (A3) yields an estimate of
Zm,R,1
(i) and Zm,R,1

(r) . The local array is moved one wave gauge
position and the system is solved again to obtain another
estimate at the new center location R. At the end of this step
we have an estimate for all wave gauges (except the (P-1)/2
at either end of the total array) for all low frequencies m.
The result can be interpreted as a quasi-continuous variation
of the real amplitudes and phases because of the high
resolution of the gauge spacing. Until this point the method
is similar to that of Battjes et al. [2004].
[52] The modification is in the subsequent steps. The

solution obtained in the first step is a complex amplitude,
the argument of which can be interpreted as a phase
correction to the originally prescribed phase at the center
location of the subarray. In the second step, this phase
correction of the incident waves is added to the original
phase through multiplication in the complex domain by
prescribing

Q
ðiÞ
m;p;2 ¼

Z
ðiÞ
m;p;1

jZðiÞ
m;p;1

j
Q

ðiÞ
m;p;1

Q
ðrÞ
m;p;2 ¼ Q

ðrÞ
m;p;1

: ðA7Þ

[53] We solve the system (A3) again which yields
Zm,R,2
(i) and Zm,R,2

(r) for all wave gauges as we move the local
array along the total array. In effect, we add no information
to the system but re-use information obtained from esti-
mates involving multiple arrays to correct local phase
speeds inside the local array. In a way, this method can be
interpreted as a predictor-corrector operation.
[54] In step 3 (n = 3) we allow for a variation of the wave

amplitudes over the local array (due to shoaling)

Q
ið Þ
m;p;3 ¼

jZ ið Þ
m;p;2

j

jZ ið Þ
m;R;2

j
Q

ið Þ
m;p;2

Q
rð Þ
m;p;3 ¼ Q

rð Þ
m;p;2

: ðA8Þ

In steps 4 and 5 (n = 4 and n = 5) we do the same for the
reflected wave, first correcting for the shoaling and then
applying the phase correction.
[55] Using synthetic data, Steenbergen [2005] found that

the order in which steps 2 and 3, and steps 4 and 5 are
executed are not important, but they cannot be executed in
one step. He also found that the method works well if in the
analysis the phase variation and amplitude variation of one
of the two components is known or can at least be assumed
with reasonable accuracy. The method converges if the
initial estimate of the unknown phase speed is not much
different from the actual phase speed. For the present data
set, we expect that the propagation and shoaling character-
istics of the outgoing wave are accurately represented
by linear theory and conservative shoaling such that the
method is suitable for our present purpose. Moreover, since
we anticipate that the initial estimate of the celerity of the
incident bound wave (group speed corresponding to the
peak frequency of the spectrum) is close to the actual speed
the method will likely converge rapidly.
[56] The multistep method reduces oscillations in the

estimated reflected long-wave amplitude that occur after
the first decomposition step [see Battjes et al., 2004;
Steenbergen, 2005], which are thus attributed to the

inaccuracies in the assumed phase speed and amplitude
variation of the incoming wave in the decomposition tech-
nique [Steenbergen, 2005]. Also, it is found that in the shoaling
zone the phase speed is adjusted slightly and is smaller than cg
consistent with the theoretical prediction by Janssen et al.
[2003]. Until now, the oscillations in the reflected wave were
interpreted as a physical phenomenon [van Dongeren, 1997;
Battjes et al., 2004] but in fact seem at least in part to be
spurious. To investigate this finding is beyond the scope of this
paper and will be pursued in a subsequent paper.
[57] Figure A1 shows a typical result for case A2. The

fourth panel shows the bathymetry of the horizontal
approach, the plane slope and the locations of the wave
gauges, with the shoreline to the right. The third panel
shows the wave height variation of the short waves primar-
ily to indicate the location of the breakpoint around x =
26 m. The first panel shows the amplitude variation of the
incoming wave (upper solid line) and of the reflected free
wave (lower solid line). The initial estimates of the incom-
ing and reflected wave amplitude variation are shown as the
dashed lines. The figure shows that the iteration method
reduces the amplitude variations of the incoming long wave
in the surf zone and strongly reduces the spatial variations in
the reflected wave amplitude estimates. The incoming long
wave in the first panel displays shoaling outside of the
breaker zone, and then a decay of wave amplitude which
may result from a loss of energy due to a transfer to the
short waves [van Dongeren et al., 1996], which is not unlike
the results found by Baldock and O’Hare [2004]. This
negative energy transfer is later reversed and energy is
gained again in the inner surf zone. The process of energy
gain and loss in the surf zone is not yet fully understood and
will not be addressed in this paper further. Our focus is on
the phenomena in the shoaling zone and very close to the
shoreline. Finally, the second panel shows the evolution of
the normalized error je/Zj, which is shown to reduce in
step 2 and then stay relatively constant in subsequent steps
at a value of less than 5%, except at the breakpoint where it
increases locally to 15%. This evolution shows that the first
step is most effective in reducing the overall error and the
subsequent steps redistribute the total signal over the
incoming and reflected signal without reducing the overall
error much.
[58] The incoming long wave is only partially reflected

(about 25%) at the shoreline (Figure A1). The reflected
wave amplitude (lower solid line) deshoals following
Green’s Law (dash-dotted line, initiated with the offshore-
most reflected wave estimate and using still water to
compute the shoaling) with some oscillations around this
trend, which are ascribed to small remaining errors in the
estimated phase speed of the incoming long wave. For small
depths, the assumption of still water for computing the
shoaling is not valid because of wave-induced set up which
adds to the total depth. Consequently, we notice that the
computed amplitudes are consistently above Green’s Law in
the region near the shore.
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