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1 Introduction

A challenge in economic analysis is that the data represented by a vector autoregression (VAR)

can be consistent with many causal structures differentiated by distinct economic models and

primitive assumptions. Structural vector-autoregressive models (SVARs) provide a simple

framework that enables researchers to perform counter-factual experiments without fully char-

acterizing all primitives or micro-foundations that lead to the dynamic system. Concisely stated,

a n-variable SVAR analysis consists of finding an n×n matrix B that relates the reduced-form

innovations ηt to the mutually uncorrelated structural shocks et:

ηt = Bet.

The data provide ηt, but the above relationship only gives n(n+1)/2 pieces of information about

B through the reduced-form covariance restrictions. Hence n(n − 1)/2 additional restrictions

are necessary to identify B. Sims (1980) originally proposed a triangularized system to identify

B, but long-run economic restrictions, statistical restrictions based on heteroskedasticity of the

VAR innovations, or additional information in the form of high frequency data, variables exter-

nal to the SVAR, or narrative descriptions have also been employed.1 Point identification exists

if these restrictions are enough to yield a unique solution. In some cases, point identification is

achievable only by imposing restrictions that are diffi cult to defend. It may then be desirable

to abandon the goal of point identification in favor of less restrictive economic assumptions.

In this paper we are concerned with applications for which economic restrictions that permit

point identification are not available. Though the literature has focused on finding n(n− 1)/2

restrictions by appealing to theory or prior information, what seems to have been overlooked is

the information conveyed by the n(n+1)/2 atheoretical restrictions. Though they only provide

an under-identified set of solutions, the behavior of the shocks in this set is often telling about

the events that might have happened, and provides a guide to additional restrictions that need

to be imposed. Unlike a typical SVAR which puts restrictions on the dynamic responses or

propagating mechanism, we put restrictions on the shocks. For this reason, we refer to our

approach as a “shock-restricted”SVARs.

Although many types of shock-based restrictions are possible, we focus here on two main

types. The first is a set of inequality restrictions that require the identified shocks to have de-

fensible properties during special episodes of history for which a broad historical understanding

would suggest a certain behavior of the structural shocks. Historical narratives are augmented

and verified by using the data to locate distinguishing characteristics of the structural shocks.

We refer to these as event inequality constraints. The second are a set of inequality restrictions

that require the identified shocks to exhibit a non-zero correlation with certain variables exter-

1For a comprehensive review of SVAR models, see Ramey (2016), Kilian and Lutkepohl (2016).
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nal to the VAR that should be informative about the shocks of interest. We refer to these as

external variable inequality constraints. Many restrictions used in econometric modeling can be

written as external variable equality constraints. We weaken these assumptions by allowing for

inequalities.

The use of inequality constraints has a long history in the SVAR literature. They have pre-

dominantly been formulated as sign restrictions on impulse responses with zero as the threshold

value, e.g., Uhlig (2005). We entertain inequality constraints on the shocks, either on their be-

havior during particular episodes or in terms of their comovement with external variables,

possibly with non-zero thresholds. Large threshold values allow us to isolate and exploit the

information in rare events. Working with inequalities comes at the cost of foregoing point iden-

tification, but the approach nonetheless enables us to check whether shocks thought to have

happened can be recovered under the assumptions of the model. The approach also allows us to

evaluate whether assumptions such as exogeneity, zero, and unit elasticity, or others are valid.

The methodology described here is predicated on the idea that a credible identification

scheme should produce estimates of et that are congruent with our ex-post understanding of

historical events and/or with broadly accepted economic notions of a shock’s defining proper-

ties. For example, a scheme that identifies a large positive output shock in the 1982 recession

would be dismissed because the existence of a shock would be hard to defend given the historical

account of the events at the time. Similarly, a scheme that produces uncertainty shocks that

are negatively rather than positively correlated with the value of safe haven assets would be dis-

missed given an economic understanding of uncertainty as a phenomenon that enhances rather

than weakens precautionary motives. Such shock-based restrictions turn out to be valuable for

identification because, although two feasible structural models B and B̃ will generate shocks et

and ẽt with equivalent first and second moments, the et and ẽt are not necessarily the same at

any given t or in terms of their comovement with external proxy variables. In other words, two

series with equivalent properties “on average”can still have distinguishable features in certain

subsamples and/or in their comovement with external variables.

At a superficial level, the shock-based constraints appear similar to identification schemes

already present in the literature. Many important studies have used a narrative approach to

construct shock series from historical readings of political and economic events. These shock

series are typically used in an SVAR context as an external instrumental variable. A recent

literature pioneered byMertens and Ravn (2013) and Stock andWatson (2008) has emerged that

uses economic time series external to the SVAR to help with identification. These approaches

achieve point identification by assuming that the external variables have a zero correlation with

some shocks (an exogeneity assumption) and while having a nonzero correlation with other

shocks (a relevance assumption). By contrast, as in Conley, Hansen and Rossi (2012), our

methodology allows the external variables and events to exhibit departures from exogeneity.
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But while their approach is Bayesian and focuses on single equation estimation, our approach

is frequentist in the spirit of the moment inequality framework of Andrews and Soares (2010)

and focuses on system estimation. And unlike Conley et al. (2012), the motivation for the event

and external variable inequality constraints considered here is not limited to relaxing exogeneity

assumptions; the more general objective is to use them to help with identification.

Like any identification scheme, the one studied here is not without limitations. While the

approach often allows for weaker assumptions, clear conclusions may not emerge without the

imposition of multiple shock-based restrictions, each of which need to be located and defended.

This in turn requires a detailed reading of the relevant events. Moreover, alternative combina-

tions of these constraints, as well as alternative parameterizations of a given set of constraints,

may produce differing results. In such cases, a sensitivity analysis may be undertaken to reveal

how fragile the findings are to different identifying assumptions.

In what follows, we demonstrate how the methodology can be used with three applications.

In the first, building off of previous work by Kilian (2008) and Kilian and Murphy (2012), we

use an SVAR for the oil market to illustrate how to set up the restrictions and obtain a set

of plausible solutions. It is shown that, even though the dynamic responses under different

restrictions are similar, some shocks thought to have occurred in particular episodes are not

actually evident under restrictions previously used in the literature. In the second application,

we consider the SVAR used in Gertler and Karadi (2015) to assess the transmission of monetary

policy shocks. Results using our shock-based restrictions broadly support their assumption

about instrument exogeneity, but reveal that periods of monetary easing are the source of the

identifying power. Finally, inspired by the work of Mian and Sufi (2014), we use a bivariate

SVAR to estimate the macroeconomic effects of fluctuations in housing wealth on aggregate

consumption. We find that much can be said about these effects even in the absence of a

credibly valid instrument, and that the shock-based restrictions produce tighter bounds than

competing methods in the literature. A fourth example, given in Ludvigson, Ma and Ng (2019)

and hereafter referred to as LMN, is used to distinguish first from second moment shocks,

a problem for which theory offers little guidance. These different applications illustrate how

the event and external variable inequality constraints may be used together or separately, and

possibly in conjunction with other identification schemes that already exist in the literature.

A general finding is that there is much to be gained by requiring the properties of the

identified shocks to agree with major economic events that have been realized. Often, the

shock-based restrictions are rich enough to conclude that the data are consistent with a clear

causal pattern among the variables. By contrast, the common approach of focusing exclusively

on restricting the SVAR parameters to achieve identification often misses valuable information

about the structural shocks of interest. In some cases, the shocks implied by identification

schemes derived under conventional parameter restrictions appear implausible given an ex post
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understanding of major historical or economic events.

The rest of this paper is organized as follows. The next section describes the econometric

framework and the shock-based restrictions at a general level. Sections 3, 4 and 5 present an

analysis of the three applications mentioned above. Section 6 concludes.

2 Econometric Framework

Let Xt denote a n× 1 vector time series. We suppose that Xt has a reduced-form finite-order

autoregressive representation Xt =
∑p

j=1 AjXt−j + ηt, ηt ∼ (0,Ω), Ω = PP′ where P is the

unique lower-triangular Cholesky factor with non-negative diagonal elements. The reduced-form

parameters are collected into φ =
(
vec(A1)′ . . . vec(Ap)

′, vech(Ω)′
)′
. The reduced-form

innovations ηt are related to the structural SVAR shocks et by an invertible matrix H:

ηt = HΣet ≡ Bet, et ∼ (0, IK), diag (H) = 1,

where B ≡ HΣ, and Σ is a diagonal matrix with variance of the shocks in the diagonal entries.

The structural shocks et are mean zero with unit variance, serially and mutually uncorrelated.

We adopt the unit effect normalization that Hjj = 1 for all j.

The goal of the exercise is analyze the dynamic effects of et on Xt. Let “hats” denote

estimated variables. Since the autoregressive parameters Aj can be consistently estimated

under regularity conditions, the sample residuals η̂t(φ̂) are consistent estimates of ηt. The

empirical SVAR problem reduces to finding B from φ̂. But there are n2 parameters in B and

the sample covariance of η̂t only provides n(n+ 1)/2 < n2 conditions ḡZ(B) in the form

ḡZ(B) ≡ vech(Ω̂)− vech(BB′) = 0,

where the operator vech(·) takes a symmetric n × n matrix and stacks the lower triangular

half into a single vector of length n (n+ 1) /2. The VAR is therefore under-identified as there

can be infinitely many solutions satisfying the covariance restrictions ḡZ(B) = 0. Let these

uncountably many solutions be collected into the set

B̂ = {B = P̂Q : Q ∈ On, diag (B) ≥ 0, ḡZ(B) = 0},

where On is the set of n × n orthonormal matrices. We shall refer to B̂ as the unconstrained
solution set for short, with the understanding that it is not completely unconstrained given the

imposition of the covariance restrictions. To simplify notation, the dependence of B̂ on Q and

φ̂ is suppressed.

To construct the unconstrained solution set B̂, we initialize B to be the unique lower-

triangular Cholesky factor of Ω̂ with non-negative diagonal elements, P̂, and then rotate it
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by K million random orthogonal matrices Q.2 Each rotation begins by drawing an n × n

matrix M of NID(0,1) random variables. Then Q is taken to be the orthonormal matrix in the

QR decomposition of M. Since B = P̂Q, the procedure imposes the covariance restrictions

vech(Ω) =vech(BB′) by construction. Let et(B) = B−1η̂t be the shocks implied by a B ∈ B̂
for given η̂t. The moments implied by the covariance structure alone give us K million values

of B, and thus K million unconstrained values of et(B) for t = 1, ...T .

Researchers have used various types of restrictions to dismiss solutions in B̂ leading to
a smaller set that satisfies the additional identifying restrictions. A notable example is sign

restrictions or more generally inequality restrictions of the form ḡS(B) ≥ 0. Existing theoretical

and empirical work tends to place these constraints on the impulse response functions, i.e., in

terms of Xt = Ψ(L)Bet, the restrictions have focused on Ψ(L)B. Point identification requires

restrictions beyond the ones implied by the covariance structure to reduce B̂ to a singleton.

2.1 Event Inequality Constraints

Event inequality constraints are unusual episodes of history in which a broad-based (historical

and statistical) reading of the times would suggest a specific feature of the structural shocks.

The idea is that a credible identification scheme should produce shocks that are not grossly at

variance with our ex-post understanding of events, at least during periods of special interest.

Event inequality constraints put bounds k̄ =
(
k̄1, ..., k̄E

)
on the sign and magnitude of et =

B−1ηt during selected episodes collected into a vector of E event dates τ̄ = (τ̄ 1, ..., τ̄E). That

is, each “event” is associated with a specific date or dates in the sample. These shocks are

useful for identification because, from et = B−1ηt = Q′P−1ηt, we see that for Q̃ 6= Q,

ẽt = Q̃′P−1ηt = Q̃et 6= et

at any given t. This implies that constraints involving the shocks at specific time periods in

the sample could be used to constrict the number of solutions in B̂.
To illustrate the point, consider the n = 2 case:(

η1t

η2t

)
=

(
B11 B12

B21 B22

)(
e1t

e2t

)
.

With n = 2, the sample covariance of η̂t provides three restrictions, so one more is needed for

identification. But solving for e2t gives

e2t = |B|−1(−B21η1t +B11η2t),

where |B| = B11B22 − B12B21 is the determinant of B. The values of η1τ̄ and η2τ̄ are given

since we have data for event date τ in τ̄ . Hence, a restriction on the behavior of e.g., e2τ̄1,

2The basic results discussed below are little affected by using any number of draws from K = 1.5 million up
to to 60 million.
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at specific time τ̄ 1 is a non-linear restriction on B, or equivalently, on Q. With non-Gaussian

reduced-form errors, one can also see that the third and higher order moments of e2t are not

invariant to B, hence Q. This is in spite of the fact that the first and second moments of et

are invariant to Q. There is thus information in et that can be used to identify B.

Further insights can be gained if we additionally restrict BB′ = I, and B11 = −B22. In such

a special case, we can follow Uhlig (2017) and write B̂ as a function of a single parameter µ
that could take any value on the unit circle:

B̂ ≡
{

B =

(
− cos (µ) sin (µ)
sin (µ) cos (µ)

) ∣∣∣∣ µ ∈ [0, 2π]

}
.

A constraint such as e2τ̄1 ≥ k̄ reduces the set of feasible values for µ to those that lie on the

circle anywhere to the right of the blue vertical line in Figure 1. A sign restriction such as that

considered by Uhlig (2005) could further restrict the set to those values on the red arc of the

unit circle.3 To be clear, we do not impose BB′ = I or B11 = −B22 in what follows, and in

fact, we do not consider bivariate models. Nonetheless, Figure 1 serves to make the point that

all restrictions have the effect of shrinking the solution set. Using the shocks to guide these

restrictions is the thrust of this analysis.

Figure 1: Schematic Illustration of Event Inequality Constraints

Note: Example based on Uhlig (2017).

In the more general setting, there may be more than one event inequality constraint. Several

event inequality constraints may be represented as a system of inequality constraints on B:

ḡE(et(B); τ , k̄) ≥ 0.

3We are grateful to Harald Uhlig for pointing us to this illustration.
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This is tantamount to creating dummy variables from the timing of specific events, and then

putting restrictions on their correlation with the identified shocks. The motivation is that

if a particular Q generates a shock series et that is diffi cult to defend in certain episodes,

it can be removed from B̂. Such constraints could be imposed on extraordinary events such
as the major recessions, wars, and natural disasters that have been well-documented. For

example, if the first shock (say to monetary policy) is presumed to be strongly contractionary

in τ̄ = (1979:10, 1979:11, 1979:12), then one could formulate restrictions of the form

ḡE(et(B); τ̄ , k̄) =

−∑T
t=1 1t=1979:10 · e1t

−
∑T

t=1 1t=1979:11 · e1t

−
∑T

t=1 1t=1979:12 · e1t

−
 k̄1

k̄1

k̄1

 ≥ 0

to dismiss solutions that imply highly expansionary monetary policy shocks in these episodes.

The parameter k̄1 is a lower bound that reflects how contractionary these shocks are thought

to be and represents a maintained assumption of the identification scheme, analogous to the

zero restrictions of recursive identification schemes. The i-th row of ḡEi represents an inequality

with 1t=τ i as instrument. In essence, ḡE(et(B); τ , k̄) defines conditions based on the timing,

sign, and magnitude of the events to help identification. Note that event inequality constraints

put restrictions on the sign and the magnitude of et(B) rather than on the signs of impulse

responses, as is common in some SVAR approaches.

Of course, if k̄i is too big, or if the timing of the events in τ̄ are inaccurate, the solutions

that satisfy the constraints will be meaningless even if they exist. On the other hand, if such

“big”shocks are systematically found at particular episodes when no restrictions on the shocks

are imposed, we can be more confident of their occurrence. Our approach is to construct the

set of shocks in B̂ implied by the covariance structure alone, and then examine the properties of
the shocks in the periods for which the eit (B) are large. This is exemplified in the applications

below.

In concurrent work, Antolín-Díaz and Rubio-Ramírez (2018) also suggest using restrictions

on the shocks during certain episodes of history to help identification in a Bayesian setting.

They entertain event restrictions that play up the role of some shocks while simultaneously

playing down the role of others (e.g., their “Type A and B”restrictions), similar in spirit to

the traditional narrative-external instrument approach. Our event inequality constraints only

require the weaker assumption that the events be driven at least in part by one or more of the

shocks; they do not require the remaining shocks to play smaller roles. These authors also do

not use external variables, which play a role in our approach as we discuss next. A growing

number of newer research studies use event restrictions of the general form proposed here.4

4See for example, Cieslak and Pang (2019); Cieslak and Schrimpf (2019); Zeev (2018).
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2.2 External Variable Inequality Constraints

When theory or economic reasoning imply that certain variables external to the VAR should be

informative about the shocks of interest, such variables can also facilitate identification. Similar

to the event inequality constraints, restrictions involving the correlation between et = B−1ηt

and external variables, can be used to constrict the number of solutions in B̂.
To be clear that external variables in this methodology are not necessarily valid instruments,

we refer to the external variables presumed to have valuable information about the parameters of

interest simply as St. ‘Valuable’is defined in terms of a lower bound on the unit-free correlation

between St and the identified shocks, akin to the instrument relevance condition.

An example helps understand the motivation of these constraints. Consider a two variable

model

A(L)

(
X1t

X2t

)
=

(
B11 B12

B21 B22

)(
e1t

e2t

)
,

(
e1t

e2t

)
∼ N (0, I2),

where I2 is a 2 × 2 identity matrix. The covariance structure Ω = BB′ provides three unique

pieces of information, so one more restriction would be needed for point identification. If an

instrumental variable Zt exists such that (i) E[Zte1t] = 0 (exogeneity) and (ii) E[Zte2t] 6= 0

(relevance), then a unique solution for B can be obtained.

Suppose that, instead of a valid external instrument Zt, to use the terminology of Stock and

Watson (2008), we have an external proxy variable St that is not assured to be exogenous and

hence can be contemporaneously correlated with at least one structural shock. This suggests

we could represent St by

St = γe1t + Γe2t + σSeSt (1)

where eSt is an S-specific shock uncorrelated with e1t, e2t by assumption. We may want to

discard solutions in B̂ for which the absolute correlation between St and e2t is too small. The

quantity

c(B) =
Γ√

Γ2 + γ2 + σ2
S

,

measures the correlation between the component St and e2. Requiring that c(B) > c̄ is the

same as Γ2

Γ2+γ2+σ2S
> c̄2 , which is a non-linear constraint on the parameters of the St equation,

which are themselves functions of the shocks and data on St. That c is between zero and one

facilitates the parameterization of c̄.

External variable restrictions can be collected into a system of inequality constraints on B:

ḡC(et(B); S, c̄) ≥ 0,

where c̄ is a vector of lower bounds on the correlations between et(B) and S. In many applica-

tions c̄ can be close to but not exactly zero, thereby requiring that a shock merely be at least

weakly correlated with S. For example, if the first shock (say to monetary policy) is presumed
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to be correlated with an external variable St (say Fed fund futures), then one could formulate

restrictions of the form

ḡC(et(B); S, c̄) = corr (e1t, St)− c̄ ≥ 0.

Two points are worthy of emphasis. First, in conventional instrumental variable estimation,

instrument exogeneity is a maintained assumption. By contrast, our approach makes no such

exogeneity assumption. We only assert that the external variables be driven at least in part by

one or more of the shocks, thereby allowing us to narrow the set of solutions but not achieve

point identification. Of course, St itself is a valid exogenous instrument if γ = 0. But when

validity of the exogeneity assumption is questionable, then St is at best plausibly exogenous in

the terminology of Conley et al. (2012). These authors consider estimation of the equation for

X1t with endogenous regressor X2t when instrument exogeneity is not known to hold exactly,

but the parameter is point identified when the exogeneity assumption is valid. They put bounds

on the effect due to the invalid instrument, or what we refer to as St, on X1t. In contrast, we

analyze X1t and X2t jointly, and we put more structure on the role of St so that a lower bound

can be placed on its relevance for the shock or shocks of interest. Like Conley et al. (2012), such

a bound will not, in general, be enough to achieve point identification. But it could dismiss

solutions that do not achieve this bound, akin to dismissing weak instruments. Second, as in

the external instrumental variable literature, a maintained assumption of the external variable

inequality constraints is that the random processes behind the external variables are determined

outside of the VAR system. External variables St are then well suited to help with identification

whenever they are informative about the shocks of interest, while the research question is not

concerned with their behavior per se. Otherwise they should be included in the SVAR system

rather than used extraneously, which means they cannot be utilized to help with identification

in the subsystem that excludes St.

2.3 Overview

In the applications below, the event and external variable inequality constraints are used in-

dividually or jointly, and possibly in conjunction with other types of restrictions, such as con-

ventional sign restrictions on the IRFs. Suppose estimates of B are required to satisfy all such

restrictions for a given application. The constrained solution set is defined by

B̄(B; k̄, τ̄ ,S) = {B = P̂Q : Q ∈ On, diag(B) > 0;

ḡZ(B) = 0, ḡS(B) ≥ 0, ḡE(et(B); τ̄ , k̄) ≥ 0, ḡC(et(B); S) ≥ 0}.

where ḡZ(B) = 0 is the collection of covariance structure restrictions, ḡS(B) ≥ 0 is a set of sign

and other restrictions on the IRFs, ḡE(et(B); τ , k̄) ≥ 0 is the set of event inequality constraints,

and ḡC(et(B); S) ≥ 0 is the collection of external variable inequality constraints. To simplify
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notation, we simply write B̄(B; k̄, τ̄ , λ̄,S) as B̄. A particular solution can be in both B̂ and B
only if all these restrictions are satisfied. Though B̄ is still a set, it should be smaller than B̂,
which is based on the covariance restrictions alone. The additional identification restrictions

that lead to B̄ explicitly recognize that not every solution in B̂ is equally credible.
Few methods are available to evaluate the sampling uncertainty of set identified SVARs

from a frequentist perspective, and these tend to be specific to the imposition of particular

identifying restrictions. Granziera, Moon and Schorfheide (2018) suggest a projections based

method within a moment-inequality setup, but it is designed to study SVARs that only impose

restrictions on one set of impulse response functions. Gafarov, Meier and Montiel-Olea (2015)

suggest to collect parameters of the reduced-form model in a 1 − α Wald ellipsoid but the

approach is conservative. For the method to get an exact coverage of 1 − α, the radius of the
Wald-ellipsoid needs to be carefully calibrated. As discussed in Kilian and Lutkepohl (2016),

even with these adjustments, existing frequentist confidence sets for set-identified models still

tend to be too wide to be informative. It is fair to say that there exists no generally agreed upon

method for conducting inference in set-identified SVARs, let alone one proven to have correct

frequentist coverage properties for shock-restricted SVARs of the type considered here. This

challenging inference problem is left to future work, while this paper focuses on identification

alone.

With this in mind, it is still desirable to have an informal sense of sampling variation, so we

undertake a bootstrap Monte Carlo procedure that is detailed in the Online Appendix. While

not proof of a valid inference procedure, the simulations generate R samples of constrained

solution sets to help assess the sensitivity of our findings to different samples of data. The

Online Appendix describes a Monte Carlo simulation that bootstraps from the et (B) shocks

for theXt system to create percentile intervals for the sets of impulse responses. These intervals

are reported in several figures below.

We now turn to three SVAR studies to illustrate the potential usage of shock-based restric-

tions in particular applications.

3 Application 1: An Empirical Analysis of the Oil Market

In this section we consider an SVAR model of the oil market based on Kilian (2009) and Kilian

and Murphy (2012) (KM hereafter). The objective of these studies is to determine the role of

oil supply versus oil demand in driving volatility in oil price changes. These authors consider

an SVAR with three variables: Xt =
(
∆prodt reat rpot

)′
where ∆prodt is the percentage

change in global crude oil production, reat is the global demand of industrial commodities

variable constructed in Kilian (2009), and rpot is the real oil price. Kilian (2009) refers to reat
simply as a variable that measures “aggregate demand,”for commodities in general, a concept
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to be distinguished from an oil market specific demand. The three structural shocks of interest

to oil supply shock, aggregate demand shock, and to oil-specific demand shock. These are

collected into the vector et, which is related to the reduced-form errors ηt throughη∆prod,t

ηrea,t
ηrpo,t

 =

B11 B12 B13

B21 B22 B33

B31 B32 B33

e∆prod,t

erea,t
erpo,t

 . (2)

3.1 Motivating Facts

Much has been written about the correlation between oil prices and geopolitical as well economic

events. See, for example, Hamilton (2013) and Baumeister and Kilian (2016) for recent reviews.

An extensive narrative history of big economic events in the oil market can also be found in

Kilian and Murphy (2014) (KM2). However, their causal relations and more precisely the

relative importance of the sources of fluctuations in the oil market is still a matter of debate.

Figure 2 plots the change in the real oil price over time in our sample, 1973:02 through

2004:09. The two largest spikes in the unconditional oil price change occur in (i) 1986:02, with

a sharp downward spike following the collapse of OPEC, and (ii) 1990:08, with a sharp upward

spike in the month of the Kuwait invasion by the U.S. If a reading of events in these months

suggests that the large oil price changes are partly attributable to oil supply shocks, we would

expect a spike of the appropriate sign in the structural e∆prod,t shock during these episodes.

Therefore, we turn to the unconstrained set B̂ to see whether the data identify these as large
oil supply shock events.

We first search over increasingly large numbers of rotations (up to 20 million) in B̂ over all
time periods for the date with the smallest oil supply shock e∆prod,t (i.e., largest negative oil

supply shock) and find that it is 1990:08, the month of the Kuwait invasion by the U.S. This

also coincides with the date with the most minima in the oil supply shock e∆prod,t across all

rotations. We further search over increasingly large numbers of rotations in B̂ over all time
periods for the date with the biggest oil supply shock e∆prod,t (i.e., largest positive oil supply

shock) and find that it is 1986:02 following the collapse of OPEC. This is also the date with the

most maxima for e∆prod,t across all rotations. These findings are consistent with the hypothesis

that the large spikes in the oil price during these months were at least partly attributable to oil

supply disruptions. At the same time, KM2 have argued that the oil price increase in 1990:08

was caused by both a negative oil supply shock and a positive oil-specific demand shock. We

therefore repeat the search over increasingly large numbers of rotations in B̂ over all time periods
for the date with the largest oil specific demand shock erpo,t. Consistent with the arguments

in KM2, the date with the largest erpo,t is again 1990:08, the month of the Kuwait invasion by

the U.S. This is also the date in our sample with the most maxima in erpo,t across all rotations.

In addition, we find that the date with the smallest oil specific demand shock erpo,t is 1986:02,
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Figure 2: Oil Price Change
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The figure plots the standardized change in the real oil price change. The sample spans the period 1975:01-

2004:09.

following the collapse of OPEC, which is also the date with the most minima in erpo,t across

all rotations. Thus, the covariance structure of the data alone provides overwhelming evidence

of both large oil supply and oil-specific demand shocks in the months 1990:08 and 1986:02,

respectively. We note that the event dates identified using the above methodology remain the

same regardless of the number of rotations, in a range from K = 1.5 million to 20 million. We

therefore use the smaller number for the estimation discussed below.

As observed by KM2, the collapse of OPEC in early 1986 was preceded by an announcement

in late 1985 by Saudi Arabia that it would no longer attempt to prop up the price of oil by

reducing its oil production. According to the historical evidence presented in KM2, the actual

supply disruption that created a major positive shock to the flow supply of oil around the

OPEC collapse took place over several months between 1985:12 and roughly 1986:06, and was

accompanied in the short run by lower storage demand as oil price expectations fell. The his-

torical account given in Hamilton (2013) generally agrees and argues that the Saudi’s “ramped

up”production around this time, leading to a positive “oil supply shock for producers.”This

suggests that the OPEC collapse may be better characterized as a sequence of positive oil

supply shocks between 1985:12 and 1986:06, rather than a single shock in one month.

Kilian (2008) provides an “exogenous oil supply shock”external variable series that measures

shortfalls in OPEC oil production associated with wars and civil disruptions. This indicator
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is used as an external instrument for point identifying oil price shocks in Montiel-Olea, Stock

and Watson (2015) (MSW). Production shortfalls would be a valid instrumental variable if it

were uncorrelated with the two demand shocks erea,t and erpo,t. The assumption was used in

MSW to point identify oil supply shocks e∆prod,t in the above SVAR. But the variable could

be an imperfect indicator of actual production shortfalls and measurement error is possible.

Furthermore, some have argued that oil production shortfalls are at least partly caused by

political events such as wars or embargoes that could have direct implications for oil demand

(e.g., Hamilton (2013)). Yet, even if the shortfall series is not truly exogenous with respect to

the two demand shocks, it may still be relevant for oil supply shocks. Our approach is to use

the information in the shortfall variable by exploiting its correlation with the oil supply shock

but without insisting on zero correlations with the two oil demand shocks.

3.2 Shock-Based Constraints

With this background in hand, we now consider several different combinations of restrictions to

aid with identification. These are summarized in Table 1 below. The row labeled ḡZ = 0 denotes

a weak set of constraints based on the covariance restrictions alone. Kilian (2009) combines

the covariance restrictions with traditional sign restrictions on the impact impulse response

functions. This combination of restrictions is referred to as the K09 restrictions in Table 1.

KM combine the K09 restrictions with restrictions on certain combinations of parameters in

the B matrix that place upper bounds on the ratios B13
B33

and B12
B32
.5 Results from these combined

restrictions are used to form a basis of comparison with our distinct shock-based restrictions

and are labeled KKM in Table 1.

Next we consider adding both event inequality constraints ḡE ≥ 0 and external variable

inequality constraints ḡC ≥ 0 to help with identification of oil supply versus aggregate and oil

demand shocks. These are combined with the covariance and K09 sign restrictions and labeled

SEE in Table 1. Event inequality constraints are summarized by ḡE1 and ḡE2 in row SEE of

the table. Constraint ḡE1 requires both a large negative oil supply shock and a large positive

oil-specific demand shock in the month of the Kuwait invasion. Specifically, constraint ḡE1
requires that the e∆prod,τ1 found in period τ 1 of August 1990 be small and less than k̄1 standard

deviations below the mean and that the erpo,τ1 be large and exceed k̄2 standard deviations above

the mean. Constraint ḡE2 requires both positive oil supply and negative oil-specific demand

shocks during the OPEC collapse. Specifically, the constraint requires the cumulation of e∆prod,t

in τ 2 = [1985:12, 1986:06] to be non-negative, which is to say that their sum must be above

5KM interpret the restrictions on the ratios B13

B33
and B12

B32
as restrictions on elasticities of oil supply to

demand shocks. There is, however, disagreement about whether these particular restrictions isolate the relevant
elasticities (see the debate between Baumeister and Hamilton (2019) and Kilian (2019)). We take no stand on
the interpretation of these restrictions and instead merely implement the same restrictions used in KM solely
to form a basis of comparison with the shock-based restrictions of this paper.

13



Table 1: Identification Restrictions, Oil Application

Model Restrictions Notes
ḡZ = 0 vec(Ω̂)− vech(BB′) = 0 covariance restrictions
K09 ḡZ = 0 covariance restrictions

B11 < 0, B12 > 0, B13 > 0 sign restrictions (Kilian (2009))
B21 < 0, B22 > 0, B23 < 0
B31 > 0, B32 > 0, B33 > 0

KKM ḡZ = 0, K09, B13
B33

< 0.258, B12
B32

< 0.258 covariance, sign, and KM restrictions
SEE ḡZ = 0 covariance restrictions

K09 sign restrictions
ḡE1: k̄1 − e∆prod,τ̄1 ≥ 0, erpo,τ̄1 − k̄2 ≥ 0 τ̄ 1 = 1990:08 (Kuwait invasion)

k̄1 = −2.4 std. = q50(e∆prod,τ̄1)
k̄2 = 2.9 std. = q50(erpo.τ̄1)

ḡE2:
∑

τ∈τ̄2 e∆prod,τ ≥ 0, −
∑

τ∈τ̄2 erpo,τ ≥ 0 τ̄ 2 = [1985:12, 1986:06] (OPEC collapse)

ḡC : 0 ≥ corr(OSt, e∆prod,t) St = OSt: oil production shortfall series
SEE(a) k̄1 = −4.5 std. = q25(e∆prod,τ̄1)

k̄2 = 2.9 std. = q50(erpo,τ̄1)
SEE(b) k̄1 = −0.3 std. = q75(e∆prod,τ̄1)

k̄2 = 2.9 std. = q50(erpo,τ̄1)
SEE(c) k̄1 = −2.4 std. = q50(e∆prod,τ̄1)

k̄2 = 4.5 std. = q75(erpo,τ̄1)
SEE(d) k̄1 = −2.4 std. = q50(e∆prod,τ̄1)

k̄2 = 0.7 std. = q25(erpo,τ̄1)
MSW ḡZ = 0 covariance restrictions

E[Zte∆prod,t] 6= 0 Zt = OSt used as external instrument
E[Zterea,t] = E[Zterpo,t] = 0

Notes: The table summarizes restrictions in different constrained solution sets. qα (x) refers to the α percentile

value of x.

average, and the cumulation of erpo,t in τ 2 = [1985:12, 1986:06] to be non-positive, which is to

say that their sum may not be above average. The restrictions labeled SEE and SEE(a)-SEE(d)

set different values for the threshold parameters k =
(
k1, k2

)′
and will be discussed below.

Note that there is nothing in the event inequality constraints that explicitly precludes the

presence of the global demand shock erea,t from playing an important role in these episodes.

Nor is there anything that restricts the relative importance of the three shocks in any particular

episode. The event inequality constraints merely require that oil supply and oil-specific shocks

played some role in the price spikes of these episodes, where the magnitude and sign of that

role are determined by the parameters k̄1 and k̄2.

The external variable inequality constraints are summarized as ḡC ≥ 0 in row SEE of Table

1. We use the “oil production shortfall”series constructed by Kilian (2008) and denoted OSt
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as our St.6 The constraint requires that any oil supply shocks e∆prod,t(B) formed from B ∈B̂
be negatively correlated with OSt, implying that production shortfalls resulting from wars and

embargoes coincide with decreases in e∆prod,t, or negative oil supply shocks.

Finally, the restrictions labeled MSW describe the constraints used in MSW to point identify

oil supply shocks e∆prod,t in the above SVAR. These restrictions assume OSt is a valid external

instrument and we therefore label it Zt in that case. MSW are concerned that OSt could be a

weak instrument. By contrast, the SEE constraints do not treat OSt as a valid instrument, but

nonetheless assume that it is relevant for supply shocks.

3.3 Results for the Oil SVAR

We use the same data used in Kilian (2009) and the largest common sample period across Kilian

(2008) and Kilian (2009) (1973:02-2004:09) for the analysis. Following KM, we use p = 24 lags

in the VAR to capture the long swings in the oil market. After losing observations to lags and

differencing, the estimation sample is 1975:02 to 2004:09. We study the dynamic causal effects

and propagating mechanisms of the shocks under different constraints and parameterizations

using impulse response functions. All figures show responses to one standard deviation shocks

in the direction that raise the price of oil.

Figure 3 shows the IRFs of the real price of oil to an oil supply shock, an aggregate commod-

ity demand shock, and an oil market specific demand shock, under several different combinations

of identifying restrictions. The IRFs using the KM restrictions are shown in black dotted lines

of the left panel of Figure 3. As emphasized by KM and KM2, the bounds of these sets are wide

and display a substantial range of responses to all three shocks. Among 1.5 million rotations,

4, 878 solutions satisfy both the covariance and the sign restrictions. For comparison, the top

two panels plot the IRF obtained by the point-identified model of MSW, which uses OSt as an

external instrument to recover e∆prod,t. This estimate implies that oil supply shocks have tiny

if not zero effects on oil prices. Indeed they are smaller for several months after the shock than

that implied by even the lower bound of the solution set obtained under K09 restriction.

Next we consider the IRFs using the KKM restrictions These are shown in grey shaded

areas on the left panel of Figure 3. Only 34 solutions satisfy this combination of constraints,

implying that the KM constraints alone severely shrink the number of admissible solutions. The

dynamic responses to movements in e∆prod,t under the KKM restrictions are numerically small

(top panel), indicating that the solutions generating the large responses of oil price to a supply

shock have been eliminated by the KM restrictions on B13
B33

and B12
B32
. Instead, the aggregate

demand shock erea,t has large effects on the price of oil, both in the short- and long-run. Some

KKM solutions also imply that the oil-specific demand shock erpo,t has quantitatively large

6The data for OSt are based on the replication files of Montiel-Olea et al. (2015) and span the period 1973:02
to 2004:09.
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Figure 3: Impulse Response of Real Oil Prices
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The figure reports solution sets of impulse response to positive, one standard deviation shocks for system Xt = (∆prodt, reat, rpot)
′ under KM, KKM,

MSW and SEE restrictions listed in Table 1. The sample spans the period 1973:02 to 2004:09.
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effects on oil price changes, but the upper and lower bound of the responses to this shock are

much wider and thus the findings in this regard are less conclusive.

We now consider the SEE restrictions which replace the KM restrictions with, sign, event,

and external variable inequality constraints. To implement these restrictions, we need to set

parameters of the “big shock”event inequality constraints k =
(
k1, k2

)′
. To do so, we return to

the unconstrained set B̂ to examine the observed magnitudes of the shocks in these episodes. We
first examine a very large number of rotations (20 million) to locate the largest absolute values of

e∆prod,τ1 and erpo,τ1 in τ 1 = 1990:08 and find that the largest negative value for e∆prod,τ1 is -5.98

standard deviations, while the largest positive value for erpo,τ1 is 5.98 standard deviations. The

threshold parameters of the big shock constraints set lower bounds for the absolute magnitude of

the shocks in these episodes, thus we choose them so that the relevant constraint is considerably

less restrictive than what would be implied by these largest absolute values. To start, we set

k =
(
k1, k2

)′
= (−2.4, 2.9). These numbers can be more readily interpreted by noting that

they would roughly correspond to the 50th percentile values of e∆prod,τ1 and erpo,τ1in B̂ in τ 1 =

1990:08. The constraints therefore require a “big”negative oil supply shock to be at most 2.4

standard deviations below the mean (in the bottom 50% of all e∆prod,τ1 in B̂ in 1990:08), and
they require a “big”positive oil-specific demand shock to be at least 2.9 standard deviations

above the mean (in the top 50% of all erpo,τ1). The values for k are reported in Table 1 along

with the corresponding percentile values. We denote the α percentile value of x as qα (x).

We also check that the absolute magnitude of the shocks on these event dates remains for

all practical purposes the same regardless of the number of rotations, in a range from K = 1.5

million to 20 million. For example, the smallest erpo,τ1 in B̂ is -5.97 when examining 1.5 million
draws, and is -5.98 for 20 million. We therefore use the smaller number of draws for the various

estimations discussed below.

The IRFs associated with the SEE restrictions under the above parameterization of k are

shown as grey shaded areas in the right panel of Figure 3, along with 90 percent bands computed

using the boot-strap sampling approach described in the appendix. Comparing results across

the two panels, we find that the set of responses to the two demand shocks are tighter than

those under the KKM restrictions, and preserve solutions that produce larger oil price responses

to demand shocks of either type than to supply shocks. These results are similar qualitatively

to those reported in KM. One difference between the sets produced by the SEE constraints

versus the KKM restrictions is that the range of responses to the oil supply shock under the

SEE restrictions includes values that are somewhat larger than under the KKM restrictions,

even though the effects of oil supply shocks are still smaller than those of the demand shocks.

The MSW point estimates give responses to oil supply shocks that fall outside the bounds of

both the KKM and SEE solution sets.

All identification approaches require assumptions, and it is important to check the sensitivity
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Figure 4: IRFs under Different Parameterizations of Big Shocks: Oil Application
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Weaker/tighter constraints on erpo in 1990:08
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The figure reports solution set of impulse response to positive, one standard deviation shocks for system Xt = (∆prodt, reat, rpot)
′ under SEE, SEE(a) to

SEE (d) restrictions listed in Table 1. SEE (a) and SEE (c) correspond to tighter event inequality constraints whereas SEE(b) and SEE(d) corresponds

to weaker event inequality constraints. The sample spans the period 1973:02 to 2004:09.
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of the results to model assumptions. For the present application, the parameters k =
(
k̄1, k̄2

)′
stipulate lower bounds in absolute terms for the oil supply or oil-specific demand shocks, re-

spectively, during the Kuwait invasion. To assess the sensitivity of the results the this para-

meterization, Figure 4 shows the IRFs under four different values for these parameters. Case

SEE(a) sets k̄1 to -4.5 standard deviations, which is the q25(e1) percentile value of e∆prod,t in B̂
at τ 1 while keeping k̄2 at q50(erpo,t). Case SEE(b) sets k̄1 to -0.3 standard deviations, which is

the q75(e1) percentile value of e∆prod,t in B̂ at τ 1, also keeping k̄2 while keeping k̄2 at q50(erpo,t).

The first parameterization tightens while the second loosens the first event inequality constraint

relative to the SEE case. Case SEE(c) keeps k̄1 at q50(e∆prod,t) but sets k̄2 to 4.5 standard de-

viations, which is the 75th percentile value of erpo,t in B̂ at τ 2, while Case SEE(d) keeps k̄1 at

q50(e∆prod,t) and sets k̄2 to 0.7 standard deviations, which corresponds to the 25th percentile

value of erpo,t in B̂ at τ 2. Case SEE(c) loosens while SEE(d) tightens the second event inequality

constraint relative to the SEE case. The left panel of Figure 4 shows the IRFs for SEE(a) and

SEE(b) while the right panel shows the IRFs for SEE(c) and SEE(d). Its clear from the figure

that the qualitative results are not sensitive to the parameterization of the event inequality

constraint. Under all four parameterizations, positive shocks to both types of demand lead to a

sharp increases in the price of oil that persists for many months, while the effects of oil supply

shocks are more muted. No matter which parameterization, the responses to the aggregate

demand shock is bounded well away from zero as the horizon increases.

3.4 Properties of the Shocks

Although a stated objective of any SVAR analysis is to identify the structural shocks, the

properties of the shocks are rarely scrutinized. By contrast, in the methodology here the shocks

are of explicit interest, so we examine their properties. One property of interest concerns the

normality of the shocks. The e∆prod,t identified by imposing the SEE restrictions exhibit strong

non-Gaussian features. Averaged across solutions, the coeffi cient of skewness and kurtosis are

−0.6102 and 5.4865, respectively. But the e∆prod,t series implied by the KKM restrictions exhibit

even greater departures from normality, with an average skewness of −1.4603 and a kurtosis of

11.0722. The stronger departures from Gaussianity arises because the KKM constraints accept

solutions that imply larger e∆prod,t shocks in some time periods.

To have a clearer picture of the properties of the shocks identified by the SEE versus KKM

restrictions, Figure 5 plots the timing of “large shocks” in both cases, where for the SEE

restriction case we set k =
(
k1, k2

)′
equal to the 50th percentile values in B̂ of the relevant

shocks in 1990:08. For the purposes of the figure, large shocks are defined to be those in

excess of two standard deviations above (or below) the mean. In view of the non-normality

of the shocks, the figure also plots horizontal lines corresponding to three standard deviation
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Figure 5: Large Shocks in Oil Application
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The figure shows all shocks in the solution set that are at least 2 standard deviations above/below the uncondi-

tional mean from the solution set for system Xt = (∆prodt, reat, rpot)
′ under KKM and SEE restrictions listed

in Table 1. The thin vertical line shows the date 1990:08 and the shaded vertical bar shows the range of dates

associated with the OPEC collapse, 1985:12-1986:06. The horizontal line corresponds to 3 standard deviations

above/below the unconditional mean of each series. The sample spans the period 1973:02 to 2004:09.

of the unit shocks. The figure reports the standard deviation of all such large shocks in the

identified sets B̄ based on the SEE restrictions and compares them to those under the KKM

restrictions.7 By design, the e∆prod,t shocks generated by the SEE restrictions, displayed in red,

should be less than −2.45 standard deviations in 1990:08, corresponding to the median value

in B̂ in 1990:08. In fact, on that date, 49 solutions have a supply shock less than −5 standard

deviations. Moreover, this is the only date in the solution sets that exhibit values for e∆prod,t

that are smaller than negative five standard deviations. By way of comparison, the KKM

restrictions also identify large negative supply shocks in the month of the Kuwait invasion.

On the other hand, the spotlighted area in Figure 5 around the OPEC collapse shows that

the KKM restrictions produce no big positive oil supply shocks at any time during this episode.

7If multiple solutions have shocks on a given date that are larger in absolute value than two standard
deviations, they are represented in the by bars that lie exactly on top of one another. Thus, the length of the
bar indicates the size of the largest shock for the month, among all solutions.
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This implication of the KKM restrictions appears empirically implausible on the basis of a

broadly-shared ex post understanding of the OPEC collapse. Indeed, both KM2 and Hamilton

(2013) agree that Saudi Arabia created a major positive “shock” to the flow supply of oil

between the end of 1985 and the middle of 1986, which contributed to a large drop in its

price. These findings underscore how identification schemes derived exclusively from attention

to parameter restrictions may miss valuable clues from the data that can help evaluate the

validity of the identifying restrictions.

Figure 5 shows that the SEE constraints by no means preclude big erea,t shocks from occur-

ring in 1990:08 and τ 2 ∈ [1985:12, 1986:06], even though behavior of erea,t was left unconstrained

throughout the entire sample. Moreover, the SEE constraints generate several large erea,t and

erpo,t of both signs outside of our events, and large e∆prod,t outside of constrained event dates are

numerous under both the KKM and SEE identification schemes. Regardless of which identifi-

cation scheme is used, large negative supply shocks coexist with large positive demand shocks

in 1990:08.

We close this section by investigating possible reasons why the MSW point estimate di-

verges so much from the set-identified results under the SEE restrictions. MSW use the oil

shortfall series OSt as an external instrument for identifying e∆prod,t, which explicitly imposes

the exogeneity assumption that OSt be uncorrelated with both erpo,t and erea,t. The solution

sets given by the SEE restrictions impose no such assumption but are free to recover it if they

are consistent with those restrictions. Figure 6 presents a histogram showing the distribution

of estimated correlations between the OSt and erea,t (top panel), and between OSt and erpo,t
(bottom panel) across all solutions in the constrained solution set B̄ under the SEE parameter
values for k =

(
k1, k2

)′
. While the 90 percent bands for the correlations between OSt and erea,t

include zero, there is no solution that exhibits a zero correlation between OSt and erpo,t. Given

that exogeneity of OSt is inconsistent with the SEE restrictions, the MSW point estimate can

only lie outside the bounds of the solution set, thereby explaining the divergent results.

4 Application 2: Monetary Policy and Financial Markets

In this section we consider an SVAR application based on the baseline specification in Gertler

and Karadi (2015) (GK hereafter), which studies role of monetary policy shocks on the aggregate

economy. The GK system is comprised of the following variables: Xt = (it, cpit, ipt, ebpt)
′ ,

where it is a “policy indicator,”measured here as the one-year Treasury bill (t-bill) rate, cpit
is the log of the Consumer Price Index, ipt is the log of industrial production, and ebpt is the

excess bond premium (EBP) of Gilchrist and Zakrajšek (2012), a measure of credit spreads.

Let the four structural shocks of the SVAR be collected into the vector

et = (ei,t, ecpi,t, eip,t, eebp,t)
′ .
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Figure 6: Distribution of Correlations with Oil Demand Shocks

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
0

5

10

15

20

25

-0.1 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0 0.01
0

5

10

15

20

25

The figure displays histograms for all values of correlations between oil shortfall and global demand shock (top

panel) and correlations between oil shortfall and oil specific demand shock (bottom panel) in an solution set for

system Xt = (∆prodt, reat, rpot)
′ under SEE restriction listed in Table 1. The sample spans the period 1973:02

to 2004:09.

The first shock, ei,t, is the monetary policy shock of interest. This shock is the component of

the VAR forecast error for it that is uncorrelated with the other structural shocks in the SVAR.

We refer to ecpi,t, eip,t, and eebp,t as “non-policy”shocks.

The objective in GK is to identify ei,t and trace out its dynamic effects on financial market

variables such as ebpt. To do so, they construct the difference in the price of the 3-month fed

funds futures contract between 20 minutes after and 10 minutes before a Federal Open Market

Committee (FOMC) announcement. Since these are surprise movements in the fed funds futures

price in tight windows of monetary policy announcements, they are arguably attributable to

monetary policy. The VAR requires monthly data, so GK turn the futures surprises on FOMC

days into monthly average surprises by allocating them between consecutive calendar months

based on when they happened within the calendar month.8 This monthly variable (denoted

FF4 in GK) is the external instrument and will be denoted Zt below. GK then point identify

8Specifically, if they happened at the beginning of the month, GK allocate most of the surprises to the month
(and the rest to the next month). If they happened at the end of the month, GK allocate them mostly to the
next month. We refer the reader to GK for further details.
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the policy shock ei,t by maintaining the following assumptions:

E [Ztei,t] = φ 6= 0 (inst. relevance) (3)

E[Ztecpi,t] = E[Zteip,t] = E[Zteebp,t] = 0 (inst. exogeneity) (4)

Restriction (3) requires Zt to have a non-zero correlation with the policy shock it identifies,

implying that the instrument must be relevant. Restriction (4) requires Zt to be uncorrelated

with all the other shocks in the system, implying that the instrument must be exogenous.

At this point it is useful to note that the term exogenous has different meanings in different

contexts. It is reasonable to assume, as GK do, that innovations in the fed funds futures prices

on FOMC days capture “exogenous”movements in Federal Reserve policy in the sense that

they are not influenced by macroeconomic and financial conditions around tight windows of

FOMC announcements. The restrictions in (4), however, require a type of exogeneity with a

different connotation. Specifically, they require that the innovations in fed funds futures prices

around FOMC announcements in a month have no contemporaneous influence on the forecast

errors of the non-policy variables, except insofar as they affect ei,t.

While the assumptions inherent in (4) are a reasonable starting place, relaxing them is of

interest for at least two reasons. First, a number of authors have argued that financial vari-

ables other than short-term Treasury rates serve as additional policy indicators that capture

distinct channels of monetary policy transmission (e.g., Gagnon, Raskin, Remache and Sack

(2011), Krishnamurthy and Vissing-Jorgensen (2011), Krishnamurthy and Vissing-Jorgensen

(2013), Swanson (2017)). If true, the exogeneity assumption (4) for variables such as ebpt may

be overly strong, since credit spreads are likely to reflect disparate policy transmission chan-

nels not captured by short-term interest rates. Second, and relatedly, the time-aggregation

required to turn futures market surprises on FOMC days into monthly average surprises makes

the exogeneity assumptions less tenable. For example, an FOMC announcement that occurs

in the middle of the month must be assumed to have no relation with the non-policy shocks

ecpi,t, eip,t, eebp,t at any time within that month, including the two weeks following the announce-

ment. If monetary policy has effects that operate through channels orthogonal to short-term

interest rates, e.g., if they affect other assets which in turn quickly affect investment plans

and/or credit spreads, the exogeneity restriction (4) would be invalid.

According to either reason, (4) could be relaxed. The first reason suggests that variables

such as ebpt should be included in a vector of policy indicators along with it. In this case,

there would no longer be a single policy shock ei,t in the system but instead a vector of policy

shocks (ei,t, eebp,t)
′, while the scalar parameter φ would become a two dimensional vector φ.

The second reason suggests that any shock ecpi,t, eip,t, eebp,t could possibly be correlated with

Zt contemporaneously. In either case, the external instrumental variable approach to point

estimation can no longer be implemented because, with only a single instrument Zt, the system
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is now under-identified. While this renders the external instrument approach inoperative, it is

not a problem for the shock-restricted approach, which obviates the need for the exogeneity

restrictions. The challenge with the shock-restricted approach is to find other credible identi-

fying restrictions capable of substantively winnowing the number of solutions in B̂. In the next
section we illustrate how different types of shock-based restrictions can be used to generate

solution sets that still give a fairly clear picture of the dynamic causal effects of ei,t shocks in

the GK system.

4.1 Motivating Facts

Since we are interested in understanding monetary policy shocks that affect short-term interest

rates, it is useful to isolate historical episodes characterized by quantitatively large monetary

policy effects on these rates. To do so, we turn to a well-known historical record of such shocks

that is based on the Greenbook residual series presented in Romer and Romer (2004). The

Greenbook residuals show changes in the “intended”federal funds rate not taken in response

to Federal Reserve Greenbook forecasts about inflation or real growth, formed by taking the

residuals from a multivariate regression of the intended funds rate on the Greenbook forecasts.

A negative (positive) residual indicates a negative (positive) monetary policy surprise. To locate

quantitatively large policy surprises, we isolate dates for which these Greenbook residuals were

either greater than the 95th percentile value of their sample observations, or less than the

5th percentile value. We refer to the dates that satisfy these criteria as the GB95 dates (big

tightenings) and the GB05 dates (big easings), respectively.

Next we investigate whether these dates correspond to “big shock”events using the covari-

ance structure restrictions alone. We again search over increasingly large numbers of rotations

(up to 20 million) in B̂ over the GB05 dates for the date with the smallest ei,t (i.e., the biggest
surprise easing) and find that it is 1981:10. This also coincides with the date in our sample

with the most minima of ei,t across all rotations. The date with the second smallest ei,t (i.e., the

second biggest surprise easing) also falls on the date 1981:10. We therefore search for the next

smallest ei,t that occurs on a unique date among the GB05 dates and find that it is 2001:11.

This is also the date in our sample with the second most minima of ei,t across all rotations

among the GB05 dates. (In the full sample this is the date with the third most minima.) Like-

wise, we search over increasingly large numbers of rotations (up to 20 million) in B̂ in the GB95
period for the date with the largest ei,t (i.e., the biggest surprise tightening) and find that it is

1981:05. This also coincides with the date in our sample that has the most maxima of ei,t across

all rotations among the GB95 dates. (In the full sample this is the date with the third most

maxima.) The date with the second largest ei,t (i.e., the second biggest surprise tightening)

is also 1981:05. The next largest ei,t on a unique date in the GB95 dates is 1987:05. This is
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also the date in our sample with the second most maxima of ei,t across all rotations among the

GB95 dates. As for the previous application, we check that the event dates identified using the

above methodology remain the same regardless of the number of rotations, in a range from 1.5

million to 20 million. We therefore use the smaller number for the estimation discussed below.

Figure 7 plots the time series of it (top panel), the Greenbook residuals (middle panel), and

all ei,t shocks in B̂ that are at least two standard deviations above or below the mean. The
horizontal lines in the middle panel indicate the 95th and 5th percentile values of the Greenbook

residuals. The horizontal lines in the bottom panel indicate three standard deviations above

or below the mean for ei,t. What we see is that the date 1981:10 has both a very negative

Greenbook residual and one of the most negative observations on ei,t in the solution set over

the entire sample (close to −5 standard deviations). While some solutions in B̂ in the post 2005
period have ei,t smaller than −5, relatively few solutions have this property relative to the dates

1981:10 and 2001:11.9 Likewise, 1981:05 is both one of the largest tightening episodes according

to the Greenbook residuals, and a very large tightening episode according to the unconstrained

set of ei,t in that month.

Other major economic events in our sample, even if they are not big monetary policy events,

may be valid candidates for restricting the behavior of the shocks. In October of 2008, following

the collapse of Lehman brothers in late September of 2008, the Dow Jones Industrial average

began a pronounced decline and subsequently fell more than 50% over a period of 17 months.

The collapse in the market over this period has been associated with a broad-based financial

crisis that is often cited as a “trigger”of the Great Recession. We argue that these dates are

likely to be associated with a sharp increase in credit spreads, thereby justifying restrictions on

the behavior of eebt,t during these months of the financial crisis.

4.2 Shock-Based Constraints

Motivated by the historical facts just discussed, we now consider two types of shock-based

restrictions summarized in the Table below. For ease of reference, the first row re-stipulates

the restrictions used in GK and labels the “GK restrictions.”

We use the fed funds futures surprise FF4 series as St for this application. The constraints

labeled S1 employ two external variable inequality constraints ḡC1 ≥ 0 and ḡC2 ≥ 0 that require

St = FF4t to be positively correlated with both ei,t and eebp,t. Though we do not treat FF4t
as a valid instrument, it must be at least weakly correlated with both shocks to address the

concern that monetary policy might operate through multiple financial indicators and chan-

nels. The constraints under S2 use all the constraints in S1 and add two more external variable
9If multiple solutions have ei,t on a given date that are larger in absolute value than two standard deviations,

they are represented in the bottom panel by bars that lie exactly on top of one another. Thus, the length of
the bar indicates the size of the largest shock for the month, among all solutions.
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Figure 7: Monetary Variables
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The figure plots the time series of one-year tbill rate i(12)t , Romer and Romer (2004) Greenbook residuals, and

all shocks that are at least 2 standard deviations above/below the unconditional mean from the unconstrained

set for system Xt =
(
i
(12)
t , cpit, ipt, ebpt

)′
. The horizontal line in the middle panel corresponds to the 5th

and 95h percentile of Greenbook residuals. The horizontal line in the bottom panel corresponds to 3 standard

deviations above/below the unconditional mean. The thin vertical line corresponds to the dates chosen for the

event inequality constraints. The data span the period 1979:07 to 2012:06.

constraints, labeled ḡC3 and ḡC4. One would expect FF4t to be approximately uncorrelated

contemporaneously with the shocks of “slower moving”macro variables, even if such an as-

sumption is unrealistic for financial market variables such as the EBP. Thus constraints ḡC3

and ḡC4 require that the contemporaneous relation between ecpi,t and St, and between eip,t and

St to be very small, though not numerically zero, implying that FF4t is assumed to be approxi-

mately exogenous with respect to these variables. The results we present below are robust with

values of ε as large as about 0.008. We present results for much smaller values.

The models denoted SEE, SEE(a), and SEE(b) add event inequality constraints, but do

away with constraints ḡC3 and ḡC4 that restrict the correlations between FF4t and ecpi,t and

eip,t to both be close to zero. SEE uses the constraints in S1 and adds ḡE1 , ḡE2 , and ḡE3. Event

inequality constraint ḡE1 ≥ 0 requires that the EBP credit spread shock be large and exceed k̄1

and k̄2 standard deviations above the mean in either τ̄ 1 = 2008:09 or τ̄ 2 = 2008:10 (or both),
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Table 2: Identification Restrictions, Monetary Application

Model Restrictions Notes
ḡZ = 0 vec(Ω̂)− vech(BB′) = 0 covariance restrictions
GK ḡZ = 0 covariance restrictions

E[Ztei,t] 6= 0 Zt = FF4t
E[Ztecpi,t] = E[Zteip,t] = E[Zteebp,t] = 0

S1 ḡZ = 0 covariance restrictions
ḡC1: corr(St, ei,t) ≥ 0 St = FF4t
ḡC2: corr(St, eebp,t) ≥ 0

S2 S1
ḡC3: |corr (St, ecpi,t)| ≤ ε ε = 10−4

ḡC4: |corr (St, eip,t)| ≤ ε
SEE S1

ḡE1 :
(
eebp,τ̄1 ≥ k̄1

)
∨
(
eebp,τ̄2 ≥ k̄2

)
τ̄ 1=2008:09, τ̄ 2= 2008:10 (Lehman Collapse)
k̄1 = 3.4 std = q75(eebp,τ̄1)
k̄2 = 5.4 std = q75(eedp,τ̄2)

ḡE2 : ei,τ̄3 ≥ k̄3 and ei,τ̄4 ≥ k̄4 τ̄ 3=1981:05, τ̄ 4=1987:05 (Monetary Tightenings)
k̄3 = 2.6 std. = q75(ei,τ̄3)
k̄4 = 2.3 std. = q75(ei,τ̄4)

ḡE3 : ei,τ̄5 ≤ k̄5 and ei,τ̄6 ≤ k̄6 τ̄ 5=1981:10, τ̄ 6=2001:11 (Monetary Easings)
k̄5 = −3.5 std. = q25(ei,τ̄5)
k̄6 = −2.0 std. = q25(ei,τ̄6)

SEE(a) k̄3 = 1.7 std. = q50(ei,τ̄3)
k̄4 = 0.7 std. = q50(ei,τ̄4)
k̄5 = −3.5 std. = q25(ei,τ̄5)
k̄6 = −2.0 std. = q25(ei,τ̄6)

SEE(b) k̄3 = 2.6 std. = q75(ei,τ̄3)
k̄4 = 2.3 std. = q75(ei,τ̄4)
k̄5 = −2.5 std. = q50(ei,τ̄5)
k̄6 = −0.4 std. = q50(ei,τ̄6)

Notes: The table summarizes restrictions in different constrained solution sets. qα (x) refers to the α percentile

value of x.

for these months associated with the Lehman collapse and its immediate aftermath. Event

inequality constraint gE2 ≥ 0 requires that the monetary policy shock exceed k̄3 and k̄4 standard

deviations above the mean during months τ̄ 3 = 1981:05 and τ̄ 4 = 1987:05, respectively, when

the Greenbook residuals were unusually large and positive. Event inequality constraint gE3 ≥ 0

requires that the monetary policy shocks be smaller than k̄5 and k̄6 standard deviations below

the mean during months τ̄ 5 = 1981:10 and τ̄ 6 = 2001:11, respectively, when the Greenbook

residuals were unusually small. The alternatives listed in SEE(a) and SEE(b) use different

parameterizations of the parameters k̄3 - k̄6 that control how large a “big”monetary policy

shock must be and will be discussed below.
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4.3 Results for the Monetary Policy SVAR

We follow GK and set the VAR lag to be 12 months. Where available, we use the same monthly

data used by GK and otherwise stick to their sample dates, which spans the period 1979:07

to 2012:06.10 Although the VAR variables are available over this sample, the external variable

FF4t is available only from 1991:01 onward. We therefore follow GK and use the full sample

1979:07 to 2012:06 to estimate the reduced-form VAR, but impose ḡC1—̄gC4 only for the post

1991 subsample. We focus on the dynamic response of the EBP to a monetary policy shock,

the main object of interest in GK. All figures show IRFs to a one standard deviation change in

ei,t in the direction that raises it. For reference, the figures also display the GK point estimated

IRFs.

To assess how the different constraints affect the identified impulse response functions, we

begin with the impulse responses under restrictions SC1 which allow both eebp,t and ei,t to be

correlated with St, but do away with all of the exogeneity restrictions. The IRFs, plotted in

the upper left panel of Figure 8, evidently are wholly uninformative and include both positive

and negative responses of credit spreads to an impulse in ei,t.

We now employ additional constraints to shrink the set. The first case is SC2, which adds

ḡC3 and ḡC4 to SC1 to allow ecpi,t and eip,t but not eebp,t to have small correlation with St.

The IRFs using the SC2 restrictions are shown as gray shaded areas in the upper left panel of

Figure 8. The responses of this set are now highly informative as all responses in the set show

that a positive impulse to ei,t drives up the EBP sharply. These results are similar to those

produced by the GK point estimate, but obtained under weaker restrictions that permit eebp,t
to be contemporaneously correlated with St = FF4t.

From the last result, it is evident that constraints ḡC3 and ḡC4 have substantial identifying

power. But they require that St =FF4t to have close to zero contemporaneous relation with the

structural shocks to inflation and production. We now eliminate these restrictions and instead

replace them with the event inequality constraints ḡE1, ḡE2 and ḡE3. To implement these SEE

constraints, we need to set the parameters of our big shock events k̄ =
(
k̄1, ..., k̄6

)′
. We examine

a large number of rotations (up 20 million) to locate the largest values of eebp,t in absolute terms

in t ∈ {τ̄ 1, τ̄ 2}, and find that the largest value for eebp,τ̄1 equals 6.48 standard deviations above

the mean, while the largest value for eebp,τ̄2 equals 7.33 standard deviations above the mean.

Similarly, we examine a large number of rotations (up 20 million) to locate the largest values

of ei,t in absolute terms in t ∈ {τ̄ 3, τ̄ 4, τ̄ 5, τ̄ 6}, and find that the largest value for ei,τ3 is 3.52

standard deviations above the mean, the largest value for ei,τ̄4 is 3.13 standard deviations above

the mean, the largest negative value for ei,τ̄5 is −4.94 standard deviations below the mean, and

10We replicated the original Romer and Romer (2004) Greenbook residuals over their sample 1979:07 to
1996:12 and then extended the residuals to the end of the GK sample, 2012:06. A more detailed description of
Romer and Romer (2004) methodology is provided in the Online Appendix.
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Figure 8: Impulse Response to Monetary Shock
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The figure reports solution set of impulse response to positive, one standard deviation shocks for system Xt = (it, cpit, ipt, ebpt)
′ under restrictions S1,

S2, GK, SEE, SEE(a) and SEE(b) listed in Table 2. The sample spans the period 1979:07 to 2012:06.
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the largest negative value for ei,τ̄6 is −5.08 standard deviations below the mean. Parameters

k̄ of the big shock event inequality constraints stipulate lower bounds in absolute terms for

the shocks in these episodes, and thus should be considerably less restrictive than these largest

absolute values across all rotations. For the EBP event restriction, ḡE1, we start by setting(
k̄1, k̄2

)′
= (3.5, 5.4)′, which may be more readily interpreted by noting that these values would

correspond to the the 75th percentile values of eebp,t in B̂ for t ∈ {τ̄ 1, τ̄ 2}. Recall that event
constraint ḡE1 requires that the EBP credit spread shock be large and exceed k̄1 and k̄2 standard

deviations above the mean in either τ̄ 1 = 2008:09 or τ̄ 2 = 2008:10 (or both). For the monetary

tightening event constraints, ḡE2, we start by setting
(
k̄3, k̄4

)′
= (2.6, 2.3)′, which may be more

readily interpreted by noting that these values correspond to the the 75th percentile values of

policy shock ei,t in B̂ in t ∈ {τ̄ 3, τ̄ 4}. Recall that the event constraint ḡE2 requires that the

policy shock be large and exceed k̄3 and k̄4 standard deviations above the mean in τ̄ 3 = 1981:05

and τ̄ 4 = 1987:05. Thus this parameterization requires that a “big” interest rate shock must

be in the top 75% of all shocks in B̂ during events when there were big positive Greenbook
residuals. The event constraint ḡE3 hat the policy shock be suffi ciently negative and less than

or equal to the threshold parameters
(
k5, k6

)′
. We start by setting

(
k5, k6

)′
= (−3.5,−2.0)′ ,

which may be more readily interpreted by noting that these values would correspond to 25th

percentile values of ei,t in B̂ in τ̄ 5 =1981:10 and τ̄ 6 =2001:11 when there were big negative

Greenbook residuals. As for the previous application, we check that the absolute magnitude

of the shocks on these event dates remains for all practical purposes the same regardless of the

number of rotations in a range from 1.5 million to 20 million. We therefore use the smaller

number of draws for the various estimations discussed below.

The upper right panel of Figure 8 shows the IRFs for dynamic responses under the SEE con-

straints. Only 234 solutions satisfy these constraints but they are highly informative and show

that a positive impulse in ei,t sharply increases credit spreads, as measured by the EBP, which

remain elevated for many months. These results are qualitatively similar to those produced by

the GK point estimate, lending support to the GK identifying restrictions.

We now consider the sensitivity of the results to the parameters k̄. Case SEE(a) sets(
k̄3, k̄4

)
= (1.7, 0.7)′, so that the big shocks can be smaller than the ones in SEE. The constraints

are therefore less restrictive and threshold values correspond to the median rather than 75th

percentile values of ei,t at τ̄ 3, τ̄ 4 in B̂. Case SEE(b) similarly sets
(
k̄5, k̄6

)′
= (−2.5,−0.4)′, so

that the big negative shocks at these dates may be less negative than the ones under the SEE

restrictions. The constraints are therefore less restrictive and threshold values correspond to

the median rather than 75th percentile values of ei,t at τ̄ 5, τ̄ 6 in in B̂. The bottom left panel

of Figure 8 shows the IRFs under SEE(a) while the bottom right panel of Figure 8 shows the

IRFs under SEE(b). In both cases, k̄1 and k̄2 are held fixed at the 75th percentile values as in

SEE.
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While sets of IRFs are inevitably wider when the constraints are weakened, the left panel

shows that all solutions under weaker constraints for the tightening events still indicate that

the EBP rises sharply in response to a monetary tightening. By contrast, the bottom right

panel shows that when we weaken the event inequality constraints pertaining to monetary

policy easings, the causal effect of a monetary policy tightening on credit spreads becomes

inconclusive due to the wide range of solutions retained. Specifically, the responses of the EBP

in the bottom right panel contain both positive and negative values for many periods after the

shock. This finding suggests that monetary policy easings are more important for identification

of monetary policy shocks than are monetary policy tightenings.

Is this asymmetry specific to the shock-restricted approach? To address this question we

return to the GK external instrumental variable point-identification scheme, but instead of

using Zt = FF4t as an instrument, as in GK, we consider two alternative instruments. In the

first case we set Zt = FF4t · I (∆FF4t<0), where I (∆FF4t<0) is an indicator variable that

equals one if the surprise movement in the futures rate on FOMC days is negative (i.e., a

surprise easing), and zero otherwise. In the second case we set Zt = FF4t · I (∆FF4t>0), where

I (∆FF4t>0) is an indicator variable that equals one if the surprise movements in the futures

rate on FOMC days is positive (i.e., a surprise tightening), and zero otherwise. Figure 9 shows

the IRFs obtained under these identification schemes, along with the GK point estimate that

uses Zt =FF4t. It is immediately evident that the IRFs obtained using Zt = FF4t ·I (∆FF4t<0)

are almost identical to those produced with Zt = FF4t. By contrast, the results using Zt =

FF4t · I (∆FF4t>0) differ dramatically and imply that a positive monetary policy shock has

a negligible impact on the EBP at all horizons and moreover has the “wrong”(negative) sign

in the short-run. Thus much like the shock-restricted sets of IRFs in the bottom panels of

Figure 8, the identifying power of the restrictions in this point-identified case appears largely

attributable to monetary easings, with monetary tightenings playing little role.11

5 Application 3: Housing Wealth and Consumption

As a final application we consider a VAR inspired by the work of Mian and Sufi (2014) to

estimate the macroeconomic effects of housing wealth shocks on aggregate consumption. Mian

and Sufi considered the role of house price gains in U.S. spending from 2002-2006, a time of

rapid home price appreciation. Their data consisted of a panel of zip-code level observations,

an ideal dataset for estimating how the consumption effects of housing wealth might vary

across zip codes distinguished by, say, per-capita income, but less ideal for identifying the

11Results of a first-stage F test to assess instrument strength for it show that Zt = FF4t delivers an F statistic
that passes the threshold value of 10 dictated by Stock, Wright and Yogo (2002) for a “non-weak”instrument.
But this result too is entirely attributable to the monetary easings. The variable Zt = FF4t · I (∆FF4t<0)
delivers an F statistic equal to 19.78, while Zt = FF4t · I (∆FF4t>0) generates an F statistic equal to 2.
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Figure 9: Identification using Tightenings v.s. Easings: Alternative IV
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This figure reports the impulse response function for the GK point-identification approach with different in-

struments. The pink dotted line corresponds to the GK point estimate. The black (green) line corresponds to

results using FF4 as an instrument over the subsample when FF4 decreases (increases). The sample spans the

period 1979:07 to 2012:06.

aggregate consumption affects (across all zip codes) of changing home values. Home values at

the aggregate level could be responding to an increase in aggregate consumption as opposed to

influencing it.

The shock restricted SVAR methodology offers a potential resolution to this dilemma with-

out requiring the use of an instrument that may not be credibly exogenous. To illustrate

this point, we consider a bivariate VAR and use shock-based restrictions to winnow the set of

solutions that are consistent with mutually uncorrelated shocks to housing and consumption.

Consider an SVAR with two variables: Xt = (∆lnCt,∆lnHt)
′ , where∆lnCt is the log change

in real personal consumption expenditures for the aggregate U.S. economy, and ∆lnHt is the

log change in real housing wealth (deflated by PCE deflator). Our objective is to identify a set

of mutually uncorrelated structural shocks

et = (eC,t, eH,t)
′ ,

where eC,t refers to the consumption shock, and eH,t to the housing shock. Movements in

eH,t represent unforecastable changes in housing wealth that are not a response to changes in

consumption. These shocks may therefore be used to estimate the dynamic causal effects of an

impulse to housing wealth on aggregate consumption.
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The possible role of housing wealth in driving aggregate fluctuations has become a subject

of special interest as economists ponder the possible factors that lead to the Great Recession,

a protracted economic downturn that overlapped with a global financial crisis and a dramatic

boom-bust cycle in residential real estate prices. It is now widely accepted that the period of

rapid home price appreciation from 2002 to 2006 was associated with a wide-spread relaxation

of mortgage lending standards accompanied by declining credit spreads, lower financial market

risk premia, and easier financial conditions. Conversely, the housing bust that started some

time in 2007 accompanied by a global financial crisis was associated with a sharp increase in

credit spreads and a tightening of financial conditions.12

With this historical backdrop in mind, we consider a shock-restricted identification strategy

to recover et = (eC,t, eH,t)
′. For this application we use a single external variable inequality

constraint that requires housing shocks to have a non-zero correlation of the “right”sign with

measures of credit spreads or financial conditions. We use two separate external variables for

this purpose, employed as alterative measures of financial conditions one at a time. The first,

denoted EBPt is the EBP variable used in the previous application. The second, denoted FCIt,

is the National Financial Conditions Index constructed by the Chicago Federal Reserve. The

first is a measure of risk premia in credit markets; the second is a measure of the tightness of

financial conditions.

5.1 Shock-Based Constraints

According to the economic history just described, house price movements should be correlated

with aggregate financial conditions, with positive (negative) house price shocks associated with

looser (tighter) financial conditions and narrower (wider) credit spreads. This motivates the

following restrictions.

We consider several sets of alternative restrictions. The first row refers to the covariance

restrictions alone. The restrictions in the rows labeled Recursive (a) and Recursive (b) refer

to the two possible recursive identification schemes that may be employed for this system. In

SEE(a) and SEE(b) we apply the external variable restriction using either EBPt or FCIt. That

is, we apply the constraints one at a time to investigate the sensitivity of the findings to a

particular St. The restriction requires that a positive housing wealth shock be associated with

lower credit market risk premia and looser financial conditions. Conversely, a negative housing

wealth shock must be associated with higher risk premia and tighter financial conditions. Note

that there is nothing in the external variable constraints that explicitly precludes a non-zero

12For empirical evidence on lending standards during this period see (Favilukis, Kohn, Ludvigson and Van
Nieuwerburgh (2013) and Jordà, Schularick and Taylor (2017)). For a theoretical model that shows how relaxed
lending standards lower risk premia and raise house prices, see (Favilukis, Ludvigson and Van Nieuwerburgh
(2017)).
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Table 3: Identification Restrictions, Housing Application

Model Restrictions Notes
ḡZ = 0 vec(Ω̂)− vech(BB′) = 0 covariance restrictions
Recursive (a) Recursive Identification variable order: Xt = (∆lnCt,∆lnHt)

′

Recursive (b) Recursive Identification variable order: Xt = (∆lnHt,∆lnCt)
′

SEE(a) ḡZ = 0 covariance restrictions
ḡC (eH,t;St): corr(EBPt, eH,t) < 0 external variable: Excess Bond Premium

SEE(b) ḡZ = 0 covariance restrictions
ḡC (eH,t;St): corr(FCIt, eH,t) < 0 external variable: Financial Condition Index

ADRR ḡZ = 0 covariance restrictions∑
τ∈τ̄ eH,τ < 0 sign restriction during τ̄ = [2007:Q3,2007:Q4]

|HC,H,τ̄ | > |HC,C,τ̄ | Type A/B restriction on historical decomposition

Notes: The table summarizes restrictions in different constrained solution sets. ADRR’s Type A and B restric-

tions on historical decomposition are identical under bivariate VAR system. HC,H,τ̄ is the contribution of eH
to the unexpected change in log consumption during τ̄ = [2007:Q3,2007:Q4]. qα (x) refers to the α percentile

value of x.

correlation between the consumption shock eC,t and these measures of financial conditions. Nor

is there anything that restricts the relative importance of the two shocks in any particular

episode.

Finally, the row labeled ADRR considers the “narrative sign”type restrictions introduced

in Antolín-Díaz and Rubio-Ramírez (2018). As discussed above, the restrictions considered in

Antolín-Díaz and Rubio-Ramírez (2018) differ from those here in two ways. First, they entertain

event restrictions that play up the role of some shocks while simultaneously playing down the

role of others (e.g., their “Type A and B”restrictions on the historical decompositions), similar

in spirit to the traditional narrative-external instrument approach. Second, they do not use

external variables at all. Thus to use their approach we need at least one event. For this

purpose we consider the U.S. banking panic that occurred in the third and fourth quarters

of 2007. The historical chronology of this panic and its specific link to an adverse housing

“shock”has been extensively documented by Gorton (2008), Gorton (2009), and Gorton and

Metrick (2012), who argue that the panic began August 2007 and continued for the rest of that

year. The constraints labeled ADRR impose both a sign restriction on eH,t in 2007:Q3 and

2007:Q4 requiring that the sum of the housing shocks in these two periods be negative, which

is to say below average, as well as a Type A/B historical decomposition restriction, requiring

that contribution of eH,t to the observed log change in consumption in 2007:Q3 and 2007:Q4

exceed that of eC,t.13 Note that this latter event constraint differs from those considered in the

previous applications since it explicitly requires some shocks to play smaller roles than others

in this episode.

13Due to the use of a bivariate VAR, their Type A and B restrictions are identical for this application.
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5.2 Results for the Housing Application

For this application our data are quarterly and we use the largest common sample available

for observations on consumption growth, housing wealth growth, and the financial variables

used as external variables. This leaves us with a sample that spans the period 1973:Q1 to

2016:Q4. A more detailed description of the data and our sources is provided in the Online

Appendix. We estimate the VAR using four quarterly lags. Since the data for this VAR are in

log differences, the IRF figures below display the cumulative responses of consumption growth

to a one standard deviation increase in eH,t.

Figure 10 shows the solution sets of IRFs. We focus first on the sets of responses obtained

by imposing only the covariance structure restrictions ḡZ(B) = 0. In the absence of additional

identifying assumptions it is diffi cult to assign an interpretation to the shocks, but the case is

useful as a benchmark.

Next we add external variable restrictions to shrink the admissible set. The IRFs obtained

by imposing SEE(a) are shown in the top panel; those obtained by imposing SEE(b) are shown

in the bottom panel. We see that the restrictions greatly narrowed the range of possible

responses compared to those based only on ḡZ(B) = 0, and in both cases they show that a

positive housing wealth shock drives up consumption sharply and persistently, with all solutions

in the identified sets displaying this pattern. The bounds using EBPt are particularly tight.

The results imply that when a positive housing wealth shock is associated with declining credit

spreads and looser financial conditions, or conversely when a negative housing wealth shock

is associated with rising credit spreads and tighter financial conditions, it affects aggregate

consumer spending. This aspect of the findings echo those in Krishnamurthy and Muir (2017).

The application shows that, even without valid instruments, fairly clear conclusions can be

drawn about the causal effects of housing on aggregate consumption.

The IRFs obtained under the ADRR restrictions are presented in red dashed lines of Figure

10. The sets are much wider than those under the SEE restrictions. The upper bound of

the ADRR solution set is close to those obtained under either the SEE(a) or SEE(b) solution

sets, but the lower bound is much lower than those using SEE(a) and SEE(b). This example

underscores the value for some applications of using information in external variables to help

shrink the set of plausible solutions. For this particular application, a single external variable

constraint requiring merely that housing shocks exhibit a negative correlation tight financial

conditions evidently has more identifying power than a pair of event constraints that restrict

the relative importance of housing and consumption shocks in the banking panic of 2007.

It is instructive to also consider the IRFs that would be obtained if this system were point-

identified using a recursive identification scheme. Note that the assumptions embedded in the

shock-restricted SVAR do not rule out the possibility of a recursive structure, so the estimation
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Figure 10: Housing Wealth and Consumption
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The figure reports the solution set of impulse response to positive, one standard deviation change in eH,t for

system Xt = (∆lnC,∆lnH)
′ under SEE(a) and SEE(b) restrictions listed in Table 3. The pink dotted line

corresponds to the recursive identification with order Xt = (∆lnC,∆lnH)
′. The cyan dotted line corresponds

to the recursive identification with order Xt = (∆lnH,∆lnC)
′. The red dotted line corresponds to the set of

solutions under ADRR restriction. The sample spans the period 1973:Q5 to 2016:Q4.

is free to recover one if such a structure is consistent with the restrictions. With two variables

in the SVAR, there are two possible recursive orderings, hence two possible point estimates of

B. The IRFs implied by these two point-identified models are shown in Figure 10 as different

colored dashed lines.

The results show that, under either recursive ordering, the impact of a housing shock on con-

sumption is estimated to be close to zero at most horizons, implying that housing shocks have

little role to play in aggregate consumption fluctuations. Furthermore, both point-identified so-

lutions are outside the range of values suggested by the shock-restricted SVAR. An examination

shows why: under either recursive ordering, the identified eH,t is found to be positively rather

than negatively correlated with both EBPt and FCIt, a property that is ruled out by assumption

by the SEE restrictions. Given our ex post understanding of events in a sample that included

unusually large house price fluctuations, it is doubtful that a positive correlation between these

variables is sensible. To have confidence in those identification schemes, one would have to
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believe that positive housing wealth shocks that were explicitly not a response to changes in

consumption coincided with higher risk premia and tighter financial conditions, while negative

housing wealth shocks coincided with a relaxation of lending standards and looser financial

conditions.

We close this section by considering whether there are important asymmetries in the effects

of housing shocks on aggregate consumption over time across the housing boom and bust.

For the purposes of this investigation, we define the housing boom period to be 2002:Q1 to

2006:Q4, and the bust period to be 2007:Q1-2011:Q4. Our analysis makes use of an historical

decomposition, which measures the contribution of a shock to the observed unexpected change in

a variable in the VAR at any given time period t of the sample, or between any two time periods

t and t+h. For each solution k in the solution set, we calculate the historical contribution of eH,t
to the observed unexpected change in lnCt at time t and then locate the smallest and largest

contributions among all solutions. Figure 11 reports the largest and smallest contributions

of both eH,t and eC,t to the cumulative unexpected change in lnCt over the two subsamples:

2002:Q1-2006:Q4 and 2002:Q1-2011:Q4. For both plots, the results pertain to the solution set

obtained by imposing the SEE(a) restrictions or the ADRR restrictions. Details on how the

contributions are computed are given in the Online Appendix.

Consider first the SEE(a) restrictions. As Figure 11 indicates, housing shocks played a

substantial role in driving aggregate consumption fluctuations in the housing bust, but their

role in the housing boom is unclear. For the boom period, the demeaned log difference in

consumption was just 0.20% at an annual rate, while the contribution of eH,t ranges anywhere

from -0.27% and 0.28%. The role of the consumption shocks in driving consumption during the

boom is also unclear, with the contribution of eC,t ranging from -0.08% to 0.47%. This may be

because consumption growth was fairly typical in this subperiod, exceeding its historical mean

by only a small magnitude. By contrast, for the period 2007:Q1-2011:Q4, the demeaned log

difference in consumption was -2.22% at an annual rate with the estimated contribution of eH,t
ranging from -2.32% to -1.31%, indicating that housing shocks explained anywhere from 105% to

60% of the aggregate consumption decline during the housing bust. The range of contributions

of the consumption shocks, on the other hand, ranges from -0.91% to 0.10%, making their role

again unclear. For the entire boom-bust subsample 2002:Q1 to 2011:Q4 where variation was

dominated by the bust, the demeaned log difference in consumption was -1.01% at an annual

rate and the contribution of housing shocks ranges from -1.12% to -0.79%. We conclude that

housing played a potentially large role in the sharp declines in aggregate consumption that were

characteristic of the Great Recession, but an unclear role in the housing boom years.

The results using the ADRR restrictions are less clear overall. The findings are similar to

those under the SEE(a) restrictions for the boom period. In this case the contribution of eH,t
ranges anywhere from -0.29% and 0.28%, while the contribution of eC,t ranges from -0.08% to

37



Figure 11: Historical Decomposition of Consumption
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The figure reports the contribution of the housing shock to the changes in demeaned real log consumption from

2002:Q1 to 2006:Q4 and from 2007:Q1 to 2011:Q4 for system Xt = (∆lnC,∆lnH)
′ under SEE(a) and ADDR

restrictions listed in Table 3. The blue (red) bars in the top panel report the smallest contributions of eH,t to the

cumulative unexpected change in lnCt over the two subsamples under SEE(a) (ADDR) restriction. The bottom

panel reports the largest such contributions. The grey bars in both panels correspond to the actual changes in

demeaned log consumption, reported at an annual rate. The VAR parameters and historical decompositions

are estimated on a sample that spans the period 1973:Q1 to 2016:Q4.

0.49%. But in contrast to the results under the SEE(a) restrictions, the ADRR restrictions

suggest that a wide range of contributions from housing shocks were possible during the bust

period, with the contribution of eH,t ranging from -2.32% to -0.17%, indicating that housing

shocks explained anywhere from 8% to 105% of aggregate consumption fluctuations. This

contrast with the results using the SEE restrictions is not surprising given the wider solution

sets shown in Figure 10.

6 Conclusion

Identifying assumptions need to be imposed in order to give impulse responses generated by

vector autoregressions an economically meaningful interpretation. But in many cases the as-

sumptions required for point identification may be overly strong, while commonly used set-
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identified approaches are often not rich enough to conclude that the data are consistent with

a clear causal pattern among the variables. In this paper we explore the properties of a new

type of restrictions based on moment inequalities that can help winnow the range of plausible

solutions. The restrictions take the form of constraining the structural shocks rather than the

parameters of a VAR. To illustrate the potential uses of the approach, we consider two types

of restrictions adapted to three applications. The first type restricts the sign and magnitude

of identified shocks in specific episodes of history so that they accord with a broad historical

understanding of events at particular points in the sample. These restrictions are tantamount

to creating dummy variables from the timing of specific events and then putting restrictions

on their correlation with the identified shocks, thereby turning a restriction based on a small

number of observations into a moment restriction. The second type restricts the correlations

between the identified shocks and variables that are external to the VAR. Monte Carlo methods

are used to get a sense of sampling variability. The issue of how to best conduct frequentist

inference in shock-restricted SVARs remains an important topic for future research.

Most existing empirical work using vector autoregressions focuses closely on the set of the-

oretical restrictions that may be defensibly placed on the SVAR parameters to achieve identi-

fication. But the structural shocks implied by the chosen identification scheme, which are the

product of both the data and the restricted parameter vector, are rarely scrutinized. We con-

tend that this focus often misses valuable clues from the data that may be highly informative

about the shocks of interest, for two reasons. First, the applications studied here demonstrate

that the shocks are additional empirical objects of interest, no matter what the identification

scheme. In some cases, the shocks obtained by identification schemes derived exclusively from

attention to parameter restrictions appear implausible given an ex post understanding of ma-

jor historical or economic events. Second, any model that may be written as a VAR provides

n(n+1)/2 restrictions from the covariance structure, thereby yielding a set of admissible shocks

that are a product of the data alone. This set can be employed directly as part of the shock-

restricted approach discussed here to provide additional evidence on major economic events of

the sample, before any identifying restrictions are imposed.
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Appendix for Online Publication

Data Description

Oil Application
Data for the system Xt = (∆prodt, reat, rpot)′are obtained from the data file of Kilian

(2009) at URL:https://www.aeaweb.org/aer/data/june09/20070211_data.zip. ∆prodt is

the percentage change in global crude oil production, reat is the global demand of industrial

commodities variable constructed in Kilian (2009) and rpot is the real oil price.

For this application we also use Killian’s (2008) measure of “exogenous oil supply shocks”

as an external variable. The variable measures shortfalls in OPEC oil production associated

with wars and civil disruptions. This indicator is used as an external instrument for point

identifying oil price shocks in Montiel-Olea et al. (2015).

We use the same data used in Kilian (2009) and the largest common sample period across

Kilian (2008) and Kilian (2009) (1973:02-2004:09) for the analysis.

Monetary Policy Application
Both the data for the system Xt =

(
i
(12)
t , cpit, ipt, ebpt

)′
and the data for the external

variable Fed funds futures FF4 are obtained from the data and code file of Gertler and Karadi

(2015) at URL:https://www.aeaweb.org/aej/mac/data/0701/2013-0329_data.zip. For the

analysis in the paper, we use the same data used by GK and otherwise stick to their sample

dates. The sample is monthly and spans the period 1979:07 to 2012:06.

The Greenbook residuals are constructed in Romer and Romer (2004). For each FOMC

meeting m, they estimated the following equation,

∆TRm = β0 + β1TRm−1 +
2∑

k=−1

γykgm,k +
2∑

k=−1

γπkπm,k + γukum,0

+

2∑
k=−1

λyk (gm,k − gm−1,k)︸ ︷︷ ︸
Change in growth forecast

+
2∑

k=−1

λk (πm,k − πm−1,k)︸ ︷︷ ︸
Change in inflation forecast

+ εm︸︷︷︸
Residual

where ∆TRm is the change in the target rate at meeting m from the last meeting, gm,k is the

k-horizon forecast of real output growth released at meeting m, πm,k is the k-horizon forecast

of inflation released at meeting m, and um,0 is the current forecast of the unemployment rate

at meeting m.

We obtained the Greenbook historical forecast data on real GDP, inflation, and unemploy-

ment rate from the Philadelphia Fed’s Greenbook Data Set (URL:https://www.philadelphiafed.

org/research-and-data/real-time-center/greenbook-data/philadelphia-data-set). We

replicated the Romer and Romer (2004) Residuals over the sample 1979:07 to 1996:12. We then

used the same estimation equation and extended the residuals to 2012:06.



Housing Application
The total PCE data are from the U.S. Bureau of Economic Analysis (Series ID DPCERX1).

The housing wealth combines two series from the Flow of Funds. One is the "Households;

owner-occupied real estate" (Flow of Funds B.101 Line 4). The second one is the "Nonfi-

nancial noncorporate business; residential real estate at market value" (Flow of Funds B.104

Line 4). The housing wealth is deflated using the PCE deflator. The excess bonds premium

data are obtained from URL: http://people.bu.edu/sgilchri/Data/GZ_M_August_2016.

csv.zip. The National Financial Conditional Index (FCI) series constructed by the Fed-

eral Reserve Bank of Chicago are obtained from FRED (Series ID NFCI) available at URL:

https://fred.stlouisfed.org/series/NFCI. By construction, higher values of the FCI are

associated with tighter financial conditions.

Repeated Sampling Simulation

This appendix describes a bootstrap Monte Carlo procedure to assess the sampling error of our

inequality restrictions when St are variables external to the SVAR.

Let R be the number of replications in a repeated sampling experiment. Let “hats”denote

estimated values from historical data, e.g., êt denotes estimated structural shocks and B̂ esti-

mated structural covariance matrix. To denote simulated data, we use a “*”, while to denote

estimated values from simulated data, a “hat”is combined with a “*”.

To generate samples of the structural shocks from this solution in a way that ensures the

events that appear in historical data also occur in our simulated samples, we first divide the

historical sample into two subsamples, one consisting of observations on dates for which event

inequality constraints are imposed, and another consisting of observations on non-event dates.

For latter subsample consisting of non-event dates, we draw randomly with replacement from the

sample estimates of the shocks in the non-event subsample, i.e., from {êt} ∀t /∈ τ̄ = (τ̄ 1, ..., τ̄E)′ ,

where τ̄ is the vector of event dates and E denotes the number of events. For the former

subsample, we divide the set of shocks on each event date τ̄ i into two categories, those that

are unconstrained, denoted êU,τ̄ i , and those that are subject to the event inequality constraint,

denoted êC,τ̄ i . For êU,τ̄ i , we draw randomly with replacement from the set of corresponding

shocks in the subsample of non-event dates, i.e., {êU,t} ∀t /∈ τ̄ = (τ̄ 1, ..., τ̄E)′. For êC,τ̄ i , we

draw randomly with replacement from the set of corresponding shocks in the subsample of

event dates, i.e., from the êC,τ̄ i ∈ B̂ that satisfy the event inequality constraint given k̄i.
Since we identify a set of estimated parameters B̂ and therefore a set of estimated shocks

êt, we generate R samples of data for each êt in the constrained solution set B̄(B; k̄, τ̄ , λ̄,S),

or R×M samples, where M is the number of solutions in our estimate of B̄(B; k̄, τ̄ , λ̄,S).

Let m index an arbitrary solution in B̄. Index each draw from the estimated shocks with



r and denote the r-th draw from the m-th solution as emrt . Each emrt is combined with the B

parameters of the m-th solution, B̂mto generate R samples of size T of ηmr∗t = B̂memrt . Next,

R new samples of Xt are recursively generated for each replication r = 1, ..., R using Xt =∑p
j=1 ÂjXt−j +ηmr∗t , with initial conditions fixed at their sample values, [X−p+1, ...,X0]. Using

each of these new samples of Xt, we fit a VAR(p) model to obtain new least squares estimates[
η̂mr∗t , Âmr∗

1 , ..., Âmr∗
p

]
and Ω̂mr∗ =cov(η̂mr∗t , η̂mr∗t ) , and B̂mr∗ = {B̂mr∗ = P̂mr∗Q : Q ∈ On,

diag
(
B̂mr∗

)
≥ 0, ḡZ(B) = 0}, where where On is the set of n × n orthonormal matrices and

P̂mr∗ is the unique lower triangular Cholesky factor of Ω̂mr∗.

To generate samples of the external variable St from m-th solution in a way that ensures

that the correlations with the shocks that appear in our historical data also appear in our

simulated samples, we first generate historical idiosyncratic St shocks emSt as the fitted residuals

from regressions of St on a single autoregressive lag and on êt, respectively. Next, we draw

randomly with replacement from emSt to obtain r = 1, ..., R new values emrSt and R new values of

St by recursively iterating on

Smrt = dm01 + ρ̂Smrt−1 + dm′emrt + emrSt (5)

with initial condition fixed at its initial sample values, S1. The parameters ρ̂ are estimated

from a first order autoregression for St. The parameters dm′ in (5) are calibrated to target the

observed correlations corr(St, êmt ) for the m-th solution in historical data so that corr(Smrt , emrt )

roughly equal corr(St, êmt ) on average across all replications R.

We construct percentile regions for our estimated set of IRFs in repeated samples as fol-

lows. The number of replications is set to R = 1, 000. In each replication of each solution,

K = 1.5 million random rotation matrices Q are entertained, but only Kmr ≤ K rotations

will generate solutions that are admitted into the constrained solution set for that replication,

B̄mr∗(·). Let Θm,r,k
i,j,s be the s-period ahead response of the i-th variable to a standard devia-

tion change in shock j at the k-th rotation of Kmr, for replication r and solution m.14 Let

Θm,r
i,j,s = mink∈[1,Kmr] Θm,r,k

i,j,s and Θ
m,r

i,j,s = maxk∈[1,Kmr] Θm,r,k
i,j,s . Each (Θm,r

i,j,s,Θ
m,r

i,j,s) pair represents

the extreme (highest and lowest) dynamic responses in replication r of solution m. From the

quantiles of the set
{

Θm,r
i,j,s

}M,R

m=1,r=1
that includes all replications for all solutions we can obtain

the α/2 critical point Θi,j,s(α/2). Similarly, from the quantiles of
{

Θ
m,r

i,j,s

}M,R

m=1,r=1
, we have the

1 − α/2 critical point Θi,j,s(1 − α/2). Eliminating the lowest and highest α/2 percent of the

14The s-period ahead dynamic responses to one-standard deviation shocks in the /jth variable are defined as

∂Xt+s

∂ejt
= Ψ̂mr∗

s b̂mrkj∗,

where b̂mrkj∗ is the jth column of B̂mrk∗ and the coeffi cient matrixes Ψ̂mr∗
s are given by Ψ̂mr∗(L) = Ψ̂mr∗

0 +

Ψ̂mr∗
1 L+ Ψ̂mr∗

2 L2 + . . . = Âmr∗ (L)
−1.



samples gives a (1− α)% percentile-based interval defined by

CIα,g =
[
Θi,j,s(α/2), Θi,j,s(1− α/2)

]
.

CIα,g denotes the intervals for sets of solutions that satisfy all constraints, including the event

and correlation constraints: ḡZ(B) = 0, ḡE(B; τ̄ , k̄) ≥ 0, ḡC(B; S) ≥ 0. We use CIα,gZ to

denote the intervals for sets of solutions that satisfy only the covariance structure restrictions

ḡZ(B) = 0.

Historical Decomposition

The decompositions are computed as follows. Let Θk
i,j,s be the s-period ahead impulse response

of the i-th variable to a standard deviation change in shock j at the k-th solution of the solution

set. For each solution k in the solution set, we calculate the historical contribution Hk
C,H,t of

eH,t to the observed unexpected change in log consumption at time t as

Hk
C,H,t =

t−1∑
s=0

Θk
C,H,se

k
H,t−s.

Let HC,H,t = mink∈[1,K]Hk
C,H,t and HC,H,t = maxk∈[1,K]Hk

C,H,t. The (HC,H,t,HC,H,t) pair gives

the smallest and largest contributions, respectively, of eH,t to the unexpected change in log

consumption among all solutions in the solution set. The contributions for the subsamples

2002:Q1-2006:Q4 and 2002:Q1-2011:Q4 are computed by cumulating the time t contributions

over these subsamples. Note that since the shocks are mean zero by construction, the data

must be demeaned in order to make the contributions meaningful.


