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Abstract. Multimillion atom non-equilibrium molecular dynamics simulations for shock compressed iron
are analyzed using Fourier methods to determine the long scale ordering of the crystal. By analyzing the
location of the maxima in k-space we can determine the crystal structure and compression due to the shock.
This report presents results from a 19.6GPa simulated shock in single crystal iron and compare them to recent
experimental results of shock compressed iron where the crystal structure was determined using in-situ wide
angle x-ray diffraction.
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INTRODUCTION

Molecular dynamic (MD) simulations are a valu-
able tool in studying the dynamics of materials un-
der high-strain rate compression [1, 2]. As faster and
faster supercomputers become available to today’s
scientists the amount of material that can be simu-
lated is approaching that which can be studied ex-
perimentally. The large amount of data an MD sim-
ulations generates presents a new problem “How to
interpret the data?”, particularly when attempting to
connect MD simulations to experiment. Coordina-
tion number and radial density functions can be used
to calculated the local correlation between atoms.
This can be used to simulate diagnostics which are
sensitive to local structure, such as extended x-ray
absorption fine structure measurements [3]. X-ray

diffraction is sensitive to correlation of atoms over
longer scale lengths. In this conference proceedings
we describe a MD post-processor which takes the
Fourier transform of the atomic positions from MD
simulations. We will briefly describe how the MD
data is post-processed and then looking at one ex-
ample and compare the post-processed MD result
with recent laser shock experiments of iron where
the α − ε phase transition was measured for the first
time using wide angle in-situ diffraction.

POST-PROCESSING MD

The MD post-processor (MDPP) performs a Fourier
transform on the output of the atomic positions from
MD simulations. Previous post-processing of MD
data has used a one-dimensional Fourier transform
to study specular scattering [4]. Extending this tech-
nique to two and three dimensional studies is compu-



tationally expensive, but can provide details which
are not obvious in a one-dimensional analysis. The
Fourier transform is calculated for a series of delta
functions using the sum
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where~rn is the position of the nth atom and N is the
total number of atoms in a given test volume or crys-
tal sample. The effect of the finite size of the atoms
can be taken into account by use of calculated atomic
form factors which are simply a function of distance
from the origin in reciprocal space. The periodicity
of the crystal structure leads to a periodic intensity
pattern in what is known as reciprocal lattice space
(~k-space). The solution for a perfect crystal is

I(~k) =
3

∏
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, (2)

where Ni is the total number of atoms along a partic-
ular crystal axis~ai. However, nothing is ever perfect.
It is the interpretation of the deviation from this per-
fect solution of the reciprocal lattice which leads to
understanding what is happening to the MD simu-
lated crystal structure.

Since the transform is calculated numerically the
range and dimensionality of~k is selected to diagnose
the desired parameters. This formulation allows one-
dimensional study [4] by selecting a particular direc-
tion, k̂, and by varying the magnitude of~k along this
direction to study a single set of planes. This will
give Equ. 2 along a single line in reciprocal space.
In the two dimensional case Equ. 2 is calculated on a
plane of~k values [5]. Similarly, the three dimensional
case~k will cover a volume of values, but with each
additional dimension the computational cost goes up
accordingly.

The MDPP performs the lengthy calculation of a
Fourier transform of the atomic positions from the
MD simulations because it will give a mapping of
the reciprocal lattice space of the the crystal which
is recorded experimentally using diffraction. When
plotted in units of the reciprocal lattice vectors, the
perfect crystal case gives large intensity peaks at the
Miller index of the plane from which the diffraction
occurs, when the relationship~k =~ko−~ks is satisfied,
where ~ko is the wavevector for the incoming beam

of x-rays and ~ks is the wavevector of the diffracted
x-rays. For the imperfect crystal it is possible to
monitor the change in the crystal structure by the
movement of these points which can be compared
with experimental data.

APPLICATION TO IRON

Iron is an excellent material to demonstrate the in-
sight into the lattice dynamics the Fourier transform
technique offers because of the pressure induced
phase transition at 130 kbar [6, 7]. The α − ε phase
transition will generate a change in the long scale-
length correlation of the atoms from a BCC crystal
strucutre to a HCP crystal structure. This will be ob-
vious in the Fourier transform of the simulation and
can also be recorded experimentally using in-situ x-
ray diffraction [8]. Figure 1 is a 2-D example of the
output of the MDPP using the atomic positions of
an 8-million atom NEMD simulation of iron shock
compressed to 196 kbar from Kadau et al. [9]. The
intense peaks give points on the reciprocal lattice,
for the uncompressed and compressed BCC as well
as the HCP material, because all three materials are
present in the simulated sample.

The Fourier transform in Fig. 1 is calculated for
the [001][11̄0] plane (based on the original BCC
orientation being shocked along [001]) This plane
should show the formation of the hexagonal base
structure in the BCC to HCP transformation [10].
In the reciprocal lattice the hexagon is in the same
plane as the hexagonal base in real space but rotated
about the c-axis by 30o relative to the orientation of
the hexagon in real space [11]. The geometry of the
lattice dictates that a uni-axial compression of 18.3%
is required for a perfect hexagon to appear in the
[001][11̄0] plane and a shift of alternate planes will
create an HCP structure with a c/a ratio of

√
3.

Figure 1 shows that the points corresponding to
the BCC lattice off the [11̄0] axis show three distinct
peaks. A sharp peak from the uncompressed mate-
rial, a second sharp peak at a larger reciprocal lattice
vector (corresponding to lattice compression) from
the compressed BCC material and a third broader
peak from the HCP material. The shift of the BCC
points under compression shows movement only in
the [001] direction. Showing that in the simulation
on this time scale the compression is uni-axial. The



FIGURE 1. This figure schematically shows the method used with the MDPP. The atomic positions from a select portion or
entire MD simulation are Fourier transform into reciprocal lattice space. The high intensity peaks represent diffraction planes
in the crystal structure. The units are based on the inverse of the original cubic BCC cell. Three points are labeled with the
plane labels on the figure. One point contains three labels, to show that there is a BCC component and 2 HCP components, due
to the 2 degenerate HCP states. A dashed hexagon shows the reciprocal lattice points are approaching a hexagon. The dotted
circle gives the limits that can be probed using K-shell radiation from an iron backlighter.

tell-tale feature of the phase transformation is the ap-
pearance of points at (011̄0), (112̄0), (1̄100) and sim-
ilar planes created by the period doubling of the BCC
lattice. The hexagonal shape of the new points tells
us that the structure is HCP. The dotted circle is the
length of the probe vector for K-shell radiation from
iron as the Bragg condition limits the region of recip-
rocal lattice space that can be probed to |~k| ≤ 2|ko|.

Figure 2 is a hi-resolution look at the BCC (002)
/ HCP (21̄1̄0) point. The three points correspond to
the static material at kz=2, increasing to kz=2.14 for
7% compressed material and kz = 2.28 for the phase
changed material. Integrating over the [11̄0] direc-
tion makes the peaks more clear, and gives a better
idea of the amount of material in each state. The res-
olution of the two BCC points is determined by the
number of atoms in the MD simulation, we can see
the affect of a finite number of atoms in the Ni terms
in Equ. 2. It is possible but far more computation-
ally expensive to preform a 3D transform and study
the complete shape of the points, instead of a single
slice. Ideally this could provide information about
grain boundaries, dislocations and other crystal de-
fects.

Experimental data in Fig. 2 also shows the two
wave structure [8]. The arrows are drawn to the rel-
evant peaks in the experimental data. The two wave
structure shows the BCC(002) plane in the uncom-
pressed state, ∼7% compression state, and the same

atoms with a ∼14% uniaxial compression but in
HCP(21̄1̄0) plane because of the shift of alternate
atomic planes. The other relevant planes are labeled
with their BCC orientation (three components) and
HCP (four components). Each line in the BCC struc-
ture is shown with a BCC label and two HCP la-
bels. This is due to the two degenerate HCP states
the crystal can end up in, because whether the planes
shift in the [110] direction or the [11̄0] direction
is energetically equivalent, but the plane labels ro-
tate, with some planes begin unique to each ori-
entation. The BCC(002) plane (or any (00l) plane)
has the same HCP plane labelled for both HCP
orientations because this plane is rotationally sym-
metric. For BCC(112) there is no diffraction lines
from compressed planes associated with the uncom-
pressed diffraction line because of the experimental
geometry a shadow was cast in the shocking beam
which results in regions of the crystal which are not
shocked. This can also be seen in the BCC(002)
plane where a region of the curve shows no shock or
phase change. There are also two planes unique to a
single HCP orientation, HCP(11̄00) and HCP(202̄1̄),
which are due to the period doubling and are unique
to the HCP structure. The MD post-processing pre-
dicts the HCP(11̄00) plane, which is in the center of
the dashed triangle in Fig. 1.



FIGURE 2. A hi-resolution image of the BCC(002) and HCP(21̄1̄0) peaks. It also shows a integration over the [11̄0]
direction to give an idea of the widths of the respective peaks. Arrows show the location on experimental film the measurement
of each of these peaks. Other diffraction planes are labelled with there plane labels, in both BCC and HCP.

DISCUSSION

With the advent of large MD simulations, which gen-
erate large amounts of data there is a need to be able
to analyze it in the context of experimental data. A
Fourier transform post-processing of the data pro-
vides a way to directly compare the MD simulations
with experimental x-ray diffraction data. It is par-
ticularly useful when using wide angle in-situ x-ray
diffraction where many crystal planes can be mea-
sured simultaneously effectively mapping out a large
region of reciprocal lattice space. This technique has
been applied to large non-equilibrium MD simula-
tions in iron and is successful in providing a method
to compare the MD simulations with experimental
data. It is particularly useful in the case of iron to
determine the characteristics in the simulation and
experiment that correspond to a phase change. More
effort is being put into the development of the tech-
niques to understand the peak broadening mecha-
nisms.
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