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SHOCK STRUCTURE IN A VISCOELASTIC FLUID*

BY

A. C. PIPKIN
Brown University, Providence, R. I.

1. Introduction. Coleman, Gurtin, and Herrera [1],[2]** have studied the propa-
gation of acceleration waves and shocks in non-linear viscoelastic materials.*** On the
basis of an extremely broad and general theory, they have obtained results which are
strikingly simple and specific. However, they have not demonstrated the existence of
the discontinuous solutions which they consider. At first sight it might appear that
production of a true shock wave in a material with viscous dissipation should be impos-
sible, and thus that their theory is not applicable to such materials. The object of the
present paper is to emphasize that this notion is incorrect. This is done by exhibiting
exact solutions, containing shocks and acceleration waves, for a simplified model of a
viscoelastic fluid.

In solid mechanics it is known that internal friction in a material does not preclude
the existence of velocity discontinuities in it. Lee and Kanter [3] have obtained solutions
in linear viscoelasticity theory involving externally imposed shocks. (Because the theory
is linear, shocks cannot occur spontaneously.) Viscous dissipation makes these shocks
attenuate, but it does not immediately smooth them into continuous transitions.

Velocity discontinuities in perfect fluids can occur when the Mach number exceeds
unity. If Newtonian viscous effects are taken into account, such discontinuities are
replaced by sudden but smooth transitions. The detailed structure of the transition re-
gion in the case of steady one-dimensional motion is well known (Becker [4]; see also
Hayes [5]).

In the present paper we consider the steady one-dimensional motion of a viscoelastic
fluid. In contrast to the generality of the stress-deformation relation used by Coleman,
Gurtin, and Herrera [1], [2], we deliberately consider a model which is so simple and
specific that all relevant calculations can easily be carried out in detail. We do not expect
that this grossly simplified model can be quantitatively accurate for any real fluid,
throughout the whole range of flow conditions which we shall consider. Our object is to
exhibit an exact solution in a theory of the type considered by Coleman, Gurtin, and
Herrera, and to draw some qualitative conclusions from it.

The feature of the theory which appears to be most pertinent is that, in materials
of the type considered, an instantaneous finite change in strain does not require an
infinite stress, as it would in a Newtonian viscous fluid. A related fact is that the speed
of small shearing disturbances is finite for the materials considered, and not infinite as
in the case of an ideally viscous material.

In the problem which we consider, there are two relevant sound speeds. If viscoelastic
effects are neglected, the sound speed is the usual speed familiar from gas dynamics.
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**Numbers in square brackets indicate references listed at the end of the paper.
***See also Varley [8].
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The shock Mach number based on this sound speed is denoted by M. With the visco-
elastic term present, there is a larger but finite sound speed, and the viscoelastic Mach
number based on this sound speed is denoted by Mv. Because the viscoelastic sound
speed is larger than the gas-dynamic sound speed, M, is always smaller than M. In the
limiting case of Newtonian viscosity, the viscoelastic sound speed is infinite, and M, = 0.

We find that a transition from one region of uniform flow to another is possible if
and only if M > 1. If M > 1 but M, < 1, the transition is smooth. If M > 1 and
M, — 1, the velocity is continuous, but a discontinuity in acceleration exists. In cases
for which M, > 1, a true velocity discontinuity occurs. Thus, the presence or absence
of a discontinuity depends upon whether the flow is supersonic or not, with respect to
the larger sound speed. The absence of any discontinuity in the Newtonian limit is a
consequence of the fact that in this limit, all flows are subsonic with respect to the in-
finite viscoelastic sound speed.

In Section 2 we define the finite strain tensor which is to appear in the constitutive
relation. A relation of the general type to be used is then discussed (Sec. 3), the problem
of steady one-dimensional motion is set up (Sec. 4), and the sound speeds are defined
(Sec. 5). We then specialize the constitutive equation still further, and obtain the solution
based on this restricted equation (Sec. 6). After discussing the smooth transition case
M > 1 > Mv (Sec. 7) and the viscoelastic shock case M > M, > 1 (Sec. 8), we sum-
marize our conclusions in a little more detail (Sec. 9).

2. Kinematics. Let x,[t, xv{t)} be the position at time r of the fluid particle which
is at xv(t) at time t. The strain at time r is denoted by G(r, t) = ||(?,-,-(r, <)||. The strain
components G;i(r, t) are defined by

n f j\ dXk IVi *£p(0] dXk [t, Xv{f)\ /rt i\Gii(r't] = sXi (t) ~^T(0 ( }

The dependence of (?,,• on the Lagrangian coordinates xp(t) is suppressed from the nota-
tion. In the Taylor series expansion

3G(t, t)/dr = (2.2)
n = 0 U •

the coefficients A„ are the Rivlin-Ericksen [6] kinematic matrices. In particular, the
leading coefficient Ax is twice the classical strain-rate tensor.

In the particular problem which we shall consider, each particle moves in the xx
direction with a velocity which is independent of x2 and x3 . The flow is steady, and ap-
proaches a uniform velocity v0 as Xi —> — °o. Stated differently, the velocity at a given
particle approaches v0 as t —> — <*>. Consider a linear element of fluid lying along the xy
direction. Let L(t) denote the length of such an element at time r, per unit of its length
at r = — oo. We note that L(— °o) = 1. In a flow of the type considered, the strain
matrix G(r, t) is diagonal, with diagonal elements L2(r)/L2(t), 1, 1. The components of
the rate of change of strain are

dGn(r, t)/dr = (d/dr)[L2(r)/L\t)], dGt,(r, t)/dr = 0 (ij ^ 11). (2.3)
3. Constitutive equation. We will use a stress-deformation relation which is not

different in any essential feature from a relation proposed by Coleman and Noll [7]:

<Ta(t) = — p[p(0Ri + J {5i,ATi[^ — r, p(t)] dGu(r, t)/dr
+ K2[t — t, p(0] dCri,(r, t)/dr) (It. (3.1)
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Here <ru(t) is the stress and p{t) is the density at the particle considered, at time t. The
time differentiations and integrations are carried out following the given particle.

Because dependence of the stress on the temperature history is omitted from the
model (3.1), it will not be necessary to use an energy balance equation. As an immediate
further simplification, we take the stress-relaxation moduli Kt and K2 to be independent
of the density.

We assume that the kernels Kx and K2 are of negative exponential order in their
dependence on r. In the limit of slow steady motions, the relation (3.1) then takes the
asymptotic form

= ~p(p)Sii + «„(X/2)iC + , (3.2)
where A, = |[A"' |[ is twice the classical strain-rate tensor, the first term in the expansion
(2.2). The apparent viscosities X and n are defined by

A/2 = [ KM dr, n = f KM dr. (3.3)
J 0 J 0

We define a relaxation time T through the relation

T(X/2 + „)=/" [KM + K2(t)\t dr. (3.4)
Jo

Roughly speaking, the strain-rate should be small in comparison to 1/T, and vary neg-
ligibly over intervals of the order of T in order for the Newtonian approximation (3.2)
to be valid.

4. Steady one-dimensional motion. We consider steady one-dimensional motions
in which the velocity v(t) of a given particle approaches the constant value v0 as t —* — ,
and the density p(t) approaches p0. Conservation of mass requires that v(t), p{t), and the
stretch L(t) (defined in Sec. 2) be related by

L(t) = p0/p{t) = v(t)/vo . (4.1)

The momentum equation then yields

Po^oKO — »o] = v(.t) ~ °"o , (4.2)

where cr = <rn, and where <r0 is the value of a at the particle considered in the limit t —>
— co. From the constitutive equation (3.1), with (2.3) and (4.1), we obtain

<r(t) = -p[po/L(t)] + K(t - r){d/dr)[L\r)/L\t)] dr, (4.3)

where

K(t) = KM + KM- (4.4)
Because L(j) —> 1 as r —» — the limiting stress a0 in (4.2) is found from (4.3) to be

va = -p(po) = ~Po (say). (4.5)

From the preceding relations we obtain the equation governing L(t):

Povlm) - 1] + p[Pa/L{t)\ - p0 = L~\t) [' K(t - r)[dL\r)/dr] dr. (4.6)
J — co
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5. Sound speeds. To consider the propagation of a finite or infinitesimal dis-
continuity into a medium initially at rest, we let L(t) = 1 for t < 0 and L(0) = L, .
Then, from (4.6) at time t — 0+ we obtain

PovlLKL, - 1) + L2MPo/L0 - po) = K(Q)(L\ - 1). (5.1)
In the limit of an infinitesimal discontinuity Lx — 1, the jump condition (5.1) yields

p0v0 pop'(po) = 2K(0). (5.2)

In this case, v0 represents the sound speed c. For a perfect fluid, with K(0) = 0 the sound
speed is given by c2 = p'(p0)- For general values of v0, the Mach number M based on this
sound speed is defined by

M2 = vl/p'(p0). (5.3)
With K(0) ^ 0, (5.2) yields a different sound speed, and the viscoelastic Mach number
M, based on this speed is defined by

M\ = i>o/[p'(po) + 2Z(0)/p„], (5.4)
With K(0) > 0, the viscoelastic Mach number M, is always smaller than the gas-
dynamic Mach number M.

6. A special model. To proceed further, we introduce specific forms for p(p) and
the kernel K(t) in (4.6):

p[p(t)\ = (po/po)p(t) = Po/L(t), K(t) = K0 exp (~t/T). (6.1)

From the expressions (3.3) for the apparent viscosities, with (4.4) and (6.16) we obtain

X + 2p. = 2 K0T. (6.2)

The Mach numbers M and M, defined in (5.3) and (5.4) are given by

M2 = p0v20/p0 , M2, = P0vl/(p0 + 2K0). (6.3)

The equation governing L(t), (4.6), then takes the form

p0v20L(t)[L(t) - 1][L(/) - M~2] = K0 [' exp [-(* - T)/T][dL2(r)/dr] dr. (6.4)
J — oo

The jump condition (5.1) becomes

pML, - M~2) = Koih + 1), (6.5)
when a factor Lx — 1 has been cancelled.

The integral equation (6.4) can be converted into a first-order ordinary differential
equation. Aside from the trivial solution L(t) = 1, this equation has the solution

(,t - t„)/T' = [1 - (T/T')] In |1 - L(t)\

- [1 + (T/T')] In \L(t) - AT21 - (T/T') In \L(t)\, (6.6)
where t0 is arbitrary. T' is defined by

r, _ 2K„T X + 2/i .
~ Po(M2 — 1) p0(M2 — 1)' (b"7)

With (6.3), the ratio T/T' is given in terms of M and M, by
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t m:(m2 - i)
T' M2 - Ml (6.8)

7. Discussion. The solution (6.6) yields L{t) —> 1 as t —* — <» only if JT' > 0.
According to (6.7), T' is positive only if M > 1. Hence, there is a non-uniform flow with
L(— oo) = 1 only if the flow is supersonic with respect to the gas-dynamic sound speed.
(If M < 1, the only solution of (6.4) satisfying the condition L(— oo) = lis the uniform
flow L{t) = 1.) With T' > 0 (M > 1), (6.6) yields L(°°) = M~2.

We recall that 2K0T is equal to the Newtonian apparent viscosity X + 2/*. The
Newtonian limit can be obtained formally by letting the relaxation time T approach
zero while the initial response K0 goes to infinity, with K0T fixed. The stress-relaxation
modulus K0 exp (—t/T) then approximates to a Dirac delta. The transition time T'
defined in (6.7) remains fixed in this limit, and the ratio T/T' approaches zero. By
setting T/T' = 0 in (6.6), we obtain the relation describing the structure of a gas-dy-
namic shock in the presence of Newtonian viscosity (in the isothermal case).

With T non-zero but less than T', the shock structure is somewhat altered. Figure 1
shows the dependence of L(t) on t/T' for various values of T/T' between zero and unity,
in the special case M = 5. From (6.8) we see that the range 0 < T/T' < 1 corresponds
to the range 0 < M, < 1.

8. Viscoelastic shock. It is evident from Fig. 1 that in the limit T/T' —> 1, Lit)
approaches unity for all t less than some finite value tx. At this time U , an abrupt change
in slope occurs. This is an acceleration wave. We note from (6.8) that the condition
T/T' = 1 is equivalent to M, = 1.

When T/T' > 1, the solution (6.6) does not satisfy the condition L{— oo) = 1. How-
ever, a discontinuous solution can be obtained. For t < 0 (say), the motion is uniform,
with L(i) = 1. The value -L(O) = Lx is determined from the jump condition (6.5). The

Fig. 1. Shock Structure for M > 1 > Mv, with M = 5
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subsequent motion for t > 0 is then given by (6.6), with the integration constant ad-
justed to satisfy the condition L(0) = :

I
T x-TLT In i - m

1 - Lx ?]1 + ~7n Mn
L{t) - M~
L, - M~ - In L(t)

U (8.1)

Figure 2 shows the dependence of L(t) on t/T (not t/T') for various values of T/T' from
one to infinity, for the special case M = 5. The condition T/T' > 1 is equivalent to
M, > 1.

The velocity discontinuity is followed by a further smooth transition over an interval
with characteristic time T. The limiting case of an elastic solid is obtained formally by
letting T —> oo with K„ fixed, in the stress-relaxation modulus K„ exp (—t/T). In this
case there is no transition from the value Lx to a different final value M~2 in finite time,
and for M, < 1 there is no shock at all. These results are consequences of the fact that
the sound speed based on neglect of K0 is not physically meaningful in the elastic limit,
and the Mach number M based on this sound speed is irrelevant.

9. Summary. In the special case which we have considered, we have found that
when the usual gas-dynamic Mach number exceeds unity, a transition from one region
of uniform flow to another can occur. If the viscoelastic Mach number is less than unity
(T < T'), the transition is smooth. The characteristic transition time T' depends on
the viscoelastic initial response K0 and the relaxation time T jointly, through the ap-
parent viscosity 2K0T.

If the flow is supersonic with respect to the visco-elastic sound speed, a discontinuity
in velocity occurs, followed by an interval of stress relaxation. The characteristic transi-
tion time in this case is T, the relaxation time for the fluid. We note that in either case,
the transition time is the larger of the two times T and T'.

The notion that a velocity discontinuity cannot occur in a viscoelastic fluid is found
to be groundless. The absence of discontinuities in a material with true Newtonian

Fig. 2. Shock Structure for M > Mv > 1, with M = 5
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viscosity arises from the fact that in such materials, small disturbances propagate with
infinite velocity, and thus all motions are subsonic.
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