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Irrespective of the reason for hypoperfusion, hypocoagulable and/or
hyperfibrinolytic hemostatic aberrancies afflict up to one-quarter of critically ill
patients in shock. Intensivists and traumatologists have embraced the concept of
SHock-INduced Endotheliopathy (SHINE) as a foundational derangement in
progressive shock wherein sympatho-adrenal activation may cause systemic
endothelial injury. The pro-thrombotic endothelium lends to micro-
thrombosis, enacting a cycle of worsening perfusion and increasing
catecholamines, endothelial injury, de-endothelialization, and multiple organ
failure. The hypocoagulable/hyperfibrinolytic hemostatic phenotype is thought
to be driven by endothelial release of anti-thrombogenic mediators to the
bloodstream and perivascular sympathetic nerve release of tissue plasminogen
activator directly into the microvasculature. In the shock state, this hemostatic
phenotype may be a counterbalancing, yet maladaptive, attempt to restore blood
flow against a systemically pro-thrombotic endothelium and increased blood
viscosity. We therefore review endothelial physiology with emphasis on glycocalyx
function, unique biomarkers, and coagulofibrinolytic mediators, setting the stage
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for understanding the pathophysiology and hemostatic phenotypes of SHINE in
various etiologies of shock. We propose that the hyperfibrinolytic phenotype is
exemplified in progressive shock whether related to trauma-induced
coagulopathy, sepsis-induced coagulopathy, or post-cardiac arrest syndrome-
associated coagulopathy. Regardless of the initial insult, SHINE appears to be a
catecholamine-driven entity which early in the disease course may manifest as
hyper- or hypocoagulopathic and hyper- or hypofibrinolytic hemostatic
imbalance. Moreover, these hemostatic derangements may rapidly evolve along
the thrombohemorrhagic spectrum depending on the etiology, timing, and
methods of resuscitation. Given the intricate hemochemical makeup and
changes during these shock states, macroscopic whole blood tests of
coagulative kinetics and clot strength serve as clinically useful and simple
means for hemostasis phenotyping. We suggest that viscoelastic hemostatic
assays such as thromboelastography (TEG) and rotational thromboelastometry
(ROTEM) are currently the most applicable clinical tools for assaying global
hemostatic function—including fibrinolysis—to enable dynamic resuscitation
with blood products and hemostatic adjuncts for those patients with
thrombotic and/or hemorrhagic complications in shock states.

KEYWORDS

critical care, endothelium, glycocalyx, hemostasis, precision medicine, resuscitation,
shock, thromboelastography

1 Introduction: “The machinery of life
has been rudely unhinged”

Of the many descriptions of shock, the first by Samuel Gross in
the year 1882 as when “the machinery of life has been rudely
unhinged” remains concise and accurate (Millham, 2010). This
narrative review expands upon the classic descriptions of shock
to elucidate the unifying potential for SHock-INduced
Endotheliopathy (SHINE) to explain the hemostatic aberrancies
observed in all etiologies of progressive shock. Approximately one-
quarter of severely injured trauma patients develop hemostatic
derangement with an associated increased mortality of three to
four times higher than those without coagulopathy. Increased
mortality is also noted for critically ill patients in shock with
coagulopathies not caused by trauma (Brohi et al., 2003; Adrie
et al., 2004; Hess et al., 2008; Johansson et al., 2011a; Gando et al.,
2011; Holcomb et al., 2012; Angus and Van der Poll, 2013; Kim et al.,
2013; Wada, 2017; Bugaev et al., 2020; Walsh et al., 2020b; Iba and
Levy, 2020; Moore et al., 2020). Due to its ubiquitous distribution,
substantial surface area, and interfacing role in hemostasis,
immunology, and blood flow, the endothelium serves as a
common foundation for hemostatic derangement associated with
all forms of shock (Fishman, 1982; Aird, 2004; Johansson et al.,
2017a).

Here, the physiologic roles of the endothelium are detailed with
particular emphasis on coagulofibrinolytic balance, glycocalyx
function, and unique biomarkers. Understanding these
endothelial functions offers insight to the pathophysiologic
anomalies at the level of the endothelium in various forms of
shock. Throughout this review, the viscoelastic hemostatic assays
(VHAs) thromboelastography (TEG) and rotational
thromboelastometry (ROTEM) receive particular attention for
their ability to globally assay coagulofibrinolysis, thus enabling a
precision-based medicine (PBM) approach to diagnosing and

treating the spectrum of coagulopathies associated with SHINE
(Stettler et al., 2019). First, we briefly review the classic anatomic
and pathophysiologic definitions of shock.

1.1 Epidemiology and classic categorization
of shock

Among the etiologies of shock, septic and cardiogenic shock are
the most common with an incidence of 171 per 100,000 population
and 51.7 per 100,000 population, respectively (Dupuis et al., 2020;
Schrage et al., 2021). While the incidence of septic and cardiogenic
shock increases annually, the in-hospital mortality rate is slowly
decreasing but remains high at 34% and 37%, respectively (Paoli
et al., 2018; Osman et al., 2021).

Shock may be diversely defined, all definitions of which
approximate the imbalance between tissue oxygen supply and
demand (Millham, 2010; Johansson et al., 2017a; Standl et al.,
2018). Shock has traditionally been defined by four categories
based on fluid compartment volume loss (hypovolemic), volume
redistribution (distributive), cardiac pump activity (cardiogenic),
and circulatory obstruction (obstructive). These four etiologies of
shock are summarized in Figure 1. Briefly, distributive shock
pertains to the redistribution of fluid out of the intravascular
space and/or away from vital organs without blood or fluid loss.
Distributive shock, particularly septic shock, accounts for 59%–66%
of all shock presentations (Vincent and De Backer, 2013; Standl
et al., 2018). There are three subtypes of distributive shock which
include septic, neurogenic, and anaphylactic/anaphylactoid (Standl
et al., 2018). Primary endothelial dysfunction (as a root cause of
shock) may be a key element of distributive shock and as such,
primary endotheliopathy in this type of shock may be further
amplified by SHINE. Hypovolemic shock results from a loss of
blood or plasma and comprises an estimated 16%–27% of patients in
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shock (Vincent and De Backer, 2013; Standl et al., 2018).
Hypovolemic shock includes four subtypes including
hemorrhagic shock, traumatic hemorrhagic shock, plasma loss
(non-hemorrhagic) hypovolemic shock, and traumatic
hypovolemic shock (Standl et al., 2018). Whole blood loss occurs
in hemorrhagic states such as trauma, gastrointestinal bleeds, and
obstetrical hemorrhage. Plasma loss occurs with dehydrating
conditions such as burns, pancreatitis, and diarrhea. Cardiogenic
shock arises from primary pump failure of the heart and accounts
for an estimated 13%–16% of shock states (Vincent and De Backer,
2013; Standl et al., 2018). Heart conditions that commonly account
for cardiogenic shock include acute myocardial infraction, heart
failure, arrythmia, and defective valves. Obstructive shock arises
from a blockage of the circulation and accounts for 1%–2% of shock
presentations (Vincent and De Backer, 2013; Standl et al., 2018). The
defining treatment for obstructive shock is to find the source of
obstruction (e.g., cardiac tamponade, tension pneumothorax, or
pulmonary embolism) and relieve it.

1.2 Limitation of the anatomic and
pathophysiologic classification system

This classification precludes a unified approach towards the
spectrum of coagulopathies associated with shock. As opposed to the
classic anatomic and pathophysiologic definitions, shock may also

be described at the level of the endothelium (Fishman, 1982; Aird,
2004). The shared endothelial dysfunction in shock has recently
been termed SHINE (Johansson et al., 2017a), whereby the
endothelium is acknowledged as an independent “organ” which
requires resuscitation in severe injury or disease. SHINE is a
catecholamine-driven entity, regardless of the initial anatomic or
pathophysiologic insult, which early in the disease course may
manifest as hyper- or hypocoagulopathic and hyper- or
hypofibrinolytic hemostatic imbalance. Moreover, these
hemostatic derangements may rapidly evolve into phenotypes
along the thrombohemorrhagic spectrum depending on the
etiology, timing, and methods of resuscitation (Johansson et al.,
2017a; Wei et al., 2018; Napolitano, 2021; Kregel et al., 2022).

1.3 Physiology of the endothelium

The definition of an organ requires a collection of tissues that
form a unit distinct in form and function (Aird, 2004). Endothelial
cells uniquely function as stress-sensing, phenotype-switching
cells that respond to flow. The endothelium forms an extensive
network with a collective weight of around 1 kg. In the brain alone,
microvasculature represents 3%–4% of the brain compartment
with a cumulative length of 400 miles and a surface area of
exchange of 20 m2 between the brain parenchyma and blood
(Pardridge, 2002; Deracinois et al., 2015; Goncharov et al.,

FIGURE 1
Anatomic and Pathophysiologic Categorization of Shock with Relative Frequency of Each Type. The traditional classification of shock includes four
main categories: distributive, hypovolemic, obstructive, and cardiogenic shock. The estimated relative frequency of each of the four subcategories are
listed with pathophysiologic etiologies defined around the periphery of the diagram (Vincent and De Backer, 2013; Standl et al., 2018). Recreated with
permission from (Standl et al., 2018). Created with BioRender.com.

Frontiers in Physiology frontiersin.org03

Bunch et al. 10.3389/fphys.2023.1094845

http://BioRender.com
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1094845


2017). The endothelium is comprised of a luminal glycocalyx layer
maintained by simple squamous endothelial cells held together by
complex transmembrane and cytoskeletal components which form
intercellular junctions (Reiterer and Branco, 2020). The
endothelium has distinct biochemical markers including
E-selectin, intercellular adhesion molecule-1 (ICAM-1), the
syndecan (Syn) family of four (Syn1-Syn4) heparan sulfate
proteoglycans (HSPGs), and angiopoietin (Agpt)-1 and Agpt-2
(Goncharov et al., 2017). The endothelial luminal layer also
contains anti-thrombogenic factors such as antithrombin III
(AT), thrombomodulin (TM), tissue factor pathway inhibitor
(TFPI), and endogenous heparan sulfates (HS) (Reitsma et al.,

2007). Far from an inert layer of cells lining all blood and
lymphatic vessels, the endothelium plays a vital role in
moderating Starling Forces, mounting or attenuating an
immune response, modulating vascular resistance, angiogenesis,
and regulating coagulofibrinolysis. This is all facilitated by the
rapid physical (shear; pressure; contractions/dilations to maintain
vascular tone), chemical (manufacture and release of
coagulofibrinolytic agents, also in response to physical and
electrical stimuli; control of vascular surface/adhesive chemistry
and morphology) and electrical (cell activation via central/
peripheral nervous system; intercellular communication and
response via chemical/ionic configurations) feedback

FIGURE 2
Physiologic Roles of the Endothelial Glycocalyx: An Anti-thrombogenic and Anti-adhesive Surface with Rapid Stress-sensing Capability. The
glycocalyx is comprised of heparan sulfate proteoglycans (HSPGs) and glycosaminoglycans (GAGs). The HSPGs include the four transmembrane
syndecans (Syn1-Syn4) and glypican. The primary GAGs include heparan sulfate (HS) and hyaluronan (HA). HS accounts for ~50% of the GAG composition
in the glycocalyx and covalently bonds to the Syn family and glypican. Other GAGs not pictured include keratan sulfate, dermatan sulfate, and
chondroitin sulfate. (A) The negatively charged, hydrophilic moieties of HS and HA have variable cleavage lengths and post-translational modifications
which confer significant degrees of specificity for binding cytokines and chemokines. This moderates oncotic and hydrostatic contributions of Starling
Forces. Additionally, this creates a gradient of growth factors and signaling molecules which can be indirectly altered by constitutive or stress-induced
transient changes in HSPG andGAG composition either by increased synthesis or enzymatic cleavage. (B) The endothelial glycocalyxmaintains a gradient
of endothelial-synthesized anticoagulant coagulofibrinolytic mediators. In addition to HS, antithrombin III (AT) and tissue factor pathway inhibitor (TFPI)
are constitutively expressed in the endothelial glycocalyx. AT complexes with HS to inactivate many coagulation factors, primarily thrombin and Factor X.
The anticoagulant TFPI complexes with and inactivates tissue factor (TF)-FVII complex and prothrombinase complex (FVa-FXa). The endothelium also
constitutively expresses membrane-bound receptor thrombomodulin (TM), which in the presence of its ligand thrombin, activates circulating plasma
protein C. Activated protein C inactivates circulating Factors V and VIII and also inhibits the anti-fibrinolytic, plasminogen activator inhibitor-1 (PAI-1).
Weibel-Palade bodies (WPB) also play a significant role in coagulofibrinolytic balance, particularly for the activated endothelium (e.g., by endothelial
agonists such as circulating plasma epinephrine). Seminal hemostatic mediators inWPB include tissue plasminogen activator (tPA), vonWillebrand Factor
(VWF), and P-selectin (P-Sel). (C) The glycocalyx serves as a physical barrier to leukocyte and platelet adhesion in the event adhesionmolecule expression
is induced on the endothelial luminal surface (e.g., P-selectin, ICAM-1, VCAM-1). (D) Syn4 via intracellular syntenin and synectin indirectly regulates
angiopoietin-2 (Agpt-2) activity. High Agpt-2 levels antagonize the tyrosine kinase receptor Tie2, which subsequently destabilizes endothelial cell-cell
junctions. Agpt-2 may also be found in WPBs. (E) Syn1 and Syn4 transcellularly signal luminal shear stress to rearrange the endothelial cytoskeleton. (F)
Shear stress signaling by the intracellular domain of Syn4 also induces vasodilation via activation of endothelial nitric oxide synthase (eNOS). Shear stress
also increases nuclear expression of genes such as those implicated in inflammation. For example, increased shear stress has shown to induce VCAM-1
and ICAM-1 expression. (Lindahl et al., 1998; Kolářová et al., 2014; Rayahin et al., 2015; Leligdowicz et al., 2018; Richter and Richter, 2019; Woodcock and
Michel, 2021; Neubauer and Zieger, 2022). Abbreviations: Agpt-2, Angiopoietin-2; AT, Antithrombin III; eNOS, Endothelial Nitric Oxide Synthase; HA,
Hyaluronan; Syn1, Syn4, Syndecan; TFPI, Tissue Factor Pathway Inhibitor; Tie2, tyrosine kinase receptor Tie2; TM, Thrombomodulin. Created with
BioRender.com.
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TABLE 1 Endothelial Biomarkers and Coagulofibrinolytic Mediators and their Physiologic, Pathophysiologic, and Clinical Significance.

Biomarker/Coagulofibrinolytic mediator Significance

Endothelial luminal layer

Syndecans (Syn1- Syn4) - Transmembrane structural heparan sulfate (HS) proteoglycans (HSPGs) that interact
with surface receptors and transmit extracellular signals. Differing HS lengths and
post-translational modifications alter plasma protein interactions and cytokine/
chemokine gradients within the glycocalyx.

- Syn1 and Syn4 provide shear mechanosensing and stimulate cytoskeletal remodeling

- Loss of syndecan in the glycocalyx has demonstrated instability of the cytoskeleton
and dysregulation of vasoactivity by decoupling shear stress from endothelial nitric
oxide synthase (eNOS) activation.

- Increased soluble Syn1 is a marker of severe systemic inflammation and is associated
with illness severity.

- Syn4 regulates angiopoietin-2 release from the endothelium which helps maintain
endothelial cell-cell junctions Lindahl et al. (1998); Tkachenko et al. (2005); Reitsma
et al. (2007); Yen et al. (2015); Farrugia et al. (2018); Richter and Richter, (2019)

Glypican - Extracellular structural HSPG

- Increased circulating levels in severe illness and inflammation.

- Has been shown to increase eNOS activation in response to shear stress. Mellion et al.
(1981); Zeng and Tarbell, (2014); Zeng and Liu, (2016); Richter and Richter, (2019)

Heparan Sulfate (HS) - Glycosaminoglycan (GAG) which comprises ~50% of the glycocalyx GAGs; highly
variable in size

- Covalently bonds to HSPGs glypican and Syn1-Syn4

- Variable post-translational modifications alter plasma protein interaction with high
specificity.

- Negatively charged molecules contributing to oncotic and hydrostatic regulation of
Starling forces.

- Cleaved into varying lengths by heparanase-1 which serve as local cytokines to
increase inflammation, endothelial permeability, and auto-heparinization.

- Removal of HS from HSPGs by heparanase-1 increases glycocalyx degradation by
matrix metalloproteinases (MMPs) and exposes P-selectin and cellular adhesion
molecules for platelet and leukocyte adhesion/activation.

Lindahl et al. (1998); Kolářová et al. (2014); Richter and Richter, (2019)

Hyaluronan (HA) - High molecular weight (HMW) GAG which interacts with CD44 and other
constituents of the glycocalyx.

- Provides structural and lubricating effects.

- Increased circulating levels in critical illness

- Negatively charged molecules contributing to oncotic and hydrostatic regulation of
Starling forces.

- Cleaved by hyaluronidase or reactive oxygen species to low molecular weight (LMW)
hyaluronan or HMW hyaluronan.

- LMW hyaluronan has pro-inflammatory effects including activation of
M1 phenotype in macrophages and acts as a ligand of endothelial receptors of TLR4,
CD44, and receptor of hyaluronan-mediated motility (RHAMM).

- HMW hyaluronan appears to have an anti-inflammatory effect by activating the
M2 phenotype of macrophages. May also act as a mechanosensor to activate eNOS in
response to shear stress. Kolářová et al. (2014); Nelson et al. (2014); Schmidt et al.
(2014); Rayahin et al. (2015); Richter and Richter, (2019)

Chondroitin Sulfate - GAG that when soluble may have anti-inflammatory effects via histone binding and
NF-kB downregulation.

- May have antibacterial properties via peptide inhibition Nelson et al. (2008);
Kolářová et al. (2014); Richter and Richter, (2019)

(Continued on following page)
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TABLE 1 (Continued) Endothelial Biomarkers and Coagulofibrinolytic Mediators and their Physiologic, Pathophysiologic, and Clinical Significance.

Biomarker/Coagulofibrinolytic mediator Significance

Dermatan Sulfate - GAG which may increase local cellular adhesion molecule expression and increase
FGFR-dependent cell proliferation around epidermal injuries Penc et al. (1998); Penc
et al. (1999); Richter and Richter, (2019)

Antithrombin III (AT) - Liver- and endothelium-derived plasma anticoagulant protein which complexes with
specific endogenous HS in the glycocalyx and blocks the active sites of thrombin and
Factors IXa, Xa, XIa, and XIIa Ofosu et al. (1984); Anastasiou et al. (2012); Yen et al.
(2015); Richter and Richter, (2019); Neubauer and Zieger, (2022)

Thrombomodulin (TM) - Endothelial constitutively synthesized membrane-bound thrombin receptor which,
when bound to thrombin, has a higher affinity for activation of the anticoagulant
protein C

- Has a binding site separate from that of protein C for activation of thrombin-
activatable fibrinolysis inhibitor (TAFI). The dual and counteracting pathways between
protein C activation and TAFI dictated by thrombomodulin are termed the
“thrombomodulin-thrombin switch” which is also influenced by a endothelial-derived
cofactor named the endothelial protein C receptor (EPCR). The thrombomodulin-
thrombin switch is likely a misnomer implying a competitive either-or state of the
“switch”, when in reality aPC and TAFI are likely in a dynamic equilibrium influenced
by transient changes in thrombin, EPCR and other cofactor concentrations and post-
translational modifications

- Increased plasma levels (termed soluble thrombomodulin [sTM]) are measurable in
shock states as a marker of endotheliopathy; increased sTM levels prognosticate illness
severity Yen et al. (2015); Richter and Richter, (2019); Hatton et al. (2021); Kregel et al.
(2022)

Tissue Factor Pathway Inhibitor (TFPI) - Endothelial constitutively synthesized anticoagulant protein which binds and blocks
coagulation activity of Tissue Factor (TF)-FVIIa complex and prothrombinase
complex (FVa-FXa)

- Interacts with HS of the endothelial glycocalyx

- Found intracellularly in quiescent platelets; high levels are also found in placenta and
myometrium Girard and Broze, (1993); Kuczyński et al. (2002); Xiong et al. (2010);
Yen et al. (2015); Mast, (2016); Richter and Richter, (2019); Neubauer and Zieger,
(2022)

Ectonucleoside triphosphate diphosphhydrolase-1 (E-NTPDase1/CD39) - Constitutively expressed membrane-bound anti-thrombotic enzyme which converts
adenosine diphosphate (ADP) and adenosine triphosphate (ATP) into adenosine.
ADP is a potent platelet activator released from platelet alpha granules. ATP, ADP, and
adenosine monophosphate (AMP) are also released from resting endothelial cells at
low rates, but increased release occurs with stress states. Marcus et al. (1991); Deaglio
and Robson, (2011); Neubauer and Zieger, (2022)

Weibel-Palade Bodies (WPB)

von Willebrand Factor (VWF) - WPBs fuse with the endothelial cell membrane to undergo exocytosis of VWF in
response to increased or decreased shear stress, hypoxemia, or vasoactive signaling
molecules such as catecholamines, bradykinin, histamine, vasopressin, and thrombin

- VWF facilitates platelet adhesion by serving as a bridge between subendothelial
collagen and platelet receptor GPIbα Pinsky et al. (1996); McCormack et al. (2017);
Neubauer and Zieger, (2022)

Tissue Plasminogen Activator (tPA) - Serine protease which is constitutively secreted by endothelial cells, but also
transiently increased by exocytosis of stores in WPBs; high concentrations are
particularly found in cells of precapillary arterioles

- Organs which include a high tPA content include the heart, lung, kidney, and brain

- Pro-fibrinolytic which converts liver-derived circulating plasminogen into plasmin.
Plasmin then serves multiple functions: cleavage of fibrin (ogen), degradation of
extracellular matrix by activation of metalloproteinases, and activation of growth
factors

- Inactivated by PAI-1, PAI-2

- Plasma half-life of approximately 3 min and averages a concentration of 5 ng/ml;
cleared primarily by the liver

(Continued on following page)
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TABLE 1 (Continued) Endothelial Biomarkers and Coagulofibrinolytic Mediators and their Physiologic, Pathophysiologic, and Clinical Significance.

Biomarker/Coagulofibrinolytic mediator Significance

- Enzymatically active tPA also packaged in pre-synaptic vesicles and secreted by
perivascular sympathetic nerve fibers directly into the microvasculature and small
arteriole walls

- At the blood-brain barrier, tPA is a direct modulator of neurovascular coupling by
acting as an agonist at the luminal endothelial N-Methyl-D-Aspartate (NMDA)
receptor to increase NO synthesis with subsequent increase in cerebral blood flow.

Huber et al. (2002); O’Rourke et al. (2005); Su et al. (2009); Haile et al. (2012); Kwaan
(2014); Yepes, (2015); Fritsma (2020); Moore (2022); Neubauer and Zieger, (2022)

P-Selectin (P-Sel)/CD62P - Enables leukocyte adhesion to the vessel wall via interaction with P-selection
glycoprotein ligand-1 (PSGL-1) on the leukocyte surface

- Induces TF expression on monocytes

- Also found in platelet α-granules and expressed by activated platelets to mediate
leukocyte-platelet binding

- Increased circulating plasma levels are detectable in thrombotic and/or
endotheliopathic conditions André, (2004)

Angiopoietin-2 (Agpt-2) - Endothelial constitutively synthesized and secreted autocrine signaling molecule on
the tyrosine kinase receptor Tie2

- At resting state, Agpt-2 remains at low concentrations and demonstrates agonistic
functions at heterodimeric Tie1-Tie2 receptors in concert with Agpt-1 agonism.
Tie2 agonism reinforces endothelial survival and endothelial cell-cell junctions

- Endothelial cell activation sheds Tie1 from Tie2, and together with exocytosis ofWPB
and higher concentration of Agpt-2, Agpt-2 switches to an antagonist of Tie2 and
destabilizes endothelial cell-cell junctions

- Syn4 indirectly regulates Agpt-2 release via intracellular association with syntenin
and synectin, intracellular molecules important for WPB biosynthesis

- In sepsis, increased Agpt-2 level is associated with increased mortality, tissue
hypoperfusion, organ dysfunction, coagulopathy, and inflammation

- Plays a pivotal role in capillary permeability and leak in condition such as sepsis and
acute respiratory distress syndrome Ju et al. (2014); Leligdowicz et al. (2018); Richter
et al. (2022b)

Endothelial Intracellular

Endothelial Nitric Oxide Synthase (eNOS) - Generates nitric oxide (NO) in response to shear stress to cause vasodilation. eNOS
can also be activated by serotonin, VEGF, bradykinin, and adenosine.

- NO serves as an inhibitor of WPB exocytosis.

- NO diffuses into the bloodstream to prevent platelet activation indirectly via
increasing platelet intracellular cGMP which then inhibits release of stored
intracellular Ca2+ Radomski et al. (1987); Radomski et al. (1990); Matsushita et al.
(2003); Neubauer and Zieger, (2022).

Plasminogen Activator Inhibitor-1 (PAI-1) - Also referred to historically as endothelial cell-type plasminogen activator inhibitor

- Anti-fibrinolytic that inhibits tPA and uPA by forming complexes which are then
cleared by the liver

- Classified as an acute phase reactant and synthesis is stimulated by inflammatory
cytokines and growth factors such as IL-1, TNFα, TGFβ, estrogen, thrombin, insulin,
and angiotensin II

- Synthesized transiently by endothelial cells, contained in α-granules of quiescent
platelets, and synthesized by hepatocytes Sprengers and Kluft, (1987); Vaughan,
(2005); Neubauer and Zieger, (2022)

Intercellular Adhesion Molecule-1 (ICAM-1)/Vascular Cellular Adhesion Molecule-1
(VCAM-1)

- Synthesis and expression of endothelial cell surface glycoproteins ICAM-1 and
VCAM-1 are inducible by TNFα and other inflammatory cytokines, reactive oxygen
species, hyperglycemia, toll-like receptor agonists, and shear stress

- Enable leukocyte adhesion to vessel wall Kong et al. (2018)
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mechanisms central to the endothelium’s role in maintaining
hemostasis.

The endothelium is functionally and physically distinct and
should thus be regarded as an independent organ system (Aird,
2004). Figure 2 depicts the physiology of the endothelium salient to
this review. Table 1 further details biomarkers unique to the
endothelial glycocalyx and endothelial-derived coagulofibrinolytic
mediators.

How this large, complex multifarious system communicates
nearly immediately across its vast length and surface area is an
impressive capability, the understanding of which is still growing,
and which finds importance in the speed with which a patient with
SHINE can either deteriorate or respond to early resuscitation. The
collective endothelial surface of up to 7,500 m2 transmits messages
from one part of the body to another via many pathways (Dobson
et al., 2015). The first and most obvious pathway is the transmission
of a drop in pressure from one vascular bed to another which is
nearly immediate in a closed pressure system. Additionally, it has
been demonstrated that direct electrical stimulation of the
microvasculature causes local vasoconstriction; however, the
endothelium and subendothelial smooth muscle cells propagate
the depolarization along the vessel axis to cause long distance
vasodilation primarily mediated by voltage-gated calcium
channels and increased nitric oxide generation induced by the
calcium influx (Figueroa et al., 2007).

The nearly immediate long distance signaling by the
endothelium has also been observed for fibrinolysis. Hau Kwaan
first noted in the 1950s that stimulation of one venous segment
elicited fibrinolytic activities from another vein located far from the
site of stimulation (Kwaan, 2014). This implied that there was a
possible transmission of hemostatic and inflammatory markers to
the intravascular space which can alter endothelial physiology at
sites distant from focal injury. However, it later became apparent
that perivascular sympathetic pathway activity was another pathway
responsible for near-immediate signal transmission (O’Rourke et al.,
2005; Kwaan, 2014). Therefore, the transmission of information
regarding inflammation and thrombosis in SHINE is a function of
not only the standard macrovascular and microvascular pressure
gradients, and concomitant shear and blood chemistry, but also of
the microvascular Starling forces and sympathetic electrical activity
which in concert achieve a delicate immuno-thrombotic balance
designed to simultaneously preserve microvascular flow and tissue
perfusion during the development of SHINE.

Even though the concept of SHINE has only recently been
proposed, earlier literature eloquently defined the endothelium’s
importance. In 1982, Alfred Fishman wrote: “In recent years, as the
tempo of fresh insights into the complexity of the endothelium has
increased, realization has dawned that instead of serving simply as
an inert barrier between blood and tissues, the endothelium is a
distributed organ of considerable biological potential that not only
extends throughout the body in the convenient form of an anti-
thrombogenic vascular lining but also performs other distinctive
biologic functions at different vascular sites and individual organs”
(Fishman, 1982). For example, the endothelium of the pulmonary
capillaries has evolved to enhance gas and water exchange while the
endothelium of the aorta has evolved to withstand the high pressures
exerted by the pumping force of the heart. This “organ” of large
surface area has important physiologic functions such as

maintaining blood viscosity, providing nutrients, modulating
vasomotor function, and participating in immunological
surveillance by maintaining innate and acquired immunity while
orchestrating a communication between tissue perfusion and tissue
flow (Fishman, 1982; Aird, 2006; Johansson et al., 2017a).

2 Pathophysiology of SHINE

Determinants of blood flow include the vessel cross-sectional
area, perfusion pressure, and blood viscosity (Rosato et al., 1968).
Adaptive responses to decreased perfusion often become
maladaptive in the shock state. For example, patients in septic
shock experience systemic vasodilation which worsens tissue
perfusion and warrants treatment with fluids and vasopressors.
Similarly, hypocoagulability and hyperfibrinolysis in patients with
shock may represent a maladaptive attempt to restore perfusion by
decreasing blood viscosity against a pro-thrombotic endothelium.

Critically ill patients in shock demonstrate endothelial injury and
hypocoagulability/hyperfibrinolysis directly proportional to the severity
of disease and can be predicted by injury severity score (ISS) or base
deficit (BD) in trauma (Johansson et al., 2010; Johansson and Ostrowski,
2010; Moore et al., 2016b; Johansson et al., 2017c), the Sequential Organ
Failure Assessment (SOFA) score in septic patients (Ostrowski et al.,
2015;Mochizuki et al., 2018; Iba et al., 2019a; Berthelsen et al., 2019; Bestle
et al., 2020), and time until return of spontaneous circulation (ROSC) in
patients who suffer from PCAS (White et al., 2011; Wada, 2017).
Sympatho-adrenal activation (as measured by increased plasma
catecholamines) likewise associates with the degree of endothelial
injury, increasing injury/disease severity, and mortality risk (Dolgov
et al., 1984; Makhmudov et al., 1985; Johansson et al., 2012;
Johansson et al., 2015; Jung et al., 2015; Ostrowski et al., 2015; Di
Battista et al., 2016; Johansson et al., 2017b). It has been posited that
catecholamines, particularly the vasoconstrictive effect of norepinephrine,
enact dose-dependent damage upon the endothelium to cause SHINE
(Dolgov et al., 1984; Makhmudov et al., 1985; Kristová et al., 1993;
Vischer and Wollheim, 1997; Johansson and Ostrowski, 2010). Beyond
circulating endocrine catecholamines, peripheral sympathetic nervesmay
directly activate the endothelium and additional layers of blood vessels via
neurotransmitter catecholamines (Peng et al., 2000). Perivascular
sympathetic nerves can also release proteins such as tPA into small
vessel walls and directly into microcirculation, serving as a backup of the
endothelium to balance hemostasis (O’Rourke et al., 2005; Kwaan, 2014).
tPA release may also be related to hypoperfusion (and sensing of
decreased shear) independent of hypoxemia. Differentiating the effects
of circulating catecholamines versus direct microvascular innervation in
driving SHINE have not been previously evaluated and warrants future
investigation. Additionally, whether increased catecholamines and
SHINE are correlational markers of organ injury or causal
pathophysiologic drivers remains the subject of further study. Figure 3
represents the prevailing pathophysiologic mechanism of SHINE.

Hypocoagulability/hyperfibrinolysis in shock states also
correlates to biomarkers of endothelial glycocalyx derangement,
such as increased circulating Syn-1, soluble TM (sTM),
P-selectin, and an increased ratio of Agpt-2:Agpt-1 (Ostrowski
et al., 2015; Johansson et al., 2017a; Johansson et al., 2017b).
Glycocalyx disruption and endotheliopathy contributes to a cycle
of increasing tissue hypoxia, capillary leak, micro-thrombosis, organ
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failure, and mortality in patients with shock (Faust et al., 2001; Adrie
et al., 2002; Adrie et al., 2004; Neumar et al., 2008; Johansson and
Ostrowski, 2010; Gando et al., 2011; Holcomb, 2011; Cohen et al.,
2012; Levi et al., 2012; Angus and Van der Poll, 2013; Kim et al.,

2013; Cohen et al., 2015; Opal and Van Der Poll, 2015; Johansson
et al., 2017a). Thus, the hypocoagulable and hyperfibrinolytic state
in progressive shock may be a counterbalance to the pro-thrombotic
endothelium in an attempt to restore perfusion to vital organs

FIGURE 3
SHock-INduced Endotheliopathy (SHINE) as a Reflection of Injury Severity. Increasing sympatho-adrenal activation with increasing injury and shock
severity leads to endothelial activation and damage. Increased sympathetic outflow directly provokes SHINE via perivascular sympathetic nerve
exocytosis of neurotransmitter catecholamines and enzymatically active tissue plasminogen activator (tPA) into the vessel walls and directly into the
microvasculature (O’Rourke et al., 2005; Kwaan, 2014). Hypothalamic-pituitary-adrenal axis activity also increases circulating plasma
catecholamines. The corresponding endothelial and hemostatic changes are dose-dependent to injury/shock severity, as measured by endothelial
biomarkers (e.g., plasma syndecan-1 and soluble thrombomodulin) and on thromboelastography (TEG) and rotational thromboelastometry (ROTEM)
tracings. For example, with trauma, TEG/ROTEM tracings progress from physiologic hemostasis to hypercoagulable in mild trauma, to hypocoagulable in
moderate trauma, and finally hyperfibrinolytic in severe trauma (Johansson and Ostrowski, 2010). Genetically preserved responses to critically ill patients
inflicted by trauma, burns, and sepsis are similar, suggesting early responses to shock are evolutionarily preserved wherein SHINE may be a unifying
mechanism (Xiao et al., 2011; Johansson et al., 2017a). The catecholaminergic surge (in particular the vasoconstrictive action of norepinephrine) causes
glycocalyx shedding, endothelial injury, and de-endothelialization of perfused vessels (Dolgov et al., 1984; Makhmudov et al., 1985; Kristová et al., 1993;
Vischer and Wollheim, 1997). The activated/injured endothelium promotes thrombosis, causing occlusion of the microvasculature. Together with
capillary leak, perivascular edema, and vasoconstriction, these vascular responses provoke a cycle of progressive tissue hypoperfusion, hypovolemia,
organ injury, and increasing sympatho-adrenal activation (Opal and VanDer Poll, 2015; Johansson et al., 2017a). It has been hypothesized that the ensuing
hypocoagulability and hyperfibrinolysis may be a compensatory counterbalance to the pro-thrombotic endothelium in an attempt tomaintain patency of
the microvasculature (Johansson and Ostrowski, 2010). Therefore, the two major hemostatic compartments—the endothelium and the blood—may
“switch” phenotypes in some progressing shock states. Whereby the physiologic endothelium acts as anti-thrombogenic surface to oppose coagulable
blood, in shock, the rolesmay switch to a pro-thrombotic endotheliumwith a hypocoagulable/hyperfibrinolytic blood phenotype in attempt to rebalance
hemostasis, decrease the blood viscosity, and restore perfusion (Johansson and Ostrowski, 2010) (see Figure 4). Not only does tPA exert pro-fibrinolytic
activity via enzymatic activation of plasminogen, but tPA in the brain uniquely acts as a signaling agonist on the N-Methyl-D-Aspartate (NMDA) receptor
on the endothelial luminal surface of small cerebrovascular arterioles. The activated NMDA receptor increases synthesis of nitric oxide to cause
vasodilation and increase cerebral blood flow (Su et al., 2009; Haile et al., 2012; Yepes, 2015). Thus, increased free tPA (that is, free from complexes with
PAI-1 and other inhibitors) in shock states may simultaneously increase systemic perfusion via fibrinolysis of occlusive thrombi and as a neurovascular
coupling agent to increase cerebral blood flow (Su et al., 2009; Yepes, 2015). Created with BioRender.com.
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(Johansson and Ostrowski, 2010). This counterbalance may be
viewed as an attempt to rebalance hemostasis by switching
phenotypes of the endothelium and blood (Johansson and
Ostrowski, 2010). In homeostasis, the endothelium is an anti-
thrombogenic and anti-adhesive surface to balance with the
coagulable blood. These phenotypes may “switch” in SHINE
whereby the hypocoagulable/hyperfibrinolytic blood may
counteract the pro-thrombotic endotheliopathy. This may be
rationalized as the physiologically sequestered anti-thrombogenic
players (e.g., endogenous heparans, TM, tPA) being released from
the activated/injured endothelium into the bloodstream (Figure 4).
In turn, sTM promotes hypocoagulability via increased activation of
protein C to activated protein C (aPC) which then inactivates Factor
V (FV) and Factor VIII (FVIII). APC also inhibits plasminogen
activator inhibitor-1 (PAI-1). The increase in tPA may also
overwhelm circulating PAI-1 levels to provoke a pro-fibrinolytic
phenotype. The glycocalyx layer may also become hyperpermeable
because of sialidase-mediated disruption of the endothelial border in
shock. Although not particularly evaluated for their role in shock, it
has been reported that sialic acid residues embedded in the
glycocalyx layer regulate the permeability of microvascular
structures (Betteridge et al., 2017).

Moreover, tPA uniquely in the cerebrovasculature may
counteract the vasconstrictive effects of norepinephrine to restore
brain perfusion via tPA’s agonist action upon the N-Methyl-D-
Aspartate (NMDA) receptor on the endothelial luminal surface of
the blood-brain barrier (BBB), causing NO synthesis and
vasodilation of cerebral arterioles (Su et al., 2009; Yepes, 2015).
Thus, sympatho-adrenal-driven increases in tPA elicits at least two
mechanisms to increase perfusion in shock states: 1) increased

fibrinolysis to decrease blood viscosity and lyse occlusive
thrombi, and 2) increased cerebral blood flow via direct cerebral
arteriolar vasodilation.

Recently, increased attention to SHINE has elevated the
perspective of the endothelium not merely as an anatomic entity,
but as a unique organ with unique functions and biomarkers of
injury which requires restoration in severe injury and disease (Aird,
2006; Dobson et al., 2015; Johansson et al., 2017a). The systems
hypothesis of trauma (SHOT) has questioned the increasingly
reductionist approach to trauma resuscitation, highlighting that
hemorrhaging trauma patients are still expiring perhaps due to
overemphasis on symptomatic care rather than addressing the
underpinning system derangements associated with severe injury
(Dobson et al., 2022). SHOT posits the endothelium as the “systems
integrator” critical for veno-arterial coupling and preserving the
blood-brain barrier essential for maintaining the brain’s privilege
over the entire body. Thus, the endothelium may be one system
which necessitates resuscitation to switch from the injury phenotype
to that of survival (Dobson et al., 2022).

The depth and duration of shock may be evaluated with
endothelial biomarker assessment and adjunctive VHAs to guide
early restorative therapies. For example, in SHINE associated with
TIC, prehospital transfusion of plasma demonstrates a protective
effect on the injured endothelium with salutary restitution of the
glycocalyx layer for patients who required massive transfusion (MT)
(Moore et al., 2018; Sperry et al., 2018; Pusateri et al., 2020). Similar
salutary benefit has shown to prevent endothelial damage in early
sepsis when these patients are administered therapeutic plasma
exchange (TPE) with fresh frozen plasma (Drost et al., 2021;
Pape et al., 2021; Stahl et al., 2021). Heparanase-1 is a primary

FIGURE 4
Shock-INduced Endotheliopathy (SHINE) “Phenotype Switching” via Release of Anti-thrombogenic Mediators from the Endothelium to the
Bloodstream. One possible contributor of the hypocoagulable/hyperfibrinolytic phenotype in progressive shock may be the release of physiologically
endothelial-sequestered anti-thrombogenic mediators to the bloodstream during SHINE when the endothelium is systemically activated and/or injured.
Note that protein C is physiologically a plasma protein, but increases in soluble thrombomodulin (sTM) may increase the conversion of protein C to
activated protein C (aPC). (Johansson and Ostrowski, 2010). Abbreviations: aPC, activated Protein C; ROTEM, Rotational Thromboelastometry; sTM,
soluble Thrombomodulin; TEG, Thromboelastography; tPA, tissue Plasminogen Activator. Created with BioRender.com.
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mediator for endothelial injury particularly early in sepsis, whereas
heparanase-2 is a protective mediator. Recent studies have shown
that shedding of the endothelial glycocalyx, as well as the ratio of
heparanase-1 to heparanase-2, is diminished in septic patients who
receive early TPE within the first 6 h of presentation. Therefore, it
has been proposed that direct endothelial glycocalyx assessment and
surrogate assays for shredded endothelial glycocalyx, as well as
assays for heparanase-1 and heparanase-2 levels, enable early
detection of SHINE to guide earlier antibiotics and targeted
endothelial therapy with TPE (Drost et al., 2021; Pape et al.,
2021; Stahl et al., 2021). VHAs assist the early detection of
coagulopathies associated with SHINE when these patients are
treated with plasma whether for trauma or sepsis (Thölking
et al., 2015; Moore et al., 2018; Sperry et al., 2018; Pusateri et al.,
2020). Recent trauma models adopting VHAs show promise for
earlier identification of hemostatic derangement and SHINE, which
predicts the need for MT in trauma patients (Thorn and Maegele,
2021). Likewise, early use of VHAs in SIC enables early detection of
the depth and duration of shock prior to coagulopathic
manifestation by conventional coagulation tests (CCTs) and
other standard clinical and biologic markers (Pavoni et al., 2020).
Combined with CCTs, VHAs, and clinical and laboratory markers
such as lactate and procalcitonin, a PBM approach to assess the
depth and duration of shock is becoming a reality whether in TIC or
SIC (Vorweg et al., 2013; Müller et al., 2014; Schöchl and Schlimp,
2014; Saraiva et al., 2016; Johansson et al., 2017a; Martínez et al.,
2018; Stettler et al., 2019; Walsh et al., 2020b; Scarlatescu et al., 2020;
Carge et al., 2021; Drost et al., 2021; Pape et al., 2021; Tuan et al.,
2021; Bunch et al., 2022a).

The direction of coagulation is driven not only by the
coagulofibrinolytic mediators, but the endothelium is also
influenced by the nature and severity of the initial injury, timing
and methods of resuscitation, genetic hematologic makeup of the
patient, underlying conditions (e.g., age, gender, atherosclerotic risk
factors) and medications, all of which determine whether the
patient’s endothelium and blood will respond with either a pro-
or anti-thrombotic phenotype (Mellion et al., 1981; Kaplanski et al.,
1998; Levi and van der Poll, 2008; Park et al., 2014; Dobson et al.,
2015; Moore et al., 2016b; Strandin et al., 2016; Moore et al., 2019b;
Wernly et al., 2019; Richter et al., 2022a). For example, in
hemorrhagic shock, crystalloid resuscitation has demonstrated
deleterious effects on the endothelium whereas plasma
resuscitation has shown to restore it (Moore et al., 2018; Sperry
et al., 2018; Brill et al., 2021). VHAs such as TEG and ROTEM
provide a macroscopic, actionable indication of blood hemostatic
integrity and severity of endothelial injury (Saini et al., 2019; Kim
et al., 2021). Real-time VHA monitoring of coagulopathies
associated with SHINE requires an understanding of the history,
rationale, and efficacy of these tests.

2.1 VHAs as precision-based medicine tools
to treat the spectrum of coagulopathic
phenotypes associated with SHINE

Differing shock etiologies cause different early responses by the
endothelium. These responses often share hemostatic phenotypes
but also demonstrate unique aspects which implicate the need for

personalized resuscitation of the endothelium. For example, the
hypotensive septic shock patient often manifests acute
hypofibrinolysis, or so-called “fibrinolytic shutdown”, and thus
does not benefit from administration of the anti-fibrinolytic
tranexamic acid (TXA). On the contrary, a patient in severe
traumatic hemorrhagic shock with a hyperfibrinolytic phenotype
may benefit from TXA (Moore et al., 2020). The hypotensive
hypercoagulopathic patient in septic shock and the hypotensive
hypocoagulopathic patient in hemorrhage-induced shock represent
two opposite extremes along the coagulofibrinolytic spectrum of
shock-associated coagulopathies.

SHINE can alter hemostasis on a minute-to-minute basis by
endothelial reactions (e.g., shedding of the glycocalyx layer, or
“phenotype switching” among pro- or anti-thrombotic and pro-
or anti-fibrinolytic), causing worsening microvascular injury and
organ malperfusion. Serial bedside VHAs offer more timely goal-
directed blood component therapy (BCT) and hemostatic adjunct
therapy (HAT) when these coagulopathies may switch phenotypes
rapidly. Therefore, assessment of endothelial function and injury
pertaining to hemostasis cannot solely rely upon the plasma-based
CCTs prothrombin time (PT), activated partial thromboplastin time
(aPTT), as well as platelet count, fibrinogen, and D-dimer. Rather,
point-of-care global hemostasis assessment with whole blood VHAs,
bedside assessment of organ perfusion, and other laboratory
markers for hypoperfusion such as serial arterial base deficit and
lactate, enable timely physiologic and targeted hemostatic
resuscitation of patients in shock (Vorweg et al., 2013; Schöchl
et al., 2014; Johansson et al., 2017a; Martínez et al., 2018; Walsh
et al., 2020b; Bunch et al., 2022a).

Much as SHINE is a recently proposed framework for classifying
patients with shock-associated coagulopathies, a simultaneous
expansion has occurred for the use of VHAs to better define the
phenotype of these coagulopathies and offer goal-directed therapy
(Vorweg et al., 2013; Johansson et al., 2017a; Bugaev et al., 2020;
Walsh et al., 2020b). VHAs required decades of guiding resuscitation
in liver transplantation, cardiac surgery, and trauma before
randomized controlled trials (RCTs) demonstrated the advantage
of VHAs over CCTs alone for patients with hemorrhagic shock in
these settings (Curry et al., 2018; Bugaev et al., 2020; Walsh et al.,
2020b). To date, there remains no robust RCTs demonstrating
superiority of VHAs to guide hemostasis management of patients
in shock while on extracorporeal membrane oxygenation (ECMO)
or with Left Ventricular Assist Devices (LVADs). However, VHAs
are overwhelmingly used in these clinical settings (Colman et al.,
2019; Bunch et al., 2021; Volod et al., 2022; Volod and Wegner,
2022). The clinician should not be dissuaded from using VHAs
because of the absence of large RCTs demonstrating VHA utility to
treat the hemostatic derangements caused by SHINE for etiologies
other than liver transplantation, cardiac surgery, and trauma. In
many other settings, VHAs have demonstrated utility by numerous
observational and prospective studies (Adamzik et al., 2011; Brenner
et al., 2012; Collins et al., 2014; Tran et al., 2015; Hans and Besser,
2016). The “one-size-fits-all” approach of large RCTs may hinder
detection of the “signal from the noise” for the benefits of VHA-
guided resuscitation for shock, especially in the care of complex
patients because of infrequently met inclusion criteria. On the other
hand, PBM allows for personalized treatment based on the patient’s
individual phenotype. TEG/ROTEM enable both real-time
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identification of dynamic hemostatic phenotypes (phenotype
switching) and provision of real-time guidance for the treatment
of coagulopathies (individualized goal-directed resuscitation).
(Maslove et al., 2017; Görlinger et al., 2019; McKinley et al.,
2019; Stettler et al., 2019; Walsh et al., 2020b). Hence, VHAs
may aid diagnosis and guide treatment for patients with all
forms of SHINE. The adherence to the “one-size-fits-all”
mandate by which large RCTs must establish clear statistical
evidence prior to using a diagnostic test is challenged by the long
history and evolution of VHAs as PBM tools in liver transplantation,
cardiac surgery, trauma, and most recently, postpartum hemorrhage
(PPH), ECMO, and LVAD resuscitation (Collins and Varmus, 2015;
Beckmann and Lew, 2016; Letson and Dobson, 2017; Tignanelli and
Napolitano, 2018; Stettler et al., 2019; Walsh et al., 2019; Bell et al.,
2022).

The remaining review describes the principles of VHAs and
applying these principles to the monitoring and treatment of
patients in shock afflicted by SHINE. Hemostatic phenotypes
associated with SHINE are first delineated by applying the
accepted pathophysiologic drivers of endotheliopathy for
trauma-induced coagulopathy (TIC) and sepsis-induced

coagulopathy (SIC). These prevalent causes of coagulopathy in
critical illness set the foundation by which to contextualize the
coagulofibrinolytic spectrum of SHINE. In turn, one may
rationalize the application of VHAs for the diagnosis and
treatment of all shock-associated coagulopathies. Here, we
additionally emphasize VHAs for SHINE in post-cardiac
arrest syndrome (PCAS), medical causes of hemorrhage, PPH,
burns, and venom-induced consumption coagulopathy (VICC)
(Vincent and De Backer, 2013; Standl et al., 2018). For many
causes of SHINE, whether medical or surgical, the use of VHAs is
in its relative infancy. The use of VHAs for these settings may be
compared to the early days of liver transplantation which
required years of study before large RCTs demonstrated
overwhelming benefit (Kang et al., 1985; Starzl, 2002; Walsh
et al., 2020b). This physiologic primer likewise serves as the
cornerstone for future expansion of trials to determine the benefit
of VHAs for management of patients with shock-associated
coagulopathies regardless of the etiology. Briefly, we next
discuss VHA parameters, interpretation, and goal-directed
blood components and hemostatic adjuncts prior to discussing
specific etiologies of SHINE shown in Figure 5.

FIGURE 5
SHock-INduced Endotheliopathy (SHINE) as a Unifying Mechanism for Coagulopathies Associated with Critical Illness. In this review, we
contextualize SHINE as defined by the viscoelastic hemostatic assays thromboelastography (TEG) and rotational thromboelastometry (ROTEM) within
many causes of shock. Created with BioRender.com.
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3 Basic principles of VHAs

3.1 VHA tracing and parameters

The mechanics of the cup-and-pin legacy devices (TEG
5000 and ROTEM delta), as well as the Sonic Estimation of
Elasticity via Resonance (SEER) technology with SonoClot, and
the new generation cartridge-based devices (i.e., ClotPro, Quantra,
ROTEM Sigma, and TEG 6s) output tracings that plot the amplitude
of clot strength in millimeters on the y-axis versus time in minutes
on the x-axis. These tracings evaluate whole blood hemostatic
competence by describing clot initiation, amplification,
propagation, and termination by fibrinolysis (Curry et al., 2018;
Volod et al., 2022). The maximum amplitude (MA) on TEG and
maximum clot firmness (MCF) on ROTEM represent the surrogate
endpoint of thrombogenesis. MA/MCF correspond to the maximal
platelet-fibrin clot contraction strength; declining amplitude
following the MA/MCF denotes fibrinolysis. TEG and ROTEM
use differing reagents and parameter terminology. However,
recognizing the similar pattern between the output tracing of the
two tests allows for a broad comparison between the two devices.
The differing terminology of the TEG/ROTEM, as well as other
VHAs, has been viewed as a barrier to widespread clinical adoption.
Figure 6 exemplifies the typical normocoagulable TEG/ROTEM
tracing with the respective parameters defined. (Kang et al., 1985;
Shore-Lesserson et al., 1999; Luddington, 2005; Spalding et al., 2007;

Trzebicki et al., 2010; Sankarankutty et al., 2012; Whiting and
DiNardo, 2014; Hunt et al., 2015; Gurbel et al., 2016; Veigas
et al., 2016; Curry et al., 2018; Snegovskikh et al., 2018; Field
et al., 2019; Gillissen et al., 2019; Schenk et al., 2019; Hartmann
et al., 2020; Volod et al., 2022).

3.2 The shovel analogy to simplify VHA
interpretation

A useful analogy to simplify TEG/ROTEM interpretation
embodies the tracing as the shape of a shovel (Figure 7). With
hemostatic competence or physiologic hemostasis, the shovel has an
ideal handle length (R/CT), blade slope (K/CFT and α-angle), blade
width (MA/MCF), and blade tip (LY30/CLI30/ML), shown as the
middle shovel in Figure 6. The extremes are represented by different
shovel shapes where, for the sake of analogy, the ease of tilling and
moving soil corresponds to the ease of moving blood. The
hypocoagulable shovel tracing has a long handle with a narrow
and pointed blade (top shovel in Figure 6), with which tilling and soil
transport becomes less cumbersome but markedly inefficient. The
hypercoagulable shovel tracing has a short handle and a wide blade
with an absent tapering of the tip (bottom shovel in Figure 6),
making it difficult for the earth to be broken up and transported. In
the above examples, tilling and soil transport are either difficult
(hypercoagulable) or easy but inefficient (hypocoagulable). In

FIGURE 6
Representative Normocoagulable Thromboelastography (TEG)
and Rotational Thromboelastometry (ROTEM) Tracing with Their
Respective Parameters Defined. TEG and ROTEM parameters are
represented by green and purple text, respectively. The time for
the clot to reach 2 mm amplitude on the y-axis describes the reaction
time (R) for TEG and clotting time (CT) for ROTEM. R and CT correlate
to the activated partial thromboplastin time (aPTT) and prothrombin
time (PT). The time spanned from 2 to 20 mm amplitude is called the
kinetics (K) for TEG and the clot formation time (CFT) for ROTEM;
these represent the speed of fibrin buildup. Likewise, alpha-angle
measures the rate of fibrin buildup. The maximum amplitude (MA) on
TEG and the maximum clot firmness (MCF) on ROTEM reflect
crosslinking of fibrin with platelets and correspond to maximum clot
retraction strength. Measurements of fibrinolysis include lysis at 30/
60 min (LY30/60) which is the percentage decrease fromMA achieved
at 30/60 min, clot lysis index at 30/60 min (CLI30/60) which is the
percentage of clot amplitude remaining relative to the MCF at 30/
60 min, and maximum lysis (ML) which is the percentage decrease in
MCF at a given length of time (Görlinger et al., 2021; Hartmann and
Sikorski, 2021; Volod et al., 2022). Created with BioRender.com.

FIGURE 7
Shovel Analogy to Rapidly Interpret TEG/ROTEM Tracings. The
top shovel represents the hypocoagulable state marked by a
prolonged R/CT, narrow α-angle, narrowMA/MCF, and increased lysis
with resultant increased LY30/ML. The middle shovel represents
physiologic hemostasis marked by normal R/CT, α-angle, MA/MCF,
and LY30/ML. Mild narrowing after the MA demonstrates physiologic
fibrinolysis. The bottom shovel represents the hypercoagulable state
denoted by decreased R/CT, wide α-angle, wide MA/MCF, and
decreased LY30/ML. Abbreviations: R, Reaction time; CT, Clotting
Time; K, Kinetics; CFT, Clot Formation Time; MA, Maximum
Amplitude; MCF, Maximum Clot Firmness; LY30/60, Lysis at 30/
60 min; ML, Maximum Lysis. Created with BioRender.com.
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summary, in Figure 6, the top shovel represents hypocoagulable
disequilibrium, themiddle shovel represents physiologic hemostasis,
and the bottom shovel represents hypercoagulable disequilibrium.
Goal-directed BCT and HAT may be administered based on either
the shovel analogy pattern or the numerical values of the TEG/
ROTEM parameters (Table 2).

4 VHAs and etiologies of SHINE

4.1 Trauma-induced coagulopathy (TIC)

Uncontrolled hemorrhage accounts for about 25% of deaths
after injury, and an estimated one-quarter of these deaths likely have
a TIC element (Moore et al., 2021b). TIC is not a single entity, but
rather comprises a spectrum of coagulopathic phenotypes that is
largely biphasic. ‘Early TIC’ generally characterizes the first 6 h
following injury wherein difficulty to achieve hemostasis may lead to
hemostasis exhaustion, uncontrolled hemorrhage despite adequate
mechanical control of bleeding sites (i.e., coagulopathy), and
progressive hemorrhagic shock (Kashuk et al., 1982; Moore et al.,
2021a). ‘Late TIC’ generally describes hypercoagulability 24 h or
more following the time of injury. Clinically, late TIC manifests
micro- and macro-thrombotic complications such as venous
thromboemboli, ultimately leading to organ failure (Moore et al.,
2021a). Early TIC severity increases proportionally with the
magnitude of injury severity, blood loss, and shock. Late TIC
correlates to the degree of tissue injury (Moore et al., 2021a).

Following major trauma, the release of tPA from endothelial
cells may be involved in the initial activation of fibrinolysis in
response to a burst of thrombin and fibrin generation and
sympathetic outflow. This fibrinolytic phase ends within several
hours by the production of PAI-1 by endothelial cells and platelets.
This dynamic change is termed “fibrinolytic shutdown” (Moore
et al., 2019b) and may rapidly occur in 40%–50% of patients despite
arrival to the hospital within an hour after injury (Moore et al.,
2016b). Hemorrhage may invoke physiologic fibrinolysis shutdown
to achieve hemostasis at bleeding sites. However, trauma patients
with persistent fibrinolytic shutdown at 24 h post-injury have
increased mortality (Moore et al., 2019b). On the opposite end of

the fibrinolytic spectrum, roughly one-quarter of trauma patients
have evidence of prior fibrinolytic activation, but only 7% have
active ongoing fibrinolysis at the time of initial blood draw (Moore
et al., 2019a). Hyperfibrinolysis as measured by TEG/ROTEM
correlates to increasing injury severity, magnitude of shock,
catecholamines, and SHINE (Holcomb, 2011; Moore et al.,
2016a). Administering TXA empirically to TIC patients without
evidence of hyperfibrinolysis may cause early fibrinolysis resistance
and increased mortality, necessitating a PBM approach to TXA use
guided by VHAs (Moore et al., 2017).

Figure 8 depicts the coagulofibrinolytic balance of TIC as a teeter
totter wherein the TM-thrombin complex is one such fulcrum to
determine anti- or pro-hemostatic phenotypes. This complex, also
mediated by the endothelial protein C receptor (EPCR), activates the
aPC anticoagulation pathway resulting in Factor V and Factor VIII
degradation and enhanced fibrinolysis via PAI-1 inhibition. On the
contrary, the TM-thrombin complex may activate the TAFI
pathway resulting in hypercoagulation by inhibiting fibrinolysis
(Sillen and Declerck, 2021). Whether the action of the TM-
thrombin complex favors increased coagulation via TAFI or a
hypocoagulable state mediated by aPC on the activated
endothelium depends on the severity of trauma, the presence or
absence of shock, endotheliopathy, and the manner, timing, and
response to resuscitation (Dobson et al., 2015; Moore et al., 2020).
The balance of the two opposing pathways may tip directions within
seconds to minutes following trauma and involves either structural
and/or posttranslational modifications of different sites on the TM-
thrombin complex. Subsequent action by receptors and/or cofactors
causes the modified TM-thrombin complex to bind and activate
protein C or TAFI (Dobson et al., 2015; Johansson et al., 2017a).

With vascular injury, a thrombin burst mediates fibrin
formation as well as a protection of the fibrin clot from
dissolution via activation of TAFI (Lord, 2011; Foley et al., 2013).
tPA or uPA cleavage of plasminogen to plasmin, the major
fibrinolytic enzyme, then dissolves the fibrin meshwork into
soluble fibrin/fibrinogen degradation products (FDPs) which
mediate a positive feedback mechanism resulting in fibrinolysis
(Silva et al., 2012). PAI-1 primarily prevents hyperfibrinolysis by
inhibition of tPA as well as urokinase plasminogen activator (uPA)
(Declerck and Gils, 2013; Sillen and Declerck, 2020). In addition,

TABLE 2 Goal-directed blood components and hemostatic adjuncts based on the shovel analogy of TEG/ROTEM.

Parameters Shovel analogy Intervention

TEG: Reaction Time (R) Long handle Plasma and/or factor concentrates

ROTEM: Clotting Time (CT) Short handle Anticoagulation

TEG: kinetics (K); α-angle Decreased slope of blade Fibrinogen concentrate or cryoprecipitate

ROTEM: clot formation time (CFT); alpha angle

TEG: Maximum Amplitude (MA) Decreased width of blade Platelets and/or fibrinogen concentrate/cryoprecipitate

ROTEM: Maximum Clot Firmness (MCF) Increased width of blade Anticoagulation and/or antiplatelet therapy

TEG: Lysis at 60 min (LY60) Sharp taper of blade Anti-fibrinolytics

ROTEM: Maximum Lysis (ML)/Clot Lysis Index at 60 min (CLI60)

Abbreviations: CLI30/CLI60, Clot lysis index at 30/60 min; CT, clotting time; LY30, lysis at 30 min; MA, maximum amplitude; R, reaction time; ROTEM, rotational thromboelastometry; TEG,

thromboelastography (Mamczak et al., 2022).
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FIGURE 8
The Spectrum of Trauma-Induced Coagulopathy (TIC) as a Function of the Thrombomodulin-Thrombin Complex and SHINE. Hypercoagulability
presents most commonly at index trauma presentation according to thromboelastography (TEG) and rotational thromboelastometry (ROTEM) tracings
(Johansson and Ostrowski, 2010). As injury severity and the magnitude of hemorrhagic shock increase, the likelihood of hypocoagulability and/or
hyperfibrinolysis increases in tandem (Johansson and Ostrowski, 2010; Moore et al., 2016a). Other anti-hemostatic factors at index may include
acidosis, hypothermia, crystalloid resuscitation resulting in dilutional coagulopathy, pre-trauma anticoagulant or antiplatelet medications, and co-
morbidities (Moore et al., 2021a). After successful initial resuscitation, patients most often demonstrate hypercoagulability and venous thromboembolism
in the ensuing days. On the other hand, persistent fibrinolytic shutdown at 24 h post-injury correlates greatest to the magnitude of tissue injury. (A) The
thrombomodulin (TM)-thrombin complex is one proposed hypothesis to explain TIC hemostatic phenotypes (Walsh et al., 2019). (B) In its anticoagulant
role, the endothelial membrane-bound TM binds with thrombin to convert protein C to activated protein C (aPC). TM-thrombin action on protein Cmay
also be accelerated by endothelial protein C receptor (EPCR, not shown). APC inactivates Factor V, Factor VIII, and plasminogen activator inhibitor-1 (PAI-
1) to decrease coagulation and promote tissue plasminogen activator (tPA) activity to convert plasminogen to plasmin (Gando et al., 2018). The resulting
fibrinolysis leads to hypofibrinogenemia and a hypocoagulable state as demonstrated by viscoelastic markers. APC and fibrinogen levels share an inverse
relationship whereby the TM-thrombin complex increases protein C activation with decreasing fibrinogen levels, leading to a greater anticoagulant and
pro-fibrinolytic state (Diez et al., 2006). On the contrary, with increased fibrinogen, the TM–thrombin complex is inhibited from activating protein C. As a
result of glycocalyx dysfunction, activation of protein C, enhanced fibrinolysis, and low fibrinogen, the maladaptive response caused by consumption of
clotting factors and platelets leads to high fibrin/fibrinogen degradation products (FDPs) with an overall anti-hemostatic state (Diez et al., 2006; Dobson
et al., 2015). (C) Tissue hypoperfusion and endothelial injury causes shedding of the endogenous HS of the glycocalyx with subsequent “auto-
heparinization” (Ostrowski and Johansson, 2012). The sensitivity of TEG/ROTEM to detect auto-heparinization remains questionable (Zipperle et al.,
2022a). Disruption of the endothelial glycocalyxmay also bemeasured by increased circulating syndecan-1 (Syn1) and soluble TM (sTM) levels (Johansson
et al., 2011b). (D) Traumatic brain injury produces a unique coagulopathy characterized by platelet dysfunction at the arachidonic acid (AA) and adenosine
diphosphate (ADP) receptors as defined by TEGwith Platelet Mapping. The relatively high concentrations of vonWillebrand Factor (vWF) and Tissue Factor
(TF) release from injured brain tissue are thought to cause platelet exhaustion (Castellino et al., 2014; Bradbury et al., 2021). However, the pathophysiology
of coagulopathy of traumatic brain injury remains an area of active study. (E) The TM-thrombin complex also activates thrombin-activatable fibrinolysis

(Continued )
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plasmin is inhibited by α2-antiplasmin (Singh et al., 2020).
Importantly, activated TAFI (TAFIa) is a zinc-dependent
metallocarboxypeptidase which downregulates fibrinolysis by
removing C-terminal lysine residues from partially degraded
fibrin; thereby preventing the upregulation of plasminogen
binding and activation (Declerck, 2011; Vercauteren et al., 2013).
Activation of TAFI following the thrombin burst regulates
hemostasis with a fibrinolytic shutdown response and has been
described as a crucial regulatory link between coagulation and
fibrinolysis (Leurs and Hendriks, 2005; Claesen et al., 2021).

Recent studies have demonstrated mortality benefit and cost
savings associated with early plasma resuscitation for patients with
TIC (Moore et al., 2018; Brill et al., 2021). Early administration of
plasma may serve therapeutic and sparing effects on the endothelial
glycocalyx layer as demonstrated by decreased Syn-1 levels following
plasma administration (Cannon, 2018; Sperry et al., 2018; Gruen
et al., 2020; Pusateri et al., 2020; Hrebinko et al., 2021). This
reduction of Syn-1 shedding may occur via reduced Tissue
Inhibitor of MetalloProteinase (TIMP) activity or decreased
activation of A Disintegrin And Metalloproteinase (ADAM).
VHAs have been recommended as a method to gauge the
adequacy of targeted resuscitation with plasma (Moore et al., 2021a).

Emphasis on resuscitation of the endothelium has led to the use
of vasopressin for patients in severe shock associated with trauma
(Simmons and Powell, 2016). When used in conjunction with
clinical, laboratory, biologic, and standard coagulation tests,
adjunctive VHAs reflect the hemostatic milieu of the
endothelium and its contribution to hemostatic derangement in
patients with SHINE. The combination of these tests provides a
holistic view of whole blood hemostatic integrity, enabling goal-
directed plasma and/or pressor therapy for patients in hemorrhagic
shock (Moore et al., 2021a; Richards et al., 2021).

SHINE and mortality in TIC correlate to blood product
administration (Dunne et al., 2004). It has been suggested that
the pro-inflammatory extracellular vesicles (EVs) in stored blood
products, particularly packed red cells, may cause or contribute to
endotheliopathy (Straat et al., 2016). However, a recent
observational study of 75 trauma patients demonstrated that red
blood cell EVs increased following transfusion yet did not increase
Syn1 levels (Dujardin et al., 2022).

Trauma can also be classified as primary or secondary based on
pathophysiology (Brohi et al., 2003; Simmons and Powell, 2016),
early or late based on timing (Tisherman et al., 2015), hypo- or
hyperfibrinolytic based on hemostatic phenotype, and resuscitated
or not resuscitated (Gando et al., 1992; Gando et al., 1995; Adrie
et al., 2004; Gando et al., 2011; Tauber et al., 2011; Wohlauer et al.,
2012; Gando et al., 2013; Moore et al., 2015b; Vogel et al., 2015;
Gando and Hayakawa, 2016; Davenport et al., 2017; Leeper et al.,
2017; Macko et al., 2017; Meizoso et al., 2017). Without treatment,

these patients may progress to a DIC-like syndrome of
hyperfibrinolysis in minutes to hours. Therefore, point-of-care
testing with VHAs enables hemostatic monitoring to guide
diagnosis and individualized ratios of BCT and HATs (Moore
et al., 2019b; Moore et al., 2020). It should also be noted that
surgical-related coagulopathies, such as damage control surgery or
those incurred during liver transplantation and cardiac surgeries
which have a long and rooted history of VHA-guided BCT and
HAT, may be viewed similarly to TIC. Surgical-related
coagulopathies and TIC share traumatic hemorrhagic shock
pathophysiology and likewise necessitate goal-directed resuscitation.

4.2 Sepsis-induced coagulopathy (SIC)

Whereas hemorrhagic shock with TIC potentiates
uncontrollable bleeding in its early phase, the early hemostatic
phenotype of SIC involves a hypercoagulable state of
hypofibrinolysis with consequent micro-thrombosis and
sequential organ failure (Semeraro et al., 2012). Trauma and
surgery patients who survive the early phase of hemorrhage may
develop a late hemostatic phenotype that manifests as thrombosis
and multiple organ failure like SIC. However, the stimulus of
coagulation for each pathologic entity differs. In TIC, tissue
factor (TF) release from injured tissue induces coagulation.
Micro-thrombus formation, a fundamental event of SIC, is
observed in late TIC and is under continued investigation (Vogel
et al., 2015; Moore et al., 2020). In SIC, the two main drivers at the
level of the endothelium are immuno-thrombosis and suppressed
fibrinolysis. The influence of these systems and the mechanisms of
their effect on the endothelium are depicted in Figure 9.

The mechanisms that initiate SIC have been previously
described as both cell-based and humoral-based (Liaw et al.,
2016; Iba and Levy, 2018). At the interface of mounting an
immune response, the endothelium activates to a pro-thrombotic
state in response to numerous inflammatory mediators. Biomarkers
that crosstalk between inflammation and endothelial activation
include leukotrienes, IL-1, IL-6, IL-8, TNF-α, reactive oxygen
species, hydrogen peroxide, complement, histamine, serotonin,
and shiga toxin, as well as hypoxia, thrombin, fibrin, and
epinephrine (McCormack et al., 2017). The host response to
sepsis involves the activation of coagulation by TF on EVs and
activated endothelium (Østerud and Bjørklid, 2001). PS expressed
on EVs and activated endothelium also activates the extrinsic
coagulation cascade (Iba and Ogura, 2018). Among the most
salient factors which are involved in the immuno-thrombotic
response to sepsis are pathogen-associated molecular patterns
(PAMPs), damage-associated molecular patterns (DAMPs), high
mobility group box 1 (HMGB 1), DNA, histones, neutrophil

FIGURE 8 (Continued)
inhibitor (TAFI) which acts to inhibit tPA binding to fibrin (Marar and Boffa, 2016). (F)Minutes to days after traumatic/surgical-related injury, local and/
or systemic inflammation occurs, causing immuno-thrombosis via platelet and endothelial activation. Particularly in the microvasculature,
thromboemboli impair organ perfusion and contribute to organ failure (Gando and Otomo, 2015). Abbreviations: aPC, activated Protein C; ISS, Injury
Severity Score; NETs, Neutrophil Extracellular Traps; PAI-1, Plasminogen Activator Inhibitor-1; ROTEM, Rotational Thromboelastometry; TAFI,
Thrombin-Activatable Fibrinolysis Inhibitor; TEG, Thromboelastography; TF, Tissue Factor; TIC, Trauma-induced Coagulopathy; TBI, Traumatic Brain
Injury. Created with BioRender.com.
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extracellular traps (NETs), damaged host cells, and activated
immune cells, all of which initiate pro-inflammatory and pro-
thrombotic reactions in SIC (Østerud and Bjørklid, 2001;
Brinkmann et al., 2004; Adrie et al., 2005; Liaw et al., 2016; Iba
and Ogura, 2018; Vulliamy et al., 2019).

FDPs and D-dimer levels have limited use for diagnosing and
treating shock in either SIC of TIC. Because of their long half-life

these markers do not correlate with PAI-I levels in patients with SIC
or TIC. PAI-I levels are not readily available in clinical practice and
therefore VHAs have been used to detect fibrinolysis in trauma
patients. (Moore et al., 2014). Despite widespread use of VHA to
detect fibrinolysis in trauma there is significant debate regarding its
sensitivity (Larsen et al., 2012; Hunt et al., 2013; Ramos et al., 2013;
Raza et al., 2013; Stettler et al., 2019).

FIGURE 9
The Coagulofibrinolytic Spectrum of Sepsis-induced Coagulopathy (SIC) Pertaining to Immuno-thrombosis and SHINE. (A) Initially, the immuno-
thrombosis manifests as microthrombosis within the microvasculature. (B) Inflammation activates the endothelium and, among other mechanisms,
activates primary and secondary hemostasis via the endothelial release of hypercoagulable circulating extracellular vesicles (EVs) bearing Tissue Factor
(TF) and phosphatidylserine (PS). (C) Most patients with SIC present with hypercoagulopathic, hypofibrinolytic thromboelastography (TEG)/
rotational thromboelastometry (ROTEM) tracings with elevated acute phase reactants such as fibrinogen, D-dimer, and plasminogen activator inhibitor-1
(PAI-1). Quiescent platelets contain PAI-1, TAFI, FXIIIa, and α2-antiplasmin in α-granules, and upon activation, platelets release PAI-1 to complex with and
inhibit action of tPA. Thrombin may also provoke release of PAI-1 from the endothelium (Huebner et al., 2018). (D) As hypoperfusion and the shock state
progresses, increased catecholamines activate and damage the pro-thrombotic endothelium, causing systemic endothelial release of Weibel-Palade
bodies containing tPA. Hypoperfusion also increases endothelial calcium influx, resulting in PS exposure on the endothelial luminal surface. (E) Increased
circulating tPA tips the scales in favor of fibrinolysis as a counterbalance to the widespread microthrombosis. Thus, a small percentage of septic patients
may present and/or progress to a hyperfibrinolytic and consumptive hypocoagulopathic state of disseminated intravascular coagulation (DIC), which
requires aggressive resuscitation with primarily blood components as opposed to crystalloid fluids for the hypercoagulopathic SIC patients (Levi and van
der Poll, 2017; Iba and Ogura, 2018; Iba et al., 2019b; Bunch et al., 2022b). Abbreviations: DAMPs, Damage-Associated Molecular Patterns; DIC,
Disseminated Intravascular Coagulation; EVs, Extracellular Vesicles; IL-8, Interleukin-8; LTB4, Leukotriene B4; LY30, Lysis at 30 min; MA, Maximum
Amplitude; PAI-1, Plasminogen Activator Inhibitor-1; PAMPs, Pathogen-Associated Molecular Patterns; PS, PhosphatidylSerine; R, Reaction time; SHINE,
SHock-INduced-Endotheliopathy; TAFI, Thrombin-Activatable Fibrinolysis Inhibitor; TF, Tissue Factor; TLR, Toll-Like Receptors; tPA, tissue Plasminogen
Activator. Created with BioRender.com.
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AT is an important anticoagulant that prevents the formation of
thrombi (Levy et al., 2016). In addition, prostacyclin, nitric oxide,
and TFPI mediate anti-thrombotic effects at the level of the
endothelium (Iba and Levy, 2019).

In SIC there is a significant suppression of anti-thrombotic
activity which is affected by the methods of treatment as well as the
speed of resuscitation. CCTs as well as FDPs and D-dimers do not
adequately assay the importance of anti-thrombotic activity in SIC
and TIC (Owings et al., 1996; Iba et al., 2012). It is instructive to
compare early TIC and late TIC with SIC, whereby the increased
release of TM activates protein C whereas late in TIC AT and protein
C are depressed (Hess et al., 2008; Zilkens et al., 2008; Yanagida et al.,
2013; Choi et al., 2014; Johansson et al., 2017a; Kornblith et al., 2019;
Keshari et al., 2020). In sepsis AT levels decline and recent studies
have demonstrated the possible utility of AT therapy in septic DIC
(Vincent et al., 2019; Egi et al., 2021).

The similarities between SIC and TIC are instructive and are
summarized in Table 3. Whereas the hemostatic derangement
characteristic of hyperfibrinolytic phenotype associated with early
severe TIC in shock is transformed in late TIC into a
hypofibrinolytic phenotype characteristic of SIC (Taylor Jr et al.,
2001; Gando and Wada, 2019; Vulliamy et al., 2019; Moore, 2022).

4.3 Post-cardiac arrest syndrome (PCAS)-
associated coagulopathy

After TIC and SIC, the third most common cause of shock is
cardiogenic of which PCAS is amajor subtype. Ischemia-reperfusion
injury drives the pathophysiology of PCAS-associated coagulopathy.
The ensuing tissue necrosis, pro-thrombotic DAMPs, systemic
inflammatory response, sympatho-adrenal activation, and SHINE
account for the commonly observed hypercoagulability in these
patients. The hypercoagulability arises from increased circulating
TF, DAMPs, immuno-thrombosis, and an activated pro-thrombotic
endothelium. Acutely, systemic hyperfibrinolysis occurs in PCAS
because of tPA release from endothelial Weibel-Palade bodies.
Hyperfibrinolysis occurs in about one-third to one-half of
patients with PCAS, confirming the high incidence of fibrinolysis
in patients with the “no-reflow phenomenon” of PCAS (Ames et al.,
1968; Schöchl et al., 2013; Kloner et al., 2018). Of note, a recent
observational study of 41 patients with cardiac arrest has supported

conventional activation of plasminogen—as opposed to pro-
inflammatory pathways of fibrinolysis activation—as the cause of
hyperfibrinolysis in PCAS-associated coagulopathy (Zipperle et al.,
2022b). This study also supported that hyperfibrinolysis in PCAS
shares pathophysiologic similarities to TIC wherein hypoperfusion
and increased aPC appear to be the incipient drivers. Moreover, it
has been observed that cardiac arrest due to hypoxia has a higher
incidence of hyperfibrinolysis compared to cardiac arrest from a
primarily cardiogenic cause (Wada et al., 2017). Figure 10 depicts
the coagulofibrinolytic equilibrium of PCAS-associated
coagulopathies wherein ischemia-reperfusion injury determines
the balance between hyperfibrinolytic and fibrinolysis shutdown
phenotypes.

Compared to patients without the hyperfibrinolytic phenotype,
patients with hyperfibrinolysis required longer CPR times, had
elevated aPTT, D-dimer, and hypoperfusion markers including
pH, base excess, and lactate. The lysis onset time (LOT) was
directly proportional to survival and inversely related to CPR
times and lactate. These data confirmed previous observations
that the time to onset of clot lysis is an important marker for
patient outcomes (Viersen et al., 2012). High lactate levels also
predict development of PCAS-associated DIC with hyperfibrinolysis
(Wada et al., 2016).

On the contrary, small increases in PAI-1 levels are measurable
shortly after ROSC and may be owed to release by activated
platelets or endothelium. PAI-1 levels have been shown to peak
at 24 h after achieving ROSC, and increased levels correlate to
multiple organ dysfunction and worse outcomes (Geppert et al.,
2001; Wada, 2017). The initial hypercoagulopathic phase in
patients with PCAS reflect similarly to severe TIC with early
phase hyperfibrinolysis mediated by tPA and subsequent
fibrinolytic shutdown mediated by PAI-1. The unique
pathophysiologic moment begins with the “no-reflow
phenomenon” which describes reduced antegrade coronary and/
or cerebral microcirculatory blood flow despite proximal patency
which is commonly seen following cardiac arrest and ROSC (Ames
et al., 1968; Kloner et al., 2018). The rapid change from
hyperfibrinolysis to hypofibrinolysis occurs with successful and
early ROSC. Unlike TIC, these patients do not benefit from anti-
fibrinolytic administration which substantiates the lack of similar
causality for the coagulopathies associated with PCAS (Ames et al.,
1968; Wada, 2017; Yu et al., 2020).

TABLE 3 Contrasting hemostatic changes in TIC and SIC.

Early-TIC Late-TIC SIC

Coagulation activated activated activated

Anticoagulation usually absent impaired impaired

Fibrinolysis increases with injury severity suppressed suppressed

Platelet function activated activated activated

Endothelium/
glycocalyx

damaged and contributes to anticoagulation damaged and becomes pro-thrombotic damaged and becomes pro-thrombotic

Micro-thrombus usually absent present present

Phenotype bleeding-dominant pro-thrombotic and develops organ dysfunction pro-thrombotic and develops organ dysfunction

Abbreviations: SIC, Sepsis-induced coagulopathy; TIC, trauma-induced coagulopathy.
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FIGURE 10
The Spectrum of Post-Cardiac Arrest Syndrome (PCAS)-associated Coagulopathies and Neurologic Prognostication by TEG/ROTEM. (A) In cardiac
arrest, ischemia afflicts every tissue in the body. Depending on the length of arrest, necrosis results for many tissue types, resulting in an acute
inflammatory response. Return of spontaneous circulation (ROSC) further promotes inflammation by reperfusion of oxygen, thereby increasing the
generation of reactive oxygen species by the now resident inflammatory cells. (B) As a result of the shock state and epinephrine infusion during
resuscitation, the activated endothelium becomes pro-thrombotic and simultaneously fibrinolytic viaWeibel-Palade body (WPB) exocytosis as one such
mechanism. (C) Widespread release of tissue plasminogen activator (tPA) by the endothelium promotes conversion of plasminogen to plasmin.
Circulating cell free DNA (cfDNA), either from neutrophil extracellular traps (NETs) or necrotic cells, has demonstrated to inhibit plasmin activity to a
degree. Circulating plasminogen activator inhibitor-1 (PAI-1) also serves to decrease fibrinolytic activity; however, as an acute phase reactant, PAI-1 levels
have shown to peak at 24 h following ROSC. Platelet activation and release of α-granule contents PAI-1, TAFI, FXIIIa, and α2-antiplasmin likely also
contribute. Hyperfibrinolysis and/or hypocoagulability prognosticate poor neurologic outcomes. These hemostatic phenotypes arise more commonly
with longer times to achieve ROSC. TEG measurements of reaction time (R) > 5 min and lysis at 30 min (LY30) >7.5% following ROSC tend to have poor
neurologic outcomes. In tandem, prolonged prothrombin time (PT) and activated partial thromboplastin time (aPTT) and increasedmarkers of fibrinolysis
(e.g., D-dimer and fibrin [ogen] degradation products) also prognosticate poor outcomes. Increased markers of tissue ischemia and necrosis such as
lactate and cfDNA follow a similar worse prognosis. (D) Endothelial activation promotes thrombosis by increased Tissue Factor (TF) expression by both
increased extracellular vesicles bearing TF, but also by necrotic cells releasing free TF systemically. (E) The ensuing inflammatory state in response to
ischemia promotes immuno-thrombosis via several mechanisms, but namely via NETs catching and activation of circulating platelets as well as pro-
thrombotic proteins from necrotic tissues such as cfDNA, histones, and High Mobility Group Box-1 (HMGB-1). The inflammatory state observed clinically
in PCAS patients has been aptly termed “Sepsis-like syndrome” because of the systemic inflammatory response syndrome without an infectious source
(Wada, 2017; Yu et al., 2020). Important to note, however, that hyperfibrinolysis in PCAS appears to be caused primarily by hypoperfusion rather than
inflammation (Zipperle et al., 2022b). Abbreviations: aPTT, activated Partial Thromboplastin Time; cfDNA, cell free DNA; DAMPs, Damage-Associated
Molecular Patterns; EPCR, endothelial Protein C Receptor; FDPs, Fibrin(ogen) degradation products; HMGB-1, High Mobility Group Box 1; IL, Interleukin;
LY30, Lysis at 30 min; NETs, Neutrophil Extracellular Traps; PAI-1, Plasminogen Activator Inhibitor-1; PT, Prothrombin Time; R, Reaction time; sTM,
soluble Thrombomodulin; TFPI, Tissue Factor Pathway Inhibitor; TNF-alpha, Tissue Necrosis Factor-alpha; tPA, tissue Plasminogen Activator; VCAM-1,
Vascular Cellular Adhesion Molecule-1. Created with BioRender.com.
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Studies of patients with PCAS who have attained ROSC have
demonstrated the utility of TEG and ROTEM to predict intact
neurologic survival as a reflection of reduced fibrinolysis. It has been
shown that TEG values of R < 5 min or LY30 < 7.5% in early PCAS
had more favorable neurologic outcomes. Higher D-dimer levels,
PT, aPTT, lactate, and cfDNA were noted in the unfavorable
outcome group. Therefore, in the earliest periods following
ROSC, a normal hemostatic and fibrinolytic phenotype are early
predictors of neurologically intact survival in successfully
resuscitated out-of-hospital cardiac arrest patients (Yu et al.,
2020). Early ROTEM analysis has likewise revealed a high
incidence of hyperfibrinolysis for those patients who had long
cardiac arrest times and poor prognosis. Specifically,
hyperfibrinolysis criteria have been recorded in 83% of patients
with long cardiac arrest times, and these patients also had lower
fibrinogen levels with corresponding low levels of FIBTEM MCF
(Barea-Mendoza et al., 2019).

The use of mild therapeutic hypothermia (MTH) has
demonstrated increased survival. TEG may be a useful technique
to evaluate hemostatic integrity in cardiac arrest survivors
undergoing MTH. However, the effects of MTH on PCAS-
associated coagulopathy requires appreciation for the effect of
temperature on fibrin (ogen) concentration and function. When
compared to physiologic temperature patients who have survived
cardiac arrest, MTH has shown to lengthen TEG R, reduce the
coagulation index (CI), and attenuate clot fibrinolysis. Rather than
performing the VHAs at 37°C, it is therefore suggested that VHA
analysis be performed at 32°C during MTH to increase the accuracy
of hypothermic coagulation impairment (Trąbka-Zawicki et al.,
2019). Moreover, prolonged MTH has shown to impair thrombin
generation as measured by increased CT and prolonged time to
maximum velocity of thrombin generation on INTEM (Jeppesen
et al., 2017).

4.4 Medical non-obstetrical hemorrhage

Common non-obstetrical causes of shock include
gastrointestinal (GI) hemorrhage and, to a lesser extent,
retroperitoneal hemorrhage of anticoagulated or
hypocoagulopathic patients. The state of the endothelium in
many ways reflects TIC where the degree of hemorrhage dictates
the hemostatic derangement at the endothelium. However, as in
TIC, pre-existing hemostatic phenotypes (e.g., liver failure and
antiplatelet or anticoagulant medications) in part determine the
evolution and response to therapy which requires VHAs to guide
BCT and HAT for these patients (Bunch et al., 2022a). Patients
treated with anticoagulants and antiplatelet agents often require
replenishment of factors and/or platelets in TIC and medical
hemorrhage causing shock (Kang et al., 1985; Shore-Lesserson
et al., 1999; Enriquez and Shore-Lesserson, 2009; Ojito et al.,
2012; Tanaka et al., 2012; Levin et al., 2014; Tanaka et al., 2014;
Weitz and Eikelboom, 2016; Bliden et al., 2017; Douketis et al., 2017;
Dubois et al., 2017; Gurbel et al., 2017; Mullins et al., 2018; Artang
et al., 2019; Bruckbauer et al., 2019; Dias et al., 2019; Pailleret et al.,
2019; Sarode, 2019; Oberladstätter et al., 2021; Pavoni et al., 2022). In
patients with liver failure and GI hemorrhage, the rebalanced
hemostasis caused by the reduced anticoagulants protein S,

protein C, and AT require that VHAs be used in the diagnosis
and resuscitation of these patients in shock. Serial hemostatic
functional evaluation of a patient in liver failure with shock
would not be possible with CCTs, but can be done successfully
with VHAs (Groth et al., 1969; Chau et al., 1998; Starzl, 2002;
Tripodi and Mannucci, 2011; Agarwal et al., 2012; Stravitz, 2012;
Scarlatescu et al., 2018; Stravitz et al., 2021). Interestingly, the use of
anti-fibrinolytics in patients with GI hemorrhage and shock has not
shown to improve outcomes, further demonstrating the
heterogeneity of coagulopathies associated with SHINE due to
medical hemorrhage versus traumatic or surgery-related
hemorrhage (Roberts et al., 2020).

4.5 Postartum hemorrhage (PPH)

VHA-guided BCT during PPH is expanding. TEG/ROTEM
devices can be used to detect and treat clinically significant
hypofibrinogenemia, although evidence to support the role of
VHAs for guiding fresh frozen plasma and platelet transfusion is
less clear (Collis and Collins, 2015; Bamber, 2016; Collis, 2016;
Curry et al., 2018). If ROTEM/TEG tracings are normal, clinicians
should investigate for another cause of bleeding, and BCT may be
withheld. Guidelines support the use of VHAs during PPH if a local
algorithm reaches agreement. However, wide consensus does advise
that a FIBTEM amplitude at 5 min (A5) of <12 mm with ongoing
bleeding necessitates fibrinogen replenishment (Curry et al., 2018;
Collins, 2022). Note, however, that patients with PPHmay also have
reduced thrombin generation (Di Bartolomeo et al., 2017).
Guidelines recommend against using VHAs to guide TXA
infusion. Rather, TXA should be administered as soon as PPH is
diagnosed irrespective of the TEG/ROTEM traces, however patients
with PPH are also at high for venous thromboembolism suggesting
this issue requires further investigation (Shakur et al., 2010; Roberts
et al., 2012; Collins, 2022). The cost-effectiveness of VHAs during
PPH needs to be addressed and has formed the foundation for much
of the discussion regarding the utility of VHAs to guide BCTs and
HATs in patients with severe PPH. (Collis and Collins, 2015;
Bamber, 2016; Collis, 2016; Curry et al., 2018; Collins et al.,
2019; Liew-Spilger et al., 2021; Collins, 2022).

Severe PPH, such as with amniotic fluid embolism (AFE), often
associates with hyperfibrinolysis like severe TIC. However, the
etiology and treatment differ significantly from severe TIC and
requires VHA-guided resuscitation. The mechanism for AFE-
induced coagulopathy is the release of amniotic fluid TF into the
systemic and pulmonary circulation, provoking a classic DIC of
overwhelming thrombin generation, consumption of clotting factors
and platelets, and hyperfibrinolysis (Harnett et al., 2005; Bassily-
Marcus et al., 2012).

Treatment of AFE entails the immediate delivery of the fetus,
VHA-guided resuscitation of the mother, and emphasis for early
administration of fibrinogen to levels that are two to three times
higher than normal to outcompete platelet and clotting factor
consumption, and fibrinolysis (Kramer et al., 2013; Dahlke et al.,
2015; Guasch and Gilsanz, 2016; Pacheco et al., 2016; Henriquez
et al., 2018; McDonnell and Browning, 2018; Amgalan et al., 2020;
Liew-Spilger et al., 2021). Early PPH not associated with AFEmay be
diagnosed with modified VHAs designed to detect low levels of
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fibrinogen, which when properly treated, enable reduced incidence
of shock and BCT use in women who suffer PPH (McNamara et al.,
2015; Collins et al., 2017; Loughran et al., 2019; Othman et al., 2019;
Liew-Spilger et al., 2021). In addition, an endogenous heparin-like
substance has been associated with the coagulopathy of severe PPH
and subsequent shock as identified by TEG (Wang et al., 2020). The
placenta also contains high levels of TFPI (Kuczyński et al., 2002;
Xiong et al., 2010).

As with late TIC and SIC as well as late PCAS, fibrinolytic
shutdown post-resuscitation of PPH remains a risk factor for venous
thromboembolism (VTE). Therefore, VHAs may help guide the
intensity and duration of DVT prophylaxis in postpartum women,
particularly those who suffered hemorrhagic shock (Maybury et al.,
2008).

Figure 11 exemplifies VHA-guided resuscitation for a 35-year-
old woman with cardiac arrest due to AFE (Hurwich et al., 2016).
Hemostatic management of the obstetrical patient with this severe
type of SHINE remains difficult without bedside adjunctive VHAs,
whether due to AFE or other causes of PPH such as eclampsia,
hemolysis with elevated liver enzymes and low platelets (HELLP
Syndrome), or structural anomalies with and without uterine atony
(Amorde et al., 2011; Loughran et al., 2019).

4.6 Hyperthermia/burns and non-
therapeutic environmental hypothermia

Severe hyperthermia, which causes burn-induced coagulopathy
(BIC), can present with early hyperfibrinolysis and
hypocoagulability. With treatment of shock, these patients most
often develop a hypofibrinolytic and hypercoagulable state as
manifested by VHAs (Marsden et al., 2017; Borgman et al.,
2019). The development of hypofibrinolysis or fibrinolytic
shutdown on admission does not affect prognosis, yet at 4 h
following thermal injury hyperfibrinolysis as determined by TEG
portends a worse prognosis (Pusateri et al., 2020).

Hemostatic profiles of patients with BIC and hyperthermia
have been studied with VHAs and demonstrate superiority to CCTs
for detecting BIC (Marsden et al., 2017). Additionally, VHAs have
shown to be an indispensable tool for identifying the cause of
hypocoagulation in patients with severe burn injury (Presnyakova
et al., 2021). ROTEM was also found to be useful in providing real-
time guidance for the administration of blood products in severe
burns (Bugaev et al., 2020). The resuscitation of bleeding during
major burn surgery has not been standardized, yet it has been noted
that TEG/ROTEM analysis of intraoperative blood samples
demonstrates reduced clot strength. Therefore, it has been
recommended that resuscitation of patients with burn injuries in
shock should aim for normal hemostasis using point-of-care VHA
monitoring of hemostatic competence during surgery and
resuscitation (Welling et al., 2019). Computational thrombin
modeling as well as thrombin generation assays (TGA) have
confirmed the validity of VHAs to guide resuscitation for
patients with severe BIC who are in shock (Ball et al., 2020).
The hypercoagulable state is commonly observed in post-burn
patients with BIC. An etiology for this hypercoagulable state has
been suggested as the hypermetabolism of fibrinogen with
subsequent increase in rebound synthesis of fibrinogen. This
rebound as a reaction to enhanced fibrinogen degradation
manifests by increased TEG LY60 with increased clotting speed
and strength by significantly increased TEG α-angle and MA
(Martini et al., 2020). Recent studies of rapid TEG (rTEG) to
predict resuscitation volumes and outcomes in patients with BIC
have demonstrated that 75% of these patients are hypercoagulable
on admission while 25% are hypocoagulable on admission. The use
of VHAs to guide the complicated resuscitation of these patients
has demonstrated that as much as a five-fold increase in risk of
supranormal resuscitation occurs in patients with BIC and
abnormally long activated clotting times. For patients with BIC
and SHINE, the use of VHAs provides essential guidance for the
proper utilization not only of crystalloid, but also of other blood
components (Huzar et al., 2018).

FIGURE 11
Evolution of Thromboelastography (TEG) Tracings During
Resuscitation of a Patient with Amniotic Fluid Embolism. During
induction of labor, a 35-year-old woman had a sudden cardiac arrest
due to amniotic fluid embolism (AFE). She developed immediate
disseminated intravascular coagulation, respiratory failure, and renal
failure requiring mechanical ventilation and dialysis. Immediate
delivery of the fetus by cesarean section was followed by normal
APGAR scores at 9 min. Both child and mother were discharged from
the hospital with no residual complications. TEG tracing (A)
demonstrates a flat line indicating no clot formation. Two hours after
the first blood draw, the laboratory called to say that the aPTT was
excessively prolonged and must be a laboratory error. TEG tracing
(B,C) show gradual improvement of TEG tracings at 2 and 8 h
following cardiac arrest. Resuscitation required in total 12 units of
packed red blood cells, six units of plasma, three units of platelets, four
10-unit doses of cryoprecipitate, two doses of recombinant factor VIIa
at 80 μg/kg/dose, and 2,000 units of prothrombin complex
concentrate (Hurwich et al., 2016). Abbreviations: aPTT, activated
Partial Thromboplastin Time; TEG, Thromboelastography. Created
with BioRender.com.
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An interesting therapeutic phenomenon has been reported
whereby hyperthermic patients have been treated with plasma
rather than crystalloids in attempt to protect the endothelial
glycocalyx. Since plasma has shown to protect the glycocalyx
layer of the endothelium for TIC patients, it has been proposed
that plasma is a better resuscitation fluid for patients with burn
wounds for its dual abilities in restoring intravascular volume and
therapeutic effect on the endothelium (Gurney et al., 2019).

At the other extreme, hypothermia alters fibrinogen and platelet
function as measured by VHAs. Plasma composition which is
reflected by VHAs can determine the type of coagulopathy
associated with hypothermia. Even moderate hypothermia can
impair thrombin generation as determined by VHA analysis.
Significant hypothermia demonstrates inhibition of thrombin
generation as manifested by prolonged R/CT, a reduction in the
α-angle, and a significant reduction of platelet function as
determined by multiple electrode aggregometry (MEA)
(Mitrophanov et al., 2014; Wallner et al., 2020).

4.7 Envenomation/intoxication

VICC uncommonly causes hemorrhagic and/or distributive
shock in the western world, but much more commonly afflicts

rural areas and low-to-middle income countries. However, there is
also increasing frequency in urban areas in Western countries due to
an interest in exotic pets. In addition to the immediate treatment with
antivenom to neutralize lethal toxins, transfusion of plasma,
cryoprecipitate, and specific clotting factors has been clarified by
using VHAs which have demonstrated procoagulant and
anticoagulant effects of snake venom. It has therefore been
proposed that VHAs should goal-direct hemostatic resuscitation in
patients with VICC (Park et al., 2020). Using TEG with platelet
mapping (TEG/PM), a case series of rattlesnake bites in North
America revealed inhibition of ADP-induced platelet activation
which was reversed by Crotalidae polyvalent immune Fab (ovine).
Fibrinolysis was present and resolved in patients for whom serial
thromboelastographs were available (Kang and Fisher, 2020).

This clinical finding has been confirmed by a study comparing
the efficacy of TEG and CCTs in diagnosing simulated Crotalus
atrox envenomation using human whole blood samples. TEG
accurately evaluated coagulopathies caused by in vitro pit viper
envenomations,confirming that VHAs are useful clinical adjuncts
for evaluating VICC (Leffers et al., 2018). Figure 12 demonstrates the
benefit of using adjunctive VHAs as well as CCTs to diagnose and
treat the coagulopathies of patients in shock caused by
envenomation (Leffers et al., 2018).

4.8 Hematologic coagulopathies

Hematologic malignancies associate with the full spectrum of
hemostatic phenotypes. Acute promyelocytic leukemia (APL) and
myeloproliferative disorders such as polycythemia vera best
exemplify the extremes of this spectrum. APL most often
manifests a hypocoagulable hyperfibrinolytic phenotype,
whereas as patients with polycythemia vera are hypercoagulable
(Walsh et al., 2019; Walsh et al., 2020a). Patients with APL may
present with shock associated with hyperfibrinolysis which
progresses soon following treatment with all-trans-retinoic acid
to a fibrinolytic shutdown phenotype (Tallman and Kwaan, 1992;
Zakarija and Kwaan, 2007; Stein et al., 2009; Kwaan and Rego,
2010; Kwaan et al., 2011; Liu et al., 2011; Kwaan and Cull, 2014;
Dobson et al., 2015). This pattern of rapid transition from the
hyperfibrinolytic phenotype to fibrinolytic shutdown reflects a
similar pattern seen in the acute phase of severe TIC which
progresses from hyper-to hypo-fibrinolysis within minutes to
hours (Tallman and Kwaan, 1992; Zakarija and Kwaan, 2007;
Stein et al., 2009; Kwaan and Rego, 2010; Kwaan et al., 2011;
Liu et al., 2011; Kwaan and Cull, 2014; Moore et al., 2015a). In
APL, the hyperfibrinolytic phenotype is driven by increased
expression of tPA, annexin A2, and uPA. Inhibitors of the
coagulation cascade such as TFPI are present in APL and may
further contribute to this hyperfibrinolytic state (Kwaan and Rego,
2010; Kwaan and Cull, 2014). Therefore, whether caused by SIC or
trauma, TEG/ROTEM allow for evaluation of the patient’s
phenotype along the spectrum of hypocoagulable/
hyperfibrinolytic to hypercoagulable/hypofibrinolytic.

For patients with non-malignant etiologies such as hemophilias
or thrombocytopenias who are in shock, VHAs may direct
resuscitation by defining the hemostatic phenotype and guiding
BCT and HAT (Speybroeck et al., 2020; Bunch et al., 2022a).

FIGURE 12
Thromboelastography (TEG) Tracings Before and After
Administration of Antivenom and Blood Products. Tracing (A)
demonstrates venom-induced consumption coagulopathy (VICC)
with low α-angle and reduced maximum amplitude of a patient
who required multiple rounds of antivenom to achieve hemostatic
competence. Tracing (B) demonstrates successful treatment with
resolution of VICC. In total, this patient received 24 rounds of
antivenom, two units of packed red blood cells, and two units of
cryoprecipitate (Leffers et al., 2018). Created with BioRender.com.
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4.9 Traumatic brain injury

Coagulopathy of traumatic brain injury (CTBI) perturbs primary
hemostasis, and VHAs can be used tomonitor the progression of platelet
dysfunction (Castellino et al., 2014; Sixta et al., 2015; Maegele et al., 2017;
Samuels et al., 2019; Maegele et al., 2020; Webb et al., 2021). Early after
traumatic brain injury (TBI), VHAs have shown inhibition of platelet
receptors resulting in impaired reactivity at the receptors for ADP, AA
(Jacoby et al., 2001; Nekludov et al., 2007;Windelv et al., 2011;Wohlauer
et al., 2012; Davis et al., 2013; Castellino et al., 2014), collagen, ristocetin,
and thrombin receptor activating peptides (TRAP) (Solomon et al., 2011;
Kutcher et al., 2012; Dragan et al., 2021). The severity of TBI correlates to
the degree of platelet receptor inhibition. Evidence suggests that CTBI
may arise from the disruption of local primary hemostasis and systemic
endotheliopathy which are caused primarily by the overwhelming release
of von Willebrand Factor (VWF) and TF from the injured brain tissue
(Wu et al., 2018; Xu et al., 2020). The circulating supraphysiologic VWF
and TF likely activate platelets without adhering to a surface distant from
the site of injury, creating a pool of circulating activated but exhausted
platelets that are incapable of aggregation (Moore et al., 2021a). VHAs
may quantify dysfunction of various platelet receptors and thus, VHAs
with specialized function analysis are significantly more effective in
monitoring hemostasis and prognostication in CTBI than CCTs, as
has been shown for both isolated and multiple systemic trauma
(Nekludov et al., 2007; Simard et al., 2009; Lustenberger et al., 2010;
Kurland et al., 2012; Laroche et al., 2012; Wohlauer et al., 2012; Davis
et al., 2013; Castellino et al., 2014; Nekludov et al., 2014; Hijazi et al., 2015;
Medcalf, 2015; Dekker et al., 2016; Di Battista et al., 2016; Foley and
Conway, 2016; Yuan et al., 2016;Maegele et al., 2017; Fletcher-Sandersjöö
et al., 2020; Bradbury et al., 2021; Cannon et al., 2021). In addition to local
and systemic procoagulation, patients with CTBI more commonly
present with hypofibrinolysis than hyperfibrinolysis. Coupled with
procoagulation, fibrinolytic shutdown leads to the consumption of
platelets, coagulation factors, and fibrinogen which ultimately results
in bleeding and secondary hemorrhagic progression of TBI in the late
phase of CTBI (Hoffman and Monroe, 2009; Tian et al., 2010; Herbert
et al., 2017; Maegele et al., 2017; Maegele et al., 2020). However, the
sensitivity of VHAs to detect occult fibrinolysis in patients with CTBI is a
topic of ongoing discussion (Cotton et al., 2012; Medcalf, 2015; Moore
et al., 2016b; Rowell et al., 2020). Resuscitation of patients with TBI who
are in shock therefore requires an understanding of the numerous
contributing factors to CTBI wherein VHAs provide a greater
hemostatic profile.

4.10 Pediatrics

Another area where definition of coagulopathies based on
endothelial changes will result in much different treatments than
reliance on CCTs alone is the pediatric patient whose endothelium
differs significantly from the adult or PPH patient with SHINE. VHAs
for decades have guided resuscitation of pediatric patients undergoing
liver transplantation, cardiac surgery, cardiac transplantation, and
traumatic injury. In addition, VHAs have been monitored
hemostasis for patients on ECMO, VADs, continuous veno-venous
hemofiltration, and continuous veno-venous plasma filtration (Haas
and Faraoni, 2020). The endothelium of the pediatric population
undergoes similar changes under conditions of SHINE as with the

adult, although the urgency of diagnosis and treatment is much greater
and therefore, consideration must be made for the use of these tests for
pediatric patients in shock (Richter et al., 2022b).

Endothelial dysfunction has been implicated in pediatric critical
illness and is theorized to result from glycocalyx disruption
(Puchwein-Schwepcke et al., 2021). As the child develops, the
endothelial glycocalyx thins due to blood vessel aging, cumulative
exposure to inflammation, and other comorbidities (Richter et al.,
2022b). Vascular stiffness increases with age due to physiologic
elevations in blood pressure which contributes to the thinning of the
glycocalyx via suppression of the glycocalyx core protein glypican 1
(Mahmoud et al., 2021). Additionally, the immune system develops
to mount stronger responses to a wide range of pathogens,
increasing baseline local and systemic inflammation in the setting
of an acute response to infection (Richter et al., 2022b). Comorbid
conditions such as cyanotic heart defects, lung vascular
malformations, bronchopulmonary dysplasia, and type I diabetes
mellitus increase endothelial exposure to reactive oxygen species
which drives endothelial cells into premature senescence marked by
thinning of the glycocalyx (Erusalimsky and Skene, 2009; Jackson-
Weaver et al., 2019). In a critically ill pediatric patient, the joint effect
of blood vessel development, immune system maturation,
comorbidities, and insults such as trauma or sepsis may cause an
acute disruption of the glycocalyx with subsequent vascular
pathology and coagulopathies like the progression seen in
SHINE. Hence, real-time monitoring of coagulopathies with
VHAs may be useful in the care of critically ill pediatric patients
(Saini et al., 2019).

It has been shown in pediatric intensive care units that TEG
changes the treatment for 47% of patients and provides a better
understanding of the hemostatic phenotype in 69% of patients
(Carter et al., 2017).

The investigation of endothelial dysfunction in the pediatric
population has recently been enhanced by the presence of
multisystem inflammatory syndrome in children (MIS-C).
Abnormal levels of angiopoietin-2, sE-selectin, and VWF antigen
correlate with the vasoactive and inotropic score in patients with
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-
related MIS-C with shock (Borgel et al., 2021). For MIS-C,
inflammatory markers and ROTEM parameters significantly
correlate which are indicative of hypercoagulability and elevated
fibrinogen activity by FIBTEM MCF and elevated D-dimer. Similar
to the adult population with septic shock, pediatric patients with
MIS-C who develop shock and SHINEmay also benefit from the use
of VHAs to guide diagnosis and resuscitation (Al-Ghafry et al.,
2021).

5 Conclusion

The appropriate treatment of shock-associated coagulopathies
mandates a personalized approach to hemostatic resuscitation.
VHAs empower the clinician to appreciate the patient’s position
along the spectrum of coagulofibrinolysis, and it is this appreciation
of the various hemostatic phenotypes which enable the accurate
diagnosis and physiologic treatment of patients with all forms of
shock. Until recently, VHAs for hemostatic monitoring of patients
in shock was limited to operative settings of liver transplantation and
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cardiac surgery. Subsequent evidenced-based protocols have
validated VHA-guided resuscitation for TIC. VHAs have likewise
recently expanded use to treating medical causes of bleeding
associated with PPH, GI bleedings, liver failure, and septic shock.
Earlier identification of coagulopathic and endotheliopathic patients
with VHAs and endothelial biomarkers may enable more timely and
targeted resuscitation for those patients in all forms of shock.
However, further investigation is needed to elucidate the causal
or correlational relationship of endotheliopathy with progressive
shock, and whether restorative endothelial therapies manifest a
mortality benefit.
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Glossary

AA Arachidonic Acid

ADAM A Disintegrin And Metalloproteinase

ADP Adenosine Diphosphate

AFE Amniotic Fluid Embolism

AMP Adenosine Monophosphate

aPC activated Protein C

APL Acute Promyelocytic Leukemia

aPTT activated Partial Thromboplastin Time

AT Antithrombin III

ATP Adenosine Triphosphate

BCT Blood Component Therapy

BIC Burn-Induced Coagulopathy

CCT Conventional Coagulation Tests

CI Coagulation Index

CTBI Coagulopathy of Traumatic Brain Injury

DAMPs Damage-Associated Molecular Patterns

DIC Disseminated Intravascular Coagulation

ECMO Extracorporeal Membrane Oxygenation

eNOS endothelial Nitric Oxide Synthase

FDP Fibrin/Fibrinogen Degradation Product

GAG Glycosaminoglycan

HAT Hemostatic Adjunct Therapy

HMGB1 High Mobility Group Box 1

HS Heparan Sulfate

HSPG Heparan Sulfate Proteoglycan

ICAM-1 Intercellular Adhesion Molecule-1

ISS Injury Severity Score

LOT Lysis Onset Time

LVAD Left Ventricular Assist Device

MCF Maximum Clotting Firmness

MEA Multiple Electrode Aggregometry

MIS-C Multisystem Inflammatory Syndrome in Children

ML Maximum Lysis

MT Massive Transfusion

MTH Mild Therapeutic Hypothermia

NETs Neutrophil Extracellular Traps

PAI-1 Plasminogen Activator Inhibitor-1

PAMPs Pathogen-Associated Molecular Patterns

PBM Precision-Based Medicine

PCAS Post Cardiac Arrest Syndrome

PPH Postartum Hemorrhage

PT Prothrombin Time

RHAMM Receptor of Hyaluronan-Mediated Motility

ROSC Return Of Spontaneous Circulation

ROTEM Rotational Thromboelastometry

rTEG Rapid Thromboelastography

SHINE Shock-Induced Endotheliopathy

SHOT Systems Hypothesis of Trauma

SIC Sepsis-Induced Coagulopathy

SOFA Sequential Organ Failure Assessment

sTM soluble Thrombomodulin

Syn1 Syndecan-1

Syn4 Syndecan-4

TAFI Thrombin-Activatable Fibrinolysis Inhibitor

TBI Traumatic Brain Injury

TEG Thromboelastography

TF Tissue Factor

TFPI Tissue Factor Pathway Inhibitor

TGA Thrombin Generation Assays

TIC Trauma-Induced Coagulopathy

TIMP Tissue Inhibitor of Metalloproteinase

TLR Toll-Like Receptor

TM Thrombomodulin

tPA tissue Plasminogen Activator

TPE Therapeutic Plasma Exchange

TRAP Thrombin Receptor Activating Peptides

TXA Tranexamic Acid

VHA Viscoelastic Hemostatic Assay
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