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Shock formation at the magnetic collimation of relativistic jets
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ABSTRACT

If the observed relativistic plasma outflows in astrophysical jets are magnetically collimated

and a single-component model is adopted, consisting of a wind-type outflow from a central

object, then a problem arises with the inefficiency of magnetic self-collimation to collimate

a sizeable portion of the mass and magnetic fluxes in the relativistic outflow from the central

object. To solve this dilemma, we have applied the mechanism of magnetic collimation to

a two-component model consisting of a relativistic wind-type outflow from a central source

and a non-relativistic wind from a surrounding disc. By employing a numerical code for a

direct numerical solution of the steady-state problem in the zone of super-fast magnetized

flow, which allows us to perform a determination of the flow with shocks, it is shown that

in this two-component model it is possible to collimate into cylindrical jets all the mass and

magnetic fluxes that are available from the central source. In addition, it is shown that the

collimation of the plasma in this system is usually accompanied by the formation of oblique

shock fronts. The non-relativistic disc-wind not only plays the role of the jet collimator, but

it also induces the formation of shocks as it collides with the initially radial inner relativistic

wind and also as the outflow is reflected by the system axis. Another interesting feature of this

process of magnetic collimation is a sequence of damped oscillations in the width of the jet.

Key words: MHD – stars: mass-loss – pulsars: general – stars: winds, outflows – ISM: jets

and outflows – galaxies: jets.

1 I N T RO D U C T I O N

Observations from various classes of astrophysical sources indicate

the existence of collimated relativistic outflows in the form of jets

(Ferrari 1998; Heyvaerts & Norman 2003). Thus, in active galac-

tic nuclei (AGN) and quasars, the inferred bulk Lorentz factors are

γ = 5–10 (Biretta, Sparks & Macchetto 1999; Cramphorn, Sazonov

& Sunyaev 2004), while in galactic superluminal sources γ ∼ 2

(Mirabel & Rodrı́guez 1999). The prevailing view is that the toroidal

magnetic field generated by the rotation of the source spontaneously

collimates part of the outflow around the axis of rotation (Bisnovatyi-

Kogan & Ruzmaikin 1976; Blandford 1976; Lovelace 1976; Hey-

vaerts & Norman 1989, 2003; Chiueh, Li & Begelman 1991; Sauty

& Tsinganos 1994; Bogovalov 1995; Vlahakis & Tsinganos 1998,

1999; Vlahakis et al. 2000; Gabuzda, Eammon & Cronin 2004).

Nevertheless, to calculate the fraction of the collimated fluxes or the

distance where the collimated outflow is formed, one needs direct

numerical simulations for every specific case (Kudoh, Matsumoto

& Shibata 1998; Krasnopolsky, Li & Blandford 1999; Ustyugova

et al. 1999). In Bogovalov & Tsinganos (1999, hereafter BT99)

and Tsinganos & Bogovalov (2000, hereafter TB00), it was found

⋆E-mail: tsingan@phys.uoa.gr

that the fraction of the cylindrically collimated part of the wind is

of the order of 1 per cent of the total mass and magnetic fluxes of

the initially (i.e. before rotation sets in) uncollimated wind from

the source, when the source rotates uniformly. Recently, the same

conclusion about the collimation of an unacceptably small percent-

age of cylindrically collimated flux of a wind from a disc has been

confirmed by Krasnopolsky, Li & Blandford (2003). However, ob-

servations and theoretical arguments indicate that a higher percent-

age of the mass and magnetic flux should be collimated inside the

jet.

One of the simplest resolutions of this contradiction for the

case of relativistic outflows has been proposed in Tsinganos &

Bogovalov (2002, hereafter TB02). In this paper we use a simplified

model to demonstrate that the mechanism of magnetic collimation

of outflows may provide collimation of a remarkable fraction of the

total magnetic and relativistic mass flux from a source provided that

the system consists of two components: an initially uncollimated

relativistic plasma from the central source and a non-relativistic

wind from the surrounding disc. In the particular case studied in

TB02, the toroidal magnetic field in the wind from the central source

was negligible by assuming that the angular velocity of the central

source is negligible. Under this condition, the disc-wind plays the

role of the collimator of all the relativistic outflow from the central

source. For the relativistic jet we were able to obtain a steady-state
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solution having a Lorentz factor γ = 5. The total magnetic and mass

flux from the central source of the relativistic outflow was about

30 per cent of the total fluxes from our system. It is important that

all (100 per cent) the mass from the central source is collimated into

a relativistic jet. In the process of numerical modelling in TB02,

it was found that the collimation of the central source relativistic

wind is accompanied by the formation of oblique shock waves in

the flow. However, the numerical code that we used in TB02 was

created in order to model continuous flows. Therefore, we were un-

able to perform a detailed investigation of the process of collimation

for a variety of parameters. To meet this need, in the present work we

have modified the numerical code, which allows us now to consider

the flow with the shock fronts and to perform the numerical simu-

lation of the process of collimation accompanied by the formation

of shocks.

2 T H E M O D E L

The idea that jet formation requires the existence of two compo-

nents in the outflow, one originating at the central source and the

other in the accretion disc, has been already discussed in the litera-

ture in the context of AGN (Sol, Pelletier & Asseo 1989; Pelletier

et al. 1996) or young stellar objects (Ferreira, Pelletier & Apple

2000). In models proposed to explain the time-dependent quasi-

periodic oscillation in accretion discs around black holes, the disc

is assumed to have a Shakura–Sunyaev (SS; Shakura & Sunayev

1973) radiatively efficient external part and a radiatively inefficient

inner part where an advection dominated accretion flow (ADAF)

exists. The transition region between the SS disc and the ADAF is

found to be highly variable (Gracia et al. 2003). In such models it is

assumed that a radial outflow originates at the corona of the ADAF

part of the disc and a disc-wind from the SS part. Also, observations

show that AGN jets are slowly collimated across parsec scales from

the central engine. This scale is significantly larger than that of the

black hole, suggesting that the accretion disc plays an important

role in the initial jet collimation. For example, observations of the

M87 jet (Biretta, Junor & Livio 2002) show that the initial open-

ing angle of the jet is about 60◦ in the smallest physical scales yet

probed for M87 (∼0.01 pc), while later the opening angle becomes

a few degrees. This is consistent with the picture of poloidal colli-

mation of the jet by the magnetic field of the disc (Spruit 1994; Livio

1999). Recently, this approach seems that it may become more and

more related to the physics of cosmic gamma-ray bursts (GRBs),

wherein models have been proposed where the main engine of the

GRB is the central black hole surrounded by a massive accretion

torus.

According to this picture, in the model we adopt, the outflow has

two components: a radially expanding outflow with a uniform speed

v jet having its origin at the central source and a non-relativistic out-

flow at the accretion disc, which initially expands radially as well

with speed vdisc. We assume in addition that the wind from the disc

is non-relativistic because relativistic winds are poorly collimated

by magnetic stresses. The total poloidal magnetic field initially has

a monopole-like structure. The inner relativistic wind originates at

the central source and the base of the outflow for this outflow com-

ponent is taken to be spherical. On the other hand, the accretion

disc is attached to the spherical central base as a slab (Fig. 1). The

thickness of this slab defines the magnetic and mass flux from the

disc. For simplicity, the radius of the disc is assumed to be twice as

large as the radius of the base of the central flow component. At this

stage of our investigation, we do not care about a close correspon-

Figure 1. Sketch of the initial (t = 0) state of the two-component outflow

model. A central relativistic radial outflow originates in the hot corona sur-

rounding an ADAF while a non-relativistic rotating disc-wind originates in

a surrounding SS disc. For simplicity, the launching boundary of the inner

outflow from the ADAF corona is taken at a spherical surface surrounding

the ADAF while the boundary of the SSD is on a rectangular slab attached

to the spherical surface around the ADAF. Thin solid lines indicate lines of

the poloidal magnetic field.
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Figure 2. Assumed initial (t = 0) state of the two-component outflow

model with a central relativistic radial outflow originating in the hot corona

surrounding the central object and ADAF and a non-relativistic rotating

disc-wind originating in a surrounding SS disc.

dence of the parameters of the model to some specific astrophysical

object, because our purpose here is to demonstrate the possibility to

collimate relativistic winds, to investigate the formation of shocks

in the flow and to define the conditions under which this may take

place. For the same reason, we omit here gravity and the thermal

pressure of the plasma at the base, which is thus assumed to be ini-

tially cold. Of course, in the post-shock region the plasma is heated.

We are mainly interested in the electromagnetic stresses acting on

the wind.

We specify the Lorentz factor of the relativistic plasma ejected

by the central source to be γ jet = 5, U jet = 4.9 and v jet = 0.97979c.

On the other hand, the disc-wind is assumed to be non-relativistic
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(a) (b)

Figure 3. Initial non-rotating monopole magnetic field of the two-component model with a relativistic (non-relativistic) flow speed v jet (vdisc) along the radial

field lines is shown in the left panel. Thin solid lines indicate lines of the poloidal magnetic field with 20 lines plotted at equal intervals of the separation

meridional angle in the initial magnetic field. The shaded (non-shaded) area corresponds to the relativistic wind (non-relativistic disc-wind). The disc-wind

provides 70 per cent of the fluxes (ψ disc = 1 − ψ jet = 0.7). For comparison, the solution of the problem in the nearest zone is shown in the right panel. The

thick solid line indicates the fast mode MHD surface while the thinner line shows the Alfvén surface. The values of the parameters σ = 2.25 and α = 5 refer

to the inner edge of the non-relativistic outflow from the disc.

with parameters vdisc = 0.288 c, U disc = 0.3 and γ disc = 1.044.

This velocity is already small enough to reduce the decollimating

effect of the electric field and, on the other hand, it is still not too

small compared to the velocity of the wind from the central source

to provide strong gradients in the flow which might easily destroy

the solution. To avoid strong gradients in the velocity and density,

the initial values of these variables are smoothed with a function

of the form (Fig. 2)

U (ψ) =
(Ujet − Udisc)

1 + exp[(ψ − ψjet)/0.05]
+ Udisc, (1)

where U jet is the four-velocity of the plasma ejected from the central

source, Udisc is the four-velocity of the plasma ejected from the disc

and the parameter ψ jet defines the fraction of the magnetic field

flux in the jet. All the rest of the magnetic and mass flux originates

at the central source. The density increases with the polar angle

as we move towards the disc and is taken to keep the mass flux

ρU independent of the poloidal magnetic flux ψ and to vary with

the velocity such that the Alfvénic radius of the non-relativistic

wind emanating from the inner edge of the disc is twice the initial

Alfvénic radius of the relativistic flow from the central source. The

angular velocity changes smoothly at the region between the central

object and the disc from zero to a specified value. Inside the disc,

the angular velocity of the disc rotation ω is taken such that ω ∼
r−δ . For δ = 3/2 we have the familiar Keplerian rotation law. The

total magnetic flux from the source is normalized to unity at the

equator.

For the convenience of the reader, here we recall that all geometri-

cal parameters are expressed in units of the radius of the coinciding

initial fast mode and Alfvén surfaces at the equator. The flow is de-

scribed by the parameters α, σ and ψ jet. The parameter σ is defined

as σ = (R f/R l)
2, where Rf is the initial radius of the fast mode

surface (i.e. before rotation of the disc starts), Rl is the radius of

the light cylinder and α =
√

σ/Udisc, where Udisc is the initial four-

velocity of the plasma at the inner edge of the disc. The parameter σ

approximately equals the ratio of the Poynting and kinetic fluxes. In

the case of uniform rotation and uniform flow, these parameters de-

scribe the total flow. In our case of latitudinally non-uniform rotation

and non-uniform flow, these parameters correspond to the field line

leaving the inner edge of the accretion disc. The initial configuration

in the nearest zone is shown in the left panel of Fig. 3.

3 M E T H O D O F S O L U T I O N

To obtain the steady-state solution of the problem in a wide range

of scales, from distances compared to the dimension of the central

source up to much larger distances, we used a combination of two

methods. A more detailed discussion of these methods is given in

BT99.

In our approach, the steady-state solution in the nearest zone,

which contains the relevant MHD critical surfaces and where

the governing partial differential equations are of mixed ellip-

tic/hyperbolic type, is obtained by using a relaxation method, as in

several other studies (cf. Ouyed & Pudritz 1997; Krasnopolsky, Li &

Blandford 1999; Ustyugova et al. 1999). We use the same software

that has been used in BT99, except for a simple linear interpola-

tion of the variables in the cells, which is here replaced by a van

Leer (1977) interpolation scheme in the code for the time-dependent

simulation. This modification allows us to reduce strongly the usual

Lax–Wendroff artificial oscillations present in our previous works.

In the second step, the solution in the far zone is obtained by

extending to large distances the solution obtained in the nearest zone.
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This ability to extend the inner zone solution is based on the fact

that the outflow in the far zone is already super-fast magnetosonic.

Therefore, the problem can be treated as an initial value Cauchy-type

problem with the initial values taken on an arbitrary surface located

at the base of the far zone. The initial values on this surface are taken

from the solution of the problem in the nearest zone. Because later

we shall focus more on the solution in the far zone, the method of

the solution will be only briefly outlined here for the convenience

of the reader.

The problem in the far zone is solved in an orthogonal curvilinear

system of coordinates denoted by ψ and η. This system of coordi-

nates has a rather simple physical meaning. The variable ψ in the

axisymmetric flow denotes the flux function and gives the poloidal

magnetic field Bp as

Bp =
∇ψ×ϕ̂

r
, (2)

where ϕ̂ is the unit vector in the azimuthal direction and r is the

distance from the axis in cylindrical coordinates (z, r , ϕ). A geo-

metrical interval in the curvilinear system of the coordinates ψ , η

and ϕ can be expressed as

(dr )2 = g2
ψ dψ2 + g2

η dη2 + r 2 dϕ2, (3)

where gψ and gη are the corresponding line elements, or compo-

nents, of the metric tensor.

The unknown variables here are z(η, ψ) and r (η, ψ). The met-

ric coefficient gη can be obtained from the transfield equation

(BT99)

gη = exp

[
∫ ψ

0

G(η, ψ) dψ

]

, (4)

where

G(η, ψ) =
[

∂

∂ψ

(

B2 − E2

8π
+ P

)

−
1

r

∂r

∂ψ

(

Uϕvϕcρ −
B2

ϕ − E2

4π

)]

×
(

Upvpcρ −
B2

p − E2

4π

)−1

.
(5)

Here, the four-velocity includes the inertial term produced by the

finite temperature, U =γ (v/c)(e + p), where e and p are the internal

energy and pressure per particle in mc2 units.

The lower limit of the integration in equation (4) is chosen to

be 0 such that the coordinate η is uniquely defined. In this way η

coincides with the coordinate z where a surface of constant η crosses

the axis of rotation.

The metric coefficient gψ can be obtained from equation (2) in

terms of the magnitude of the poloidal magnetic field

gψ =
1

r Bp

. (6)

The equations for r and z are then

rη = −
zψ gη

gψ

, zη =
rψ gη

gψ

, (7)

with gη calculated by equation (4). Here r η = ∂r/∂η, zη = ∂z/∂η,

r ψ =∂r/∂ψ , zψ =∂z/∂ψ . For the numerical solution of the system

of equations (7) the two-step Lax–Wendroff method was used, as in

our previous work. However, this method appeared unable to resolve

the problem with shock formation in the flow. In the present work,

we modified the method of the solution of the equations. For the

calculation of the variables on the faces of the cells, the Godunov

(1959) method has been used.

4 R E S U LT S O N S H O C K F O R M AT I O N

For a system consisting of a spherical central source, to which a rect-

angular disc is attached with a radius twice larger than the radius of

the central source, as sketched in Fig. 1, the steady-state solution in

the nearest zone is shown in Fig. 3(b). Because we have assumed

that only the disc rotates, poloidal electric currents are generated

along the field lines which are rooted on this disc. The first notable

features from Fig. 3(b) are (i) the collimation of the initially radial

disc-wind towards the axis of rotation with a subsequent compres-

sion of the wind from the central source and (ii) the splitting of the

Alfvén and fast MHD surfaces in the lines which are rooted in the

rotating disc.

The MHD collimation of the two-component outflow is evident

in the far zone solution displayed in Fig. 4(a), i.e. up to distances

R ≈ 105 R f. The total flux from the axis θ = 0 to the equator

at θ = π/2 is normalized to 1, and 100 lines are plotted in flux

intervals δψ = 10−2. The initial monopole magnetic field has a flux

distribution, ψ(R, θ ) = (1 − cos θ )/R, such that Rδψ = sin θδθ ,

where θ is the polar angle. Hence, in Fig. 4(b) a rather small fraction

of the flux is concentrated around the axis. By comparing this initial

configuration (Fig. 4b) with the final configuration (Fig. 4a), a rather

dramatic concentration of the flux around the axis of the jet may be

seen.

Fig. 5 shows the distribution of the various pressures along the

surface of constant η, which crosses the z-axis at the distance of

105 R f. The total pressure is uniform across the jet around the out-

flow’s axis, 0 < ψ � 0.1; in fact, the pressure there is dominated

by the thermal pressure of the heated post-shock plasma, although

initially the plasma was cold. At an intermediate layer (e.g. 0.1 <

ψ � 0.3), the compression of the flux around the core of the jet

contributes a dominant poloidal magnetic field pressure. With the

toroidal field peaked around ψ = 0.3, it is now the turn of the pres-

sure associated with the toroidal field to dominate the total pressure.

Further away at ψ � 0.3, all pressure contributions have dropped

to negligible values. Nevertheless, equilibrium is maintained by the

tension of the surrounding magnetic field. It is worth noting that all

magnetic flux that emerges from the central source is concentrated

in the jet. This means that, as expected, all the matter flux from the

central source is collimated into the jet and thus the model under

consideration can be applied to the modelling of observed jets from

astrophysical objects.

To understand the structure of the jet and how it is finally formed,

it is necessary to consider the process of the collimation in some

more detail. Fig. 6 shows schematically the interaction of the two

components of the outflow which form the jet and the accompa-

nying shock. The collimation of the relativistic outflow from the

central source is performed by the tension of the toroidal magnetic

field, which is generated by the rotating disc-wind. This wind which

compresses the outflow from the central source in general induces

the formation of the oblique shock (1) and a weak discontinuity

(2), although for a special choice of the parameters the forma-

tion of shock (1) can be avoided (TB02). After the compression

of the flow towards the axis, a reflection shock wave (3) may also be

formed.

Our numerical simulation shows the gradual formation of the

shock and the subsequent collimation of the outflow as follows.
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Figure 4. (a) The poloidal magnetic field lines of the outflow shown in Fig. 3 are plotted in the far zone and for intervals of equal magnetic flux � = 10−2

for a total normalized flux  = 1. A notable feature in this case is the compression of the part of the inner relativistic flow from the central source into a thin

layer of enhanced poloidal magnetic field. A shock wave is formed at the inner part of this layer. The magnetic flux between adjacent field lines is constant.

For comparison, the original uncollimated monopole magnetosphere is shown in (b).

First, Fig. 7 shows the formation of the shock when the relativistic

flow is compressed by the wind from the disc. The shock is first

formed at a distance R ≈ 100R f from the source. Initially, close

to the source the post-shock pressure is mainly provided by the

pressure of the poloidal magnetic field, because there the poloidal

magnetic field is still sufficiently strong. Thus, a layer of enhanced

poloidal magnetic field is formed in the flow and this may be seen

in Fig. 7 as a black ribbon. In Fig. 8(a), which shows the pres-

sure distribution along a surface of constant η crossing the z-axis

at the distance 412R f, shock (1) has not hit the z-axis yet, and

the thermal pressure plays a dominant role in the post-shock re-

gion. The further away from the source we move, the weaker the

poloidal magnetic field becomes. Starting from some distance (in

this case somewhere around 400R f), the poloidal magnetic field

is no longer able to provide the needed pressure in the post-shock

region. This role is now taken by the gas pressure, i.e. the total

post-shock pressure becomes mainly of thermal origin, as shown in

Fig. 8(a).

The shock front reaches the z-axis at a distance z ≈ 2000R f. The

pressure distribution corresponding approximately to this situation

is shown in Fig. 8(b). Contrary to what was expected, the reflect-

ing shock front (3) has not been formed yet at the interaction of

shock (1) with the z-axis. In Fig. 8(b) the shock has reached the

z-axis and the pressure is slightly increased in comparison to the

neighbouring regions near the axis. Now the dominant behaviour is

a further growth of the pressure away from the axis. The pressure

drop between the boundary of the collimated region and the z-axis

is much higher than the pressure drop across shock (1). Therefore,

at larger distances this pressure drop results in further compression

of the flow toward the z-axis. To illustrate what happens at distances

C© 2005 RAS, MNRAS 357, 918–928
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Figure 5. Distribution of total pressure Pt = P + (B2
p + B2

ϕ − E2)/8π

(thermal + electromagnetic)(solid line), total electromagnetic pressure

PM = (B2
p + B2

ϕ − E2)/8π (dotted line) and pressure of toroidal field P φ

= (B2
ϕ − E2)/8π (dash-dotted line) along a surface of constant η crossing

the z-axis at z = 105 R f.

Figure 6. Sketch of the shock waves and singular surfaces expected to be

formed in the general case of the collision of our two-component outflow.

The oblique shock front marked by ‘1’ is formed at the collision of the

two parts of the exterior collimated and still uncollimated interior flows.

An outgoing weak discontinuity from one end of this shock is marked by

‘2’. The shock front marked by ‘3’ is formed at the self-reflection of the

collimated flow by the axis of rotation.

exceeding 2000R f we later plot in Fig. 10 the behaviour of the first

20 field lines (divided by the constant normalized flux equal to 10−3).

We see that after 2000R f there is a small deflection of the flow from

the z-axis and then the flow continues to move toward the z-axis,

because the pressure at the centre still remains small compared with

the pressure of the compressing field. This may be seen in Fig. 9(a).

Note also the oscillations in the jet’s width in Fig. 10, as discussed

analytically in Vlahakis & Tsinganos (1997).

At larger distances, R ∼ 20.000R f, the jet has been compressed

to its minimum radius. The pressure distribution that corresponds

to this moment is shown in Fig. 9(b). At this stage the overpres-

sure of the flow at the axis produces the reflecting shock wave

(3). This distribution of the pressure will now turn the flow off

the z-axis. The reflecting shock wave (3) is easily seen at rela-

tively large distances from the axis, because the amplitude of the

reflecting shock grows as the magnetic pressure decreases. Here

the effect is similar to what happens when a sound wave propa-

gates in a region of decreasing density, wherein it is transformed

into a shock wave (Zel’dovich & Raizer 2002). Indeed, at the be-

ginning this distribution of the pressure creates a smooth motion

of the plasma away from the z-axis. However, at larger distances

where the total magnetic field decreases, this motion results in the

formation of a reflecting shock wave, which corresponds to the

predicted shock (3) in Fig. 6. The pressure distribution demon-

strating the appearance of the reflected shock wave is shown in

Fig. 9(c) where the shock is the discontinuity at about ψ � 0.4. Ac-

tually this reflection shock may also be seen in the general picture

of Fig. 4.

Finally, it is interesting to examine for a moment the depen-

dence of the temperature as a function of the coordinate z (Fig. 11a)

because a temperature increase may result in observable phenom-

ena. Although the plasma before the shock has a zero temperature,

we see from this figure that in the post-shock region the gas is

heated. A small finite temperature was produced at the first steps

due to some unavoidable numerical errors in defining the initial

surface and boundary conditions. Then, the temperature adiabati-

cally drops with distance up to the distance when shock (1) has

reached the z-axis (Fig. 8b). Here we see the first jump of the tem-

perature. Then, the temperature adiabatically increases due to the

compression by the outer toroidal magnetic field, and reaches a

maximum value of T ≈ 0.8mc2 at the distance of R ≈ 20.000R f.

This corresponds approximately to a temperature T ≈ 40 keV for an

electron–positron plasma, or T ≈ 80 MeV for an electron–proton

plasma.

In Fig. 11(b) the density of the plasma along the first 10 magnetic

field lines near the axis is plotted as a function of z. The compression

across the shock is by a factor of approximately 3. The velocity jump

across the shock is also evident in Fig. 11(c), where for comparison

the initial four-speed is shown by the dotted line. Because the shock

is rather oblique and the outflow highly relativistic, the four-speed

changes by a fraction of approximately 10 per cent.

In Fig. 12(a) we present the distribution of the poloidal four-

velocity at the distance z = 24 000 compared with the poloidal

velocity distribution at the base. Note first that at large ψ > 0.3

there is an acceleration of the plasma, although at smaller ψ the

poloidal velocity is smaller than the initial one. To understand this

behaviour, we recall that the steady MHD equations admit four

integrals:

(α) the ratio of the poloidal magnetic and mass fluxes, cF(ψ)

cF(ψ) = Bp/4πρvp; (8)

(β) the total angular momentum per unit mass, L(ψ)

xωUϕ − FxωBϕ =
�(ψ)L(ψ)

c2
; (9)

C© 2005 RAS, MNRAS 357, 918–928
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Figure 7. (a) A detailed view of the flow up to z = 3000R f is shown. Note that the scale on the horizontal axis r is three times larger than that in the z-axis.

The plotting of the magnetic flux between field lines after ψ > 0.3 is less dense by a factor of 10. A magnification of this plot is shown in (b).

(a)

(b)

Figure 8. Distribution of the pressures along a surface of constant η which

crosses the z-axis at 412R f and 2141R f. Note that in (b) the pressure in the

post-shock region is already of thermal origin. All the notations are similar

to those in Fig. 5.

(γ ) the corotation frequency �(ψ) in the frozen-in MHD condi-

tion

Uϕ Bp − Up Bϕ = Ŵxω(ψ)Bp; (10)

(δ) finally the total energy W(ψ) in the equation for total energy

conservation

Ŵ − FxωBϕ = W (ψ). (11)

Here, Ŵ = γ (e + p). By combining equations (9) and (11) we

have

Ŵ − xUϕ = W (ψ) −
�(ψ)L(ψ)

c2
. (12)

In the region where the toroidal velocity is positive (negative) (see

Fig. 12b) the plasma is accelerated (decelerated) because the Lorentz

factor increases (decreases). Thus, along a constant ψ a reduction

of the toroidal velocity leads to a reduction of the energy of the

plasma. The deceleration just at the rotational axis is explained by

another reasoning. At the axis, Ŵ is an integral and does not vary

with distance. The decrease of Up is due to the heating of the plasma

because of the shock. At the axis, the Lorentz factor and the poloidal

velocity are related as

Ŵ2 = U 2
p + (e + p)2. (13)

The increase of the plasma temperature results in an increase of

the e + p term. Then, Up should eventually decrease, because Ŵ is

constant.

To demonstrate the role of the toroidal component of the velocity

in the formation of the jet structure we plotted the distribution

of the toroidal four-velocity U ϕ versus ψ in Fig. 12b, together

with the normalized distribution of the angular velocity. The

angular velocity of the field line rotation is positive everywhere.

Nevertheless, on some of the field lines the plasma rotates in

the opposite direction. This result is due to the compression of

the flow by the disc-wind wherein the poloidal magnetic field

increases. Then, it follows that the poloidal Alfvén number

decreases, and subsequently the toroidal magnetic field increases

because in MHD it depends inversely on the poloidal Alfvén

Mach number. In the expression for the conserved total angular

momentum, an increase of the azimuthal magnetic field is ac-

companied by a decrease of the toroidal velocity. Because in the

inner regions the toroidal speed was initially zero, this means
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(a)

(b)

(c)

Figure 9. Pressure distribution on a surface of constant η crossing the z-axis

at the distance 11 000R f in (a), at 20.000R f where the pressure at the z-axis

obtains a maximum value and the jet reaches its minimum radius in (b), and

at 24.000R f in (c). In (c), note that close to ψ = 0.4 the reflecting shock

front moving towards the direction of large ψ may be seen.

that it becomes negative. We should add that the toroidal velocity is

very small and does not affect the formation of the jets.

5 C O N C L U S I O N

By using a simplified model and an efficient numerical scheme, in

this paper we have demonstrated that all relativistic mass flux from

a central source can be collimated, provided that the outflow in

addition to the initially uncollimated relativistic plasma component

from the central source possesses a second component of a non-

relativistic wind from the surrounding disc, which plays the role of

the flow collimator. The magnetic and mass flux from the central

source of the relativistic outflow was about 30 per cent of the total

flux from our system. It is important that 100 per cent of the flux

from the central source has been collimated into a relativistic jet.

During the collimation of the inner relativistic flow, collision and

reflection shocks were formed.

A preliminary calculation of the collimation process in conditions

appropriate to specific astrophysical objects has been performed for

the case of the M87 jet, wherein it is found that this relativistic jet

collimates from a wide opening angle of about 60◦ at subparsec

scales to a smaller angle of about 10◦ at the parsec scale, in agree-

ment with observations (Tsinganos & Bogovalov 2004). Here our

purpose was restricted to resolving the difficulty of the theory of

magnetic collimation to form jets with a large fraction of the to-

tal mass flux of the outflow from the central source. We succeeded

in obtaining this rather interesting result, by using an admittedly

simplified and crude model. Another by-product of this work is

that some important processes accompanying the collimation of as-

trophysical plasmas, such as the formation of shocks, occur in the

supersonic, or MHD super-fast region. A shortcoming of the present

study, as far as a direct application of the results to jet formation in

specific astrophysical objects is concerned, is that some additional

physical ingredients (thermal pressure, non-zero angular velocity

of rotation of the central source, etc.) have not been included in the

present modelling, something which will be the next step in this

study (e.g. Tsinganos & Bogovalov 2004). Work is in progress for

one of the final steps of this project, namely a direct connection of

this shock formation to particle acceleration and radiation emission

in order to directly relate the results of the present model to the

observed radiation patterns from relativistic jets.

Besides the analytical studies using self-similarity (Tsinganos

et al. 2004), several other numerical simulations of the astrophysi-

cal jet phenomenon have been performed, as noted in the Section 1.

Recently, Zanni et al. (2004) used high-resolution MHD simula-

tions with adaptive mesh refinement to examine the acceleration

and collimation of jets from an accretion disc. After following the

system for several rotations of the inner part of the disc, a grow-

ing mass outflow rate in the jet was found, but the system did not

reach equilibrium. As far as the question of the stability of the so-

lution is concerned, we note that a full examination of the stability

of jets is still an open problem (see Ouyed, Clarke & Pudritz 2003).

As for the numerical stability of our solution, we found no signa-

ture of numerical instability by exploring the solution parameter

space.
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Figure 10. (a) The magnetic field lines are plotted in intervals of 4 over the original field to clearly show the compression of the central outflow to form a jet

with an oscillatory radius. A magnification of (a) is shown in (b) where all field lines are plotted.

(a) (b) (c)

Figure 11. In the left panel is shown the dependence of the temperature in the first three field lines as a function of the distance z, with the upper curve

corresponding to the temperature at the z-axis. In the middle panel is shown the density distribution of the plasma along the first 10 magnetic field lines near

the axis plotted as a function of z. Finally, in the right panel is shown the velocity jump across the shock as a function of the magnetic flux ψ , at the distance

500R f. For comparison, the initial four-speed is shown with the dotted line.

(a) (b)

Figure 12. At z = 24 000 as a function of ψ are shown, in the left panel, the distributions of the final (solid line) and initial (dashed line) poloidal plasma

four-speeds Up. In the right panel the final azimuthal plasma four-speed xUφ after the evolution of the system (solid line) is shown together with the initial

angular rotation frequency ω (dashed line).
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A P P E N D I X A : H D O B L I QU E R E L AT I V I S T I C

S H O C K S

For the demonstration of the ability of our code to reproduce the

correct jump conditions of oblique relativistic shocks, we present

the test results of the simulation of a uniform supersonic plasma

flow incident on a tube with a broken wall. At the break the incident

plasma flow with U 1 = 5 is turned at an angle δ = 5◦. The flow

line near the wall is shown in Fig. A1 wherein all notations are

also shown. In the limit of high temperature T ≫ mc2 and for the

relativistic relationship between the energy density and pressure,

e = 3p, the relationship between the angles is obtained as follows

(see Landau & Lifshitz 1959). First, in the above ultrarelativistic

limit the equations giving the pre-shock and post-shock velocities

are
(

v1

c

)2

=
1

3

3p2 + p1

3p1 + p2

,

(

v2

c

)2

=
1

3

3p1 + p2

3p2 + p1

, (A1)

where v1 (v2) is the magnitude of the velocity of the pre-shocked

(post-shocked) plasma in a coordinate system where the plasma

velocity along the shock front is equal to zero. It follows from these

equations that the normal component of the initial four-velocity

(U = γ v/c) is

U 2
1,⊥ =

3p2 + p1

8p1

. (A2)

This normal component of the four-velocity is invariant in relation to

Lorentz transformations corresponding to a motion along the shock

front. Therefore, in the laboratory system and if the flow makes an

angle φ with the plane of the shock, the incident flow component

normally to the shock is U 1,⊥ = U 1 sin ϕ (see Fig. A2). From this

we obtain the ratio of post-shock/pre-shock pressures:

p2

p1

=
8U 2

1 sin2 ϕ − 1

3
. (A3)

The value of the pressure jump at the shock can also be ob-

tained in another way. The energy momentum conservation equation

∂T k
i /∂x k = 0 can be written in an integral form

∑

l

T k
i S

l
ke

i = 0. (A4)

Here the summation on l is performed over all the surface patches

surrounding the volume, e is a unit vector and S denote the vectors

normal to the surface and proportional to the surface area. Let us

take the integration volume and vector e as shown in Fig. A2. In this

case from equation (17) it follows that

ξ

δ

ϕ

Figure A1. The flow lines at the wall with a break. The break angle is taken

to be 5◦.
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U

U2
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ϕ

e

Figure A2. The volume of integration is formed by the stream lines with

normal surface vectors Su and Sd and by the surfaces S1 and S2 normal to

the stream lines. The plasma in the pre-shock region is marked by the index

‘1’ and in the post-shock region by the index ‘2’. The shock front is the thick

line AB.

−w1(U1 S1) U1 cos[90 − (ϕ − ξ )] − p1 S1 cos[90 − (ϕ − ξ )]

− p1 Su cos(ϕ − ξ ) + p2 Sd = 0. (A5)

By taking S = 1, we have Su = cos ϕ and Sd = sin ξ such that the

above relation becomes

w1U 2
1 sin(ϕ − ξ ) sin ϕ + p1 sin(ϕ − ξ ) sin ϕ

+ p1 cos(ϕ − ξ ) cos φ = p2 cos ξ, (A6)

or

w1U 2
1 sin δ sin φ + p1 cos ξ = p2 cos ξ, (A7)

where δ = ϕ − ξ . Substituting w = 4p we have
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Figure A3. The ratio of the pressure upstream and downstream of the shock

(lower curve) and dependence of ϕ on δ (upper curve). Squares indicate the

values obtained in the numerical solution for U 1 = 5.

p2

p1

= 1 + 4U 2
1

sin ϕ sin δ

cos ξ
. (A8)

Finally, combining equations (A3) and (A8) we obtain

tan ξ =
1

3
tan ϕ +

1

3 cos ϕ sin ϕU 2
1

. (A9)

In other words, equation (A9) relates the angle ϕ between

the shock front and the incident flow with the turning angle δ, while

equation (A8) relates the ratio of the pressures at the two sides of the

shock with δ. This dependence of the angle ϕ and ratio of pressure

upstream (P 1) and downstream (P 2) of the shock on δ is shown in

Fig. A3.
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