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We perform a computational study of the interaction of a planar shock wave with a
cylindrical vortex. We use a particularly robust High Resolution Shock Capturing
scheme, Marquina’s scheme, to obtain high quality, high resolution numerical simu-
lations of the interaction. In the case of a very-strong shock/vortex encounter, we
observe a severe reorganization of the flow field in the downstream region, which
seems to be due mainly to the strength of the shock. The numerical data is analyzed
to study the driving mechanisms for the production of vorticity in the interaction.
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1. INTRODUCTION

The study of shock wave/vortex encounters has been a fertile field of investigation
for several decades. The interaction of a concentrated vortex and a shock wave may
occur in many situations of practical interest. In the operational environment of
supersonic aircraft and missiles, the interaction may be a result of vortices created
by the forward components of a supersonic vehicle convecting downstream and
interacting with shock waves formed over aft surfaces or shock waves present in
front of the air intake system of the vehicle, leading to performance deterioration
[32]. In addition, the ‘‘shock-associated noise’’ generated in the interaction is an
important factor in the design of advanced jet engines because of the effect on
community noise and aircraft interior noise, among other things. Other fields where
the study of shock vortex encounters is of importance include the case of helicopter
blades operating at supercritical speeds [25] and fuel-air mixing enhancement in
the combustor of a supersonic combustion ramjet [32].

Much of the early work on this problem was motivated by an interest in
understanding the noise production mechanism and hence the research was directed
towards the production and evolution of acoustic waves (see [13] and references
therein). The early studies on shock-vortex interactions focused primarily on the



development of predictive linear theories that were compared with experimental
results. Later on, research efforts concentrated on the use of numerical methods for
analyzing the problem. Some of the first successful numerical techniques included
finite-difference schemes or spectral methods to solve the Euler equations coupled
with shock fitting techniques across the shock (see, e.g., references in [25, 14]).
Indeed, the early time behavior of the flow field generated in a shock/vortex
encounter can become quite complex, depending on the strength of both the shock
wave and the vortex field. Shock fitting techniques have been used with success
[15, 14], but it is generally agreed that they are difficult to apply in cases of strong
interactions. The shock-capturing approach seems to have been first considered in
[25], and schemes of the shock-capturing family have been commonly used in the
last decade [13, 3, 17, 16]. The use of state of the art High Resolution Shock Cap-
turing (HRSC) schemes has been reported in recent studies of various aspects of the
shock/vortex interaction problem [1, 15, 19].

The case of very strong shock vortex encounters has only been considered fairly
recently. In most of the aforementioned references the parameter range for the
shock Mach number Ms is [% 1, 2], Ms=2 being considered a strong shock wave.
However, current wind tunnel facilities are capable of attaining Ms=4 [32], and
there is a growing interest in the simulation of shock/vortex encounters at high
Mach numbers [15, 14].

In this paper we advocate the use of a certain state-of-the art HRSC scheme,
Marquina’s scheme with the Piecewise Hyperbolic Method (a piecewise hyperbolic
ENO-type reconstruction technique, see [24]) for the computation of the numerical
flux functions. The M-PHM scheme (see [9] and Sec. 3 for details) is a formally
third order accurate, both in space and in time, HRSC scheme which has been
shown to be very robust; leading to well behaved, essentially oscillation free
numerical solutions, in situations where pathological behavior is known to occur
with other HRSC schemes (see [9]).

The basic numerical technique was originally developed in [9] and follows
closely Shu and Osher’s formulation in multidimensions [31] to obtain the numer-
ical fluxes needed for a scheme in conservation form, i.e., with the shock capturing
property. It is, therefore, very simple to implement on Cartesian grids (simpler than
spectral techniques of the kind used in [7, 3]) and, when combined with a suffi-
ciently fine numerical mesh, has all the ingredients necessary to carry out a high
quality, high-resolution numerical simulation of the shock/vortex interaction
problem.

It is well known, however, that high-order HRSC schemes tend to be quite
expensive. This is particularly true for the scheme of our choice [9, 4]; therefore
computations on very fine meshes tend to have a prohibitive cost unless a large
computing facility is available.

The last two authors addressed this issue in [4], where they develop a multi-
level technique designed to reduce the computing time of a HRSC numerical simu-
lation on a fine-mesh. All the numerical simulations in this paper have been
obtained with the multilevel work-reduction technique described in [4] applied to
the M-PHM scheme; we have dubbed the resulting numerical technique the M&M-
PHM scheme.
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With the aid of the M&M-PHM scheme, we have been able to investigate –on
a personal computer—the phenomenology of the shock-vortex interaction problem
for a wide range of shock and vortex strengths. Our extensive numerical experi-
mentation allows us to explore the different flow patterns that can develop after the
interaction. We are able to reproduce all the flow features described in earlier
studies and, for very strong interactions, we observe very particular flow patterns.
A very strong (Ms \ 4) shock wave produces a significant disruption of the vorticity
pattern that can happen almost immediately after the interaction. It seems that a
strong disorganization of the vortical structure has been observed in recent exper-
imental studies [32]. We thus concentrate in the study of the flow field downstream
of the shock wave for very strong interactions, and on the mechanisms of produc-
tion of vorticity in these encounters.

The paper is organized as follows: In Sec. 2 we follow closely previous work of
[13] to describe the physical setting and the phenomenology of the shock-vortex
interaction problem we use as a test case in our numerical simulations. Section 3
gives a brief overview of the numerical technique employed in our simulations: the
M&M-PHM scheme. Section 4 is dedicated to the analysis and interpretation of the
data obtained in our parametric study. In Secs. 4.1 and 4.2, we show numerical
simulations for a range of parameters covered in previous computational studies
and perform a limited grid sensitivity study of the strong interaction case. The
analysis performed serves to validate our numerical technique.

In Sec. 4.3 we turn to consider the very-strong interaction case, and show
numerical simulations that display the abrupt reorganization of the initial vortex,
upon crossing a strong shock wave. In Sec. 5 we focus our attention to the produc-
tion of vorticity during the interaction. In Sec. 6 we compare the vorticity jump
across the shock obtained from our simulations with a theoretical result given by
Kevlahan in [22]. Conclusions and perspectives are drawn in Sec. 7.

2. THE INTERACTION OF A PLANAR SHOCK WITH A ROTATING
VORTEX

2.1. Model Problem and Initial Conditions

To model the dynamics of the interaction, we follow [13] and assume that the
flow is governed by the two-dimensional Euler equations

“tUF+fF(UF)x+gF(UF)y=0]. (1)

where UF is the vector of conserved quantities (r, ru, rv, e) and fF(UF) and gF(UF) the
classical physical flux functions. The system is closed by the equation of state for a
polytropic gas:

P=(c − 1)(e − 1
2 r(u2+v2)), (2)

with the ratio of specific heats c=1.4 for air.
A composite vortex, as described in [13, 16, 17], consists of an inner core of

uniform vorticity with total circulation C+ and an outer annular region of uniform
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Fig. 1. Schematic representation of the initial condition for the numerical simulations.

and oppositely directed vorticity with total circulation C−=−C+. For the single
vortex problem, the velocity is counter clockwise in both regions, with an angular
velocity given by

vh=˛vm
r
a

if r [ a

vm
a

a2 − b2
1 r −

b2

r
2 if a [ r [ b

0 if r > b

where vm represents the maximal angular velocity, which occurs at r=a.
At t=0 we consider a stationary shock totally isolated from the rotating

vortex. The situation is depicted in Fig. 1, where we consider a rectangular compu-
tational domain, W=[0, 2] × [0, 1]. The shock is located at x=0.5 and the center
of the vortex is located at the point (0.25, 0.5). The inner core radius a=0.075 and
the outer annular region has a maximum radius b=0.175.

Outside of the vortex, the parameters of the flow are specified by r1=1,
u1=`c Ms, v1=0, P1=1 at the left side of the shock (the supersonic region), and
by r2, u2, v2, P2 at the right side (the subsonic region). The right quantities are
determined from the left ones by writing the stationarity condition for the shock.

Inside the vortex, pressure, density and energy are determined by balancing the
pressure gradients with the centripetal force, which amounts to solving the follow-
ing system (see also [13, 16]):

dP
dr

=r
v2

h

r
, P=rRT,

P
rc

=K
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where K is a constant. From the last two equations it is fairly straightforward to
deduce that the pressure and density fields inside the vortex satisfy

P=P1
1 T

T1

2
c

c − 1

r=r1
1 T

T1

2
1

c − 1

. (3)

Using these equations we integrate the following ordinary differential equation to
obtain the temperature:

dT
dr

=
c − 1
Rc

v2
h

r
.

The expression of T, together with (3) allows us to compute the pressure and
density distribution inside the vortex. The radial velocity is added to the free stream
velocity to determine the velocity field inside the vortex, i.e., (u, v)=(u1, v1)+
vh(−sin h, cos h). Finally, energy is computed in the whole domain via Eq. (2).

In all our simulations we have considered inflow boundary conditions at x=0
and outflow for the other boundaries. In a setting like the one considered here the
domain boundaries do not directly affect the vortex field because the range of
influence of the composite vortex is finite [13, 16].

We take Mv=vm/c1=vm/`c as a measure of the strength of the vortex, since
it is directly related to the maximum speed of rotation inside of the vortex, vm.

2.2. Phenomenology

In the situation described in the previous section, the vortex is convected by the
supersonic free-stream until it reaches the shock. The effect of the vortex on the
shock profile depends strongly on the relative strengths of the shock and the vortex.
If the vortex is weak relative to the shock, there is no significant distortion of the
shock front, and the situation corresponds to that described in theoretical analysis
that assume only small perturbations of the planar front [29].

A strong vortex however, distorts both a weak and a strong shock in such a
way that the structure of the transmitted shock is much more complex. At the early
stages of the interaction, the shock is distorted by the vortex in an S-structure (see
[13, 1]) which can be clearly observed in the numerical simulation displayed in
Fig. 2: the lower and upper portions of the shock are diffracted around the vortex,
and the two diffracted shocks are connected by a refracted shock which passes
through the core of the vortex. The shock structure at later stages depends on the
strength of the shock relative to the vortex [1]. If the shock is weak relative to the
vortex the interaction leads to a shock structure similar to that of a regular reflec-
tion, while increasing Ms and keeping the vortex unchanged leads to a Mach
reflection structure instead. It must be mentioned that in [13, 1], Ms=1.05 is con-
sidered weak, while Ms=1.5 is considered strong and their computations cover
only the range Ms ¥ [1, 1.5] for the shock strength.

An important byproduct of the interaction is the production and evolution of
acoustic waves. This feature has been investigated from a theoretical point of view
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Fig. 2. Strong vortex-weak shock interaction for (Mv, Ms)=(1.7, 1.1) at t=0.18 and t=0.35.
Numerical Schlieren images obtained with the density.

[29] and in numerous computational studies [25, 13, 16, 17, 19, 20]. In these ref-
erences, the authors are mainly concerned with the form of the acoustic wave for
later times after the interaction. They find, both theoretically and numerically, that
for weak vortices a cylindrical acoustic wave is generated for which the peak sound
pressure in a circle of given radius varies from positive to negative twice (quadru-
polar); this quadrupolar acoustic wave produced by the interaction expands later
radially outward of the vortex (see Fig. 4).

Simulations of the interaction of a rapidly rotating vortex with a strong shock
for Mach numbers larger than 3 are much more scarce in the literature. For this
particular model, the relation Pc/P1 (the pressure dip at the center core) is % 0.1 for
Mv=1.2, which is consistent with experimental measures of wing tip vortices [32].
For larger values of Mv the density and pressure drops are more intense. Mv ’ 1.8
is the largest vortex strength we can use in our simulations, since for stronger values
the model of vortex we use gives non-physical parameters (negative temperature,
density and pressure). We restrict our simulations to Mv [ 1.7.

In this paper, the use of a very robust scheme for systems of conservation laws,
allows us to perform numerical simulations for a wide range of shock and vortex
strengths. These simulations demonstrate that an increasingly complex wave pattern
takes place for shock strengths larger than 3. In Figs. 9 and 10, for example, it can
be clearly observed that the initial vortex may split immediately after the interac-
tion, into a number of smaller vortical structures. We shall focus our investigations
on this less studied feature of the shock-vortex interaction problem.

The equation that governs the evolution of vorticity wF in a two-dimensional
inviscid fluid can be derived by taking the curl of the momentum equation. In doing
so, we arrive at

dwF

dt
=−wF (NF ·VF )+

NFr × NFp
r2 , (4)

where wF=N ×VF and VF=(u, v) is the velocity of the fluid.

352 Rault, Chiavassa, and Donat



Initially, the flow is irrotational away from the vortex. In the polytropic vortex
NF ·VF=0 and the gradients of density and pressure are aligned, hence the two
source terms on the r.h.s. of (4) vanish and the vortex is carried away by the free
stream. The situation changes drastically when the vortex reaches the shock; the
two terms in the r.h.s. of (4) enter the scene leading to production of vorticity. The
first one is non zero due to the fact that vorticity and NF ·VF are both non zero in the
same regions (near the shock). During the interaction the gradients of density and
pressure become non-aligned, hence the second term in the r.h.s. of Eq. (4) also
becomes non zero. Together, these two terms act as a source leading to production
of vorticity, which can be quite significant in some cases.

The study of the process of generation of vorticity by the interaction of a shock
with discrete inhomogeneities in a fluid has received some attention in the literature
[22, 28, 30]. Even though both terms on the r.h.s. of (4) act as a source of vorticity,
their relative role in the overall generation of vorticity in the interaction seems to
depend on the type of fluid homogeneity interacting with the shock. It is shown in
[28] that the baroclinic term NFp × NFr/r2 is the most important one for density
inhomogeneities such as bubbles in a uniform flow, while in turbulent motion the
dominant term is the expansion term wFNF ·VF [22].

Our extensive numerical experimentation reveals that the interaction of a suf-
ficiently strong shock with a rotating vortex leads to the creation of new vortices
after the interaction, with a considerable increase in the net vorticity of the resulting
flow. The production of vorticity will be thoroughly investigated, through the
analysis of numerical data, in Sec. 5. In particular we study the evolution of vorti-
city with respect to the strengths of the shock, Ms, and the vortex, Mv, with the aim
of determining what are the specific conditions under which new vortices will
appear after the interaction.

3. THE M&M-PHM SCHEME

3.1. Marquina’s Scheme

The basic scheme used in our numerical simulations is Marquina’s scheme,
a shock capturing technique for systems of hyperbolic conservation laws that has
proven to be very robust in a large variety of test problems, even when more classi-
cal schemes were known to produce anomalous numerical behavior. It is precisely
this feature, the robustness of the scheme with respect to numerical pathologies,
what makes us prefer Marquina’s scheme to other shock-capturing techniques.

The reader is referred to [9] for a detailed description of the numerical scheme
and its properties, and to [8, 10, 18, 23] for examples of application of the scheme
in several scenarios. Here we shall briefly outline its main features.

Our implementation follows the semi-discrete formulation described by Shu
and Osher in [31]

dUFij

dt
+

FFi+1/2, j − FFi − 1/2, j

dx
+

GF i, j+1/2 − GF i, j − 1/2

dy
=0] (5)
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where UFij is the numerical approximation of the solution at the grid point
(xi=i dx, yj=j dy), and FF (wF 1,..., wF k+m) and GF (wF 1,..., wF k+m) are numerical flux
functions, consistent with the physical flux functions in (1).

The computation of each numerical flux function at each cell interface in Shu–
Osher ENO schemes is carried out by using the spectral decomposition of the
Jacobian matrix of the system; for Fi+1/2, j, A(UF)=“fF/“UF is evaluated at a value
Ug which is some kind of average between UL, UR, the values at each side of the
interface (usually the Roe average). Instead, Marquina’s scheme uses directly the
spectral information contained in each one of the two Jacobian matrices A(UFL),
A(UFR) to produce the final numerical flux function at the interface.

The basic first order scheme is converted into a state of the art, HRSC tech-
nique by using a high order ENO-type reconstruction technique in the computation
of the characteristic variables and fluxes at each cell interface, together with the
third order TVD Runge–Kutta time discretization procedure specified in [31]. As
in [9, 4], we have chosen the Piecewise Hyperbolic Method (PHM) described in
[24] for the reconstruction step. The PHM is a piecewise hyperbolic ENO-type
reconstruction technique that avoids using data across large gradients in the recon-
struction process. The results in [9] seem to indicate that the PHM reconstruction
is more robust than its polynomial counterpart, the ENO-3 technique described in
[31], at similar cost.

The final scheme, the M-PHM scheme, turns out to be a particularly robust
third order HRSC numerical scheme. In [18, 23] the robustness of the scheme in
critical situations is linked to the use of the characteristic information at each cell
interface, without any mixing in the presence of large gradients. The numerical
computations in [18] clearly demonstrate that mixing information from both sides
of a cell interface, such as in the averaging process involved in Roe’s solver or in a
numerical flux computation based on an averaged value between UL and UR, can
lead to oscillatory behavior in certain simulations involving density inhomogeneities
in compressible flows.

The computational cost of the M-PHM scheme increases (an additional 20%
over Shu and Osher ENO-3 scheme based on an averaged Jacobian) because the
evaluation of the numerical flux function in Marquina’s third order scheme
demands two full spectral decompositions, instead of simply one as in Roe’s scheme
or none as in other simpler alternatives like the HLLE [12] scheme.

Taking into account that the analysis of the vortex breakdown phenomena
needs a large number of high quality/high resolution numerical simulations, it
becomes imperative to carry out these computations in an efficient manner. Since
memory requirements are not a major concern, we use a multilevel technique
developed in [4] that is designed to obtain a numerical solution of the same
quality, i.e., same resolution, as the one obtained with a HRSC scheme, but at a
much lower cost.

3.2. The Multilevel Technique

In [4], the last two authors describe a multilevel work reduction technique
for HRSC applied to hyperbolic conservation laws. The key observation is a well
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known fact to users of HRSC schemes: highly sophisticated numerical flux func-
tions are only needed in the neighborhood of a discontinuity or in the regions where
singularities will develop. According to this observation, a reduction in the cost is
possible if the highly sophisticated flux function, needed to obtain a high resolution
simulation, is used only where it is absolutely necessary, i.e., at discontinuities and
regions undergoing strong compression.

Multiresolution decompositions provide an appropriate tool to determine the
regions of smoothness of a given set of data, that represent the values of a function.
They can be used to analyze the local smoothness of UF n

ij in order to locate sin-
gularities and compression regions (leading to shock formation). The hyperbolic
nature of the equations together with the CFL condition limit the propagation of
singularities, therefore the use of multiscale decompositions makes it possible to
establish a technique that marks those locations where a sophisticated flux compu-
tation is absolutely needed.

The multilevel work reduction technique for a given HRSC scheme is carefully
described in [4]. Given a computational mesh, which we consider to be sufficiently
fine to resolve the desired features in the solution to our satisfaction, the multilevel
technique works on a sequence of computational meshes, obtained by successive
dyadic coarsening of the original, to produce a numerical solution on the original
grid of the same quality as that produced by the direct use of the HRSC scheme on
the finest grid, but at a much lower cost. For each time step, the algorithm follows
these basic steps:

(1) Interpolatory wavelet transform of rn (L levels of resolution). The rate of
decay of the wavelet coefficients can be easily related to the local
regularity of the underlying function, i.e., rn

ij, whose smoothness we con-
sider representative of the smoothness of UF n

ij.

(2) Smoothness analysis. A thresholding procedure is applied to the wavelet
coefficients to detect (and mark) the location of the singularities of UF n

ij

and to control their propagation and the possible formation of new ones
during the time step dtn.

(3) Region dependent computation of numerical divergence DF (UF). We start
by applying the HRSC scheme on the coarsest grid (after L steps of
dyadic coarsening). We then work by dyadic refinement and let the
smoothness analysis decide how to carry out the computation of DF (UF).
The costly HRSC scheme is used only at regions identified as non-smooth
in step 2.

(4) Time step evolution with Runge–Kutta scheme.

The effective reduction in the work load is, of course, problem dependent. As
shown in [4], for the ENO-3 and M-PHM schemes, the multilevel technique is cost-
effective when the percentage of numerical divergences computed with the HRSC
scheme does not exceed 60%. In these circumstances, it leads to a reduction (that
depends on the percentage) of the cpu time of the numerical simulation with respect
to the one obtained by applying the HRSC scheme on the full grid. For the test
cases reported in this paper the percentage of numerical divergence computations
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with the M-PHM scheme never exceeded 30%, hence it corresponds to the type of
situation for which the multilevel work reduction technique is specially adequate
(see [4]). An effective CPU time reduction by an average factor of 3 in comparison
with the direct simulation is obtained (hours of computer time on a PC-500 Mhz,
instead of days).

4. NUMERICAL RESULTS

With the help of the M&M-PHM scheme, we have carried out a parametric
study of the shock-vortex interaction problem described in Sec. 2.1. Our numerical
tests cover the range of parameters Mv=[0.1, 1.7], Ms=[1.1, 10].

The numerical simulations have been obtained with an underlying Cartesian
grid of 1024 × 512 cells and a number of resolution levels L=5, i.e., the coarsest
mesh considered is 32 × 16. The time step is variable and is computed, via the CFL
condition for the finest grid, as described in, e.g., [33].

The thresholding parameter that determines the region dependent computation
of DF (UF) in the M&M-PHM scheme is set to 10−4 max ijk(|dn

ijk |) where dn
ijk are the

wavelet coefficients of the density at time tn: rn.
At each time step we have access to all the primitive variables from which we

compute easily vorticity, circulation and all the variables needed in our numerical
studies. For visualization purposes we have used both contour plots and Schlieren-
type images. Schlieren-type techniques are often used for the visualization of weak
flow features, like pressure waves or density variations. Darker pixel values on the
plot correspond to larger pressure (or density) fluctuations.

4.1. Shock-Vortex Interactions: Low to Moderate Strength

4.1.1. Shock Distortion and Vortex Deformation

From the early works on shock-vortex interaction, it is known that an initially
planar shock wave undergoes a certain deformation as it interacts with a compress-
ible vortex. Weak interactions involve only small perturbations of the shock profile,
that are assumed to be of sinusoidal type in successful linear theories of sound
production [29]. Linear theories, however, are no longer applicable to moderate to
strong interactions for which the shock goes through successive phases of symme-
tric and nonsymmetric deformation leading to the formation of a complex shock
structure which includes secondary shocks, and a gradual return to the planar con-
figuration as the vortex is left behind.

For a fixed shock strength Ms, the deformation increases with the vortex
strength (see, e.g., [13, 1]). After the work of Chatterjee [1], it is known that in
order to form a Mach structure, the shock wave must be strong relative to the
vortex. Decreasing Ms while keeping the vortex unchanged results in a transition to
a transmitted shock structure completely devoid of Mach stem from an earlier well-
defined Mach structure.

In Fig. 2 we display two snapshots of the interaction of a strong vortex
Mv=1.7 with a weak shock Ms=1.1. The strength of the vortex causes a pro-
nounced S-shape deformation, clearly observed on the left display, as described in
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the aforementioned references. According to [1], the maximum deformation is seen
to occur shortly after the vortex center crosses the shock wave, and the snapshot
corresponds to a slightly previous instant in time. The right display in Fig. 2 shows
a snapshot of a later time, when the transmitted shock is beyond the vortex field.
The shock wave is weak relative to the vortex, hence the interaction pattern should
be that of a regular reflection, in which the secondary shock structures join up with
the primary shock at a single point. This is precisely the structure of the transmitted
shock in the right display of Fig. 2.

In Fig. 3 we display a situation classified as strong vortex-strong shock interac-
tion in [13]. The left display shows a snapshot at a time where the Mach structure
in the transmitted shock is clearly appreciated. It is known [11] that the shock
compresses an initially circular vortex into an elliptical shape, the elongation
depending on the shock strength. The ellipsoidal shape of of the vortex after the
passage of the shock wave is clearly observed on the left display in Fig. 3 (recently,
Grasso and Pirozzoli [19] have shown that the deformation of the vortex increases
with Ms at a slower rate than predicted in [11]). The right display of this same
figure corresponds to an instant in time that is posterior to all the plots in [13, 1],
and to a stronger interaction than those described in [19]. It shows the late time
evolution of the flow field. In this case it is observed that the compression effects
due to the shock passage on the vortex has given rise to two vortical structures well
differentiated. We shall come back to this vortex splitting phenomenon later on.

4.1.2. Formation and Evolution of Acoustic Waves

The interaction between a columnar vortex and a planar shock wave is con-
sidered as a crude but deterministic model of the generation of shock noise by tur-
bulence passing through the shock wave pattern of a supersonic jet. Early experi-
ments [11] show that a cylindrical sound wave appears downstream of the shock,
partly cut off by the shock. This acoustic wave is centered on the moving vortex
core and both grows and convects.

The formation and evolution of acoustic ‘‘noise’’ in shock vortex encounters
has been the subject of several theoretical [29] and computational studies [13, 20,
19]. As the vortex goes through the shock, a precursor wave is generated. Initially,
this near-field first sound shows a dipolar directivity [20, 19], that changes into a
quadrupolar behavior once the vortex has traversed the shock [13]. As the vortex

Fig. 3. Shock-vortex interaction: (Mv, Ms)=(0.9, 1.5), at two different times, left t=0.41, right
t=0.69. Numerical Schlieren images obtained with the density.
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Fig. 4. Strong vortex-weak shock interaction: Evolution of acoustic waves. (Mv, Ms)=(1.7, 1.1)
at time t=0.75. Left: numerical Schlieren images obtained with the pressure. Right: contour plot of
the overpressure. Compression zones are marked with (+) and expansion regions with (−). The
dotted lines represent the location of the precursor, the second and the third acoustic waves. The
straight line corresponds to angle G=−45°.

moves downstream, the precursor expands radially and it is followed by a second
sound of the same quadrupolar nature but not in phase with the precursor. At later
stages a third sound is formed, in phase with the precursor. It is worth noticing that
the occurrence of the third sound was hypothesized by Inoue and Hattori [20], but
it was only observed in their parametric study for numerical simulations involving a
vortex pair. Grasso and Pirozzoli [19] run their numerical simulations long enough
to observe the occurrence of this third sound.

In our numerical simulations we have observed that the time at which the third
sound is observed decreases when increasing Mv. The left display in Fig. 4 shows a
Schlieren pressure plot of the flow of Fig. 2 but at a much later time, t=0.75. The
right display shows a contour plot of the same flow in which we have marked with
a (+) the compression zones Dp > 0 and with a (−) the expansion regions Dp < 0,
as in [20, 19]. In this plot we clearly observe the occurrence of three alternate
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Fig. 5. Overpressure along the three acoustic waves.
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compression and expansion regions . On Fig. 5 we plot the circumferential distri-
bution of the pressure field DP=P − P2

P2
for (Mv, Ms)=(1.7, 1.1) at the three radii

marked in Fig. 5 (r=0.85 for the precursor, r=0.48 for the second sound and
r=0.22 for the third sound, where r is the distance to the vortex core). The precur-
sor is well in the far field, but we observe that, as expected, the circumferential
variation of the second sound is opposite in sign with respect to the precursor and
to the third sound.

In his theoretical study of sound production [29], Ribner argues that the pre-
cursor has a different nature from the second sound produced by the interaction.
As a result, the acoustic pressure peak

DPm=max
r

:P − P2

P2

: , (6)

of the precursor decays with the radial distance r from the center of the vortex
as r−1, while for the second wave the decay is proportional to r−1/2. In Fig. 6 we
report the peak values DPm, measured at G=−45°, for the sound waves that we
observe in the test case of Fig. 4. We observe that the peak sound pressure of the
precursor follows the theoretical decay predicted by Ribner in [29], while for the
other sound waves generated by the interaction, the peak sound pressure decays
like r−1/2.

Notice also that the acoustic pressure peaks are larger for the stronger vortex,
a fact which has been remarked in [20, 19] and that is also observed in our simula-
tions.
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Fig. 6. Decay of DPm versus r for the precursor and the remaining sound waves. ( · · · n · · · ) corre-
spond to the case (Mv, Ms)=(1.1, 1.1) and ( · · · f · · · ) to a stronger vortex (Mv, Ms)=(1.7, 1.1).
Straight lines represent the theoretical decay.
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4.2. Grid Sensitivity and Related Issues

The numerical simulations shown in the two previous subsections show a
perfect qualitative and quantitative agreement with previous computational and
theoretical studies that cover a much more limited parameter range.

In this section, we consider the case of very strong interactions and discuss the
results from a purely numerical point of view, focussing on the influence of the
multiresolution process and on the grid dependence of the numerical solution on
the mesh parameters.

We run a direct simulation with the M-PHM scheme on the finest grid of a
very strong interaction (Mv, Ms)=(1.7, 4), and compare the numerical solution
with that obtained with the M&M-PHM scheme. We found a relative difference
between the density field in both simulations ||r − r̃||1/||r̃||1=2 · 10−3 (r is obtained
with M&M-PHM and r̃ with M-PHM) after 2400 time steps, which corresponds to
t=0.25, when the interaction is completed and the vortex structure is well beyond
the shock wave. This is absolutely consistent with the results in [4]: the effect of the
multilevel work reduction technique is controlled by the smoothness parameter E.

To examine the dependence of our numerical simulations on the mesh param-
eters we choose the test case (Mv, Ms)=(1.2, 4) (the maximum pressure variation
in the vortex pcenter/p1 % 0.1, which can be found in experimental measures of wing-
tip vortices generated in wind tunnels [32]). We observe that the fine features of the
flow field (in particular a second slip line downstream of the vortex) are only
adequately resolved on the finer grid (see Figs. 7 and 8). All the other features of

Fig. 7. (Mv, Ms)=(1.2, 4) shock-vortex interaction at time t=0.25, for multilevel M&M-PHM
scheme. Left, 1024 × 512, L=5; middle, 512 × 256, L=4; right, 256 × 128, L=3. Top: contour lines
of density field. Bottom: contour lines of pressure field.
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Fig. 8. Enlarged view of density (left) and pressure (right) fields in Fig. 7 (1024 × 512 resolution)
around the vortex structure.

the flow, including the strong acoustic wave propagating ahead of the vortex are
correctly represented in all three grids.

It is worth mentioning that the high resolution of the numerical simulation
allows for a numerical determination of the speed at which the peak pressure moves
in its radial expansion, once the quadrupolar structure is clearly recognized. Con-
sidering that after the interaction the vortex is advected by the flow with velocity
(u2, v2=0), the total velocity of the acoustic wave on the x-axis for y=0.5 is then
u2+c2 where c2 is the downstream sound speed. We found the numerically com-
puted value for the speed to be within 1% of the predicted value (relative error).

4.2.1. Variation of Total Circulation

The last validation test concerns the total variation of the circulation C. Since
we are working with a polytropic gas law, Kelvin’s theorem applies, hence

dC

dt
=0.

Before the interaction the vortex satisfies by construction C=0, then the total
circulation has to remain zero during all the simulation. We defined the global
circulation at time t as

C(t)=F
W

wz(x, y, t) dx dy=F
W

w+
z +F

W

w−
z

where W is the computational domain and w+
z and w−

z the positive and negative
contributions of the vorticity. Consistency with physical principles dictates that
C+(t)+C−(t)=0 for all t. In our numerical simulations we check numerically this
physical principle and obtain

max
t

:C+(t)+C−(t)
C+(t)

: < 0.01

(see Figs. 15 and 16 for various plots of C+(t)).

Shock-Vortex Interactions at High Mach Numbers 361



4.3. Very Strong Shock/Vortex Encounters: The Effect of a Strong Shock on an
Isolated Vortex

We shall consider now the effect of the shock on the dynamics of the vortex.
Experimental [11] and computational [13, 19] studies show that the shock
compresses an initially circular vortex into an elliptical shape whose axis depend on
the shock strength. As observed in [13, 1, 20, 19], for 1 « Ms the shock passage has
little influence on the shape of the vortex, which keeps roughly its original shape
(Figs. 2 and 4). The compression effects of strong shock waves on the dynamics of
the vortex described in [19] can be clearly appreciated in Fig. 3; the elongation of
the vortex gives rise, at later times, to two separate vortical structures.

Numerical experimentation with stronger shocks shows that the flow field may
be quite different for larger Mach numbers. The vorticity field, in particular, seems
to be strongly dependent on the shock strength.

In Fig. 9 we display three different patterns of the vorticity field after the
interaction. The leftmost plot corresponds to Ms=1.5 and a vortex of moderate
strength (Mv=0.5); we observe that the inner core of the vortex, composed of
positive vorticity, is stretched and the outer negative ring begins to detach itself
from the inner core. This stretching is more pronounced for larger values of Ms

and/or Mv. For Ms ’ 2 (center plot in Fig. 9) and a slightly stronger vortex, the
inner core and the outer annular region are stretched even more and two different
structures seem to emerge after the interaction. For the range of parameters
1.5 « Ms « 2.5, the shock wave unstabilizes the internal structure of the vortex. The
late time evolution of the flow displays several separate structures (as an example,
see right display in Fig. 3), but we can still recognize one connected vortical struc-
ture immediately after the interaction, as in Fig. 3, left display.

This situation should be compared with the extreme case shown in the right-
most display in Fig. 9, where the vorticity field presents a completely different
pattern. The initial shape of the vortex can no longer be identified to any particular
structure. The vorticity field seems to be completely reorganized immediately after

Fig. 9. Visualization of the vorticity field after the interaction. White color represents positive
vorticity and black color negative vorticity. From left to right: (Mv, Ms)=(0.5, 1.5) at t=0.7,
(Mv, Ms)=(0.7, 2) at t=0.7, and (Mv, Ms)=(1.7, 7) at t=0.2.
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Fig. 10. Strong shock-vortex interaction: (Mv, Ms)=(1.7, 7), at three different stages. Left,
t=0.05; middle, t=0.1; right, t=0.25. Numerical Schlieren images obtained with the pressure.

the shock passage into different independent vortical structures. In [32], a similar
disruptive behavior is observed in experimental data concerning the interaction of
streamwise tip vortices with oblique shock waves.

A Schlieren pressure image of the same simulation is displayed in Fig. 10,
where we show the evolution of the flow at three different times. In the early-time
plots we observe a strong deformation of the shock profile followed by an almost
immediate splitting of the initial vortex into separate vortical structures. In addition
a pressure peak, corresponding to a strong acoustic wave, propagates downstream
at the sound speed, ahead of all the vortical structures (see Fig. 10, rightmost
display). The pressure field downstream of the shock wave reveals the extremely
complex structure of the flow field after a very strong interaction.

From the observational point of view, based on our extensive numerical
experimentation, it seems that the flow pattern is more or less independent of the
strength of the vortex, Mv. Slight differences can be observed on the shock defor-
mation and/or the number of vortices that may emerge after the interaction. In
Fig. 11 we show contour plots of the simulation corresponding to Ms=4,
Mv=1.7. The structure of the flow field after the interaction should be compared
with that in Figs. 7 and 8 which show the case for Mv=1.2. In the case of Fig. 7,
two vortical structures emerge after the interaction, while for the stronger vortex in
Fig. 11 at least three can be observed.

The data obtained in our numerical simulations indicates that a strong
‘‘reorganization’’ of the vortex field takes place immediately after the interaction

Fig. 11. Very strong shock-vortex interaction: (Mv, Ms)=(1.7, 4), at t=0.25. Contour plots of
density (left) and pressure (right).
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for sufficiently large vortex strengths. When this happens, it seems as if the shock
would break the original vortex and, after the passage is complete, more than one
vortical structure can be clearly recognized. We shall refer to this phenomenon as
(compressible) vortex breakdown.

In the next sections, we turn to analyze in some detail the mechanisms for the
production and evolution of vorticity with respect to the parameters Mv and Ms, as
well as their relation to the vorticity pattern after the interaction.

5. VORTICITY PRODUCTION AND VORTEX BREAKDOWN

The interaction of a shock with a vortex comes associated to an increase in
vorticity due to the action of the source terms in Eq. (4). We investigate the mech-
anisms leading to production of vorticity in the interaction by considering the time
evolution of the enstrophy, defined as

Es(t)=1
2 F

W

w2
z (x, y, t) dx dy, (7)

Using Eq. (4), it is easy to arrive at the following relation

“

“t
F

W

w2 dS=G
“W

w2VF · nF dl − F
W

w2 NF ·VF dS+2 F
W

wF ·
NFr × NFp

r2 (8)

where w2=w2
z , W is the computational domain and the remaining variables are as

in Sec. 2.1.
The computed enstrophy depends on the numerical viscosity of the scheme. In

Fig. 12 we show the time evolution of the enstrophy for the test case Ms=4,
Mv=1.2 in three different meshes. It is observed that not only the enstrophy peak,
but also the value of Es(t) diminishes with numerical viscosity (larger mesh sizes),
however, the shape of Es(t) remains the same. In order to assess the relative impor-
tance of the baroclinic and dilatational effects mentioned in Sec. 2.2, we compute

Fig. 12. (Mv, Ms)=(1.2, 4). Time evolution of Enstrophy Es(t) on three different meshes.
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Fig. 13. (Mv, Ms)=(1.2, 4). Time evolution of: (a) Es(t); (b) 2 >W w
NFr × NFp

r2 ; (c) − >W w2 NF ·VF ; see
text for description of t1, t2, t3.

Es(t) (using a simple quadrature rule), together with the contribution to the increase
in enstrophy due to baroclinic effects (the last term in Eq. (8)) and dilatational
effects (the second to last term in Eq. (8)) and show the results in Figs. 13 and 14.

Before the interaction, the vortex is advected by the flow. All terms in the r.h.s.
of Eq. (8) are zero, therefore the enstrophy remains constant, as observed in
Figs. 13 and 14, until the vortex flow field starts feeling the effects of the shock
wave. If the vortex was simply passively advected by the flow, the times at which its
outer and inner boundaries and its center would reach x=0.5, the shock location,
can be easily computed. For the parameters chosen in Fig. 13, (Mv=1.2, Ms=4),
the time the outer region reaches the shock is t1=0.0158 s, while the times the
boundary of the undisturbed vortex core and its center would reach x=0.5 would
be respectively t2=0.037 and t3=0.0528. These three times have been marked also
on the plot as vertical lines.

Fig. 14. (Mv, Ms)=(0.8, 4). Time evolution of: (a) Es(t); (b) 2 >W w
NFr × NFp

r2 ; (c) − >W w2 NF ·VF ; see
text for description of t1, t2, t3.
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As expected, the plotted terms begin to be non-zero only when the boundary
of the outer annular region feels the influence of the shock (% t1). A significant
increase in enstrophy is only felt after t \ t2. After t=t3 the shock is beyond the
vortex core and the enstrophy is essentially constant again (it shows a slight decline,
most likely due to numerical viscosity).

The plots in Figs. 13 and 14, where we repeat the computation for Mv=0.8,
Ms=4, clearly show that the driving mechanism for the production of vorticity in
the interaction (as it occurs also in turbulent motion [22]) is due to the expansion
term.

The non-monotonic behavior observed in Fig. 13 is characteristic of large
vortex strengths and can also be observed in the plots of the circulation. In Fig. 15
we display the time evolution of C+(t) for a fixed vortex strength Mv=1.7 and a
varying shock strength Ms from 2 to 7. For each plot, we marked with a + the
time t3. We remark that the vorticity jump is strongly dependent on Ms but the
shape of these plots remains roughly the same. For Ms=2 and 2.5 the vortex is
distorted by the shock wave, but only splits after some time; the positive circulation
C+(t) is roughly monotonic in this case and it is only for Ms \ 3, when separate
vortical structures appear just after the interaction, that the C+(t) shows a distinc-
tive non-monotonic behavior, together with a much more important net increase.

The non-monotonic behavior is not linked to the vortex breakdown, however.
On Fig. 16, we explore the time evolution of C+(t) for a fixed strong shock, Ms=4,
and a varying vortex strength Mv from 0.5 to 1.7. The computational data confirms
that larger vorticity jumps result from larger vortex strengths, but for Ms=4 vortex
breakdown occurs for all values of Mv considered in our parametric study, and in
most cases, the behavior of C+(t) is roughly monotonic.

Therefore, from these observations it seems to be very difficult to give a rela-
tion between the production of circulation or vorticity and what we called the

Fig. 15. Time evolution of C+(t) for Mv=1.7 and Ms=[2, 2.5, 3, 4, 5, 6, 7] from (a) Ms=2 to
(g) Ms=7.
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Fig. 16. Time evolution of C+(t) for Ms=4 and Mv=[0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7] from (a)
Mv=0.5 to (g) Mv=1.7.

vortex breakdown. This could also be observed in Fig. 17 where we plot the
maximum value of the enstrophy versus the parameters Mv and Ms. The maximum
of enstrophy is an increasing function of these parameters, but it is rather small for
weak vortices even in the case of large Ms, where the vortex is ‘‘broken’’ by the
shock in at least two independent structures.

From our experiments we conjecture that the phenomenon we have denoted as
vortex breakdown seems to be mainly due to the shock strength. A sufficiently

Fig. 17. Maximum of the enstrophy versus of the parameters Mv and Ms.
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strong shock (Ms > 3 for this model) will so strongly disrupt the vorticity field that
the outcome of the interaction will no longer be linked to one connected vortical
structure. The initial vorticity influences more the number of structures that appear
after the interaction (two or more).

6. COMPARISON WITH A THEORETICAL MODEL

Our empirical study demonstrates that the increase in enstrophy in the
shock/vortex interaction is mainly driven by the expansion term. This should be
compared with the conclusions in [22], where it is observed that the vorticity jump
is dominated by the expansion term in turbulent regimes, in contrast to the results
in [30] and [28] which show that the production of vorticity in the interaction of a
shock with a density inhomogeneity, such as a bubble, is entirely baroclinic.

In [22], Kevlahan gives a general formula for the instantaneous jump in vor-
ticity across a shock wave. He shows that the vorticity jump can be written as the
sum of three terms, one directly related to the shock curvature and shock strength,
one representing the baroclinic production and the third related to the conservation
of angular momentum.

In this section we pay special attention to this last term—recall that in our case
the baroclinic production has little influence—which, in the notation of [22], is

dw=mw1, m=
rbh

rah
− 1, (9)

where w1 represents the vorticity ahead of the shock, m is the normalized jump in
density across the shock and rah and rbh are the densities ahead and behind the
shock.

Let us consider rbh=r2, the downstream density which depends on the shock
strength, Ms. We fix Mv, the vortex strength and compute the vorticity jump given
by (9) when rah is computed from (3) according to

– rah=rr=0, the velocity at the center of the vortex (marked with the symbol
‘‘f ’’ on Fig. 18),

– rah=rr=a (symbol ‘‘+’’),

– rah=rr=b=r1 (symbol ‘‘ × ’’).

We represent the values obtained for 1.1 [ Ms [ 10, normalized by the correspond-
ing value for Ms=1.1, in Fig. 18. In addition, we compute

dwnum=max
x, y, t

|wz | − max
x, y, t=0

|wz |, (10)

from our numerical data, normalize it by the corresponding value for Ms=1.1 and
display the result in Fig. 18 (symbol ‘‘O’’).

It is perhaps surprising to observe the good agreement between the normalized
vorticity jump predicted by (9) when rah=rr=a and the computational one for
1.1 [ Ms « 6 for Mv=1.7 and 1.1 [ Ms « 7 for Mv=1.5. The agreement does not
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Fig. 18. Evolution of (normalized) mw versus Ms for Mv=1.7, Mv=1.5 and Mv=0.9. In each
plot, ‘‘f ’’ corresponds to rah=r(r=0), ‘‘+’’ to rah=r(r=a) and ‘‘×’’ to rah=r(r=b). The
computed jump dwnum is represented by ‘‘O.’’ All quantities have been normalized by their value for
Ms=1.1.

hold for Mv=0.9, but in all cases the computed values stay between the jump pre-
dicted by (9) for the values rah=rr=0 and rah=rr=b.

These results seem to indicate that for intense vortices (large Mv), where there
is a large variation in the density field inside the vortex, the global increase in vor-
ticity is mainly due to the vortex strength. On the contrary, when the rotation of the
vortex is less intense and the density and pressure variations inside the vortex are
much less important, a significant production of vorticity must be due to shock
curvature.

These results are coherent with the remark of Kevlahan in [22] who states that
mw is the dominant term in the weak-shock turbulence interaction when intense
vortices are present in the flow ahead of the shock.

7. CONCLUSIONS AND PERSPECTIVES

The difficulties in the numerical simulation of rotational flow inhomogeneities
embedded in compressible flows has been recognized by many authors. In this
paper we combine a particularly robust high resolution shock capturing scheme, the
M-PHM scheme, with the multilevel work reduction technique developed in [4] to
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obtain high resolution numerical simulations of a particular model of shock-vortex
interaction. Our numerical technique, the M&M-PHM scheme, is able to obtain
high quality, high resolution simulations of the complex shock structure that results
at early times after the interaction as well as the late time evolution of the flow
field, for a wide range of vortex and shock strengths. In particular we provide
numerical simulations covering the strong-vortex/strong-shock case, which are
rather scarce in the literature

We carry out a parametric study of the normal shock/vortex interaction and
use the data in the numerical simulations to study the relative role of the different
mechanisms responsible for the generation of vorticity in the interaction and its
relation with the strong disruption of the vorticity field that occurs immediately
after the encounter of a very strong shock with a vortex. We observe also that the
disruption is more intense when increasing Mv, and that vorticity is generated in the
interaction due, mainly, to expansion effects.

In addition, this work demonstrates the effectiveness of the M&M-PHM
scheme for the numerical simulation of the shock-vortex interaction problem. We
hope that our work will raise the level of awareness of the scientific community
towards the potential of the M&M-PHM scheme in particular as an effective tool in
analyzing not only qualitatively but also quantitatively, the structure and physical
properties of complex flow fields.
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