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ABSTRACT 

The theory of shock dynamics in two dimensions is reformulated to treat 

shock propagation in a non-uniform medium. The analysis yields a system of 

hyperbolic equations with source terms representing the generation of distur­

bances on the shock wave as it propagates into the fluid non-uniformities. The 

theory is applied to problems involving the refraction of a plane shock wave at a 

free plane gaseous interface. The "slow-fast" interface is investigated in detail, 

while the "fast-slow" interface is treated only briefly. Intrinsic to the theory is a 

relationship analogous to Snell's law of refraction at an interface. The theory 

predicts both regular and irregular (Mach) refraction, and a criterion is 

developed for the transition from one to the other. Quantitative results for 

several different shock strengths, angles of incidence and sound speed ratios are 

presented. An analogy between shock refraction and the motion of a force field 

in unsteady one-dimensional gasdynamics is pointed out. Also discussed is the 

limiting case for a shock front to be continuous at the interface. Comparison of 

results is made with existing experimental data, with transition calculations 

based on three-shock theory, and with the simple case of normal interaction. 
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Chapter 1 

INTRODUCTION 

When a plane shock wave propagates through a non-uniform medium, the 

wave front becomes curved and distorted, as in the diffraction and refraction of 

shock waves in turbulence and in substances of varying sound speed. Similar 

distortions of shock fronts occur even in uniform media when the fronts pass 

over curved boundaries, as in shock diffraction over a wedge. The latter prob­

lem has received considerable attention in the past, and it is now possible to 

treat diffraction over bodies with exact numerical calculation (Shankar, Kutler 

and Anderson, 1978; Kutler and Shankar, 1977), or with an approximate theory, 

known as shock dynamics, due to Whitham (1957, 1959). This approximate 

theory has been extended by Collins and Chen ( 1970b), to cover shock propaga­

tion in a non-uniform medium. However, their work has not received much 

attention, despite the fact that there does not exist a method for calculating 

such flows that properly preserves the sharpness of discontinuities, other than 

the method of characteristics for fully 2- or 3-dimensional non-steady ft.ow. 

Shock dynamics is the nonlinear analogue of geometrical acoustics. It 

accounts for the fact that in non-uniform propagation, the rays (normals to the 

shock front) are not straight and parallel. It treats the distortion of wave fronts 

in terms of disturbances which propagate transversely along the fronts. As with 

geometrical acoustics. the theory does not treat the field behind the wave fronts 

and, therefore, is not applicable to problems in which disturbances generated by 

processes behind the shock overtake and modify it. It differs from geometrical 

acoustics in that the disturbances may either steepen or spread out by non­

linearity, a property unique to finite-amplitude waves. 
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It is the purpose of this work to reexamine the theory of shock dynamics for 

application to the problem of shock propagation in a non-uniform medium, and 

to study the behaviour in a few simple cases. In particular, we consider the case 

of a plane shock wave propagating at some angle to a free plane gaseous inter­

face separating two uniform regions with different sound speeds. The general 

results of such an interaction are the refraction of the wave as it crosses the 

interface, and the generation of a reflected wave. The reflected wave may be 

either a shock or an expansion, depending on the gas properties on each side of 

the interface, and on the local angle of incidence. Two basic types of shock 

refraction have been observed in experiments (Jahn, 1956; Abd-el-Fattah, 

Henderson and Lozzi, 1976). The first is regular refraction, which is specular in 

nature, and involves either a shock or an expansion for the reflected wave, while 

the second is irregular or Mach refraction, in which the reflected wave can only 

be a shock. Irregular refraction involves the formation of a third shock at the 

interface, called the Mach stem, and there exists a vortex sheet discontinuity 

downstream of the three shock confluence. In general, regular refraction 

occurs when the angle between the shock front and the interface is small, while 

irregular refraction occurs when the angle of incidence is large. 

Although the governing equations for the regular refraction of a plane shock 

at a free plane gaseous interface are relatively simple to formulate, their 

analysis is difficult because of the number of parameters involved (Taub, 1947; 

Polachek and Seeger, 1951; Henderson, 1966 and others). In general, the equa­

tions have twelve possible roots. Some of the roots may be imaginary or may 

yield thermodynamically impossible solutions, and these roots can be elim­

inated. However, it is still necessary to develop a criterion to determine which of 

the remaining solutions agrees best with experiment. This has been the source 

of considerable controversy, and in view of this complexity, a method of analyz­

ing the shock refraction problem by a simpler approximate theory is attractive. 
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In addition, a theory that can handle irregular refraction, as well as arbitrarily 

complex geometrical boundary conditions, will be very useful. 

Whitham ( 1957, 1959) proposed an approximate theory for the propagation of 

a shock in a perfect gas, which he termed shock dynamics. The theory involves 

the treatment of wave-like disturbances, which propagate on the shock front 

and carry information on the changes of shock strength and ray angle. The 

governing equations for these disturbances are hyperbolic in nature, and their 

behaviour is analogous in many ways to that of compression and expansion 

waves in gasdynamics. In particular, a disturbance carrying an increase in 

shock strength steepens and eventually breaks to form a discontinuity, while a 

disturbance carrying a decrease in shock strength spreads out along the shock 

front. 

The shock may be thought of as propagating along channels made up by 

neighbouring rays on its front. Immediately behind the shock front, the rays 

are in fact the particle paths, so we may think of the shock as locally travelling 

down a channel with solid walls. Chester ( 1954) and Chisnell ( 1957) have shown 

that a first-order differential relationship can be derived between the shock 

strength and the changes in channel area, if the rate of change of channel area 

is small. This relationship plays an important role in the overall development of 

the theory. 

One restriction to the application of shock dynamics for the study of general 

shock propagation problems is that no disturbances generated in the flow 

behind the shock should overtake and interact with the main shock front, so 

that in effect, the flow field behind the wave front is ignored and cannot be cal­

culated. The reason for this stems from the application of Whitham's charac­

teristic rule. 
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Although the theory of shock dynamics is approximate, it has been developed 

and applied successfully to various problems of shock propagation in a uniform 

medium. In particular, it has been used to solve problems involving the 

diffraction of strong shocks by cones, cylinders and spheres (Bryson and Gross, 

1961), and the diffraction of shocks by wedges and corners (Whitham, 1957; 

Henderson, 1980). In general, for Mach numbers greater than about 2.0, the 

agreement between the theoretical and the experimental results is found to be 

good. 

Collins and Chen (1970b) have applied the theory of shock dynamics to the 

propagation of a shock wave through a non-uniform medium. They have 

attempted to solve the problem of a shock propagating in two half-planes 

separated by a free surface, by imposing the condition that the two portions of 

the shock front at the free surface travel at the same velocity. While the con­

cept is sound, the analysis does not properly account for the transmission and 

reflection of both families of characteristics at the interface, and does not pro­

vide for the formation of discontinuities when disturbances of increasing 

strength propagate on the shock. 

The present work reformulates the theory of shock dynamics in a non­

uniform medium, using Whitham's characteristic rule, and obtains a completely 

general expression for the area-Mach number relationship that accounts for any 

spatial variations in the medium ahead of the shock front. As mentioned above, 

a case of special interest is that in which discontinuities in fluid properties, that 

is, contact discontinuities, occur ahead of the shock front. We develop a method 

for treating these discontinuities, and show that the theory leads naturally to 

an expression analogous to Snell's law of refraction (the same condition 

imposed by Collins and Chen), together with an ordinary differential equation 

that relates the Mach numbers on both sides of the discontinuity. These two 
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relations are sufficient for closure of the system of equations. 

In Chapter 2, the equations of shock dynamics are reformulated to include 

the effects of changes of sound speed in the medium ahead of the shock front, 

which may be caused by spatial variations in thermodynamic state or gas con­

centration, or by the presence of body forces. The resulting equations are non­

linear and are similar to the conventional shock dynamics equations, except for 

the appearance of source terms. It is these source terms which generate distur­

bances on the shock front as the shock propagates through the non­

uniformities. In Chapter 3, the equations are applied to two different problems 

involving a plane shock wave incident at some angle to a free plane gaseous 

interface. In the first problem, only a gaseous interface is present, while the 

second involves a solid boundary as well. Both problems were chosen because 

they are self-similar and do not contain any non-simple regions. In Chapter 4. a 

comparison of results is made with the experimental data of Jahn ( 1956) and 

-.,-;.~h the experimental and theoretical work of Henderson's group (Abd-el­

Fattah, Henderson and Lozzi, 1976: Abd-el-Fattah and Henderson, 1978). Finally, 

in the summary and conclusions, some points for further investigation are set 

out. 
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Chapter 2 

THE GOVERNING EQUATIONS 

The derivation of the equations which account for the generation and propa­

gation of disturbances on the shock front follows the analysis of Whitham 

(1957). Starting with the equations of motion, in section 2.1, we form a 

differential relation for the fl.ow quantities on the c+ characteristic, apply 

Whitham's characteristic rule, and use the shock jump conditions to obtain a 

relationship between the shock Mach number, the ray tube area and the local 

changes in the sound speed of the medium ahead of the shock wave. Next, in 

section 2.2, we introduce an orthogonal coordinate system based on the shock 

positions and the rays, and from purely geometrical considerations, formulate 

two further equations. In section 2.3, the three equations are combined, put 

into characteristic form and transformed into the physical coordinate system, 

to. yield the governing equations for the theory. Finally, in section 2.4, we dis­

cuss the behaviour of the characteristics, both in uniform and non-uniform 

regions, and derive the jump conditions at discontinuities in the fl.ow. 

2.1. Quasi-one-dimensional non-steady fiow in a non-uniform medium with 

finite area changes 

In this section, a relation between the shock Mach number M, the ray tube 

area A and variation in fluid properties is obtained as in CCW theory (Chester, 

1954; Chisnell, 1955, 1957; Whitham, 1958) for shock propagation in a channel of 

slowly varying area, and, in this case, with slowly varying sound speed a 0 ahead 

of the shock. Since shock dynamics is formulated to treat only perfect gases, 

the changes in a 0 may be caused by spatial variations in the thermodynamic 

state of the ftuid, or by spatial variations in the concentration of mixtures of 
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perfect gases, or both. Hence, in the formulation of the theory, it is necessary 

to consider imposed variations of temperature T0 and specific heat ratio 7, 

together with related variations in density p 0 , and of pressure p 0, which would 

result if body forces were present. It is convenient to express these variations in 

terms of [, a 0 and Po· 

We consider the propagation of a shock wave down a tube of non-uniform 

cross-section which contains an equilibrium non-homogeneous distribution of 

gas. If the cross-sectional area A (x) of the tube does not vary too rapidly, that 

is, 

A(x) -A 

A 
<< 1 I (2.1.1) 

where A is some mean value, then the flow may be treated as quasi-one dimen-

sional, and the equations obtained by averaging across the cross-section may be 

applied. The equations of motion are 

continuity : 

A * + a~ (puA) = 0 I 
(2.1.2) 

momentum: 

!Ju+ J_QE__ = F 
Dt I 

p ax 
(2.1.3) 

and energy: 

IJp - a2 op = 
Dt ax 0 

I 

(2.1.4) 

where F is the body force per unit mass. These equations can be rewritten as 
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Ax 
Pt + puz + upx + pu A = 0 , 

1 
Ut + UUz + -pz = F 

p 

(2.1.5) 

(2.1.6) 

(2.1. 7) 

Consider the flow quantities a1. p 1• u 1 and p 1 behind the shock. We eliminate 

the derivatives of p from (2.1.5) and (2.1.6) to give 

(2.1.B) 

and rearrange (2.1.6) to give 

(2.1. 9) 

Multiply (2.1.9) by l and add to (2.1.8) to give 

0 I 

that is, 

To put this into characteristic form, we require 



- 9 -

that is, 

So, the slopes of the two characteristic curves given by 

dx 
'U.1 + l = dt 

are 

dx 
U.1 ± al = ' dt 

and the characteristic equations are 

Also, from (2.1.7) we get a third characteristic equation 

p+: 

0 . 

(2.1.10) 

(2.1.11) 

Next, we apply Whitham's characteristic rule, in which the exact nonlinear 

differential relation for the fl.ow quantities along the c+ characteristic is used 

for the fl.ow quantities just behind the shock front. The characteristic rule is 

discussed by Whitham (1958), who proves its direct applicablity for the case of 

small perturbations in the ray tube area. In the nonlinear case, that is, when 

changes in the ray tube area are not necessarily small, the rule still works 

remarkably well for "self-propagating" shocks, that is, for shocks which are 
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accelerating, so that disturbances located farther than a certain critical dis­

tance behind the shock never catch up with the shock (Hayes, 1968). It is impli-

citly assumed in the application of the characteristic rule that this condition is 

satisfied, that is, we exclude the possibility of any disturbances from the down-

stream flow overtaking and modifying the shock. 

From (2.1.10), on the c+ characteristic, we have 

= 0 on 
dx 

dt 

By application of the characteristic rule, on the shock front, we have 

0 I 

which we rearrange to give 

Using the sound speed relation for a perfect gas 

and the equilibrium condition, that is, 

F = 
Po dx 

(2.1.12) 

(2.1.13) 

(2.1.14) 
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we can write (2.1.14) as 

dp1 du1 dpo + dA 
P-+Q---R-- A =O, 

Po u1 Po 
(2.1.15) 

where 

U1 a1 
+-

p 1 ao ao 
= 

'Y P1 [ a1 r U1 -- -
Po ao ao 

U1 
-+ 

a1 

Q 
ao ao 

= 
a1 

ao 

and 

1 

R 
1 

a1 = U1 

'Y ---
ao ao 

We now use the shock jump conditions to relate the perturbation quantities 

dp 1 and du 1 to the changes in Mach number. We have the shock relations 

= 
2ao(..M2 

- 1) 
U1 

(7 + 1)..M 

(2.1.16) 

P1 = [1+§2.(_M'-1) l 
Po 'Y + 1 , 

where M is the local shock Mach number, and we have assumed that u 0 = 0. 

Differentiation of (2.1.16) yields 
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dao dy M2 + 1 
= -- - + 

2 
dM . 

ao ?' + 1 M(M -1) 
(2.1.17) 

and 

We substitute from (2.1.1 7) and (2.1.18) into (2.1.15) to give 

[-5:.!:.__] [2 MdM + M2 - 1 d l + P[1 + 27(M2 - 1) I dpo + 
?' + 1 ?' ?' + 1 ?' ?' + 1 Po 

(2.1.19) 

+ Q [ drz o - -.!!:..:r_ + ~2 ; 1 ) dM l -R dp o + dA = 0 . 
ao ?' + 1 M M -1 Po A . 

which can be rewritten as 

11 A dM + dAA + f d7 + g dao + h dpo = 0 , 
M -1 rzo Po 

(2.1.20) 

where 

(2.1.21) 

I (M,-v) = g (M.7) ( ) 
I 7(7 + 1) µ - 7 (2.1.22) 
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g (M.1) 
= 1 + 2µ(M

2 
- 1) 

( ?' - 1) M 2 + 2 ' 
(2.1.23) 

h (M,/) = ---=-1--[2(M2 - 1) + µ~21M2 - (?' - 1)~ - (y + 1)2µM2 l 
21(M2 - 1) ('y - 1)M2 + 2 

(2.1.24) 

and 

µ(M,/) 
= r (?' - 1)M2 + 2 ]112 

l 27 .M2 
- ( f - 1) . 

(2.1.25) 

We note that equation (2.1.20) treats any spati.al variations in the perfect gas 

ahead of the shock front. In general, it agrees with the expression derived by 

Collins and Chen ( 1970b ), except for the coefficients of d ?' and dp 0 . In the 

case of the latter coefficient, the difference is due to the fact that in their 

analysis, Collins and Chen do not consider the possible occurrence of body 

forces. 

Equation (2.1.20) corresponds to Whitham's area-Mach number relation for 

shock propagation in a uniform medium, to which it reduces immediately when 

a 0 , p 0 and ?' are constant. Then we have 

(2.1.26) 

Thus, in a uniform medium, A = A (M) only, whereas in a non-uniform medium, 

A = A(M, a 0 , p 0 , y). Details of the integration of (2.1.26) are given in Appendix A. 
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2.2. Geometrical shock dynamics in two dimensions 

An orthogonal system of coordinates (ex, {3), is introduced, where a = con­

stant are the shock fronts and f3 = constant are the rays. Following Whitham 

(1959), we specify the shock surface as 

S(:x,t) = t -ex(x) = 0, 

that is, the family of lines ex(x) = constant describes the positions of the shock 

front at successive times. An increment oex corresponds to a change of shock 

position in time Ot, where 

Ot = oa . 

If U(ex, {3) is the normal velocity of the shock front at (ex, (3), the distance 

travelled by the shock in time ot is 

U(a, {J)Ot = U(a., {3)oa . 

Thus, the distance along the ray between the shock positions given by a. and 

a + oa is 

PQ = U(a, {3)oa , 

where P is the point with the coordinates (a.,{3) as shown in figure 2.1. In 

terms of the local Mach number, defined by 

M(a, (3) = 

we can write 

U(a, (3) 

ao(a, (l) ' 
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[a
0
M +~(~{JM) Bp]Ba 

Shock Y 

iJA 
[A+ da. oa]o{3 

Positions 

Rays 

{3= 
constant 

a=constant 

FIGURE 2.1. The (a.,p) coordinate system. 
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PQ = a 0 (a, {3)M(a, p)oo:. . (2.2.1) 

Next, we consider increments in the (3-direction. We let the distance along the 

shock between the rays described by (3 and (3 + 0(3 be 

PS = A(a,(3)0(3 , (2.2.2) 

where A (a, (3) is the area of the ray tube bounded by the rays (3 and (3 + 0(3. 

From the geometry of figure 2.1, vre have 

(2.2.3) 

and 

(2.2.4) 

Let ¢(a, (3) be the angle between the shock and the x-axis. Then the change 

in shock inclination from P to Q is 

r5¢ = 

= 

that is, 

Ml_ = 
00:. 

SR-PQ 
PS 

a af3 (a 0M)o(3oa 

Ao(3 

1 a 
- - -(a0 M) 

A 0(3 
(2.2.5) 

Similarly, let e(a., (3) be the angle between the ray and the x-axis. Then the 

change in ray inclination from P to S is 
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oe = 
QR -PS 

PQ 

= 

BA oao(J 
Ba 
a 0 Moa 

that is, 

oe 1 BA 
(2.2.6) = ----

o{3 a 0M aa 

From the orthogonality condition, we have 

1T 
¢ = 2 +e. (2.2.7) 

Applying (2.2.7) and passing to the limit, (2.2.5) and (2.2.6) become 

ae 1 a 
= - - -(a 0 M) 

Ba A B(J 

and (2.2.8) 

ae 1 BA 
= ----

8(3 a 0M aa 

Equations (2.2.8) relate the quantities a 0 , A, M and e in the (ex,(J) plane. 

2.3. Wave propagation on the shock 

We now combine equation (2.1.20) with equations (2.2.8) to obtain a system of 

equations which decribes the propagation of a disturbance on the shock front. 

From (2.1.20), we have 

BA = -A [ M /.. BM + f !JL + JL Bao + ..!!:_ Bpo ] . 
Ba M2 

- 1 Ba Ba a o Bex po Bex 
(2.3.1) 
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On substituting (2.3.1) into (2.2.B), we get 

ae + 1... _Q_ (aoM) = o 
8a A 8(3 

and (2.3.2) 

ae + A [ MA. 8M + f 2z. + .JL aao + .!!:_ 8po l = O . 
8(3 aoM M 2 

- 1 oa oa ao Ba Po aa 

Equations (2.3.2) may be rewritten as 

ae ao BM M Bao 
0 +-- +--- = 

aa A 8(1 A 8(1 

and 

ae + AA. BM + A [tEL .1L 8a 0 

a 0(M2 
- 1) 

+ --
8(1 aa a 0M 8a ao 

We introduce the simplifying notation 

and 

IC = AA. 

ao(M2 - 1) ' 

F = M aao 
A 8(3 

8a 
+ ..!!:.._ ap o j 

Po 8a 

G = A [ EL + .JL Bao + ..!!:.._ 8po l 
aoM f 8a ao 8a Po Ba ' 

so that equations (2.3.3) become 

(2.3.3) 

= 0 . 

(2.3.4) 

(2.3.5) 
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ae + t; aM +F = 0 aa a{j 

and 

ae + ICaM +G 0 . = a{i aa 

We multiply (2.3.7) by l and add to (2.3.6) to give 

(ea + f; M f3 + F) + l ( e f3 + ICM a + G) = 0 , 

that is, 

To put this equation into characteristic form, we require 

l = _1_ 
l te ' 

that is, 

l = [ ~ r/2 . 

So, the slopes of the two characteristic curves given by 

are 

!!:..§__ = l 
d a 

!!:..§__ = ± tzo [ M2 - 1 l 112 

drx A A. ' 

and the characteristic equations c± are 

(2.3.6) 

(2.3.7) 
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(ea±cep)±c1e(Ma±cMp)+(F±cG) = 0, 

that is, 

[ 
"A l 11

2 

(ea± c ep) ± M
2 

_ 
1 

(Ma± cMp) = - (F ± cG) , (2.3.8) 

where 

= a o [ M2 - 1 l 112 
c A "A • (2.3.9) 

From (2.3.8), we get 

de ± [M2"A_ 1 r12

dM = -(F ± cG)drx on ~~ = ±c . (2.3.10) 

If we introduce 

[ 
"A l 112 

dw = 
2 

dM , 
M -1 

that is, 

(2.3.11) 

the characteristic equations (2.3.8) become 
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[..L ± c ..E_] ( e ± c.>) = - (F ± cG) , aa a{3 

while equations (2.3.10) become 

on the characteristics 

dB± de.> = - (F ± cG)do:. 

!!.§._ = 
do:. 

± c . 

(2.3.12) 

(2.3.13) 

Since, in general. problems are more easily formulated in the (x, y) plane 

than in the (a, {3) plane, it is expedient to transform the governing equations to 

the physical plane. The coordinate transformation relations, which are derived 

in Appendix B, are applied to (2.3.12) to give 

= [ M [-A sine Bao + Acose aaao l ± -4£_ !1 [aoMcose EL + aoMsine EL) + A ax y a oM ax ay 

+ .IL [aoMcose aaa 
a 0 x 

aao ] h [ apo ap 0 ])] + a 0Msin6 ay + Po a 0Mcose a;- + a 0Msine ay . 

On rearranging, this becomes 



where 

that is, 
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[(1 'F vtane) :x + (tane ± v) ~ ](e ± r.>) = 

= -[-1-(- tane ± vg) aao + (1 ± vgtane) aao ) + 
ao ax ay 

± vf [!!L + tane !!L l ± vh [ apo + tane apo l I 

ax ay Po ax ay 

v = Ac 

aoM ' 

= 1 [ M2 - 1 ]1/2 
v M A. . 

(2.3.14) 

(2.3.15) 

Similarly, equations (2.3.13) become 

de± de.> = - l [-
1-((-tane ± vg) Bao + (1 ± vgtane) Bao ) + 

1 + vtane ao ax ay 

(2.3.16) 

[
!!2 Ey_] vh [ apo Bpo J] ± vf + tane ± - -- + tane-- dx 
ax By Po ax By 

and 
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d8±dc.> = 1 [-1-((-tane ± vg) Bao + (1 ± vgtan6) Bao ) + 
tane ± v ao ax ay 

[
£2. EL] vh [ apo 8po ]] ± vf + tane ± - -- + tane -- dy , 
ax By Po ax By 

on the characteristics 

where 

!!:11_ = tane ± v 
dx 1 ::i: vtane 

= tan(e ± v) , 

(2.3.17) 

(2.3.18) 

(2.3.19) 

The angles made by the c+ and c- characteristics with the x-axis are given by 

r;± = e ± v . (2.3.20) 

We note that the two characteristics make equal angles with the ray direction. 

The behaviour of each of the functions A, A, µ, v, v and r..> with M is shown in 

figure 2.2. 

Equations (2.3.14), or alternatively, equations (2.3.16) and (2.3.17), form the 

governing equations for shock dynamics in a non-uniform medium. 



l<
jfm

 A.
 I
µ

 
V

I 
v
(°

) 
(a

) 

2
0

·0
 

1
·0

 
0

·
4

+
2

0
·
0

-
-
-
-
-
-
-
-

5
·0

+
0

·8
 

0
·3

 

0
 

4
·5

+
0

·6
 

0
·2

+
1

0
·0

 

4
·0

+
0

·4
 

0
·1

 

-
2

0
·0

 
l-

0
·2

 
0
 

+
 

0
 -
6

·0
 

-
4

·0
 

-
2

·0
 

0
 

lo
g

1
0

 
(M

-1
) 

v
 

v
 

(a
) A.
 

""'-~----
µ
 

A
 

2
·0

 
4

·0
 

F
IG

U
R

E
 

2
.2

. 
V

a
ri

a
ti

o
n

 o
f 

th
e
 f

u
n

c
ti

o
n

s
 

A
, 

A
.,µ

,, 
v,

 v
 a

n
d

 
cv

 
w

it
h

 M
a
c
h

 n
u

m
b

e
r.

 

l.\
J
 

~ 



- 25 -

2.4. The characteristic system 

The governing equations (2.3.14) form a hyperbolic system which describes 

wave-like disturbances that travel in opposite directions along the shock front, 

and carry information about changes of M and e. The characteristics are 

real. and their slope, dy /dx, is an increasing function of M, so that a distur­

bance carrying an increase in shock strength steepens, whereas a disturbance 

carr:ring a decrease in shock strength spreads out. When an expansive distur­

bance on the shock front results in a simple wave (expansion fan), we refer to it 

as a shock-expansion. On the other hand, a compressive disturbance eventually 

breaks and forms a discontinuity of M and e on the shock front, the jump 

conditions across which have been given by Whitham (1957). The locus of this 

discontinuity is called a shock-shock. Physically, the shock-shock is the locus of 

the triple-shock intersection, and its occurrence signals the formation of a Mach 

stem. 

The governing equations (2.3.14) are similar to those obtained by Whitham 

(1957) for the case of a uniform medium ('y, a 0 ,p 0 ==constant), but in general, 

they differ through the appearance of "source" terms on the right-hand side. 

The source terms contain the gradients of the independent variables, 'J, a 0 and 

p 0 . Indeed, for the uniform medium case, the gradients are zero and the source 

terms vanish, so that we recover the equations given by Whitham. Thus, in this 

formulation, disturbances may be generated on the shock front by boundary 

conditions such as wall curvature, as well as by non-uniformities in the medium 

ahead of the shock. We note that the source terms are implicit, since they con­

tain the dependent variables, M and e, as well as the independent variables, 

')', a 0 and Po· 
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2.4.1. The shock-expansion and the shock-shock. The governing equations 

may be solved by the method of characteristics for two independent variables. 

In the uniform regions, we have 

(2.4.1) 

where J± are invariants. In a shock-expansion, the invariants are constant on 

the family of characteristics which originate in the uniform region, while the 

other family of characteristics carries the disturbance. On the other hand, 

when shock-shocks occur, they must be fitted into the continuous solution using 

the shock-shock jump conditions, 

= [ (Af - Afl(M~ - Mf) ]112 

and 

where 

AiM1 + AzM2 

Ai [ M ~ - Mr 1
112 

, 

M1 Af -A~ 

(2.4.2) 

(2.4.3) 

(2.4.4) 

The subscripts 1 and 2 denote the quantities ahead of and behind the shock-

shock respectively, and x is the angle of the shock-shock with the x-axis. The 

integration of the function A is given in Appendix A. 
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2.4.2. The contact discontinuity. For shock dynamics in a non-uniform 

medium, one must also account for the possible occurrence of discontinuities in 

fluid properties, that is, contact discontinuities, ahead of the shock front. We 

consider an element of interface inclined at an angle OJ to the x-axis, as shown 

in figure 2.3. To remove the x -dependence from the source terms, we introduce 

a simple rotation of the shock and the interface through an angle -OJ, so that 

the interface lies parallel to the x-axis. Then a 0 , -y and p 0 become functions 

of y only, and equations (2.3.17) reduce to 

de±dr,;= 1 [ "' dao ,.., [ dpo ]] ---,.,,-- (1 ± vgtane)-a
0 

± vtane fd?' + h -Po tane ± v 

on the characteristics 

!!:JL = tane ± v 
dx 1 ::i: vtane 

(2.4.5) 

where e ' the angle between the rays of the local shock front and the interface, 

is given by 

e = e - OJ . (2.4.6) 

If we apply equations (2.4.5) to a pair of characteristics which intersects a con-

tact interface across which there are infinitesimal changes of sound speed da 0 , 

specific heat ratio d-y, and pressure dp 0 , on eliminating the terms in a. 0 , we 

obtain the simple result 

tane de = dU 

u (2.4. 7) 
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t 

FIGURE 2.3. The contact surface discontinuity. Si. S2 , shock 

front positions at two successive times, t and t +ot: I. inter­

face; RT, ray tube. 
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Then, assuming that the effects of an interface carrying finite changes can be 

built up by summing the infinitesimal changes, equation (2.4.7) is integrated to 

yield 

u ---.,.,,- = constant . 
cose 

(2.4.8) 

Hence, equations (2.4.5) provide exactly the condition required for a continuous 

shock front across such an interface, a condition which is analogous to Snell's 

law of refraction. 

By eliminating the terms in fi from equations (2.4.5), we obtain 

2 "" 2 dM 2 [ 2 "" da o 2 "" [ dp o l I (tan e -v )- = v (1 -gtan e)-- -tan e fd/ +h--
M ao Po 

(2.4.9) 

In order to demonstrate the properties of the equations in the simplest way pos-

sible, we consider in the remainder of this work, the case 7, p 0 = constant, that 

is, the medium is a perfect gas in which only variations of temperature occur. 

Then the last two terms in equations (2.4.9) vanish and the equation reduces to 

an ordinary differential equation in M and a 0 , 

where 

and 

dM = v2 M ( U2 
- g V2

) 

dao ao( V 2 
- v2 U2

) 

V = [[ ao1-M" 1 ]2 - (aoM)2 ]112 
cose 1 

(2.4.10) 

(2.4.11) 

(2.4.12) 
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Given the shock strength and sound speed on one side of the interface, say M1 

and a 01 , the ordinary differential equation (2.4.10) can be solved to yield the 

shock strength M 2 on the other side, where the sound speed is a 02 . To com­

plete the solution of the jump conditions across the interface, the slope of the 

shock front in the secondary region is found from equation (2.4.8). Then, the 

final step is to restore the shock and the interface to their original positions by 

another simple rotation through an angle +OJ. 

We note that the ordinary differential equation (2.4.10) is well-behaved except 

for a singularity which occurs when the denominator vanishes. It is shown in 

Appendix C that when the equation is singular, a characteristic lies parallel to 

the interface. It is also shown that the singularity is a square-root singularity, 

and that it is integrable. The physical significance of this condition is discussed 

in section 3.1. 

It is interesting to consider the direction of crossing of the ray tubes at the 

interface. Figure 2.3 has been drawn to illustrate the results of shock refraction 

for the case of e < OJ, and shown in the figure is a ray tube consisting of a bun­

dle of rays. For the case of e < OJ, the ray tubes cross the interface from 

region 1 to region 2, while for the case of e > OJ, the ray tubes cross the inter­

face in the opposite direction. Since the ray tubes represent the channelling of 

energy between rays, the direction in which the ray tubes cross the interface 

indicates the region into which the refracted shock is growing. When e = o1 , the 

shock is normal to the interface and the ray tubes do not cross the interface. 

This condition is identical to that which is applied at a solid boundary in the 

analysis of shock diffraction using the theory of shock dynamics in a uniform 

medium. 
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Chapter 3 

SHOCK REFRACTION 

As a demonstration of the application of the theory, we consider problems 

involving a plane shock wave incident at some angle on a free plane gaseous 

interface across which there exists a finite difference in sound speed (Jahn, 

1956; Abd-el-Fattah, Henderson and Lozzi, 1976). Two different problems are 

discussed. In the first problem, only a gaseous interface is present, while the 

second involves a solid boundary as well. The problems are designed to be self­

similar, and they have been chosen for consideration because non-simple 

regions do not appear in the flow-field. For regular refraction, the effects of the 

interface are only local, so in fact, regular refraction can be solved exactly by 

three-shock theory. However, shock dynamics also predicts irregular refraction, 

so even these simple cases are interesting. 

As the first example, Problem 1, we choose the simplest configuration that 

contains all the important effects, namely, one in which the contact interface is 

wedge-shaped, with one of the sides aligned parallel with the undisturbed shock 

front and the other lying at an angle 61 with the x-axis, as shown in figure 3.1. 

S1 is the incident shock front and S2 is the shock front at a subsequent time 

after interaction with the interface. The shock transmits through the vertical 

portion of the contact surface and refracts from the other. Regions 1 through 6 

in figure 3.1 are uniform regions. The shock in region 2 provides the lower 

boundary condition in this problem, and is calculated exactly from the equa­

tions of one-dimensional gasdynamics (Appendix D), while in regions 3, 4, 5 and 

6, the shock conditions are calculated from the approximate theory developed 

here. 
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Ro1 /I Ro1 
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c- c-

® ® 
Ro2 Ro2 

I 

(a) (b) 

81 82 

Ro1 

CD c .. 

(c) 

FIGURE 3.1. Configurations for Problem 1; (a) Contact surface above 

leading c+ characteristic; (b) Contact surface between leading c+ and 

c- characteristics; (c) Contact surface below leading c- characteristic. 

8 1 , incident shock front; 82 , shock front after interaction with interface; 

I, interface. 
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In the second example, Problem 2, a solid wall is introduced below the sloping 

interface, at an angle ow with the x-axis, as shown in figure 3.2, and the boun­

dary condition imposed here is that the shock is always normal to the wall. 

Regions 1 through 4 are uniform and they are calculated from shock dynamics 

theory. 

As shown in figures 3.1 and 3.2, different cases are possible for each problem, 

depending on the position of the interface with respect to the leading c+ and 

c- characteristics. In Problem 1, the interface may lie above the leading c+ 

characteristic, it may lie between the leading c+ and c- characteristics, or it 

may lie below the leading c- characteristic. Likewise, in Problem 2, the inter­

face may lie above the leading c+ characteristic, or it may lie between the lead­

ing c+ characteristic and the wall. When the interface lies above the leading 

c+ characteristic or below the leading c- characteristic, the steepness of the 

interface prevents disturbances on the shock front from propagating outward 

from the interface, and these are cases of regular refraction. However, in Prob­

lem 1, when the interface lies between the leading c+ and the leading c­

characteristics, or in Problem 2, when it lies between the leading c+ charac­

teristic and the wall, the disturbances propagate outward from the interface, 

resulting in irregular refraction. Thus, shock dynamics theory for a non­

uniform medium models both regular and irregular refraction. This is not the 

case for shock dynamics in a uniform medium, where, for the reflection of a 

shock by a solid wedge, the theory predicts a very tiny Mach stem for conditions 

under which regular reflection actually occurs (Whitham, 1957). 

In order to demonstrate the quantitative behaviour of the theory, shock 

refraction has been calculated for several different values of o1, o fl', a 0 and M. 

The case ao2 > a 01 (the "slow-fast" interaction) has been investigated in detail 

for both problems, while the case a 02 < a 01 (the "fast-slow" interaction) has so 
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Ro1 / a01 
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w w 

(a) (b) 

FIGURE 3.2. Configurations for Problem 2; (a) Contact surface above 

leading c+ characteristic; (b) Contact surface between leading c+ and 

wall; S 1, incident shock front; S2 , shock front after interaction with inter­

face; I. interface; W, wall. 
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far been treated only for Problem 1. Typical results are presented in tables 3.1 

and 3.2. 

The problems are solved using the interface jump conditions (equations 

(2.4.B) and (2.4.10)), the shock-shock jump conditions (equations (2.4.2) and 

(2.4.3)), and the invariance of e ± c.> in the uniform regions and in the simple 

waves. All 'the calculations were done numerically, including the integration of 

equation (2.4.10), for which a fourth-order Adams-Moulton predictor-corrector 

algorithm was used, started off by the Runge-Kutta-Gill method. For the regular 

refraction cases, the conditions behind the interface are determined directly 

from the known conditions ahead of the interface, and the remaining region is 

then determined from the boundary conditions. However, for the irregular 

refraction cases, since none of the conditions in the two regions adjacent to the 

interface is known a priori, it is necessary to make a guess of one quantity, say 

the Mach number, M, ahead of the interface and then to solve the equations 

iteratively. Further details are contained in Appendix E. Unless otherwise 

stated, the computational accuracy for M in these cases is better than 0.001%. 

Although the theory of shock dynamics in a non-uniform medium is approxi­

mate and provides information only about the main shock front, it has an 

important advantage over existing methods for calculating shock refraction at a 

gaseous interface, in that it is simple to apply and yields a unique solution. On 

the other hand, solution of the full gasdynamics equations from three-shock 

theory (Taub, 1947; Polachek and Seeger, 1951; Henderson, 1966 and others), 

yields information about the reflected wave as well, but, in general, there are 

twelve possible roots, so that it is necessary to develop a criterion to determine 

which solution agrees best with experiment. This has beeh the source of consid­

erable controversy. 
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3.1. Problem 1 

A series of solutions for Problem 1 with M 1 = 5.0 and a 02/a 01 = 2.0 is given 

in table 3.1, and some typical cases are illustrated in figure 3.3. The uniform 

regions ( 1 through 6) are adjacent to simple waves (shock-expansions), or to 

discontinuities (shock-shocks or the contact surface). The shock front is con­

tinuous throughout, but the slope is discontinuous at the shock-shock and at 

the contact surface. Both the shock strength and slope vary continuously 

through the shock-expansions. As might be expected, for the slow-fast interac­

tion the theory shows the shock to be concave forward in the upper part of the 

flow field and convex in the lower part. 

Table 3.1. Summary of calculated refraction parameters for Problem 1 

M 1 = 5.0, e 1 = 0° and a 02/a 01 = 2.0 

(M2 = 3.43 and 8 2 = 0°) 

Case 51 Ms es M4 e4 M5 85 Ma ea X1 X2 

1 90.0 3.56 0.0 3.49 -2.3 

2 60.0 3.73 18.3 3.34 3.6 

3 55.7 (4.07) (32.2) 3.31 4.9 

4 55.0 3.29 5.7 (8.71) (52.3) 55.0 
5 45.0 3.16 11.1 7.44 42.5 48.0 
6 36.8 3.10 13.6 6.74 34.4 42.8 
7 30.0 3.06 15.4 6.31 28.2 38.9 
8 20.5 2.94 20.5 5.89 20.5 34.6 
9 15.0 2.78 28.1 5.70 16.6 32.4 

10 13.8 (2.61) (36.6) 5.67 15.9 32.0 
11 14.0 5.66 15.7 (3.01) (71.9) 31.9 14.0 
12 0.0 5.40 10.0 3.39 57.3 28.8 6.1 
13 -23.3 5.21 5.2 4.13 33.l 26.4 -5.6 
14 -45.0 5.12 3.0 4.60 16.7 25.3 -14.1 
15 -71.0 5.00 0.0 4.78 5.9 23.7 -20.8 

Angles o, e and X are given in degrees. 

Values in parentheses denote vanishingly small regions. 
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FIGURE 3.3. Solutions for Problem 1 with M1 = 5.0 and a. 02 /a. 01 = 2.0; 

(a) Regular refraction, OJ = 60.0° (case 2); (b) Irregular refraction, 

OJ= 45.0° (case 5); (c) Irregular refraction, OJ= 30.0° (case 7); S, shock 

front; I. interface; SE, shock-expansion; SS, shock-shock. 
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FIGURE 3.3. (Continued) Solutions for Problem 1 with M1 = 5.0 and 

a 02/a 01 = 2.0; (d) Irregular refraction, 61 = 15.0°- (case 9); (e) Irregular 

refraction, 61 = 0° (case 12); (f) Regular refraction, or = -45.0° (case 14). 

S, shock front: I. interface; SE, shock-expansion; SS, shock-shock. 
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For large interface angles, a regular refraction solution is obtained, which 

contains two shock-expansions of opposite families, as shown in figure 3.3(a) 

(case 2). Shock dynamics theory predicts transition from regular to irregular 

refraction when the slope of the interface is equal to the slope of the charac­

teristics in the region just behind the interface. This occurs when the upper­

most characteristic of the shock-expansion between regions 3 and 4, designated 

here as C/, approaches the contact surface, and region 3 vanishes. Then, 

o1t = tan-1 [ :; l lct , (3.1.1) 

where o
1
t is the interface angle at transition, and dy /dx is given by equation 

(2.3.18), evaluated on ct (case 3). We note that at transition, the flow 

deflection angle is greatest, and designate this angle e 3t. 

Up to this point, the c+ characteristics crossing the interface originate in 

region 1, and the direction of crossing is from above to below. However, a 

further decrease in o1 results in a reversal in the direction of crossing of the 

c+ characteristics, which now originate from the corner. The c+ characteris­

tics emerging from the interface are steeper than those in region 1, and this 

results in the formation of a shock-shock discontinuity, which initially lies just 

above the interface (case 4), at an angle Xi with the x-axis. As the interface 

angle is decreased further, the shock-shock separates from the interface, as 

shown in figure 3.3(b) (case 5), and the upper shock-expansion becomes smaller, 

until it finally vanishes (case 6). 

1n cases 4 through 6, and in other cases to be encountered later, a charac­

teristic lies just behind and adjacent to the interface. Under these conditions, a 

singularity appears in the expression for dM /da 0 (equation (2.4.10)), as a 0 
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approaches a 02 . It is shown in Appendix C that the singularity is a square-root 

singularity, so that dM /da 0 is integrable, and solutions exist for this range of 

interface angles. 

Transition from regular to irregular refraction in shock dynamics theory is 

analogous to that which occurs in the problem of a moving force field or 'leaky 

piston" in unsteady one-dimensional gasdynamics. In this problem, Hoffman 

(1967) found that a transition occurs from a shock-free solution, when the force 

is weak and supersonic, to a solution containing a shock, when the force is sub­

sonic. In the analogy, the force, which is a "source" in gasdynamics, corresponds 

to the contact interface, which is a "source" in shock dynamics, and in particu­

lar, a weak supersonic force corresponds to a steeply inclined interface, while a 

subsonic force corresponds to a gradually sloping interface. Further, in an 

intermediate case, analogous to our cases 4 through 6, Hoffman also found that 

a characteristic in the (x, t) plane lies adjacent to the force and behind it, 

while the characteristics ahead, between the force and the shock, lie at a finite 

angle to the force. For this c_ase, as in our result, a square-root singularity 

exists at the back of the discontinuity. The appearance of a characteristic adja­

cent to and at the back of a surf ace of discontinuity signifies a sonic condition 

well-knovln in gasdynamics, a familiar example of which is Chapman-Jouget 

detonation. The physical processes leading to this case are most easily under­

stood for a force field (or contact region) of finite width, further details of which 

can be found in Hoffman (1967). Our use of the differential relation, equation 

(2.4.10), is equivalent to treating the contact discontinuity as a region of finite 

width. 

It is also interesting to note that there exists a finite range of interface 

angles (0.7° in this instance, between cases 3 and 4) in which no solution could 

be obtained for the irregular refraction case. It appears that this difficulty is 
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associated with the formation of the shock-shock on the interface, and a similar 

difficulty occurs whenever a shock-shock lies on or immediately adjacent to the 

interface. 

Shown in figure 3.3(c) is the geometry of a simple irregular refraction, after 

the upper shock-expansion has vanished (case 7). As the interface angle contin­

ues to decrease, the shock front becomes normal to the interface (case 8) and 

then reverses curvature (case 9) from convex forward at the interface to con­

cave forward, as shown in figure 3.3(d). For case 8, in which we designate the 

interface angle as 61 , we note that the shock fronts on both sides of the inter-
n 

face are normal to the interface, so that the ray tubes do not cross the inter-

face. In other words, there is no transfer of energy across the interface, as dis-

cussed in section 2.4.2. This case is identical to the diffraction of a shock by a 

wedge of angle o1 . 

For a further decrease in the slope of the interface, a second transition angle, 

6r• is reached when the uppermost characteristic of the lower shock-expansion, 
t 

q-, approaches the contact surface and region 4 vanishes, that is, 

(3.1.2) 

where dy /dx is evaluated on Cz- (case 10). For 61 < oft_' the behaviour of the 

c- characteristics is similar to the behaviour of the c+ characteristics for 

61 < <5
1

+. The c- characteristics which cross the interface now originate from 
t 

the corner, instead of originating in region 1 as before, and the direction of 

crossing is now from below to above. The steepness of the c- characteristics 

emerging from the interface results in the formation of a second shock-shock, 

which initially lies just above the interface (case 11), at an angle x2 with the x-
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axis. As shown in figure 3.3(e) (case 12), the shock-shock separates from the 

interface as the interface angle is decreased, and the lower shock-expansion 

becomes smaller, until it finally vanishes (case 13). 

At this point (case 13), the interface lies on the leading c- characteristic. 

When the interface lies below this characteristic, no information about the 

corner can propagate outward along the shock from the interface, so that the 

shock refraction at the interface becomes locally regular. A typical example is 

shown in figure 3.3(f) (case 14), in which we see that two shock-shocks of oppo­

site families are present, but no shock-expansions. 

This behaviour continues as the interface moves down toward the vertical. 

Both shock-shocks weaken, and as expected, the shock front straightens out 

and its strength tends to the undisturbed value of M 1. However, in region 6, 

where the shock front has passed through two interfaces, the recovery is incom­

plete, and this may be attributed to reflection losses at each of the two interac­

tions. 

The results of this analysis show that if the interface is steep enough, the 

only mechanism by which concave curvature ("compressive" bending) can be 

induced on the shock is that provided by Snell's law, at or within the interface 

(cases 2 and 3). However, for smaller interface angles, when the refraction is 

irregular, convex curvature ("expansive" bending) occurs at the interface, 

presumably because too much compressive bending occurs at the shock-shock 

(cases 4 through 7). For even smaller interface angles, the shock-shock may be 

sufficiently weak so that the effects of the interface are once again compressive 

(cases 9 and 10), and the cycle repeats itself through the formation of a second 

shock-shock (cases 11 through 15). 
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The solutions for this problem that involve two shock-expansions or two 

shock-shocks of opposite families are unusual. especially the latter, in which 

both the shock-shocks share a common Mach stern. Such solutions are the 

result of the unique properties of the characteristics in shock dynamics. The 

difference in behaviour between the characteristics in shock dynamics and the 

characteristics in gasdynarnics is most easily seen from the fact that, in shock 

dynamics, the shock front, which is a locus of constant time, has no analogy in 

gasdynamics. It will be interesting to compare these predicted solutions with 

actual experimental results, when such results become available. 

Before leaving this problem, we note that although we have been considering 

the slow-fast interface, the preceding results embody the form of the solutions 

for the fast-slow interface as well. For the fast-slow interface, we have a 02 < a 01 , 

M 2 > M 1 and U 2 < U 1 , so that by interchanging region 1 with region 2, we get 

a 02 > a 01 • M 2 < M 1 and U2 > U1. which are exactly the boundary conditions 

for the slow-fast interface. Of course, to get the detailed results for the fast­

slow case, it is necessary to determine M 2 at the vertical part of the interface, 

and then to solve for the various regions as before. 

3.2. Problem 2 

Given in table 3.2 and shown in figures 3.4 and 3.5 are some typical results 

for Problem 2. For any given incident shock strength and sound speed ratio, 

two different sequences of solutions are obtained, depending on the wall angle, 

6~ .. We note from the transition condition in Problem 1 (case 3), that when the 

interface angle is 6
1
/' the flow deflection for regular refraction is maximum 

(es
1
), and that, in order to obtain a larger deflection, the flow adjusts itself by 

becoming irregular. Hence, for problem 2, in which a wall is present below the 

interface, if Q fl' > 63
1 

> for 61 decreasing from 90° I it might be expected that the 

solution will become irregular before 61 reaches 61/. Indeed, for ow< est• 
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Table 3.2. Summary of calculated refraction parameters for Problem 2 

a 02/a 01 = 2.0, M1 = 5.0 and ow= 15.0° 

Case OJ M2 82 Ms 8s M4 84 x 
16 65.0 3.65 13.1 3.70 15.0 37.5 
17 62.9 3.68 15.0 3.68 15.0 (38.5) 
18 60.0 3.73 18.3 3.64 15.0 
19 55.7 (4.07) (32.2) 3.57 15.0 
20 55.0 3.53 15.0 (8.71) (52.3) 55.0 
21 45.0 3.25 15.0 7.44 42.5 48.0 
22 38.2 3.15 15.0 6.84 35.8 43.7 
23 30.0 3.05 15.0 6.31 28.0 38.9 

a 02/ao 1 = 2.0, Mi = 5.0 and Ow= 45,0° 

Case OJ M2 62 Ms 8s M4 64 x 
24 60.0 3.73 18.3 4.64 45.0 56.3 
25 57.8 (3.81) (22.0) 4.58 45.0 57.8 
26 57.3 4.52 45.0 (9.25) (55.2) 57.3 
27 50.0 4.10 45.0 8.22 49.1 52.6 

ao2/ao1 = 2.0, Mi = 5.0 and ow= 60.0° 

Case OJ M2 e2 Ms es M4 e4 x 
28 75.0 3.58 6.8 6.34 60.0 62.4 
29 64.2 (3.66) ( 13. 7) 5.74 60.0 64.2 
30 63.9 5.67 60.0 (11.36) (63.1) 63.9 
31 61.0 5.36 60.0 10.72 61.2 62.2 

a 02/a01 = 2.0, OJ = 30.0° and ow= oo 
Case Mi M2 e2 Ms es M4 e4 x 
32 5.0 2.75 0.0 6.29 27.72 38.7 
33 4.0 2.21 0.0 5.05 28.14 38.9 
34 3.0 1.67 0.0 3.80 28.81 39.0 
35 2.0 1.14 0.0 2.53 29.79 38.6 
36 1.8 1.05 0.0 2.27 29.96 38.3 
37 1.78 1.04 0.0 2.24 29.98 38.2 
38 1.77 1.04 0.0 2.23 29.99 38.2 

Angles ~. e and x are given in degrees. 

Values in parentheses denote vanishingly small regions. 
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FIGURE 3.4. Solutions for Problem 2 with M 1 = 5.0, a 02/a 01 = 2.0 and 

6 w = 15.0°; (a) Regular refraction, OJ = 65.0° (case 16); (b) Regular refrac­

tion, OJ = 60.0° (case 18); (c) Regular refraction, OJ = 45.0° (case 21); 

(d) Irregular refraction, DJ = 30.0° (case 23). S, shock front; I, interface; 

W, wall; SE, shock-expansion; SS, shock-shock. 
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s 

FIGURE 3.5. Irregular refraction solution for Problem 2 

with M1 = 2.0, a 02/ao1 = 2.0, ow= 0° and o1 = 30.0° 

(case 35). S, shock front: I. interface: W, wall: SE, shock­

expansion; SS, shock-shock. 
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transition from regular to irregular refraction occurs at 61 = 6
1
t, whereas for 

ow> e 3 t, it occurs earlier. As a consequence, there are two sequences to be 

considered. An interesting third sequence is obtained by keeping the interface 

and wall angles fixed, and observing the efiects of reducing the incident shock 

strength. 

In the first and second sequences, we set M 1 = 5.0 and a 02/a 01 = 2.0. For 

large interface angles and small wall slopes (ow< e 3t), a shock-shock lies below 

the interface, as shown in figure 3.4(a) (case 16). As the interface angle is 

decreased, the shock-shock weakens, degenerates to a c+ characteristic 

(case 17), and is converted into a shock-expansion as shown in figure 3.4(b) 

(case 18). The transition from the shock-shock to the shock-expansion results 

in regions 2 and 3 becoming identical (case 17), and corresponds to a zero con­

tribution from the corner signal, referred to by Jahn (1956). Jn figure 3.4(a) 

("'?.se 16), the corner signal is a net compression, while in figure 3.4(b) (case 18), 

it is a net rarefaction. 

As the interface angle is decreased further, the shock-expansion grows in size 

and strength, until its upper c+ characteristic lies adjacent to the interface 

(case 19). A further decrease in the interface angle results in the formation of a 

shock-shock just above the interface, that is, irregular refraction (case 20), and 

as the interface angle becomes even smaller, the shock-shock separates from 

the interface as shown in figure 3.4(c) (case 21), the shock-expansion vanishes 

(case 22) and, finally, a simple irregular refraction results, as shown in 

figure 3.4(d) (case 23). In the limit, as the interface collapses onto the wedge 

(o1 ~ ow). the problem reduces to that of the irregular reflection of a shock by a 

wedge. 
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It is interesting to note that for the special case of the horizontal wall 

(ow = 0°), by considering the wall to be an axis of symmetry, one obtains the 

solution to the double wedge problem, in which both faces of the gaseous wedge 

are inclined at equal angles to the undisturbed rays of the incident shock wave. 

The second sequence of solutions occurs when the wall angle is large 

(ow> est). For large interface angles, as before, a shock-shock lies below the 

interface, between regions 2 and 3 (case 24). However, as the interface angle is 

decreased, the shock-shock moves towards the interface (case 25), crosses it 

(case 26), and moves out into the primary medium, resulting in a simple irregu­

lar refraction result (case 27). The shock-shock is not converted into a shock­

expansion, and the corner signal is compressive for all interface angles. In view 

of the fact that the order of crossing of the interface and the shock-shock by 

the c- characteristics is reversed when the shock-shock passes through the 

interface, cases 25 and 26, it is remarkable that the conditions in region 3 

nevertheless show the expected trend. 

The larger the wall angle, the nearer the shock-shock remains to the wall for 

all interface angles (cases 28 through 31). Each of these solutions contains a 

tiny Mach stem, either at the wall (cases 28 and 29), or at the interface, when it 

is near the wall (cases 30 and 31). The Mach stem is the result of the boundary 

condition applied at the wall, and it is present even though the angles involved 

are large enough that the solutions should be regular. Thus, even in the limiting 

cases of OJ= 90° and OJ= ow. our solution predicts the presence of a Mach 

stem at the wall, instead of giving a regular refraction result. 

In the third sequence, we set OJ= 30.0° and ow= 0° (cases 32 through 38). 

As the incident shock strength is reduced, the strength of the shock at the wall, 

Ms. tends to unity, and the shock front in region 4 becomes normal to the 
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interface, as shown in figure 3.5 (case 35). It appears that both these limits are 

reached simultaneously, which is not surprising, since the conditions at the 

interface are influenced by the conditions at the wall. Physically, as the limit is 

approached, the shock-expansion behind the interface, which has been expand­

ing downwards, fills the secondary medium entirely, and in the limit, the ray 

tubes in region 4 do not cross the interface. If the incident shock strength were 

to be reduced, or alternatively, if the interface angle were to be decreased, the 

shock-expansion would have to expand further. This is not possible, and since 

the expansion cannot be discontinuous, it appears that this situation is the lim­

iting case for which the equations at the interface, equations (2.4.B) and 

(2.4.10), and the boundary conditions can be satisfied simultaneously. This can 

be interpreted to mean that beyond this limit, the shock front should no longer 

be continuous across the interface. It has been observed experimentally that 

this situation leads to the formation of a precursor wave, that is, a discontinu-

ous shock front at the interface, as discussed in section 4.1.2. 

The essential difference between the case of a normal shock at the interface 

for Problem 1 (case 8), and the limiting case of a normal shock here, lies in the 

behaviour of the ray tubes. In Problem 1, a portion of the shock front is present 

below the sloping part of the interface, having been transmitted through the 

vertical part, so that, as the interface angle passes through o1 , the direction in 
n 

which the ray tubes cross the interface is simply reversed. However, in the case 

of Problem 2, the portion of the shock front below the interface comes only 

from the ray tubes which cross the interface from above. Thus, when the shock 

becomes normal to the interface, it appears that no further solution is possible 

by shock dynamics theory. 
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Chapter 4 

COMPARISON WITH EXPERIMENT AND THEORY 

In this chapter, the results from shock dynamics theory are compared with 

experimental and theoretical results. In particular, comparison is made with 

the experimental data of Jahn (1956), and with the experimental and theoretical 

work of Henderson's group (Abd-el-Fattah, Henderson and Lozzi, 1976; Abd-el­

Fattah and Henderson, 1978). The simple case of normal interaction at an 

interface is also discussed. 

4.1. Comparison with experimental results 

4.1.1. Jahn 's results. Jahn (1956) published experimental results on shock 

refraction at a plane gaseous interface. He used gas combinations of air -

methane and air - carbon dioxide, and the gases were prevented from mixing at 

the interface by a very thin plastic membrane. The results of computations 

based on the settings used in his experiments are presented in table 4.1, 

together with the experimental results which were measured from his published 

photographs. For the regular refraction case, according to shock dynamics 

theory. the conditions in region 3 are determined solely from the conditions in 

region 1, so that the comparison with experiment is only local. For the irregular 

refraction case, however, the conditions at the interface are influenced by the 

presence of the wall, so that it is necessary to consider the whole flow field. 

In order to locate the shock-shock in the photographs, the position of the 

corner had to be determined by extending the lines along the interface and the 

wall upstream until they intersected. Since the angle between the interface and 

the wall is small in both cases 45 and 46, this introduces a possible error in the 
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Table 4.1. Calculated and measured refraction parameters based on settings 
used by Jahn 

Regular Refraction 
Theoretical Experimental 

Case OJ Mi ao2/ao1 

39 62 1.073 1.289 

40 47 1.073 1.289 

41 66 1.073 0.780 
42 27 1.073 0.780 

43 41 1.732 0.780 
44 32 1.732 0.780 

Irregular Refraction - Problem 2 

Case OJ ow M 1 a 02/a 01 I 
45 35 25 1.732 1.289 
46 15 1 1.073 1.289 

Angles c5, e and x are given in degrees. 

es 
9.0 

19.1 
-5.3 

-19.3 
-11.3 
-15.8 

Theoretical 

Ms X 

1.70 39.5 
1.00 26.7 

es 
7 

19 
-5 

-19 

-11 
-15 

Experimental 

Ms X 

1.69 37 
1.00 21 

measured value for X· Further, in all four cases, the ratio /z/)'1 is approxi­

mately 0.93, whereas in the computations, -y2 /-y 1 has been taken to be unity. 

Nevertheless, it is seen from the table that the calculated values compare 

favourably with the values measured from the photographs. 

Case 46, which is based on figure 14(e) of Jahn's paper, requires special com-

ment. The experimental result has a discontinuous main shock front and a pre-

cursor wave at the interface. Shock dynamics, however, attempts to find a solu-

tion in which the main shock front is continuous across the interface. The solu-

tion for this case does not converge to within the specified tolerance, and the 

computational accuracy is only 1%. Thus, although the result for case 46 is 

approximate, it shows the agreement of the theory with the experimental result, 

that under these conditions, the shock front is not continuous at the interface. 
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4.1.2. Abd-el-Fattah, Henderson and Lozzi's results. Abd-el-Fattah, Hender­

son and Lozzi (: 976) have performed a series of experiments on shock refrac­

tion using a set-up similar to that of Jahn. In order to obtain as large a sound 

speed ratio as possible, they used a carbon dioxide - helium gas combination 

across the interface. They observed that the gases leaked through the mem­

brane, and using a gas analyser, they recorded that at the time the shock tube 

was fired, the carbon dioxide was about 95% pure (5% by volume helium) and the 

helium was about 90% pure (10% by volume carbon dioxide). 

Shown in figure 4.1 is the observed transmitted shock wave angle C)t versus 

the incident shock wave angle c.>i. The figure is reproduced from their paper, 

and the solid lines are their best fit curves for the experimental data points, EB 

(regular refraction) and D (irregular refraction). The wave angles c.>i and c.>t 

are related to our notation by 

c.>i = 90 - DJ , (4.1.1) 

(4.1.2) 

and 

X = X - DJ , (4.1.3) 

where et is the ray angle of the transmitted shock front at the interface. 

The results of our calculations have been entered as data points, @. These 

calculations are based on a contaminated carbon dioxide - helium interface, 

across which r.z 02/a 01 = 2.53, but we have taken the ratio 7 2 /'"fl across the 

interface to be unity, instead of using the actual value of 1.22. Further, it has 

been assumed that the back plate is in line with the front plate, that is, 6 w = 0°. 

Agreement with the experimental results is very good, and over the whole range 

of incident wave angles, from c.>i = 0° through transition, the present theory 
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FIGURE 4.1. Transmitted shock wave angle c.>t versus incident 

shock wave angle CJi for refraction of a plane shock at a contam­

inated carbon dioxide - helium interface. ®. present theory: EB, 

experimental results (regular refraction): D, experimental results 

(irregular refraction); -- , Abd-El-Fattah, Henderson & Lozzi's 

best fit curves for the experimental data; RR. regular refraction; 

IR, irregular refraction; PR. precursor irregular refraction. 
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provides a much better model than either the Snell-piston theory or the piston­

diaphragm theory of Abd-el-Fattah, Henderson and Lozzi (1976). We find that 

transition from regular to irregular refraction occurs at c.>i = 22. 7°, which com­

pares with c.>i = 23.12° at transition from the three-shock theory, discussed in 

section 4.2. 

Over the range 22.7° < c.>i < 27.6°, the refraction is irregular and a shock­

shock lies above the interface. (Between c.>i = 22.7° and c.>i = 24.0°, no solution 

could be obtained for reasons which are given in section 3.1). The angle between 

the shock-shock and the interface, x, is small, reaching a maximum value of 

x = 0.25° at c...ii = 27.6°, which would explain why the shock-shock and the Mach 

stem are hardly discernible from the interface in figure 13 (plate 3) of Abd-el­

Fattah, Henderson and Lozzi's paper. Further, the transmitted shock wave 

angle at the interface changes from c.>t = 73.6° at c...ii = 24.0° (transition), to 

c.>t = 76.4° at c.>i = 27.6°, and does not approach the experimentally observed 

value of c.>t = 93.0° for large incident wave angles. The reason for this 

discrepancy is that the solution according to shock dynamics theory is con­

strained to predict a shock front that is continuous throughout, whereas the 

experiments show a discontinuous shock front at the interface. 

This range of incident wave angles corresponds to the bound precursor range 

discussed by Abd-el-Fattah, Henderson and Lozzi. Their photographs show that 

in this range, the transmitted wave is slightly ahead of the incident wave at the 

interface. Although their results were not conclusive, they noticed, however, 

that both the incident and transmitted shock fronts had the same, or very 

nearly the same velocity along the interface, and they inferred that the discon­

tinuity of the shock front at the interface is the result of some non-pseudo­

stationary process at the corner. Perhaps, if the secondary effects of the corner 

could be eliminated completely, that is, if the back plate were to be aligned 
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perfectly with the front plate with no gap between them, then the bound precur­

sor irregular refraction result would indeed reduce to a simple irregular refrac­

tion result. 

For c.>i > 27.6°, shock dynamics theory does not yield any solution. As dis­

cussed in section 3.2, this is because, as the incident wave angle approaches the 

limit of c.>i = 27.6°, the shock-expansion behind the interface fills up the entire 

region, and, at the same time, the shock front at the interface becomes normal 

to the interface, so that no ray tubes cross the interface. This range of incident 

wave angles corresponds to the free precursor result discussed by Abd-el-Fattah, 

Henderson and Lozzi, in which the velocity of the precursor (transmitted wave), 

Vt, is greater than the velocity of the incident shock, Vi. along the interface. In 

their paper, they determine the incident wave angle for the second transition, 

that is, the transition to the free precursor result, to be c.>i = 28.8° or 27.4°, 

depending on whether or not the membrane inertia is considered. These values 

compare very favourably with our result of 27.6°. 

4.1.3. Abd-el-Fattah and Henderson's results. In a subsequent paper, Abd-el­

Fattah and Henderson (1978) studied the refraction of shock waves at a carbon 

dioxide - methane interface. Their measurements indicated contamination at 

the interface, and that the methane was only 90% pure (10% by volume carbon 

dioxide), giving a sound speed ratio across the interface of about 1.54. In their 

experiments, they used three different incident shock strengths, M 1 = 1.118, 

1.336 and 2.243, which they classified as the very weak group, the weak group 

and the strong group, respectively. In general. for each of the three groups, at 

small wave angles, the refraction was regular. This was followed by bound pre­

cursor irregular refraction for larger wave angles and by various types of free 

precursor irregular refractions at very large wave angles. These results are 

qualitatively the same as those discussed in the previous section, except for the 
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occurrence of the different kinds of irregular refraction in the free precursor 

range. 

For the very weak group, the agreement between Abd-el-Fattah and 

Henderson's experimental results and our shock dynamics computations is very 

good, especially for the regular refraction range, and the limits of their bound 

precursor range correspond almost exactly to the limits of our irregular refrac­

tion range. However, for the weak group and the strong group, good agreement 

is obtained only in the regular refraction range. For the weak group, we find 

that the irregular refraction range extends from transition at an interface angle 

of 53.2°, to an interface angle of 29°, whereas Abd-el-Fattah and Henderson indi­

cate that the bound precursor range extends from transition at an interface 

angle of about 53°, to an interface angle of about 44° only. For the strong 

group, shock dynamics predicts irregular refraction from transition at 

61 = 51.6° through 61 = 0°, that is, until the interface lies on the wall. On the 

other hand, Abd-el-Fattah and Henderson give a bound precursor result in the 

range 49.7° > o1 > 33.4°, and for interface angles smaller than 33.4°, their 

observations indicate a free precursor result. 

Despite the poor agreement between the limits for the ranges of Abd-el­

Fattah and Henderson's bound precursor refraction results and our irregular 

refraction results, it is interesting to note that their trajectory path angles of 

the shock wave confluences, Xi and x2 • show satisfactory agreement with our 

shock-shock angle. This appears to indicate that the general form of the shock 

refraction in both the experiment and the theory are the same, and suggests 

that the various free precursor results observed may have been caused by the 

experimental set-up. 

The reason for these discrepancies is not clear at this time. As Abd-el-Fattah 

and Henderson have pointed out, their results do not agree entirely with the 
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results obtained by Jahn (1956), and in particular, they do not record any cases 

of irregular refraction in which the transmitted wave is continuous with the 

Mach stem, as shown in Jahn's figure 14(c). Their experimental results also indi­

cate that for large wave angles, that is, for small interface angles, a corner sig-

nal attenuates the reflected wave at the three shock confluence. As mentioned 

in the previous section, this corner signal may have been caused by the experi-

mental set-up. It appears that further analysis will be required when more 

experimental data becomes available. 

4.2. Comparison with three-shock theory 

Abd-el-Fattah, Henderson and Lozzi (1976) have computed the transition 

angles for refraction of a plane shock at a pure carbon dioxide - helium inter­

face as a function of the incident shock strength. They use a method developed 

by Henderson (1966), based on the behaviour of three shock waves meeting at a 

point, in which the full equations of motion are applied to the local shock 

geometry at the interaction point on the interface, and are solved graphically in 

the hodograph plane using the shock polar method. Their results are shown by 

the solid line in figure 4.2, which is reproduced from their paper, where the vari-

able 17-l is 

7Ji = 
2')'Mf - (/' - 1) 

/' + 1 
(4.2.1) 

The results of the present theory have been entered as data points in the figure. 

It is seen that for Mach numbers below 3, the agreement is very good. Again, for 

simplicity, we have taken the ratio ')'2/')'1 across the interface to be unity, 

instead of using the actual value of 1.28. 
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FIGURE 4.2. Transition angles for refraction of a plane shock at a pure 

carbon dioxide - helium interface. @, present theory; - , Abd-El­

Fattah, Henderson & Lozzi's results. 
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4.3. Normal interaction 

An interesting check of the accuracy of the theory can be made in the case 

of Problem 1 with o1 = 90°, for which the shock interacts normally with the 

interface (table 4.2). Since the transmitted wave in region 2 is calculated 

exactly in this analysis from the one-dimensional gasdynamics equations, while 

the transmitted wave in region 3 is calculated approximately by shock dynamics 

theory, the departure of Ms from M2 and of es from 0 provide a measure of 

the accuracy of the theory. It is seen that the theory shows reasonable agree-

ment, although the accuracy decreases as the ratio a 02/a 01 increases, as might 

have been expected. The results of a more complete analysis of this case is dep-

icted in figure 4.3, in which the error e is defined by 

e = (4.3.1) 

Table 4.2. Calculated refraction parameters for normal interaction 

Case Mi ao2/ao1 M2 B2 Ms es 

47 1.5 1.5 1.39 0.0 1.40 0.0 
48 1.5 5.0 1.15 0.0 1.20 0.0 
49 5.0 1.5 4.03 0.0 4.08 0.0 
50 5.0 5.0 2.09 0.0 2.42 0.0 

Angles e are given in degrees. 
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FIGURE 4.3. Relative error between the results from shock 

dynamics and the results from one-dimensional gasdynam­

ics for normal interaction, o1 = 90°. 
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4.4. Closing remarks 

In closing, we consider briefly the results of a problem analysed by Collins 

and Chen ( 1970a), who applied the theory of shock dynamics to the propagation 

of a shock in two half-planes separated by a free surface, that is, th= 0°, with 

M1 = 4.45 and a 02/a 01 = 1.41. This problem is qualitatively similar to our 

case 12. 

As discussed in Chapter 1, their analysis does not properly account for the 

transmission and reflection of both families of characteristics at the interface, 

and further, it does not provide for the possible occurrence of shock-shocks. 

Their solution essentially has two regions that lie adjacent to the interface, and 

they find that the ray angle changes from about 19° above the interface to 

about 3° below. On the other hand, our solution contains two shock-shocks, one 

at 27.2° and the other at 1.0° above the interface, and it has two uniform 

regions, together with a shock-expansion which lies adjacent to and below the 

interface. The configuration is similar to that shown in figure 3.3(e). At the 

interface, we find that the ray angle changes from 45.5° above to 23.2° below. 
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Chapter 5 

SUMMARY AND CONCLUSIONS 

Whitham's theory of shock dynamics has been reformulated to account for 

imposed non-uniformities in the undisturbed medium ahead of the shock front. 

The governing equations are hyperbolic in nature. When compared to the con­

ventional shock dynamics equations for a uniform medium, the essential 

difference is the appearance of source terms, which represent disturbances gen­

erated on the shock front as the shock propagates into regions where the fluid 

properties are non-uniform. 

As in the case of a uniform medium, discontinuities of shock strength, M, and 

slope, e, can occur in the form of shock-shocks, which are the manifestation of 

the triple-shock intersections in Mach reflection. However, the presence of a 

contact surf ace, across which there exists an imposed change in fluid proper­

ties, introduces another kind of discontinuity in the shock front. Jump condi­

tions across the interface are developed from the characteristic equations, and 

the theory naturally provides a relationship analogous to Snell's law. The shock 

dynamics equations governing shock refraction at a gaseous interface are sim­

ple to apply and yield a unique solution. By changing various parameters such 

as the incident shock strength, the fiuid property ratios across the interface, 

and the interface angle, a large variety of interesting configurations are easily 

obtained. These features give the present theory its greatest appeal over exist­

ing methods for calculating shock refraction. 

The theory models both regular refraction and irregular refraction, and also 

predicts the transition from one to the other. This is in contrast to the 

diffraction of shock waves in a uniform medium over solid wedges, where the 
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theory only models irregular refraction. Transition from regular to irregular 

refraction in shock dynamics theory is analogous to the transition which occurs 

in unsteady one-dimensional gasdynamics under the action of a moving force 

field or '1eaky piston", in which the solution changes from one that is shock-free 

for a supersonic force, to one that contains a shock for a subsonic force. In 

both problems, a sonic configuration occurs that is analogous to Chapman­

Jouget detonation. 

For irregular refraction, given an incident shock strength and fluid property 

ratio, there exists an interface angle at which the Mach stem is normal to the 

interface, so that no rays cross the interface. This is the condition for no 

energy flow across the interface, and it is the same condition that is applied at a 

solid boundary in the analysis of shock diffraction using the theory of shock 

dynamics in a uni.form medium. 

In the neighbourhood of a solid boundary, under certain conditions, a limit­

ing irregular case is obtained, in which the Mach stem becomes normal to the 

interface and the Mach number of the shock front at the wall tends to unity. It 

appears that this signals the onset of a discontinuous shock front at the inter­

face, namely, the formation of a precursor wave. 

It has been implicitly assumed, through the application of the characteristic 

rule, that modifying disturbances overtaking the main shock front are excluded. 

Further, as pointed out by Whitham (1957), the theory tends to overconcentrate 

the disturbances on the shock front. For strong shocks, this representation is 

satisfactory, but for weak shocks, the true disturbance is distributed over a 

larger region than predicted by the theory. In spite of these factors, it appears 

that the calculated shock parameters compare favourably with the limited 

experimental data available. In particular, the calculated wave angles for the 

transmitted shock in regular refraction show very good agreement with 
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experiment, while the calculated angles for transition from regular to irregular 

refraction agree well with the predictions from three-shock theory. 

Future work will be directed at investigating problems involving the fast-slow 

gaseous interface, and also at examining shock refraction problems in which the 

variation of fluid properties is continuous. 



- 65 -

6. References 

ABD-EL-FATTAH, A.M. & HENDERSON, L.F. 1978 Shock waves at a slow-fast gas 
interface. J. Fluid Mech., 89, 79-95. 

ABD-EL-FATTAH, A.M .. HENDERSON, L.F. & LOZZI, A. 1976 Precursor shock waves 
at a slow-fast gas interface. J. Fluid Mech., 76, 157-76. 

BRYSON, A.E. & GROSS, R.W.F. 1961 Diffraction of strong shock waves by cones, 
cylinders and spheres. J. Fiuid Mech., 10, 1-22. 

CHESTER. W. 1954 The quasi-cylindrical shock tube. Phil. Mag., (7) 45, 1293-301. 

CHISNELL, R.F. 1955 The normal motion of a shock wave through a non­
uniform one-dimensional medium. Proc. Roy. Soc., A 232, 350-70. 

CHISNELL, R.F. 1957 The motion of a shock wave in a channel, with applications 
to cylindrical and spherical shock waves. J. Fiuid Mech., 2, 286-98. 

COLLINS, R. & CHEN, H.T. 1970 Propagation of a shock wave of arbitrary 
strength in two half planes containing a free surface. J. Comp. Phys., 5, 415-22. 

COLLINS, R. & CHEN, H.T. 1970 Motion of a shock wave through a nonuniform 
fluid. Lecture Notes in Physics, B, 264-9. Springer. 

HAYES. W.D. 1968 The propagation upward of the shock wave from a strong 
explosion in the atmosphere. J. F'luid Mech., 32, 317-31. 

HENDERSON, L.F. 1966 The refraction of a plane shock wave at a gas interface. 
J. Fluid Mech., 26, 607-37. 

HENDERSON, L.F. 1980 On the Whitham theory of shock-wave diffraction at con­
cave corners. J. Fluid Mech., 99, 801-11. 

HOFFMAN, A.L. 1967 A single-fluid model for shock formation in MHD shock 
tubes. J. Plasma Physics, 1, 193-207. 

JAHN, R.G. 1956 The refraction of shock waves at a gaseous interface. J. Fiuid 
Mech., 1, 457-89. 

KUTLER, P. & SHANKAR, V. 1977 Diffraction of a shock wave by a compression 
corner: Part II - single Mach reflection. A.I.A.A. J., 15, 197-203. 

POLACHEK, H. & SEEGER, R.J. 1951 On shock-wave phenomena: refraction of 
shock waves at a gaseous interface. Phys. Rev., 84, 922-29. 

SHANKAR, V., KUTLER. P. & ANDERSON, D. 1978 Diffraction of a shock wave by a 
compression corner: Part I - regular refraction. A.I.A.A. J., 16, 4-5. 

TAUB, A.H. 1947 Refraction of plane shock waves. Phys. Rev., 72, 51-60. 

WHITHAM, G.B. 1957 A new approach to problems of shock dynamics. Part I. 
Two-dimensional problems. J. Fiuid Mech., 2, 145-71. 

WHITHAM, G.B. 1958 On the propagation of shock waves through regions of non­
uniform area or flow. J. Fluid Mech., 4, 337-60. 

WHITHAM, G.B. 1959 A new approach to problems of shock dynamics. Part II. 
Three-dimensional problems. J. Fluid Mech., 5, 369-86. 



- 66 -

Appendix A 

INTEGRATION OF THE RAY TUBE AREA FUNCTION 

From equation (2.1.26), which is valid only in a uniform region, we have 

dA + M/\(M) dM = O 
A M 2 -1 

where 

and 

µ(M,7) = 1J.z- l)M2 + 21112 
2/ M2 

- ( / - 1) . 

On integrating (A.1). we obtain 

where 

A = C exp-<"(M) , 

~(M) = f MA.(!J) dM 
M2 -1 

and C is an arbitrary constant. From (A.5), using (A.2) 

(A.1) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 
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2µM + _2_ M(1-µ
2

) + 
M 2 

- 1 7 +1 µ(M2 
- 1) 

+ _4 _ _ M_,_( _1-_._µ_
2

.._) + _2 _ ( 1-µ
2

) ) dM 
7 +1 (M2 

- 1) ?' +1 µM(M2 
- 1) I 

which on integration yields 

~(M) [ 
M2 _ 1 l r 1 _ µ l 'l (y _ 1) ll/2 

1

r µ + r 2if r 
= log M + log 1 + µ + 27 log µ -[ 7 2~ 1 ]'" 

[ ]
112 r[ ]112 [ ]u2] 

+ 7(-y 2_ 1) log l M2 + ?':. 1 + M2 - 12~ 1 + 

1 [ - 1 l [ 2 l 112 

[ [ - 1 l 112 l + :y log M2 
- ~ -

7 
_ 

1 
tan-1 µ 1 

2 

1 47 - (y - 1)2 [ l 1/2 [ l 
+ 2)'(--;-1) log 472 . 

µ + 2..::.1... 
[ 

- 1 l 11
2 

27 

[ l 
1/2 

.2'....::..L 
µ - 27 

The last term of (A.7) is a constant, so that from (A.4) 

(A.6) 

+ 

+ 
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where C is an arbitrary constant. 

[ l 
1/2 

L=1... 
µ- 2)' 

µ + 2'...-=-1.... 
[ 

- 1 l 1/

2 

2)' 

[ 2(7 
7
- 1) ]1/

2 

x 

(A.B) 

Equation (A.B) is a more compact form of the expression obtained indepen­

dently by Henderson (1980), who also pointed out the errors in the expression 

published by Bryson and Gross (1961). 
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Appendix B 

THE COORDINATE TRANSFORMATION REIATIONS 

From figure B.1, by considering a line element A 6(3 on the shock front 

(a.= constant), we get 

ox = -At5(3 sine 

and 

t5y = At5{3 cose , 

that is, 

[ ~; L = -Asine 

and (B.1) 

[ £u_ l = Acose . 
a{3 a 

Similarly, by considering a line element a 0M ocx. on the ray ((3 = constant), we 

get 

ox = a 0Mocx.cose 

and 

oy = a 0M ocx. sine , 

that is, 
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y 

8y 

8x x 

FIGURE B. l. Relationship between the (a., (3) and the 

(x, y) coordinate systems. 
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[ ~: t = a 0Mcose 

and (B.2) 

[~t = a 0Msine . 

Likewise, by considering line elements along the x-axis and along the y-axis, we 

get 

[ ~~ L = 
sine 

a 0M 
. 

(B.3) 

f*L 
cose 

= 
A 

and 

r~~ L 
cose 

= -- . 
a 0M 

(B.4) 

[~L sine 
= ---

A 

Using (B.1) through (B.4), we obtain the total differential relations 

dx = a 0 Mcos6dcx.-Asin6d!', 

(B.5) 

dy = a 0Msin6dcx +Acos8dl' , 



and the derivatives 

da = 

- 72 -

cose d + sine d --x --y 
a 0M a 0M 

d{3 = _ sine dx + cose 
A A dy ' 

a 
ax 

a 
aa 

a 
a{3 

= 

= 

= 

cose a sine a ----
a 0 .M aa A a{3 

a + a 0Msin8 ..2__ a 0Mcose ax ay 

-A sine ..2__ a 
+ Acose ay ax 

(B.6) 

(B.7) 

(B.B) 

These are the transformation relations between the (a,{3) coordinate system 

and the (x ,y) coordinate system. 



- 73 -

Appendix C 

THE SINGULARITY 

In this appendix, we examine the conditions under which the ordinary 

differential equation (2.4.10) becomes singular and prove that the singularity is 

integrable. 

C.1. Manifestation of the singularity 

From equation (2.4.10), using (2.4.11) and (2.4.12), we have the differential 

equation 

where 

dM 

da 0 
= 

v
2M[(l + g)a6M2 -ga61cf] 

ao[a61Cf - (1 + v2)a5M2
] 

(C.1.1) 

(C.1.2) 

and g and v are functions of M, given by equations (2.1.23) and (2.3.15) 

respectively. We note that C1 is constant for a given problem. It is convenient 

to non-dimensionalize the terms in a 0 by writing 

r = (C.1.3) 

to give 
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dr 

- 74 -

= v2M[(1 + g)r2M2 
- gcr] 

r [Cr - (1 + v2)r 2M2
] 

(C.1.4) 

The differential equation becomes singular when the denominator vanishes, 

that is. 

From (2.4.8), we have 

that is, 

So (C.1.5) becomes 

that is, 

or 

cose cose 1 

rM 
cose 

Cr - (1 + v2)Cr cos 2 ~ = 0 , 

1 

1 + 1/2 I 

(C.1.5) 
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tane = ± v . 

Applying (2.3.19), we get 

e = .:1: v. 

that is, the singularity occurs when 

e = OJ± v . (C.1.6) 

The characteristics slopes, from (2.3.20), are 

r;± = e ± v , 

so that when the singularity occurs, 

17+ = OJ or DJ + 2v , 

or (C.1.7) 

r; = OJ or o J - 2v . 

Thus, one condition for the differential equation (2.4.10) to be singular is that a 

characteristic lies parallel to the interface. We note that this condition also 

causes the source terms in equations (2.4.5) to be singular. 
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C.2. Behaviour of the differential equation at the singularity 

To study the behaviour of (C.1.1) at the singularity, it is first shown that M 

is bounded, and then the right-hand side of the equation is expanded in a Taylor 

series about the singular point (r 0 , M 0 ). 

From equation (C.1.5), at the singularity, we have 

M2 = er 

From (C.1.2), the bounds on the constant C 1 are 

for finite sound speed ratios, 

for e ~ 1T 

2 

O<r<oa, 

(C.2.1) 

and from (2.3.15), or from figure 2.2, as M varies from M = 1 to M >> 1. we 

have 

1 
1/2 

0 ~ v(lVJ) < i:::J 0.444 . 
1 + ~ + r~il/2 

I' 11-1 

Therefore, from (C.2.1) 
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M 2 < co , 

that is, M is bounded. 

Since M is bounded, we can take a Taylor series expansion about the singu-

lar point (r 0 , M0). We write (C.1.4) as 

where 

and 

dM 
dr 

~(M) 

= 

Taking the Taylor series expansion gives 

~(M) 
(C.2.2) 

1 + v 2 

~(Mo) dM 

dr = 
[ro+ (r -r0 ) + ... ] [Cf- ~ro+ (r -r 0) + ... ~ 2 f\l'(M 0 ) + (M-Mo)f(M0 ) + ... ~ 2 ] ' 

which, to first order is 

dr 
(C.2.3) 

dM 
= 
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The terms in r and M are not separable in this form, so further linearization 

is necessary. For this, we assume that in the neighbourhood of the singularity 

Then (C.2.3) becomes 

where 

Integration of (C.2.5) gives 

dM 
dr 

Jr -rol 
IM-Mol 

<< 1 . 

= 
2(M - !do) ' 

(M - Mo)2 = - if! 6r + C , 

where C is a constant. At the singularity, r = r 0 and M = M 0 , so 

giving 

M = Mo± ip 0(r 0 - r) 112 
. 

Hence, to this first order approximation, 

(C.2.4) 

(C.2.5) 

(C.2.6) 
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± 
(ro - r)l/2 ' 

1 
(C.2.7) 

We now return to check assumption (C.2.4). Substituting for M - M0 from 

(C.2.6) gives, in the neighbourhood of the singularity, 

l(ro - r) 112 I << 1 , 

that is, the assumption is consistent, and the proof is complete. 
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Appendix D 

SHOCK WAVE INTERACTION WITH A NORMAL CONTACT DISCONTINUITY 

When a shock wave is incident normally on an interface separating two 

regions of gas with different sound speeds, in general, the result is a transmitted 

wave and a reflected wave. The transmitted wave is always a shock, while the 

reflected wave may be either a shock or an expansion, depending on the proper-

ties of the gas on each side of the interface. The two cases are illustrated in 

figures D.1 (a) and D. l(b) respectively. 

The strengths of the transmitted and reflected waves can be found by match-

ing the pressures and gas velocities across the interface. In this analysis, it is 

assumed that only one species of gas is present, that is, we take / = constant 

across the interface. Also, we assume the perfect gas relations. 

D.1. Reflected shock wave 

From figure D.l(a) and the shock relations given in equation (2.1.16), across 

the incident shock 

and 

across the transmitted shock 

2-y(Mi2 
- 1) 

= 1 +----­
/ + 1 

(D.1.1) 

(D.1.2) 
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x 

FIGURE D. l (a). Interaction of a shock wave with a normal contact 

discontinuity when the reflected wave is a shock. CS, contact sur­

face; IS. incident shock; TS, transmitted shock; RS, reflected shock. 
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FIGURE D.l(b). Interaction of a shock wave with a normal contact 

discontinuity when the reflected wave is an expansion. CS, contact 

surface: IS, incident shock; TS, transmitted shock; RE, reflected 

expansion. 
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2(Mt2 - 1) 

(-y + l)Mt 

P12 = l + 27(Mg2 - 1) 

Po2 7 + 1 

and across the reflected shock 

and 

-u21 - ( -u11) 2(Mr2 - 1) 
------= 

all (7 + l)Mr 

P21 
--= 
P11 

2-y(Mr2 
- 1) 

1+-----
7+1 

Also, the sound speed ratio across the incident shock is given by 

Finally, from the initial conditions 

Po1 = Po2 ' 

and from the matching conditions 

(D.1.3) 

(D.1.4) 

(D.1.5) 

(D.1.6) 

(D.1.7) 

(D.1.8) 
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P21 = P i2 (D.1.9) 

and 

Uz1 = U12 · (D.1.10) 

From equations (D.1.2), (D.1.4), (D.1.6), (D.1.8) and (D.1.9) we get 

_ r (?' + l)(Mt
2 

- Mn 1
112 

Ur - ll + 2 ( ) , 
2?'Mi - ?' - 1 

(D.1.11) 

and from equations (D.1.1), (D.1.3), (D.1.5) and (D.1.10), we get 

r Mi
2 

- 1 _ Mt2 - 1 ao2 ] a o1 = Mr
2 

- 1 

l Mi Mt a o 1 a 11 Mr 
(D.1.12) 

Eliminating ac 1/a 11 using equation (D.1.7) and Mr using equation (D.1.11) 

gives 

(D.1.13) 

Equation (D.1.13) gives the strength of the transmitted shock at a normal 

interface in terms of the incident shock strength and the sound speed ratio 

when the reflected wave is a shock. 
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D.2. Reflected expansion wave 

From figure D.l(b), as in section D.1, across the incident shock 

and 

P11 

Poi 

and across the transmitted shock 

and 

P12 

Po2 

2r(Ml - 1) = 1 + -----
'l + 1 

2,(!Jl - 1) 
= 1 +-----

?' + 1 

(D.2.1) 

(D.2.2) 

(D.2.3) 

(D.2.4) 

Across the reflected expansion wave, the Riemann invariant on the c+ charac-

teristic is conserved, so that 

2 
U11+--a11 = 

?' - 1 

and, since the expansion process is isentropic 

(D.2.5) 
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= [~]~ 
Tu 

Also, the sound speed ratio across the incident shock is given by 

= [ H )' - 1) Ml + 2 l ~ 27 Ml - ( )' - 1) ~ ] 1/ 

2 

(?' + l)Mi 

Finally, from the initial conditions 

Poi = Poz . 

and from the matching conditions 

P21 = P12 

and 

U21 = U12 · 

From equations (D.2.2), (D.2.4), (D.2.6), (D.2.8) and (D.2.9) we get 

and from equations (D.2.5) and (D.2.10) we get 

(D.2.6) 

(D.2.7) 

(D.2.8) 

(D.2.9) 

(D.2.10) 

(D.2.11) 
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1 [Ml-1 -- -
?' + 1 Mi 

1 [a21 l -- --1 
[-1 a 11 ' 

(D.2.12) 

Eliminating a 01/a 11 using equation (D.2.7) and a 21 /a 11 using equation (D.2.11) 

gives 

(D.2.13) 

1'...::..!. 
+ _1_ l _ ( 2?' Mt

2 
- ( ?' - 1) ) 27 = O . 

! - 1 2-y IJ} - ( y - 1) 

Equation (D.2.13) gives the strength of the transmitted shock at a normal 

interface in terms of the incident shock strength and the sound speed ratio 

when the reflected wave is an expansion. 

D.3. Some general remarks 

Equation (D. l. 13) is an expression for the strength of the transmitted shock 

when the reflected wave is a shock, while equation (D.2.13) is a similar expres-

sion for the case when the reflected wave is an expansion. At the cross-over 

from a reflected shock to a reflected expansion, the reflected wave is an acoustic 

wave, so that from equations (D.1.11) or (D.2.11), Mt= Mi. Further, from both 

equations (D.1.13) and (D.2.13), we see that this occurs when a 01 = a 02 , that is, 

the interface vanishes. 

The pressure ratio across the reflected wave is 
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P21 P 12 Poi = ----
P 11 Po2 P 11 

(D.3.1) 

while the velocity ratio is 

= ------

Lhat is, 

(D.3.2) 

When the reflected wave is a shock 

P21 
> 1 ' 

P11 

and, remembering that the shock is left-facing, while the flow is to the right 

< 1 . 
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So from (D.3.1) 

and from (D.3.2) 

Likewise, when the reflected wave is an expansion 

P21 
< 1 • 

P11 

and, since the expansion is moving to the left, while the flow is to the right 

> 1 . 

So from (D.3.1) 

and from (D.3.2) 

To summarize, for a decrease in sound speed across the interface, the 

transmitted shock is stronger than the incident shock and the reflected wave is 

a shock. For an increase in sound speed across the interface, the opposite is 

true. 
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Appendix E 

FLOWCHARTS AND COMPUTER PROGRAMS 

This appendix contains information on the algorithms used in the shock 

refraction calculations and provides listings of the main subprograms. 

E.1. Flowcharts 

The basic algorithms used for calculating regular and irregular refraction are 

presented in figures E.l(a) and E.l(b) respectively. 

E. 2. Computer programs 

The following subprogram listings are provided: 

INTPOL Subroutine for interpolating the value of CJ given M. or vice­

versa, from a table of values obtained by integrating equation 

(2.3.11). 

FAREA Function subprogram for evaluating A using (A.B). 

FCHI Function subprogram for evaluating x using (2.4.3). 

FLAMBDA Function subprogram for evaluating A. using (2.1.21). 

FMU Function subprogram for evaluating µ using (2.1.25). 

FUPSILON Function subprogram for evaluating v using (2.3.19). 

DERIVM Subroutine for evaluating the derivative dM /da 0 using (2.4.10). 

MDQ Subroutine for numerically integrating equation (2.4.10). 

TRT Subroutine for solving transcendental equations. 
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FIGURE E.l(a) Flowchart for regular refraction computations. 
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FIGURE E.l(b) Flowchart for irregular refraction computations. 
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c 
C FILE: IACLMU .FOR 

c 
C THIS FILE CONTAINS THE FOLLOWING SUBROUTINE AND FUNCTION SUBPROGRAMS: 

c 
C - INTPOL(MNO,OMEGA,IT, *) 

C - FAREA(MNO) 

C - FCHI(TU,MU,ML) 

C - FLAMBDA(MNO) 

C - FMU(MNO) 

C - FUPSILON(MNO) 

c 
C ANY CALLING PROGRAM MUST HAVE THE FOLLOWING OPENING STATEMENTS: 

c 
C IMPLICIT REAL*8(A-H,L-Z) 

C COMMON /CONST /GAM,GAM1,GAM2 

C OPEN (UNIT= 11,NAME='CCWOMEGA.DRU', TYPE='OLD' ,READONLY, 

C 1 ORGANIZATION='RELATIVE',ACCESS='DIRECT') 

c 
c *********************************************************************** 

SUBROUTINE INTPOL(MNO,OMEGA,IT, *) 

c 
C THIS SUBROUTINE PROVIDES THE VALUES OF MACH NUMBER AND OMEGA BY 

C INTERPOLATION FOR ANY GIVEN MACH NUMBER (IT= 1) OR OMEGA (IT=2). 

C IT USES DATA FROM THE UNFORMATTED DIRECT ACCESS FILE CCWOMEGA.DRU, 

C (LOGICAL NUMBER 11). 

c 

IMPLICIT REAL*8(A-H,L-Z) 

IF (IT.EQ.1.0R.IT.EQ.2) GO TO 1 

GO TO 91 

1 IREC=135 

GO TO (5,6) IT 

5 IF (MNO.GE.1.0DO.AND.MNO.LT.1.000001DO) GO TO 81 

IF (MNO.LT.1.0DO.OR.MNO.GT.100.0DO) GO TO 97 

X=MNO 

GO TO 10 

6 IF (OMEGA.GE.O.ODO.AND.OMEGA.LT.2.828427232167634D-03) GO TO 82 

IF (OMEGA.LT .O.ODO.OR.OMEGA.GT.1.165901164037424D+O 1) GO TO 99 

X=OMEGA 

10 IR=IREC/2 

IRU=IREC 

IRL=l 

20 GO TO (25,26) IT 

25 READ(11'IR) XT,YT 

GO TO 30 

26 READ{ 11 'IR) YT ,XT 

30 IF (X.GT.XT) GO TO 35 



IRU=IR 

IR=(IRU +IRL) /2 
IF (IR.EQ.IRU) GO TO 40 

GO TO 20 

35 IRL=IR 

IR=(IRU+IRL)/2 
IF (IR.EQ.IRL) GO TO 40 

GO TO 20 

40 IRL=IR 

IRU=IR+l 

GO TO (45,46) IT 

45 READ( 11 'IRL) XTL,YTL 

READ( 11 'IRU) XTU ,YTU 

GO TO 50 
46 READ(l 1 'IRL) YTL,XTL 

READ(l 1 'IRU) YTU,XTU 

50 FRACT=(X-XTL)/(XTU-XTL) 

Y =YTL+(YTU-YTL) •FRACT 

GO TO (65,66) IT 

65 OMEGA=Y 
GO TO 70 

66 MNO=Y 

70 RETURN 

81 OMEGA=O.ODO 

RETURN 

82 MNO=l.ODO 

RETURN 

91 WRITE(6,9001) 
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9001 FORMAT(1X,'INTPOL: INPUT TO INTPOL INCORRECTLY SPECIFIED') 

RETURN 1 

97 WRITE(6,9007) MNO 

9007 FORMAT(lX,'INTPOL: MACH NUMBER (',F10.6,') LIES ', 
1 'OUTSIDE RANGE OF TABLE') 

RETURN 1 

99 WRITE(6,9009) OMEGA 

9009 FORMAT(lX,'INTPOL: OMEGA (',F7.4,') LIES ' 

1 'OUTSIDE RANGE OF TABLE') 

RETURN 1 

END 
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FUNCTION FAREA(MNO) 

c 
C THIS FUNCTION SUBPROGRAM EVALUATES THE RAY AREA FUNCTION IN 

C TERMS OF THE MACH NUMBER. IT USES THE IMPROVED EXPRESSION. 

c 

c 

IMPLICIT REAL*B(A-H,L-Z) 

COMMON /CONST /GAM,GAM1,GAM2 

GAM3=GAM1 /GAM2 

SQGAM3 =DSQRT(GAM3) 

C1AREA=DSQRT(2.0DO /GAMl) 

MNOSQ=MNO*MNO 

MU=FMU(MNO) 

FAREA={MNO I (MNOSQ-1.0DO)) •(( 1.0DO+ MU)/( 1.0DO-MU))• 

1 (MNOSQ-GAM3)"""(-1.0DO /GAM)• 

2 {{MU-SQGAM3)/(MU+SQGAM3)) 0 DSQRT(GAM/2.0DO /GAMl)* 

3 DEXP(ClAREA *DATAN(MU IC lAREA)) 

RETURN 

END 

FUNCTION FCHI(TU ,MU ,ML) 

C THIS FUNCTION SUBPROGRAM EVALUATES THE SLOPE OF THE 

C SHOCK-SHOCK LINE RELATIVE TO THE X-AXIS. 

c 

IMPLICIT REAL*B(A-H,L-Z) 

IF (ML.EQ.MU) GO TO 10 

AU=FAREA(MU) 

AL=F AREA(ML) 

FCHI=TU +DATAN(AU /MU*DSQRT((ML•ML-MU•MU) I 

1 (AU*AU-AL*AL))) 

RETURN 

10 FCHI=TU+FUPSILON(MU) 

RETURN 

END 
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FUNCTION FLAMBDA(MNO) 

c 
C THIS FUNCTION SUBPROGRAM EVALUATES THE FUNCTION LAMBDA 
C IN TERMS OF THE MACH NUMBER. 
c 

c 

IMPLICIT REAL*8(A-H,L-Z) 
COMMON /CONST/GAM,GAM1,GAM2 

MU=FMU(MNO) 

FLAMBDA=(1.0D0+2.0DO/(GAM+1.0D0)"'(1.0DO-MU*MU)/MU)• 
1 (1.0D0+2.0DO*MU+1.0DO/MNO/MNO) 

RETURN 
END 

FUNCTION FMU(MNO) 

C THIS FUNCTION SUBPROGRAM EVALUATES THE FUNCTION MU 
C IN TERMS OF THE MACH NUMBER. 
c 

c 

IMPLICIT REAL*8(A-H,L-Z) 

COMMON /CONST /GAM,GAM1,GAM2 

MNOSQ=MNO*MNO 
MUSQ=(GAM1 *MNOSQ+2.0DO) /(GAM2*MNOSQ-GAM1) 

FMU=DSQRT(MUSQ) 

RETURN 
END 

FUNCTION FUPSILON(MNO) 

C THIS FUNCTION SUBPROGRAM CALCULATES THE SLOPE OF THE 
C CHARACTERISTIC LINE RELATNE TO THE FLOW DEFLECTION ANGLE. 
c 

IMPLICIT REAL*8(A-H,L-Z) 

FUPSILON=DATAN(DSQRT((MNO+l.ODO)"'(MN0-1.0DO)/FLAMBDA(MNO))/MNO) 

RETURN 
END 
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SUBROUTINE DERIVM(AO ,M,DMDAO, •) 

c 
C THIS SUBROUTINE EVALUATES THE DERIVATIVE DMDAO 

c 

IMPLICIT REAL*8(A-H,L-Z) 

COMMON /CONST /GAM,GAM1,GAM2 

COMMON /DERIV /CCSQ 

IF (M.LE.1.0DO) GO TO 98 

MNO=M 

MNOSQ=MNO*MNO 

MNOSQl=MNOSQ-1.0DO 

GG= 1.0D0+2.0DO*MNOSQ1 /DSQRT(GAM2*GAM1 *MNOSQ*MNOSQ+ 

1 (4.0DO*GAM-GAM1 *GAMl)*MNOSQ-2.0DO*GAMl) 

NU =DS QRT(MNOS Q 11 FLAMBDA(MNO)) !MNO 

NUSQ=NU*NU 

Cl=AO*M 

ClSQ=Cl •Cl 

C2SQ=CCSQ-C1SQ 

C IF (C2SQ.LT.O.ODO) GO TO 99 

DMDAO=NUSQ•M•(GG*C2SQ-C 1 SQ) I AO /(NUSQ*Cl SQ-C2SQ) 

RETURN 

98 RETURN 1 

99 WRITE(6,9999) MNO,C2SQ 

9999 FORMAT(lX,'DERIVM: M3 =',2PE15.6,' GIVES C2SQ =',1PE12.3) 

RETURN 1 

END 
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c 
C FILE: MDQTRT.FOR 

c 
C THIS FILE CONTAINS THE FOLLOWING SUBROUTINE SUBPROGRAMS: 

c 
C - MDQ(FNCT,KK,X,Y,DYDX,DEIX,EPS, •) 

C - SCHECK(X,DYDX, •) 

C - RKG(FNCT ,DX,X,Y,DYDX, •) 

C - AM(FNCT,DX,X,Y,DYDX, •) 

C - SAVE(ISR,X,Y,DYDX) 

C - TRT(FNCT ,XST l ,XST2,DX,EPS,ITMAX,IRTS,RTS,ITER,FRT, •) 

c 
C THESE SUBROUTINES ARE SIMILAR TO THE CITLIB SUBROUTINES MODDEQ 

C AND DTROOT RESPECTIVELY, EXCEPT FOR THE ERROR RETURN FACILITY. 

c 
c ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

SUBROUTINE MDQ(FNCT ,KK,X,Y,DYDX,DEIX,EPS, *) 

IMPLICIT REAL*B(A-H,L-Z) 

COMMON /INPUT /DUM1,DUM2,DUM3,DUM4,XSTART,XEND 

COMMON /MDQAM/F(4),YP 

COMMON /SLOPE/XENDl 

IF (KK.LE.O.OR.KK.GE.3) GO TO 999 

GO TO (10,130), KK 

C INITIAL CALL 

10 CONTINUE 

ISTEP=4 

DX=DELX/DFLOAT(ISTEP) 

DXMAX=DELX 

DXMIN=DELX/DFLOAT(2**10) 

EUPPER=EPS 

ELOWER=0.02DO*EPS 

IJ=l 

CALL FNCT(X,Y,DYDX,&99) 

C WRITE (6,8001) X,Y,DYDX 

C8001 FORMAT(1X,'F:',3Fl5.5) 

F(IJ)=DYDX 

ISR=l 

KK=2 

XEND1=XEND-1.0D-6*(XEND-XSTART) 

XENDI=XEND-5.0DO*DELX 

RETURN 

C SUBSEQUENT CALLS 

130 CONTINUE 

XS=X 

XE=X+DELX 

IF (IJ.GE.4) GO TO 170 
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DO 135 IJ=2,4 
CALL RKG(FNCT,DX,X,Y,DYDX,&99) 

C WRITE (6,8002) DX,X,Y,DYDX 

C8002 FORMAT(1X,'R:',4F15.5) 

F(IJ)=DYDX 
C IF (IJ.EQ.3) WRITE (6,8004) ISR,X,Y,DYDX 

CB 004 FORMAT(1X,'MS:',I5,3F 15 .5) 
IF (IJ.EQ.3) CALL SAVE(ISR,X,Y,DYDX) 

135 CONTINUE 

ID=l 

170 GO TO (180,250,280), ID 

180 CONTINUE 
C WRITE (6,8010) ID 
C8010 FORMAT(1X,'ID=',I5) 

ISR=-ISR 

185 CONTINUE 
C WRITE (6,8004) ISR,X,Y,DYDX 

CALL SAVE(ISR,X,Y,DYDX) 

CALL AM(FNCT ,DX,X,Y,DYDX,&99) 
IF (X.GE.XENDI) CALL SCHECK(X,DYDX,&99) 

C WRITE (6,8003) DX,X,Y,DYDX 
C8003 FORMAT(1X,'A:',4F15.5) 

DI=DMAX1(DABS(Y),0.001DO) 

F.Nl=DABS(YP-Y) /( 14.0DO *DI) 

IF (ENl.GE.EUPPER) GO TO 220 

IF (ENl.GE.ELOWER) GO TO 210 

IF (DABS(2.0DO *DX).GT.DABS(DXMAX)) GO TO 210 

ID=2 
IN=l 
GO TO 140 

210 ID=l 

c 
220 

c 
C6665 

c 
C8005 

c 

GO TO 140 

REDUCE STEP SIZE 

IF (DABS(DX/4.0DO).LT.DABS(DXMIN)) GO TO 98 
WRITE(6,6665) 

FORMAT(l:X,'***** REDUCING ..... .') 

ISTEP=ISTEP *4 
DX=DELX/DFLOAT(ISTEP) 
WRITE (6,8005) -ISR,X,Y,DYDX 

FORMAT(1X,'MR:',I5,3F15.5) 

CALL REST(-ISR,X,Y,DYDX) 
WRITE (6,8005) -ISR,X,Y,DYDX 

I=1 
F(I)=DYDX 
DO 235 I=2,4 
CALL RKG(FNCT,DX,X,Y,DYDX,&99) 
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IF (X.GE.XENDI) CALL SCHECK(X,DYDX,&99) 

C WRITE (6,8002) DX,X,Y,DYDX 

235 F(I)=DYDX 

C WRITE (6,8004) -ISR,X,Y,DYDX 

CALL SAVE(-ISR,X,Y,DYDX) 

CALL AM(FNCT,DX,X,Y,DYDX,&99) 

IF (X.GE.XENDI) CALL SCHECK(X,DYDX,&99) 

C WRITE (6,8003) DX,X,Y,DYDX 

GO TO 185 

250 CONTINUE 

C WRITE (6,8010) ID 

C WRITE (6,8020) IN 

C8020 J<,ORMAT(1X,'IN=',I5) 

ISR=-ISR 

C WRITE (6,8004) ISR,X,Y,DYDX 

CALL SAVE(ISR,X,Y,DYDX) 

CALL AM(FNCT ,DX,X,Y,DYDX,&99) 

IF (X.GE.XENDI) CALL SCHECK(X,DYDX,&99) 

C WRITE (6,8003) DX,X,Y,DYDX 

c 
c 
C6667 

c 

280 

c 
c 
C8030 

c 

DI=DMAXl(DABS(Y),0.001DO) 

ENl=DABS(YP-Y) /(14.0DO *DI) 

IF (ENl.GE.ELOWER) GO TO 210 

IN=IN+l 

IF (IN.LE.2) GO TO 170 

IDX=DABS((XE-X) /DX)+0.1DO 

IF (MOD(IDX,2).NE.O) GO TO 170 

DOUBLE STEP SIZE 

WRITE(6,6667) 

FORMAT(1X,'***** DOUBLING ..... .') 

ISTEP=ISTEP /2 

DX=DELX/DFLOAT(ISTEP) 

WRITE (6,8004) ISR,X,Y,DYDX 

CALL SAVE(ISR,X,Y,DYDX) 

ID=3 

IK=O 

GO TO 140 

CONTINUE 

WRITE (6,8010) ID 

WRITE (6,8030) IK 

FORMAT(1X,'IK=',I5) 

CALL RKG(FNCT ,DX,X,Y,DYDX,&99) 

IF (X.GE.XENDI) CALL SCHECK(X,DYDX,&99) 

WRITE (6,8002) DX,X,Y,DYDX 

IK=IK+l 

F(IK)=DYDX 

IF (IK.GE.4) ID=l 

140 IF (DELX.LT.O.ODO) GO TO 142 

IF (X+l.OD-7.GE.XE) GO TO 145 

GO TO 170 



142 IF (X-1.0D-7.LEJCE) GO TO 145 

GO TO 170 

145 RETURN 

98 WRITE(6,9998) X 
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9998 FORMAT(lX,'MDQ: TRUNCATION ERROR AT AO =',F10.7) 

99 KK=-1 
RETURN 1 

999 WRITE(6,9999) KK 

9999 FORMAT(lX,'MDQ: KK NOT VALID (KK=',I3,')') 
STOP 

END 

SUBROUTINE SCHECK(X,DYDX, •) 

IMPLICIT REAL+8(A-H,L-Z) 

COMMON /SLOPE/XENDl 

S2=S1 
Sl=SO 
SO=DYDX 

IF (X.GE.XEND 1.Al\1D.( (S2 .LT .S 1.AND.Sl .GT .SO). 
1 OR.(S2.GT.Sl.AND.S1.LT.SO))) GO TO 99 

RETURN 

99 WRITE(6,9999) X 

9999 FORMAT(lX,'MDQ: CHANGE IN CURVATURE AT AO =',F10.7) 

RETURN 1 

END 

SUBROUTINE RKG(FNCT,DX,X,Y,DYDX, •) 

IMPLICIT REAU8(A-H,L-Z) 

DATA Bl,B2,C l,C2/0.585786438D0,3.414213562DO, 
1 0.121320343D0,-4.121320343DO I 

XH=X+0.5DO*DX 

XF=X+DX 

CALL FNCT(X,Y,DYDX,&99) 

Y'"rCO=DX*DYDX 
Yl=Y+0.5DO*YKO 

YQl=YKO 

CALL FNCT(XH,Yl ,DYDX,&99) 



YK1 =DX*DYDX 
Y2=Y1+0.5DO*B1 *(YK1-YQ1) 
YQ2=B1 *YKl+Cl *YQl 

CALL FNCT(XH,Y2,DYDX,&99) 

1'1<2=DX*DYDX 
Y3=Y2+0.5DO *B2 *(YK2-YQ2) 
YQ3=B2*YK2+C2*YQ2 

CALL FNCT(XF,Y3,DYDX,&99) 

YK3=DX*DYDX 
Y4=Y3+(0.5DO*YK3-YQ3) 13.0DO 

X=XF 
Y=Y4 
CALL FNCT(X,Y,DYDX,&99) 

RETURN 

99 RETURN 1 

END 
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SUBROUTINE AM(FNCT,DX,X,Y,DYDX, *) 

IMPLICIT REAL*8(A-H,L-Z) 

COMMON /MDQAM/ F(4),YP 

XF=X+DX 

YP=Y +(DX/24.0DO) *(55.0DO *F( 4)-59 .ODO•F(3)+37 .ODO *F(2)-

1 9.0DO*F(l)) 
CALL FNCT(XF,YP,DYDX,&99) 

YC=Y+(DX/24.0D0)*(9.0DO*DYDX+19.0DO*F(4)-5.0DO*F(3)+ 
1 F(2)) 

X=XF 
Y=YC 
CALL FNCT(X,Y,DYDX,&99) 

DO 10 I=l,3 
10 F(I)=F(I+ 1) 

F(4)=DYDX 

RETURN 

99 RETURN 1 

END 
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SUBROUTINE SAVE(ISR,X,Y,DYDX) 

IMPLICIT REAL*8(A-H,L-Z) 

IF (ISR.LT.O) GO TO 25 

XA=X 

YA=Y 

DYDXA=DYDX 

RETURN 

25 XB=X 

YB=Y 

DYDXB=DYDX 

RETURN 

c RESTORE 

ENTRY REST(ISR,X,Y,DYDX) 

IF (ISR.LT.O) GO TO 75 

X=XA 

Y=YA 

DYDX=DYDXA 

RETURN 

75 X=XB 

Y=YB 

DYDX=DYDXB 

RETURN 

END 
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SUBROUTINE TRT(FNCT,XST1 ,XST2,DX,EPS,ITMAX,IRTS,RTS,ITER,FRT, •) 

IMPLICIT REAL"'B(A-H,L-Z) 

DIMENSION RTS(l),ITER( l),FRT(l) 

C INITIALIZE 
IF (XST1-XST2) 4,99,6 

4 XSTART=XSTl 

XSTOP=XST2 

GO TO 10 

6 XSTART=XST2 

XSTOP=XST1 

10 IF (DX.LE.0.0DO.OR.EPS.LE.O.ODO) GO TO 99 

II=l 
XL=XSTART 

XU=XL+DX 
FXL=FNCT(XL) 

11 FXU=FNCT(XU) 

C CHECK FOR SIGN CHANGE OR IDENTICAL ZERO 

IF (FXL*FXU) 14,15,16 

16 XL=XU 
IF (XL.GE.XSTOP) GO TO 100 

XU=XU+DX 
IF (XU.GT.XSTOP) XU=XSTOP 

FXL=FXU 

GO TO 11 

15 ITER(II)=O 
IF (FXL.EQ.O.ODO) RTS(II)=XL 

IF (FXU.EQ.O.ODO) RTS(II)=XU 

FRT(II)=O .ODO 

FXU2=FXU 

XU2=XU 

GO TO 50 

14 FXU2=FXU 

XU2=XU 

C INTERPOLATION LOOP 

DO 29 J=l,ITMAX 

JJ=J 
XRT=XU-FXU*(XU-XL) I (FXU-FXL) 

FTEMP=FNCT(XRT) 

IF (DABS(FTEMP).LE.EPS) GO TO 30 
IF (XRT.EQ.XU) GO TO 40 

IF (FTEMP*FXU.LT.O.ODO) GO TO 24 
FXL=FXL*0.5DO 

GO TO 26 

24 XL=XU 

FXL=FXU 
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26 XU=XRT 
FXU=FTEMP 

29 CONTINUE 

30 RTS(II)=XRT 
ITER(II)=JJ 

FRT(II) =FTEMP 
GO TO 50 

c REQUIRED TOLERANCE IS NOT REACHED 

40 RTS(II)=XRT 
ITER(II)=ITMAX 

FRT(II)=FTEMP 

50 II=II+l 
XU=A'U2 
FXU=FXU2 
GO TO 16 

100 IRTS=II-1 

RETURN 

99 IRTS=-1 
WRITE(6,9999) 

9999 FORMAT(lX,'TRT: INPUT ARGUMENT INCORRECTLY SPECIFIED') 

RETURN 1 

END 


