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Abstract

We show that the regularity of the gravitational metric tensor cannot be lifted

from C0,1 to C1,1 by any C1,1 coordinate transformation in a neighborhood of a point

of shock wave interaction in General Relativity, without forcing the determinant of

the metric tensor to vanish at the point of interaction. This is in contrast to Is-

rael’s Theorem [6] which states that such coordinate transformations always exist in

a neighborhood of a point on a smooth single shock surface. The results thus imply

that points of shock wave interaction represent a new kind of singularity in spacetime,

singularities that make perfectly good sense physically, that can form from the evo-

lution of smooth initial data, but at which the spacetime is not locally Minkowskian

under any coordinate transformation. In particular, at such singularities, delta func-

tion sources in the second derivatives of the gravitational metric tensor exist in all

coordinate systems, but due to cancelation, the curvature tensor remains uniformly

bounded.
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1. Introduction

Albert Einstein introduced his theory of General Relativity (GR) in 1915 after eight

years of struggle. Einstein’s guiding principle in the pursuit of the field equations was

the principle that spacetime should be locally inertial 1. That is, an observer in

freefall through a gravitational field should observe all of the spacetime physics of

special relativity, except for the second order acceleration effects due to spacetime

curvature (gravity). But the assumption that spacetime is locally inertial is equiva-

lent to assuming the gravitational metric tensor g has a certain level of smoothness

around every point. That is, the assumption that spacetime is locally inertial at a

spacetime point p assumes the gravitational metric tensor g is smooth enough so that

one can pursue the construction of Riemann Normal coordinates at p, coordinates in

which g is exactly the Minkowski metric at p, and such that all first order derivatives

of g vanish at p as well. The nonzero second derivatives at p are then a measure of

spacetime curvature. However, the Einstein equations are a system of PDE’s for the

metric tensor g and the PDE’s by themselves determine the smoothness of the gravi-

tational metric tensor by the evolution they impose. Thus the condition on spacetime

that it be locally inertial at every point cannot be assumed at the start, but must be

determined by regularity theorems for the Einstein equations.

This issue becomes all the more interesting when the sources of matter and energy

are modeled by a perfect fluid, and the resulting Einstein-Euler equations form a

system of PDE’s for the metric tensor g coupled to the density, velocity and pressure

of the fluid. It is well known that from the evolution of a perfect fluid governed

by the compressible Euler equations, shock wave discontinuities form from smooth

1Also referred to as locally Lorentzian or locally Minkowskian, that is, around any point there

exist coordinates in which the gravitational metric is Minkowskian at that point with vanishing first

derivatives. Therefore, at that point the metric is Minkowskian up to second order errors in distance.
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initial data whenever the flow is sufficiently compressive.2 At a shock wave, the fluid

density, pressure and velocity are discontinuous, and when such discontinuities are

assumed to be the sources of spacetime curvature, the Einstein equations imply that

the curvature must also become discontinuous at shocks. But discontinuous curvature

by itself is not inconsistent with the assumption that spacetime be locally inertial.

For example, if the gravitational metric tensor were C1,1, (differentiable with Lips-

chitz continuous first derivatives, [11]), then second derivatives of the metric are at

worst discontinuous, and the metric has enough smoothness for there to exist coor-

dinate transformations which transform g to the Minkowski metric at p, with zero

derivatives at p as well, [11]. Furthermore, Israel’s theorem, [6], (see also [11]) asserts

that a spacetime metric need only be C0,1, i.e., Lipschitz continuous, across a smooth

single shock surface3, in order that there exist a C1,1 coordinate transformation that

lifts the regularity of the gravitational metric one order to C1,1 as well, and this

again is smooth enough to ensure the existence of locally inertial coordinate frames

at each point. In fact, when discontinuities in the fluid are present, C1,1 coordinate

transformations are the natural atlas of transformations that are capable of lifting

the regularity of the metric one order, while still preserving the weak formulation of

the Einstein equations, [10]. It is common in GR to assume the gravitational metric

tensor is at least C1,1, for example, the C1,1 regularity of the gravitational metric is

assumed at the start in the singularity theorems of Hawking and Penrose, [5]. How-

ever, in Standard Schwarzschild Coordinates4 (SSC) the gravitational metric will be

2Since the Einstein curvature tensor G satisfies the identity Div G = 0, the Einstein equations

G = κT imply Div T = 0, and so the assumption of a perfect fluid stress tensor T automatically

implies the coupling of the Einstein equations to the compressible Euler equations Div T = 0.
3We call a hypersurface a shock surface if the Lipschitz continuity of the metric across the hy-

persurface is such that the jump in the metric derivatives normal to the hypersurface do not vanish

([gµν,σ]nσ 6= 0) and such that the Einstein tensor satisfies the Rankine Hugoniot jump condition,

that is, [Gµν ]nν = 0 (c.f. Preliminaries).
4It is well known that a general spherically symmetric metric of form ds2 = −A(t, r)dt2 +

B(t, r)dr2 + E(t, r)dtdr + C(t, r)2dΩ2 can be transformed to SSC in a neighborhood of a point

where ∂C
∂r 6= 0, c.f. [18]
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no smoother than C0,1, if a discontinuous energy momentum tensor in the Einstein

equations is present.

In this thesis we prove there are no C1,1 coordinate transformations that lift the

regularity of a gravitational metric tensor from C0,1 to C1,1 at a point of a shock wave

interaction in a spherically symmetric spacetime in GR, without forcing the determi-

nant of the metric tensor to vanish at the point of interaction. This is in contrast to

Israel’s Theorem [6] which states that such coordinate transformations always exist

in a neighborhood of a point on a smooth single shock surface. (Israel’s theorem

applies to general smooth shock surfaces of arbitrary dimension, [6].) It follows that

solutions of the Einstein equations containing single smooth shock surfaces can solve

the Einstein equations strongly, (in fact, pointwise almost everywhere in Gaussian

normal coordinates), but this fails to be the case at points of shock wave interaction,

where the Einstein equations can only hold weakly in the sense of the theory of distri-

butions. The results thus imply that points of shock wave interaction represent a new

kind of singularity in General Relativity that can form from the evolution of smooth

initial data, that correctly reflects the physics of the equations, but at which the

spacetime is not locally Minkowskian under any C1,1 coordinate transformation. At

such singularities, delta function sources in the second derivatives of the gravitational

metric tensor exist in all coordinate systems of the C1,1 atlas, but due to cancelation,

the curvature tensor remains uniformly bounded.

To state the main result precisely, we consider spherically symmetric spacetime

metrics gµν which solve the Einstein equations in SSC, that is, in coordinates where

the metric takes on the form

(1.1) ds2 = gµνdx
µdxν = −A(t, r)dt2 +B(t, r)dr2 + r2dΩ2,

where either t or r can be taken to be timelike, and dΩ2 is the line element on the

unit 2-sphere, c.f. [12]. In Section 3 we make precise the definition of a regular point
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of shock wave interaction in SSC. Essentially, this is a point in (t, r)-space where two

distinct shock waves enter or leave the point p at distinct speeds, such that the metric

is Lipschitz continuous, the Rankine Hugoniot (RH) jump conditions hold across the

shocks [10], and the SSC Einstein equations hold strongly away from the shocks. The

main result of the paper is the following theorem, (c.f. Definition 3.1 and Theorem

9.1 below):

Theorem 1.1. Assume p is a point of regular shock wave interaction in SSC. Then

there does not exist a C1,1 regular coordinate transformation5, defined in a neighbor-

hood of p, such that the metric components are C1 functions of the new coordinates.

The proof of Theorem 1.1 is constructive, providing Jacobians that, if they smooth

the metric on a deleted neighborhood of p, must have a vanishing determinant at p

itself. In this sense the metric becomes singular at p, if a C1 regularity is forced upon

it, and having this effect, of a vanishing metric determinant opposed by a lack of C1

regularity, in mind we refer to p as a regularity singularity. We expect this type of

singularity to form out of smooth initial data within a finite time, in correspondence

with fluids governed by the special relativistic Euler equations.6 Our assumptions in

Theorem 1.1 apply to the upper half (t ≥ 0) and the lower half (t ≤ 0) of a shock

5The atlas of C1,1 coordinate transformations is a generic choice to address shock waves in General

Relativity, since C2 coordinate transformations cannot lift the metric regularity in the first place (c.f.

Section 7), while a C1,α atlas seems to be appropriate only for metric tensors in C0,α. Furthermore,

due to the quasilinear structure of the Einstein equations a C1,1 atlas is natural as it preserves the

weak formalism, while for any atlas regularity below C1 (e.g., a C0,1 atlas with resulting discontin-

uous metric components) we expect that a weak formulation of the Einstein equations fails to exist.

Given this, points of regular shock wave interaction in SSC represent regularity singularities in the

sense that they are points where the gravitational metric is less regular than C1 in any coordinate

system that can be reached within the C1,1 atlas.
6It is commonly expected that general relativistic shock waves form out of smooth initial, for

example, the breakdown of classical solutions of the coupled Einstein Euler Equations has been

shown in plane symmetric spacetimes, with strong indications that this is due to a formation of
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wave interaction (at t = 0) separately, general enough to include the case of two

timelike (or spacelike7) interacting shock waves of opposite families that cross at the

point p, (two such shock waves typically change their speeds discontinuously at the

point of interaction), but also general enough to include the cases of two outgoing

shock waves created by the focusing of compressive rarefaction waves, or two incoming

shock waves of the same family that interact at p to create an outgoing shock wave

of the same family and an outgoing rarefaction wave of the opposite family, c.f. [10].

In particular, our framework is general enough to incorporate the shock wave interac-

tion which was numerically simulated in [17]. We want to point out that even though

our research was motivated by shock wave solutions of the Einstein-Euler equations

constructed by Temple and Groah [3], we do not explicitly assume a perfect fluid as

the matter source, we only require T µν to be bounded and to satisfy the Rankine

Hugoniot jump conditions [T µν ]nµ = 0 on each of the shock curves.

Historically, the issue of the smoothness of the gravitational metric tensor across in-

terfaces began with the matching of the interior Schwarzschild solution to the vacuum

across an interface, followed by the celebrated work of Oppenheimer and Snyder who

gave the first dynamical model of gravitational collapse by matching a pressureless

fluid sphere to the Schwarzschild vacuum spacetime across a dynamical interface. In

[11], Smoller and Temple extended the Oppenheimer-Snyder model to nonzero pres-

sure by matching the Friedmann metric to a static fluid sphere across a shock wave

interface that modeled a blast wave in GR. In his celebrated 1966 paper [6], Israel

gave the definitive conditions for regular matching of gravitational metrics at smooth

interfaces, by showing that if the second fundamental form is continuous across a sin-

gle smooth interface, then the RH jump conditions also hold, and Gaussian normal

coordinates provide a locally inertial coordinate system at each point on the surface.

shock waves [9], however, as far as we know the formation of shock waves in spherically symmetric

spacetimes has not been shown yet.
7In fact the theorem applies to non-null surfaces that can be regularly parameterized by the SSC

time or radial variable, c.f. Theorem 9.1 below.
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In [3] Groah and Temple addressed these issues rigorously in the first general existence

theory for shock wave solutions of the Einstein-Euler equations in spherically symmet-

ric spacetimes. In coordinates where their analysis is feasible, SSC, it turned out that

the gravitational metric was Lipschitz continuous at shock waves, but no smoother,

and it has remained an open problem whether the weak solutions constructed by

Groah and Temple could be smoothed to C1,1 by coordinate transformation, like the

single shock surfaces addressed by Israel. The results in this paper resolve this issue

by proving definitively that the weak solutions constructed by Temple and Groah

cannot be smoothed within the class of C1,1 coordinate transformations when they

contain points of shock wave interaction.

Points of shock wave interaction are straightforward to construct for the relativistic

compressible Euler equations in flat spacetime, but to our knowledge no one has yet

constructed an exact solution of the Einstein equations containing a point of shock

wave interaction, where two shock waves cross in spacetime. Moreover, no general

construction has been given that proves that such points exist, and meet the regu-

larity assumptions of our theorem. Nevertheless, all the evidence points to the fact

that points of shock wave interaction exist, have the structure we assume in SSC,

and in fact cannot be avoided in solutions consisting of, say, an outgoing spherical

shock wave (the blast wave of an explosion) evolving inside an incoming spherical

shock wave (the leading edge of an implosion). Indeed, the existence theory of Tem-

ple and Groah [3] lends strong support to this claim, establishing existence of weak

solutions of the Einstein-Euler equations in spherically symmetric spacetimes. The

theory applies to arbitrary numbers of initial shock waves of arbitrary strength, ex-

istence is established beyond the point of shock wave interaction, and the regularity

assumptions of our theorem are within the regularity class to which the Groah-Temple

theory applies. Moreover, the recent work of Vogler and Temple gives a numerical

simulation of a class of solutions in which two shock waves emerge from a point of
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interaction where two compression waves focus into a discontinuity in density and ve-

locity, and the numerics demonstrate that the structure of the emerging shock waves

meets all of the assumptions of our theorem at the point of interaction. Still, as far

as we know, there is no rigorous mathematical construction of an exact solution of

the Einstein equations consisting of two interacting shock waves. Taken on whole, we

interpret the above considerations as a definitive physical proof that points of shock

wave interaction exist in GR, and meet the regularity assumptions of our theorem.

The conclusion of our theorem then, is that such points must exist where the grav-

itational metric tensor cannot be smoothed to C1,1 by C1,1 coordinate transformation.

In Section 2 we start with the preliminaries, followed by the set up of the basic

framework in which we address shock waves in GR, in Section 3. In particular we

define a point of regular shock wave interaction in SSC. Before we present our main

method and results in Section 6, 7, 8, 9 and 10, we discuss in Section 4 the incon-

clusiveness in deriving a regularity from the procedure of guessing coordinates and

using the Einstein equations to read off the regularity. In Section 5 we introduce the

weak formulation of the Einstein equations in spherical symmetry and prove that the

metric coefficient to the spheres of symmetry is always C1,1, showing that the lack of

metric smoothness is confined to the (t, r)-plane.

We begin the presentation of our main method by introducing the precise sense in

which functions and metrics are said to be only C0,1 across a hypersurface in Section

6. We end Section 6 by introducing a canonical form for functions Lipschitz continu-

ous across a hypersurface. The canonical form isolates the Lipschitz regularity from

the C1 regularity of functions in a neighborhood of the hypersurface.

In Section 7 we show that the property of the metric tensor being C0,1 across a

shock surface is covariant under C2 coordinate transformations, but not under C1,1
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transformations and we use this lack of covariance to derive conditions on the Jaco-

bians of general C1,1 coordinate transformations necessary and sufficient to lift the

regularity of a metric tensor from C0,1 to C1 at points on a shock surface. This

condition enables us to represent all such Jacobians in terms of the canonical form

introduced in Section 6, unique up to addition of an arbitrary C1 function. Specif-

ically, we isolate the properties of the Jacobian which enable it to cancel out all of

the discontinuities present in the derivatives of the metric in the original coordinates,

under transformation to the new coordinates. The result is a canonical form for the

Jacobians of all coordinate transformations that can possibly lift the regularity of the

gravitational metric tensor to C1.

In Section 8, we give a new constructive proof of Israel’s theorem for spherically

symmetric spacetimes, by showing directly that the Jacobians expressed in our canon-

ical form do indeed smooth the gravitational metric to C1,1 at points on a single shock

surface, thereby reproving Israel’s Theorem within the framework of our newly de-

veloped method. The essential difficulty is to prove that the freedom to add an

arbitrary C1-function to our canonical form, is sufficient to guarantee that we can

meet the integrability condition on the Jacobian required to integrate it up to an ac-

tual coordinate system. The main point is that this is achievable within the required

C1 gauge freedom if and only if the RH jump (c.f. [10]) conditions and the Einstein

equations hold at the shock interface.

The main step towards Theorem 1.1 is then achieved in Section 9 where we prove

that at a point of regular shock wave interaction in SSC there exists no coordinate

transformations in the (t, r)-plane, (that is, transformations that keep the angular

part fixed), that lift the metric regularity to C1. The central method herein is that

the C1 gauge freedom in our canonical forms is insufficient to satisfy the integrability

condition on the Jacobians, without forcing the determinant of the Jacobian to vanish

at the point of interaction. In Section 10 we extend this result to the full atlas
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of spacetime, thereby proving Theorem 1.1. Since we do not know how to make

mathematical and physical sense of coordinate transformations less regular than C1,1

in general relativity, we conclude that points of shock wave interaction represent a

new kind of singularity in spacetime, which we call regularity singularity. We derive

the loss of locally inertial frames in Section 11.
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2. Preliminaries

In this preliminary section we discuss the basic framework of General Relativity,

in particular we introduce the coupled Einstein-Euler equations and the phenome-

non of shock waves as solutions of the latter. Furthermore, we give a short review

of Israel’s result [6, 11], introduce spherically symmetric spacetimes and discuss the

Einstein equations in Standard Schwarzschild Coordinates, together with the metric

regularity.

The framework of General Relativity is a four dimensional manifold M , together

with a Lorentz metric g (i.e. a metric tensor with signature (−1, 1, 1, 1)). Requiring

spacetime to be a manifold reflects Einstein’s original insight of general covariance

[1], that is, all physical equations must be formulated as tensor equations, while the

signature of the metric induces a notion of time and causality. Around each point

p ∈ M there exists an open neighborhood Np (called a coordinate patch) and a

homeomorphism

x = (x0, ..., x3) : Np → R4

that defines coordinates on its image in R4. The collection of all such neighborhoods

(that cover the whole spacetime) and corresponding homeomorphisms is called an

atlas. If the intersection of two coordinate patches is nonempty, x ◦ y−1 defines a

mapping from an open region in R4 to an open region in R4 (often refered to as a

coordinate transformation) and one obtains a notion of the differentiability of the

mapping x ◦ y−1 in terms of partial derivatives in R4. Given that all coordinate

transformations in the atlas are Ck-diffeomorphisms, then one calls the manifold M a

Ck-manifold and its atlas a Ck-atlas. In General Relativity and Riemannian geome-

try the manifold is usually assumed to be C2, however, in this paper we consider C1,1

manifolds, since this low level of regularity is crucial in order to address shock wave

solutions of the Einstein Euler equations in an appropriate way. We show in section

7 that lowering the regularity to C1,1 is the crucial step that allows for a smoothing



11

of the metric in the presence of a single shock wave, (c.f. Theorem 8).

In this thesis we use the Einstein summation convention, that is, we sum over

repeated upper and lower indices, and we use the type of index to indicate in what

coordinates we consider a tensor to be expressed in. For instance T µν denotes a (1, 1)-

tensor in coordinates xµ and T ij denotes the same tensor in coordinates xj, under a

change of coordinates both are related by the covariant transformation rule

(2.1) T µν = Jµi J
j
νT

i
j ,

where we define the Jacobian J as follows

(2.2) Jµj :=
∂xµ

∂xj
.

The transformation law of the form (2.1) defines a tensor, expressing its covariance.

A particular tensorial transformation is the one of the metric tensor

(2.3) gµν = J iµJ
j
νgij ,

which is crucial for the problem we address in this article, namely the question whether

there exists a coordinate transformation (or equivalently a Jacobian) that lifts the

metric regularity from C0,1 to C1,1 or not. We use the convention to raise and lower

tensor indices with the metric, for example

T ij = gjlT
li,

and denote with gij the inverse of the metric, defined via the equation

(2.4) gilg
lj = δji .

For a set of functions Jµβ to be a Jacobian it is necessary and sufficient to satisfy (see

appendix A for details)

Jµi,j = Jµj,i(2.5)

det
(
Jµj
)
6= 0,(2.6)
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where f,j := ∂f
∂xj

denotes partial differentiation with respect to the coordinate xj.

Condition (2.5) ensures that Jµj is integrable to coordinates xµ and condition (2.6)

ensures that tensors do not become singular (in the sense of a vanishing determinant)

under a change of coordinates, as well as the invertibility of the coordinate functions.

We refer to the PDE (2.5) as the integrability condition.

We now discuss the Einstein Field equations that govern the gravitational field

through coupling the spacetime curvature to the energy (and matter) contained in it.

The Einstein Field equations read [1]

(2.7) Gij = κT ij

where κ := 8πG incorporates Newton’s gravitational constant G into the equation

and

(2.8) Gij = Rij − 1

2
Rgij + Λgij

is the Einstein tensor, Λ denotes the cosmological constant. Our method applies

regardless the choice of Λ ∈ R, since the term Λgij in the Einstein equations (2.7) is

continuous. The Ricci tensorRij is defined to be the trace of the Riemann tensorRij =

Rl
ilj and the trace of the Ricci tensor R = Rl

l is called the scalar curvature. The metric

tensor gij enters the Einstein equations through the Christoffel symbols

Γijk =
1

2
gli (gjl,k + gkl,j − gjk,l) ,

since the Riemann curvature tensor can be expressed as

Ri
jkl = Γijk,l − Γijl,k + ΓimlΓ

m
jk − ΓimkΓ

m
jl .

Taking into account the symmetry of the metric tensor gij = gji, (and the Ricci tensor

Rij = Rji), the Einstein equations are a set of 10 second order differential equations

on gij. For the Einstein tensor to be defined in a strong sense a C2 metric regularity

is necessary, however, at the level of shock waves only Lipschitz continuity is given in

general and one must introduce the Einstein tensor in a weak (distributional) sense.
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We describe the weak form of the Einstein equations in Section 5 in the case of a

spherically symmetric spacetime in SSC, see [11] for a treatment of the weak formal-

ism in a general manifold.

By construction, the Einstein tensor is divergence free

(2.9) Gij
;j = 0,

where the semicolon in (2.9) denotes covariant differentiation, that is

(2.10) vi;j := vi,j + Γiljv
l

for a vector field vi. Through (2.9) the Einstein equations ensure conservation of

energy in the matter source

(2.11) T ij ;j = 0 ,

which was one of the guiding principles Einstein followed in the construction of the

Einstein tensor [1]. In the case of a perfect fluid

(2.12) T ij = (p+ ρ)uiuj + pgij ,

(in units where c = 1), (2.11) are the general relativistic Euler equations, with ρ being

the density, p the pressure and ui the tangent vector of the fluid flow (see for example

[13]). After imposing an equation of state p = p(ρ) and fixing the parametrization in

the tangent vectors of the fluid flow ui, for example such that ujuj = −1, the system

closes in the sense that the number of unknowns (ρ and ui) matches the number of

equations. If in some coordinates the metric at a point p equals the Minkowski metric

ηij to second order, that is

gij(p) = ηij

and gij,l(p) = 0,(2.13)

then (2.11) reduce to the special relativistic Euler equations

T ij ,j = 0
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at the point p. Considering gij, ρ and uj as unknowns, the Einstein equations (2.7)

together with the general relativistic Euler equation (2.11), form the coupled Einstein-

Euler equations. Imposing an equation of state p = p(ρ) the system closes and the

coupled Einstein-Euler equations form a set of fourteen partial differential equations

in fourteen unknowns.

The Euler equations (2.11) are a system of conservation laws, which do not only

allow for discontinuous (shock wave) initial data, but moreover, as Riemann himself

first showed, shock waves form from smooth solutions that are sufficiently compres-

sive, [10, 8]. This makes the study of shock waves unavoidable for perfect fluids,

arguing that the result of this paper is fundamental to General Relativity. Being dis-

continuous, the solutions can satisfy the conservation law only in the weak sense. To

obtain the weak formulation of the equations, multiply the equation with a smooth

test function of compact support and integrate the equation afterwards in order to

shift the derivatives to the test function using the divergence theorem (c.f. [11]). In

the case of the Euler equations the weak form reads

(2.14)

∫
M

T ijϕ,jdµM ,

where ϕ ∈ C∞0 (M) is a test function and dµM is the volume element. Once the

discontinuity forms across a hypersurface Σ (the so-called shock surface) the solution

satisfies the Rankine Hugoniot jump conditions (or RH condition),

(2.15) [T µν ]Nν = 0,

where N ν is normal to the hypersurface Σ and [u] := uL − uR denotes the difference

of the left and right limit (to Σ) and is refered to as the jump in u across Σ. In fact,

if T ij is a strong solution everywhere away from the hypersurface and satisfies the

jump conditions (2.15), then this is equivalent to T ij being a weak solution in the

whole region. Thus, one can avoid using the weak formalism and instead use the jump

conditions and the strong solution everywhere away from the shock surface. In this
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article we work on the shock solutions only in this way, not using the weak formalism.

We finally want to point out that we do not specifically use a perfect fluid source in

our methods, but only assume that T ij is bounded and continuous away from some

hypersurfaces, across which it satisfies the Rankine Hugoniot jump condition (2.15),

(see Definition 3.1 for details).

For the Einstein tensor to be defined in a strong almost everywhere sense one

needs a C1,1 regularity, however, at the level of shock waves in SSC the gravitational

metric tensor is Lipschitz continuous and can only satisfy the Einstein equations in

a weak (distributional) sense, (we derive this below, see also [3]). Israel proved in

his 1966 paper [6] that in the presence of a single smooth shock surface one recovers

the C1,1 metric regularity by a coordinate transformation if and only if the energy

momentum tensor is bounded almost everywhere. If so, the Rankine Hugoniot jump

conditions hold everywhere on the shock surface, moreover the RH conditions are even

equivalent to the existence of coordinates xi where the metric is C1,1 if spacetime is

spherically symmetric, as shown by Smoller and Temple [11]. The theorem is stated

for a n-dimensional Riemannian manifold but applies to Lorentz manifold analogously

as long that the shock surface is not null. The essence of the proof is to construct

Gaussian Normal Coordinates with respect to the shock surface Σ, that is, we first

arrange by a smooth coordinate transformation that locally Σ = {p ∈M : xn(p) = 0},

then the coordinate vector ∂
∂xn

of the coordinates xi is normal to the surface. We now

define coordinates by mapping a point p ∈M (sufficiently close to Σ) to Rn as follows:

(2.16) xα(p) =
(
s, xn−1(q), ..., x1(q)

)
,

where s is the arc-length parameter of a geodesic curve γ starting at the point

q ∈ Σ in the direction ∂
∂xn

normal to Σ, with γ(s) = p, and xα(q) = xi(q) for all

α = i ∈ {1, ..., n − 1}. Said differently, we define new coordinates xα by exchanging

the n−th coordinate xn by the geodesic arc-length parameter. The coordinates (2.16)
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are called Gaussian Normal Coordinates. Computing now the Einstein tensor in co-

ordinates (2.16), it turns out that each component of the resulting Einstein tensor

contains only a single “critical”8 second order derivative gαβ,nn, while all other terms

in the Einstein equations are in L∞ and thus gαβ,nn ∈ L∞. Since all other second

order derivatives are bounded we conclude that gαβ ∈ C1,1. (Here we use that Lip-

schitz continuity of a function is equivalent for it to be in the Sobolev-space W 1,∞,

containing all functions with almost everywhere bounded first order weak derivatives.

Either of these imply that the function is differentiable almost everywhere.) In Sec-

tion 8 we give a new constructive proof of Israel’s result, based on the method we

introduce in Section 7.

In the following we introduce the spherically symmetric spacetimes, and restrict

our attention to these. Many exact solutions of fundamental interest to general rela-

tivity are spherically symmetric, including the Schwarzschild, Oppenheimer-Volkoff,

Reissner-Nordstrom and Friedmann-Robertson-Walker spacetimes, [5]. Assuming

spherical symmetry, one can describe many astrophysical objects (like stars or black

holes) to a very high accuracy [18]. A spherically symmetric spacetime is a spacetime

that allows for two spacelike Killing vector field X i and Y i, such that the subspaces

parameterized by the flow of the Killing vectors have a positive constant curvature

[18]. We refer to those subspaces as the spaces of symmetry, in fact, in suitable coordi-

nates the spaces of symmetry are given by a family of two spheres of smoothly varying

radii. A vector field Xj is called a Killing vector if it satisfies Killing’s equations

(2.17) Xi;j +Xj;i = 0.

Killing’s equation ensures that the flow of a solution X i is an isometry of spacetime,

since a vector field X i solves (2.17) if and only if the Lie derivative of the metric in

8By this we mean a second order derivative of the metric components that might be distributional.

Since the vector ∂
∂xn is normal to Σ, only gij,nn might be distributional, while all other second order

metric derivatives are at most discontinuous.
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direction of X i vanishes [5, 19, 18],

(2.18) LXg = 0,

which is exactly the condition that the flow of X i is an isometry of the metric.

A very interesting and from an analytical perspective maybe the most important

feature of spherically symmetric spacetimes is that one can always define coordinates

ϑ and ϕ such that the metric takes on the form [18]

(2.19) ds2 = −Adt2 +Bdr2 + 2Edtdr + CdΩ2 ,

where

dΩ2 = dϕ2 + sin2 (ϑ) dϑ2

is the line element on the two-sphere and the metric coefficients A, B, C and E only

depend on t and r. This simplifies the metric a lot, because its original ten free

components reduce to four and the ten Einstein equations reduce to four independent

ones accordingly (c.f. Section 5). One can simplify the metric further by introduc-

ing a new “radial” variable r′ :=
√
C and removing the off-diagonal element by an

appropriate coordinate transformation in the (t, r′)-plane [18], denoting the resulting

coordinates again by t and r the new metric reads

(2.20) ds2 = −Adt2 +Bdr2 + r2dΩ2 .

The coordinates in which the metric is given by (2.20) are called Standard Schwarzschild

Coordinates (SSC), in these coordinates the metric has only two free components and

the Einstein equations simplify significantly:

Br +B
B − 1

r
= κAB2rT 00(2.21)

Bt = −κAB2rT 01(2.22)

Ar − A
1 +B

r
= κAB2rT 11(2.23)

Btt − Arr + Φ = −2κABr2T 22 ,(2.24)
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with

Φ := −BAtBt

2AB
− B2

t

2B
− Ar

r
+
ABr

rB
+
A2
r

2A
+
ArBr

2B
.

The first three Einstein equations in SSC are central in the method we develop and

in the proof of Theorem 9.1.

We now discuss the atlas of a spherically symmetric spacetime, that is the set of

all local diffeomorphisms on a spacetime M . Since the Killing equation is covariant

the requirement of spherical symmetry does not impose any restriction on the atlas.

However, it is desirable to preserve the metric structure (2.19) under a change of coor-

dinates in order to keep the analysis of the Einstein equations and the local structure

of spacetime simple. A particularly natural class of coordinate transformations, that

preserve the metric structure (2.19) are the transformations in the (t, r)-plane, (refer-

ing to the variables t and r in (2.19)), that keep the angular variables ϑ and ϕ fixed.

In Theorem 9.1 we only consider the atlas of C1,1 regular coordinate transformations

in the (t, r)-plane and in Theorem 10.1 we extend the result to the full C1,1 atlas of

a spherically symmetric spacetime.

Let us address the issue of the metric regularity in the presence of shock waves in

the coupled Einstein Euler equations. A shock wave is a weak solution T ij of the

Euler equations that is discontinuous across a timelike hypersurface Σ (the so-called

shock surface), in particular it is a strong solution away from the surface and the

discontinuity across Σ satisfies the jump conditions (2.15). However, turning towards

the first three Einstein equations in SSC (2.21)-(2.23), it is straightforward to read

off that the metric cannot be any smoother than Lipschitz continuous if the mat-

ter source T ij ∈ L∞ is discontinuous. In this paper we henceforth assume that the

gravitational metric in SSC is Lipschitz continuous, since this provides a consistent

framework to address shock waves in General Relativity and this assumption agrees
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with various examples of solutions to the coupled Einstein Euler equations, for in-

stance see [11] or [3]9. Moreover, Lipschitz continuity arises naturally in the general

problem of matching two spacetimes across a hypersurface, as first considered by

Israel in [6]. As mentioned above, Israel proved the rather remarkable result that

whenever a metric is Lipschitz continuous across a smooth single shock surface Σ and

has a almost everywhere bounded Einstein tensor, then there always exists a coordi-

nate transformation defined in a neighborhood of Σ, that smooths the components

of the gravitational metric to C1,1. Part of the precise result is that the gravitational

metric is smoothed to C1,1 in Gaussian Normal Coordinates if and only if the second

fundamental form of the metric is continuous across the surface. The latter is an in-

variant condition meaningful for metrics Lipschitz continuous across a hypersurface,

and is often referred to in the literature as the junction condition, c.f. [18]. In [11],

Smoller and Temple showed that in spherically symmetric spacetimes, the junction

conditions hold across radial surfaces if and only if the single [T ij]ninj = 0, implied

by (2.15), holds. Thus, for example, single radial shock surfaces can be no smoother

than Lipschitz continuous in SSC, but can be smoothed to C1,1 by coordinate trans-

formation. However, it has remained an open problem whether or not such a theorem

applies to the more complicated C0,1 SSC solutions proven to exist by Groah and

Temple [3]. Our purpose here is to show that such solutions cannot be smoothed to

C1 in a neighborhood of a point of regular shock wave interaction, a notion we make

precise in Section 3.

9It is not clear to us if solutions with a lower regularity could exist. Even though B must be in C0,1

by (2.21) one cannot rule out that At might be unbounded, but we expect this case to be rather

pathological. Moreover, if At were unbounded, the metric would not be C1,1 in any coordinate

system, that could be reached within a C1,1 atlas, since for Lipschitz continuous Jacobians Jjµ

and gij ∈ C1,1 the metric in coordinates xµ must be Lipschitz continuous, due to the covariant

transformation rule (2.3).
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3. A Point of Regular Shock Wave Interaction in SSC

In this section we first set up our basic framework of radial shock surfaces and

then give the definition of a point of regular shock wave interaction in SSC, that is, a

point p where two distinct shock waves enter or leave the point p with distinct speeds.

Throughout this paper we restrict attention to radial shock waves,10 that is, shock

surfaces Σ that can (locally) be parameterized by

(3.1) Σ(t, ϑ, ϕ) = (t, x(t), ϑ, ϕ),

and across which the stress-energy-momentum tensor T is discontinuous. Note that

if t is timelike, then all timelike shock surfaces in SSC can be so parameterized. Our

subsequent methods apply to spacelike and timelike surfaces alike, (inside or outside

a black hole, c.f. [12]), in the sense that t can be timelike or spacelike (depending

on the signs of the metric coefficient), but without loss of generality and for ease

of notation we restrict to timelike surfaces in the remainder of this paper, surfaces

parameterized as in (3.1).

For radial hypersurfaces in SSC, the angular variables play a passive role, and

the essential issue regarding smoothing the metric components by C1,1 coordinate

transformation lies in the atlas of coordinate transformations acting on the (t, r)-

plane. (In fact, for the proof of Theorem 8.1 and 9.1 it suffices to consider the

(t, r)-plane only and it is not that difficult to extend the result to the full atlas and

thus obtain Theorem 1.1.) Therefore it is sufficient to work with the so-called shock

curve γ, that is, the shock surface Σ restricted to the (t, r)-plane,

(3.2) γ(t) = (t, x(t)),

with normal 1-form

(3.3) nν = (ẋ,−1).

10The results in Section 5 do not explicitly rely on the assumption of radial shock surfaces.
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Then, for radial shock surfaces (3.1) in SSC, the RH jump conditions (2.15) take the

simplified form

[
T 00
]
ẋ =

[
T 01
]

(3.4) [
T 10
]
ẋ =

[
T 11
]

(3.5)

In Section 9 we prove the main result of this paper by establishing that SSC met-

rics that are only Lipschitz continuous across two intersecting shock curves, cannot

be smoothed to C1,1 by a C1,1 coordinate transformation. To establish our basic

framework, suppose two timelike shock surfaces Σi are parameterized in SSC by

(3.6) Σi(t, θ, φ) = (t, xi(t), θ, φ),

for i = 1, 2, 3, 4, where Σ1 and Σ2 are defined for t ≤ 0 and Σ3 and Σ4 are defined for

t ≥ 0, described in the (t, r)-plane by,

(3.7) γi(t) = (t, xi(t)),

with normal 1-forms

(3.8) (ni)ν = (ẋi,−1).

For the proof of our main result (Theorem 9.1) it suffices to restrict attention to the

lower (t < 0) or upper (t > 0) part of a shock wave interaction that occurs at t = 0.

That is, it suffices to impose conditions on either either the lower or upper half plane

R2
− = {(t, r) : t < 0} ,

or

R2
+ = {(t, r) : t > 0} ,

respectively, whichever half plane contains two shock waves that intersect at p with

distinct speeds. (We denote with R2
± the closure of R2

±.) Thus, without loss of
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γ1

γ2

γ3

γ4

R²+

R²-

t=0

Figure 1. Example of intersecting shock curves.

generality, let γi(t) = (t, xi(t)), (i = 1, 2), be two shock curves in the lower (t, r)-

plane that intersect at a point (0, r0), r0 > 0, i.e.

(3.9) x1(0) = r0 = x2(0).

With this notation, we can now give a precise definition of what we call a point of

regular shock wave interaction in SSC. By this we mean a point p where two distinct

shock waves enter or leave the point p with distinct speeds. The structure makes

precise what one would generically expect, namely, that the metric is a smooth so-

lution of the Einstein equations away from the interacting shock curves, the metric

is Lipschitz continuous and the RH jump conditions hold across each shock curve,

and derivatives are continuous up to the boundary on either side. In particular, the

definition reflects the regularity of shock wave solutions of the coupled Einstein-Euler

equations consistent with the theory in [3] and confirmed by the numerical simulation

in [17]. Without loss of generality we assume a lower shock wave interaction in R2
−.
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Definition 3.1. Let r0 > 0, and let gµν be an SSC metric in C0,1
(
N ∩ R2

−

)
, where

N ⊂ R2 is a neighborhood of a point p = (0, r0) of intersection of two timelike shock

curves γi(t) = (t, xi(t)) ∈ R2
−, t ∈ (−ε, 0). Assume the shock speeds ẋi(0) = lim

t→0
ẋi(t)

exist and are distinct, ẋ1(0) 6= ẋ2(0), and let N̂ denote the neighborhood consisting of

all points in N ∩R2
− not in the closure of the two intersecting curves γi(t). Then we

say that p is a point of regular shock wave interaction in SSC if:

(i) The pair (g, T ) is a strong solution of the SSC Einstein equations (2.21)-(2.24)

in N̂ , with T µν ∈ C0(N̂ ) and gµν ∈ C2(N̂ ).

(ii) The limits of T and of metric derivatives gµν,σ exist on both sides of each shock

curve γi(t) for all −ε < t < 0.

(iii) The jumps in the metric derivatives [gµν,σ]i(t) are C1 function with respect to t

for i = 1, 2 and for t ∈ (−ε, 0).

(iv) The limits

lim
t→0

[gµν,σ]i(t) = [gµν,σ]i(0)

exist for i = 1, 2.

(v) The metric g is continuous across each shock curve γi(t) separately, but no better

than Lipschitz continuous in the sense that, for each i there exists µ, ν such that

[gµν,σ]i(ni)
σ 6= 0

at each point on γi, t ∈ (−ε, 0) and

lim
t→0

[gµν,σ]i(ni)
σ 6= 0.

(vi) The stress tensor T is bounded on N ∩R2
− and satisfies the RH jump conditions

[T νσ]i(ni)σ = 0

at each point on γi(t), i = 1, 2, t ∈ (−ε, 0), and the limits of these jumps exist

up to p as t→ 0.

The structure pinned down in Definition 3.1 reflects the regularity of shock wave

solutions of the coupled Einstein Euler equations, in fact, this structure is even forced
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upon us if we require it to include generic shock wave solutions, (e.g. the solutions in

[11, 3, 14, 15, 16, 17]). It is consistent with the theory in [3] and consistent with the

numerical simulation in [17]. Furthermore, the structure we defined is general enough

to include the case of two interacting shock waves of opposite families that cross at

the point p, (two such shock waves typically change their speeds discontinuously at

the point of interaction), but also general enough to include the cases of two outgoing

shock waves created by the focusing of compressive rarefaction waves (like those sim-

ulated in [17]), or two incoming shock waves of the same family that interact at p to

create an outgoing shock wave of the same family and an outgoing rarefaction wave

of the opposite family, (c.f. [10] for a detailed discussion of shock wave interactions).

The structure we assume in Definition 3.1 reflects the structure of various shock

wave solutions of the Einstein-Euler equations [11, 12, 13, 14, 15], and the theory

in [3] and numerics in [17] confirm that points of shock wave interaction exhibit the

structure identified in Definition 3.1. However, even though the Groah-Temple the-

ory [3] establishes existence of C0,1 shock waves before and after interaction, and the

work of Vogler numerically simulates the detailed structure of the metric at a point

of shock wave interaction, the mathematical theory still lacks a complete mathemati-

cal proof that establishes rigorously the detailed structure of shock wave interactions

summarized in Definition 3.1. Such a proof would be very interesting, and remains

to be done.

We end this section by discussing the hypotheses in Definition 3.1 in more detail.

Note that we do not explicitly assume a perfect fluid source in Definition 3.1, only an

energy momentum tensor T µν that satisfies the Rankine Hugoniot jump condition.

We restricted to timelike shock curves to ease notation but, in fact, our main result

and Definition 3.1 applies to timelike and spacelike shock wave interactions alike.

(However, our method of proof breaks down for null hypersurfaces.) Our assumption

in (i) reflects the standard hypothesis in the theory of shock waves, namely that



25

solutions are smooth away from the shock curves [10, 8, 11]. A loss of C2 metric

regularity away from the shock surfaces would in general give rise to discontinuities

in the matter source, being a potential source of new shock surfaces. In order to isolate

the problem in its simplest and cleanest setting we want to exclude these pathological

cases. Furthermore, requiring the existence of the limit towards p in (vi) as well as

imposing the RH jump conditions to hold across each shock curve is exactly what is

assumed in the theory of shock waves in flat space. A loss of continuity in T µν along

the shock surfaces would give rise to phenomena similar to shock wave interactions,

which one could always avoid by restricting to a smaller neighborhood of p. (Note

that we do not require T µν to match up continuously at p.) The structure assumed

on the metric tensor in (ii) and (iv) is consistent with the assumption of a bounded

energy momentum tensor in the Einstein equations, since a blow up in any of those

limits violates in general the boundedness of T .
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4. The Obstacles to Coordinate Smoothing at Points of Shock Wave

Interaction

The central point in Israel’s proof that metrics can be smoothed at points on single

shock surfaces, is that Gaussian Normal Coordinates at the shock smooth the metric

to C1,1. This raises the question as to whether such coordinates exist at points of

shock wave interaction. The results of this paper demonstrate that no such coordi-

nates exist, but in this section we illustrate the difficulty and indicate why the direct

approach of Israel is inconclusive. (This section does not contain any results impor-

tant for the main part of this dissertation (Section 6-11) and can be skipped.)

Around a point p of shock wave interaction Gaussian Normal Coordinates (with

respect to any of the two shock surfaces) are not a suitable choice, since across the

intersection the metric tensor cannot be C2 tangential to any of the shock surfaces,

but this is crucial for Israel’s method to work [11]. Moreover, at the point of inter-

action the unit normal vectors of the shock surfaces are (in general) discontinuous,

but to construct Gaussian Normal Coordinates with respect to some hypersurface it

is crucial for the unit vectors normal to this surface to be continuous, in order to

reach every point in a sufficiently small neighborhood around p with a geodesic curve

perpendicular to the surface (c.f. Section 2). Thus, in physically relevant cases (e.g.

shocks governed by the Euler equation) Gaussian Normal Coordinates cannot be con-

structed around a point of shock wave interaction. We conclude that to smooth the

metric around a point of shock wave interaction Gaussian Normal Coordinates are

not suitable and one should choose different coordinates.

We now choose specific coordinates (different from Gaussian Normal Coordinates)

and study the Einstein equations to illustrate that this procedure is inconclusive

regarding the question of whether one can or cannot lift the metric regularity to

C1,1. It was pointed out in [4] that the change of coordinates to SSC causes a loss of

regularity, since one defines the metric coefficient C to be the radial variable r, thus
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derivatives of C enter the Jacobian and the metric in SSC. If the original metric is

only C1,1, then the metric in SSC (2.20) is only Lipschitz continuous. From this one

might expect that the high C∞ regularity of C = r2 forces the coefficient A and B

to assume a very low regularity and allowing C to be only C1,1 regular could yield

a coordinate system in which the Einstein Equation reduce to a form that yields a

C1,1 regularity for all metric coefficients. Furthermore, for the analysis of the Einstein

equations to be feasible we want to choose coordinates in which the metric assumes

a simple structure, namely

(4.1) ds2 = A(τ, x)
(
dx2 − dτ 2

)
+ C(τ, x)dΩ2,

(see Appendix B for the existence of a coordinate transformation to this metric). The

Einstein equations in those coordinates take on the form

Cxx = (l.o.t.) + κA2CT 00

Cτx = (l.o.t.) − κA2CT 01

Cττ = (l.o.t.) + κA2CT 11

Aττ − Axx = (l.o.t.) + 2κA2CT 22 ,(4.2)

where (l.o.t.) denotes “lower order terms” in the sense that those terms are in L∞

for a Lipschitz continuous metric, since (l.o.t.) contains only first order derivatives

of the metric and the metric itself. Assuming now that the metric (4.1) is Lipschitz

continuous and that Tαβ is in L∞ we conclude from the first three equations in (4.2)

that C ∈ C1,1. All second order derivatives on the metric coefficient A appear in the

fourth equation and one would expect only this equation to yield a higher regularity

for A. However, this is a wave equation and the regularity depends crucially on the

initial data and on the right hand side. Treating the right hand side as a source not de-

pending on A, the method of characteristics suggests that in order to obtain A ∈ C1,1

one needs C1,1 initial values, as well as a right hand side that is Lipschitz continuous.

We do not see any reason why any of these requirements should hold, unless there
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exist a coordinate system in which the metric is C1,1. Moreover, it seems impossible

to align the derivatives with the shock surfaces in some way such that the fourth

equation yields a higher regularity in the above coordinates. This suggests that the

analysis of the Einstein equations (4.2) is inconclusive regarding the metric regularity.

The above consideration illustrate a fundamental obstacle one faces (in most co-

ordinate systems) analyzing the Einstein equations regarding the metric regularity

around a point of shock wave interaction: Unlike in the case of a single shock wave

it is not possible to align the coordinate to the shock surfaces in such a way that the

critical (discontinuous) derivatives are isolated and it is not clear what the regularity

of neither the initial values nor the source terms are. In summary, we conclude that

the method of choosing coordinates and analyzing the Einstein equations is incon-

clusive. However, the above considerations suggest that the metric coefficient C is

always in C1,1, in fact, we prove this in Section 5.
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5. Smoothness Class of the Radial Component C(t, r)

We now consider the spherically symmetric Einstein equations in coordinates where

the metric is of the general box-diagonal form (2.19), in order to prove that the met-

ric component C to the spheres of symmetry always assumes a C1,1 regularity. The

strategy is as follows: Computing the Einstein equations in those coordinates, we

solve for the second order derivatives of C in the first three Einstein equations, which

enables us to isolate each of those derivatives and concluding that C ∈ C1,1, with

respect to the coordinates at hand. In addition we define the weak formulation of

the Einstein equations in those coordinates and discuss its equivalence to different

weak formalisms. Even though this section contains some results and a short analysis

of the Einstein equations, it is of no relevance for the main part of this dissertation

(Section 6-11) and can be skipped.

Suppose for the moment that the metric is C2 in given coordinates (t, r, ϑ, ϕ),

defined on some open region N . For a metric of the form (2.19) we compute the first

three Einstein Field equations to be given by

E2Ctt + 2AECtr + A2Crr = l.o.t.+ |g|CκT00

BECtt +
(
AB − E2

)
Ctr − AECrr = l.o.t.+ |g|CκT01

B2Ctt − 2BECtr + E2Crr = l.o.t.+ |g|CκT11(5.1)

where the indices t and r denote respective partial derivation, |g| := −AB − E2 is

the determinant of the upper metric entries and l.o.t. denotes “lower order terms”

in the derivatives on the metric, that is, first order derivatives of the metric and the

metric components themselves. (We used Maple to compute the Einstein tensor.)

Considering this as a linear system in Cij and using Gaussian elimination we write

(5.1) equivalently as

Crr = l.o.t. + κC|g|T 00

Ctr = l.o.t. − κC|g|T 01

Ctt = l.o.t. + κC|g|T 11 .(5.2)
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It is quite remarkable that the operation performed on the energy momentum tensor

Tij within the Gaussian elimination turn out to be exactly the raising of the indices

via the metric T ij = gikgjlTkl. The advantage of (5.2) above (5.1) is that it is straight-

forward to read off the regularity of C. For an almost everywhere bounded energy

momentum tensor T µν ∈ L∞(N ) and gµν ∈ C0,1(N ) the right hand side in (5.2)

is in L∞ and we conclude that C is in the Sobolev space W 2,∞, which is equivalent

to C ∈ C1,1(N ) (see [2]). We will prove this result from the weak formulation below.

As a set of second order differential equations the Einstein equations can be solved

by a Lipschitz continuous metric only in the weak sense. We now set up and discuss

the weak formulation of the Einstein Field Equations in spherical symmetry for a

metric of the form (2.19). To obtain a weak form of (5.2) we multiply the equations

with a smooth test function φ of compact support, integrate the resulting expressions

and use the divergence theorem to shift all second order derivatives to the test-

function, such that only first order metric derivatives are left [11, 2]. One can perform

the integration with respect to a flat or “curved” volume form, that is, dx0...dx3 or√
| det(g)|dx0...dx3, since both are related through a multiplication of the equations

in (5.2) by a factor of
√
| det(g)|. (Moreover, it is shown in [11] that a weak solution

gαβ of the Einstein equations in a given coordinate system is also a weak solution in

any other coordinate system that can be reached within a C1,1 atlas.) However, in

general we prefer using the curved volume form
√
| det(g)|dx0...dx3, since then the

integral transforms as a scalar and only then the weak form of the relativistic Euler

equation is given by (2.14). From Proposition 5.2 we conclude that the first three

Einstein equations (5.2) actually hold in a strong sense in any coordinate system

and we only need a weak formulation of the fourth equation. The fourth Einstein

equations reads

(5.3) − Arr + 2Etr +Btt = l.o.t. ,
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where l.o.t. includes all terms that are in L∞, thus by the above consideration also

containing second order derivatives of C. The quasi-linear structure of the Einstein

equations ensures that one can always define a weak formulation for Lipschitz con-

tinuous metrics, since one can shift all second order derivatives via the divergence

theorem, obtaining only first order derivatives on the metric and the test function.

We obtain the weak form of the fourth Einstein equation (5.3) by the above mentioned

procedure, it is given by

(5.4)

∫
N

(Arφr − 2Etφr −Btφt − (l.o.t)φ) dµ = 0 ,

where φ ∈ C∞0 (N ) is a smooth test-function with compact support defined on some

open set N and dµ is either the volume form or some flat measure.

In the remainder of this section we prove that C is always C1,1 regular in the pres-

ence of an almost everywhere bounded source and that (5.2) always hold in the strong

sense. For completeness we prove the following Lemma, that shows that a function

with almost everywhere bounded second order derivatives is in C1,1.

Lemma 5.1. Let Ω be an open set in Rn with a C1 boundary, and let fαβ ∈ L∞(Ω)

for α, β ∈ {1, ..., n}. Suppose C ∈ C0,1(Ω) with ∂2C
∂xα∂xβ

= fαβ ∀α, β = 1, .., n in

the weak sense, then C ∈ C1,1(Ω) and the above second order derivatives hold in the

strong almost everywhere sense.

Proof. The regularity assumption on the boundary of Ω is a sufficient condition to

prove the equivalence of the space C0,1(Ω) of Lipschitz continuous functions and the

Sobolev space W 1,∞(Ω), containing all functions with weak derivative in L∞, where

we take the continuous representative of each equivalence class [2]. Both imply that C

is differentiable point-wise almost everywhere. It remains to show that C is in W 2,∞,

the Sobolev space of functions with almost everywhere bounded second order weak
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derivatives. For a function C ∈ W 1,∞(Ω) the weak formulation of ∂2C
∂xα∂xβ

= f reads∫
Ω

Cϕαβdµ =

∫
Ω

fαβϕdµ ∀ϕ ∈ C∞0 (Ω) ,

were dµ denotes some Borel measure and C∞0 (Ω) the space of smooth functions with

compact support in Ω. This shows that fαβ ∈ L∞ is the weak derivative of C with

respect to ∂2

∂xα∂xβ
and in summary all second order weak derivatives of C are in L∞(Ω),

yielding that C is an element in W 2,∞(Ω). �

We now conclude, from Einstein’s equation (5.2), that the metric coefficient C is

indeed always C1,1 regular in all coordinates where the metric assumes the general

spherically symmetric form (2.19).

Proposition 5.2. Let xα be coordinates such that the spherically symmetric met-

ric gαβ is of the box-diagonal form (2.19). Assume gαβ is Lipschitz continuous in

coordinates xα and solves the Einstein equations (5.2) weakly and assume that the

energy-momentum tensor is bounded almost everywhere, (that is, Tαβ ∈ L∞). Then

C ∈ C1,1(Ω) with respect to partial differentiation in coordinates xα and the first three

equations in 2.7 hold point-wise almost everywhere.

Proof. Einstein’s equations in the form (5.2) have a right hand side that is bounded

almost everywhere. Applying Lemma 5.1 regarding the metric coefficient C on some

coordinate neighborhood proves the Theorem. �

The above proposition shows that the metric coefficient C is always sufficiently

smooth for the first three Einstein equations to hold strongly, that is, point-wise al-

most everywhere. This shows that the lack of C1,1 regularity is confined to the metric

coefficients A, B and E, being entirely isolated to the (t, r)-plane. This suggests

that in order to lift the metric regularity to C1,1 it suffices to consider coordinate

transformations in the (t, r)-plane. We close this section with the following Corollary,

showing that C must be in C1,1 \ C2 in order to allow for all metric-components to
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be in C1,1.

Corollary 5.3. Assume the hypotheses of Proposition 5.2 hold and that the energy

momentum tensor Tαβ is discontinuous, then the metric can only be C1,1 in a given

coordinate system, if the metric coefficient C in (2.19) is not in C2.

Proof. Suppose gαβ ∈ C1,1 and assume that C ∈ C2. Then (5.2) yields that for

Tαβ to be discontinuous, some of the lower order terms must be discontinuous. This

can only be the case if some metric coefficients have discontinuous first derivatives,

contradicting the ingoing assumptions that gαβ ∈ C1,1. �
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6. Functions C0,1 Across a Hypersurface

In order to prove that the gravitational metric cannot be smoothed from C0,1 to

C1,1 by a C1,1 coordinate transformation at points of shock wave interaction in general

relativity, we first define what it means for a function and a metric to be C0,1 across a

hypersurface. We then study the relation of a metric being C0,1 across a hypersurface

to the Rankine Hugoniot jump condition through the Einstein equations and derive

a set of three equations that is central in our methods in Sections 7, 8 and 9. We

end this section deriving a canonical form functions C0,1 across a shock surface can

be represented in, which is fundamental in the proof of our main result.

The following definition makes precise what it means for a function and a metric

to be C0,1 across a (non-null) hypersurface. This helps us to prove in Section 7 that

the central expression of this definition is covariant under C2 but, in general, not

under C1,1 coordinate transformations. It is exactly this loss of covariance that opens

up the possibility to smooth out the metric, in fact, in Section 7 we use this lack of

covariance to set up a necessary and sufficient condition on the Jacobian for lifting

the metric regularity to C1,1, which fails for C2 coordinate transformations.

Definition 6.1. Let Σ be a smooth (timelike) hypersurface in some open set N ⊂ Rd.

We call a function f “Lipschitz continuous across Σ”, (or C0,1 across Σ), if f ∈

C0,1(N ), f is smooth11 in N \ Σ, and limits of derivatives of f exist and are smooth

functions on each side of Σ separately. We call a metric gµν Lipschitz continuous

across Σ in coordinates xµ if all metric components are C0,1 across Σ.

The main point of the above definition is that we assume smoothness of f , (or gµν),

away and tangential to the hypersurface Σ. Note that the continuity of f across Σ

11For us, “smooth” means enough continuous derivatives so that smoothness is not an issue. Thus

here, f ∈ C2(N \ Σ) suffices. In our proof of Theorem 8.1 a C3 metric regularity away from the

shock curve is convenient.
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implies the continuity of all derivatives of f tangent to Σ, i.e.,

(6.1) [f,σ]vσ = 0,

for all vσ tangent to Σ. Moreover, Definition 6.1 allows for the normal derivative of

f to be discontinuous, that is,

(6.2) [f,σ]nσ 6= 0,

where nσ is normal to Σ with respect to some (Lorentz-) metric gµν defined on N .

In the following we clarify the implications of Definition 6.1, particularly (6.1),

together with the Einstein equations on the RH jump conditions (3.4), (3.5). Consider

a spherically symmetric spacetime metric (1.1) given in SSC, assume that the first

three Einstein equations (2.21)-(2.23) hold, and assume that the stress tensor T is

discontinuous across a smooth radial shock surface described in the (t, r)-plane by

γ(t) as in (3.1)-(3.3). To this end, condition (6.1) across γ applied to each metric

component gµν in SSC (2.20) reads

[Bt] = −ẋ[Br],(6.3)

[At] = −ẋ[Ar].(6.4)

On the other hand, the first three Einstein equations in SSC (2.21)-(2.23) imply

[Br] = κAB2r[T 00],(6.5)

[Bt] = −κAB2r[T 01],(6.6)

[Ar] = κAB2r[T 11].(6.7)

Now, using the jumps in Einstein equations (6.5)-(6.7), we find that (6.3) is equivalent

to the first RH jump condition (3.4),12 while the second condition (6.4) is independent

of equations (6.5)-(6.7), because At does not appear in the first order SSC equations

(2.21)-(2.23). The result, then, is that in addition to the assumption that the metric

12This observation is consistent with Lemma 9, page 286, of [11], where only one jump condition

need be imposed to meet the full RH relations.
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be C0,1 across the shock surface in SSC, the RH conditions (3.4) and (3.5) together

with the Einstein equations (6.5)-(6.7), yield only one additional condition over and

above (6.3) and (6.4), namely,

(6.8) [Ar] = −ẋ[Bt] .

The RH jump conditions together with the Einstein equations will enter our method

in Section 7 only through the three equations (6.8), (6.3) and (6.4). In particular,

our proofs of Theorems 8.1 and 9.1 below will only rely on (6.8), (6.3) and (6.4).

The following lemma provides a canonical form for any function f that is Lipschitz

continuous across a single shock curve γ in the (t, r)-plane, under the assumption

that the vector nµ, normal to γ, is obtained by raising the index in (3.3) with respect

to a Lorentzian metric g that is C0,1 across γ. A direct consequence of Definition

6.1 is then that nµ varies C1 in directions tangent to γ. (Again, since we consider

spherically symmetric spacetimes, we suppress the angular coordinates).

Lemma 6.2. Suppose f is C0,1 across a smooth curve γ(t) = (t, x(t)) in the sense of

Definition 6.1, t ∈ (−ε, ε), in an open subset N of R2. Then there exists a function

Φ ∈ C1(N ) such that

(6.9) f(t, r) =
1

2
ϕ(t) |x(t)− r|+ Φ(t, r),

if and only if

(6.10) ϕ(t) =
[f,µ]nµ

nσnσ
∈ C1(−ε, ε),

where

(6.11) nµ(t) = (ẋ(t),−1)

is a 1-form normal to the tangent vector vµ(t) = γ̇µ(t). In particular, it suffices that

indices are raised and lowered by a Lorentzian metric gµν which is C0,1 across γ.
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Proof. We first prove the explicit expression for ϕ in (6.21). Suppose there exists a

Φ ∈ C1(N ) satisfying (6.16), defining X(t, r) := x(t)− r this implies that

(6.12) [f,µ]nµ =
1

2
ϕ[H(X)]X,µn

µ with H(X) :=


−1 if X < 0

+1 if X > 0

,

where we use the fact that d
dX
|X| = H(X) and that the jumps of the continuous

functions Φµ vanish, that is, [Φ,µ] = 0. Observing that [H(X)] = 2 and that X,µn
µ =

nµn
µ by (6.21), we conclude that

(6.13) [f,µ]nµ = ϕnµn
µ .

Solving this equation for ϕ we obtain the expression claimed in (6.21).

We now prove the reverse direction. Suppose ϕ, defined in (6.21), is given and is

in C1. To show the existence of Φ ∈ C1(N ) define

(6.14) Φ = f − 1

2
ϕ |X| ,

then (6.16) holds and it remains to prove the C1 regularity of Φ. It suffices to prove

[Φ,µ]nµ = 0 = [Φ,µ]vµ,

since Φ ∈ C1(N \ γ) follows immediately from its above definition and the C1 regu-

larity of f and ϕ away from γ. By assumption f satisfies (6.1) and thus

[Φµ]vµ = −ϕX,µv
µ,

which vanishes since vµ(t) = (1, ẋ(t))T . The expression for ϕ, defined in (6.21),

together with

X,µn
µ = nµn

µ

show that

[Φµ]nµ = ϕnµn
µ − ϕX,µn

µ = 0.

This completes the proof. �
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In words, the canonical form (6.16) separates off the C0,1 kink of f across γ into the

function |x(t)− r|, from its more regular C1 behavior incorporated into the functions

ϕ, which gives the strength of the jump, and Φ, which encodes the remaining C1

behavior of f . Taking the jump in the normal derivative of f across γ shows that

ϕ gives the strength of the jump because the dependence on Φ cancels out. Note

finally that the regularity assumption on the metric across γ is required for ϕ(t) to

be well defined in (6.10), and also to get the C1 regularity of nσnσ tangent to γ. In

Section 8 below we prove Israel’s Theorem for a single shock surface by constructing

a C1,1 coordinate transformation using 6.16 of Lemma 6.2 as a canonical form for the

Jacobian derivatives of the transformation. However, to get Israel’s theorem in both

directions, we need the following refinement of Lemma 6.2 to a lower regularity away

from the shock curve γ:

Corollary 6.3. Let N be a open neighborhood of a smooth curve γ(t) = (t, x(t))

in R2, t ∈ (−ε, ε), and suppose f is in C0,1(N ).13 Then there exists a function

Φ ∈ C0,1(N ) with

(6.15) [Φt] ≡ 0 ≡ [Φr],

such that

(6.16) f(t, r) =
1

2
ϕ(t) |x(t)− r|+ Φ(t, r),

if and only if

(6.17) ϕ(t) =
[f,µ]nµ

nσnσ
∈ C0,1(−ε, ε),

where nµ is defined by (6.21) and indices are raised and lowered by a Lorentzian metric

gµν which is C0,1 across γ. In particular, ϕ has discontinuous derivatives wherever

f ◦ γ does.

13This is a weaker condition on f than in Definition 6.1 and Lemma 6.2 because we do not assume

C1 regularity away from the curve γ.
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Proof. The Corollary follows by the same arguments as in the proof of Lemma 6.2,

since in that proof the C1 regularity of Φ only enters in the sense of (6.15) and (6.1)

also holds for a Lipschitz continuous function f , where the derivatives f,µ exist almost

everywhere. Moreover, ϕ has discontinuous derivatives wherever f ◦ γ does, due to

(6.17) and the C1 metric regularity tangential to γ. �

In Section 9 we need a canonical form analogous to (6.16) for two shock curves,

but such that it allows for the Jacobian to be in the weaker regularity class C0,1

away from the shock curves. To this end, suppose timelike shock surfaces described

in the (t, r)-plane by, γi(t) = (t, xi(t)), such that (3.6) - (3.8) applies. To cover the

generic case of shock wave interaction, we assume each γi(t) is C2 away from t = 0

with the lower/upper-limit of the tangent vectors existing up to t = 0. For our

main results (Theorem 9.1 and 1.1) it suffices to consider the upper (t > 0) or lower

part (t < 0) of a shock wave interaction (at t = 0) separately, whichever part con-

tains two shock waves that interact with distinct speeds. In the following we restrict

without loss of generality to the lower part of a shock wave interactions, that is, to

R2
− = {(t, r) : t < 0}.

Corollary 6.4. Let γi(t) = (t, xi(t)) be two smooth curves defined on I = (−ε, 0), for

some ε > 0, such that the limits lim
t→0−

γi(t) = (0, r0) and ẋi(0) = lim
t→0−

ẋi(t) both exist

for i = 1, 2. Let N be an open neighborhood of p = (0, r0) in R2 and suppose f is in

C0,1(N ). Then there exists a C0,1 function Φ defined on N ∩ R2
−, with

(6.18) [Φt]i ≡ 0 ≡ [Φr]i, i = 1, 2,

such that

(6.19) f(t, r) =
1

2

∑
i=1,2

ϕi(t) |xi(t)− r|+ Φ(t, r),

for all (t, r) in N ∩ R2
−, if and only if

(6.20) ϕi(t) =
[f,µ]i(ni)

µ

(ni)µ(ni)µ
∈ C0,1(I),



40

where

(6.21) (ni)µ(t) = (ẋi(t),−1)

is a 1-form normal to the tangent vector vµi (t) = γ̇µi (t), (for i = 1, 2), and indices

are again raised and lowered by a Lorentzian metric gµν which is C0,1 across γ. In

particular, ϕi has discontinuous derivatives wherever f ◦ γi does.

Proof. The Corollary follows by the same arguments as in the proof of Corollary 6.3

on each of the curves γi, (i = 1, 2), defining

(6.22) Φ := f − 1

2

∑
i=1,2

ϕi |Xi| ,

for Xi(t, r) := xi(t)−r, instead of (6.14) and using that H(Xi) is discontinuous across

γi, but [H(Xi)]l = 0 for l 6= i. (In particular, f meets condition (6.1) across each of

the curves γi, with derivatives f,µ defined almost everywhere.) �

In Section 9, we use the canonical form (6.19) to characterize all Jacobians in the

(t, r)-plane, that could possibly lift the metric regularity from C0,1 to C1,1 on a deleted

neighborhood of the point p of shock wave interaction, unique up to addition of a

function Φ ∈ C0,1 satisfying (6.18). It is precisely the regularity condition (6.18) that

forces the determinant of those Jacobians to vanish at p if one takes the limit of the

Jacobians towards p, hence resulting in a singular metric at p in the new coordinates.
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7. A Necessary and Sufficient Condition for Smoothing Metrics

In this section we derive a necessary and sufficient pointwise condition on the Jaco-

bians of a coordinate transformation that it lift the regularity of a C0,1 metric tensor

to C1,1 in a neighborhood of a point on a single shock surface Σ. In Section 8 we use

this condition to prove that such transformations exist in a neighborhood of a point

on a single shock surface, and in Section 9 we use this pointwise condition on each

of two intersecting shock surfaces to prove that no such coordinate transformation

exists in a neighborhood of a point of shock wave interaction.

We begin with the covariant transformation law

(7.1) gαβ = JµαJ
ν
βgµν ,

for the metric components at a point on a hypersurface Σ for a general C1,1 coordinate

transformation xµ → xα, where, as customary, the indices indicate the coordinate

system. If not otherwise stated indices µ, ν and σ always refer to SSC, (c.f. Lemma

7.1). Let Jµα denote the Jacobian of the transformation

Jµα =
∂xµ

∂xα
.

Assume now, that the metric components gµν are only Lipschitz continuous with

respect to xµ across Σ. Then differentiating (7.1) with respect to ∂
∂xγ

and subtracting

the left-limits towards Σ from the right-limit we obtain

(7.2) [gαβ,γ] = JµαJ
ν
β [gµν,γ] + gµνJ

µ
α [Jνβ,γ] + gµνJ

ν
β [Jµα,γ] ,

where [f ] = fL − fR denotes the jump in the quantity f across the shock surface Σ.

Thus, since both g and Jµα are in general Lipschitz continuous across Σ, the jumps

appear only on the derivatives. Equation (7.2) gives a necessary and sufficient condi-

tion for the metric g to be C1,1 in xα coordinates. Namely, gαβ is in C1,1 if and only

if

(7.3) [gαβ,γ] = 0
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for every α, β, γ ∈ {0, ..., 3}, while (7.2) implies that (7.3) holds if and only if

(7.4) [Jµα,γ]J
ν
βgµν + [Jνβ,γ]J

µ
αgµν + JµαJ

ν
β [gµν,γ] = 0.

Equation (7.4) is a necessary and sufficient condition for smoothing the metric by the

means of a coordinate transformation, (c.f. Corollary 7.2).

If the coordinate transformation is C2, so that Jµα is C1, then the jumps in Jµα,β

vanish, and (7.2) reduces to

[gαβ,γ] = JµαJ
ν
βJ

σ
γ [gµν,σ],

which is tensorial because the non-tensorial terms cancel out in the jump [gαβ,γ]. Since

tensor transformations preserve the zero tensor, it is precisely the lack of covariance

in (7.2) for C1,1 transformations that provides the necessary degrees of freedom, (the

jumps [Jµα,γ] in the first derivatives of the Jacobian), that make it possible for a Lips-

chitz metric to be smoothed by coordinate transformation at points on a single shock

surface, proving that there is no hope of lifting the metric regularity by coordinate

transformations that are C2.

Equation (7.4) is an inhomogeneous linear system in the jumps in the derivatives

of the Jacobians [Jµα,γ]. Solving this system provides a necessary condition on the

jumps in the derivatives of the Jacobian for lifting the metric regularity from C0,1

to C1,1, however, a solution of (7.4) alone does not provided in general a Jacobian,

since it does not yet ensure that there actually exist C0,1 functions Jµα that take

on the values [Jµα,γ] and that these functions Jµα satisfy the integrability condition

(2.5), which is necessary and sufficient for integrating Jµα up to coordinates. It is

therefore crucial to impose in addition to (7.4) that the [Jµα,γ] satisfy an appropriate

integrability condition, namely

(7.5) [Jµα,β] = [Jµβ,α].
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In the following we solve the linear system obtained from (7.4) and (7.5) for [Jµα,γ]

using Gaussian elimination in Lemma 7.1. This system is nonsingular and thus yields

a necessary and sufficient condition on the jumps in the Jacobian derivatives for lifting

the regularity of a metric in SSC from C0,1 to C1,1 in a neighborhood of a point on a

single shock surface, provided Jµα is the actual Jacobian of a coordinate transforma-

tion, as we prove in Corollary 7.2. In Section 8 we prove that the Einstein equations

together with the RH jump conditions are necessary and sufficient for such a Jaco-

bian to exist in a neighborhood of a point on a single radial shock surface, thereby

giving an alternative constructive proof of Israel’s Theorem in spherically symmetric

spacetimes. Such a Jacobian fails to exists if two radial shock surfaces intersect, as

we prove in Section 9.

We now restrict to spherically symmetric spacetimes in SSC coordinates, and reduce

(7.4) to six equations in six unknowns among [Jµα,γ]. To this end, suppose we are given

a single radial shock surface Σ in SSC locally parameterized by

(7.6) Σ(t, θ, φ) = (t, x(t), θ, φ),

described in the (t, r)-plane by the corresponding shock curve

(7.7) γ(t) = (t, x(t)).

For such a hypersurface in Standard Schwarzschild Coordinates (SSC), the angular

variables play a passive role, and the essential issue regarding smoothing the metric

components by C1,1 coordinate transformation, lies in the atlas of (t, r)-coordinate

transformations. Thus we restrict to the atlas of (t, r)-coordinate transformations,

(that keep the angular coordinates fixed), for a general C0,1 metric in SSC, c.f.

(2.20). Now, (7.4) and (7.5) form a linear inhomogeneous 8 × 8 system in eight

unknowns [Jµα,γ]. The following lemma shows that this system is uniquely solvable,

states the solution [Jµα,γ] explicitly in terms of a SSC metric gµν only Lipschitz contin-

uous across Σ, and expresses the [Jµα,γ]’s as functions in SSC restricted to the shock
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curves γ(t) = (t, x(t)).

Lemma 7.1. Let

(7.8) gµνdx
µdxν = −A(t, r)dt2 +B(t, r)dr2 + r2dΩ2 ,

be a given metric expressed in SSC, let Σ denote a single radial shock surface (7.6)

across which g is only Lipschitz continuous. Then the unique solution [Jµα,γ] of (7.4)

which satisfies the integrability condition (7.5), is given by:

[J t0,t] = −1

2

(
[At]

A
J t0 +

[Ar]

A
Jr0

)
; [J t0,r] = −1

2

(
[Ar]

A
J t0 +

[Bt]

A
Jr0

)
;

[J t1,t] = −1

2

(
[At]

A
J t1 +

[Ar]

A
Jr1

)
; [J t1,r] = −1

2

(
[Ar]

A
J t1 +

[Bt]

A
Jr1

)
;

[Jr0,t] = −1

2

(
[Ar]

B
J t0 +

[Bt]

B
Jr0

)
; [Jr0,r] = −1

2

(
[Bt]

B
J t0 +

[Br]

B
Jr0

)
;

[Jr1,t] = −1

2

(
[Ar]

B
J t1 +

[Bt]

B
Jr1

)
; [Jr1,r] = −1

2

(
[Bt]

B
J t1 +

[Br]

B
Jr1

)
.(7.9)

(We use the notation µ, ν ∈ {t, r} and α, β ∈ {0, 1}, so that t, r are used to denote

indices whenever they appear on the Jacobian Jµα .)

Proof. We first setup the 8× 8 linear system formed from (7.4) and (7.5) for the case

of Jacobians in the (t, r)-plane and the metric tensor in (7.8). For Jacobians in the

(t, r)-plane the only nonzero terms [Jµα,β] are those on the left hand side in (7.9), that

is, for µ ∈ {t, r} and α, β ∈ {0, 1}. Then the integrability condition (7.5) reduces to

[J t0,1] = [J t1,0]

[Jr0,1] = [Jr1,0].(7.10)

Employing (7.10) the original eight unknowns [Jµα,β] reduce to six and it remains

to setup and solve (7.4) for the metric in SSC (7.8) and Jacobians in the (t, r)-plane.

A major simplification of considering Jacobians acting on the (t, r)-plane is that the

angular coefficients of the metric in SSC (7.8) drop out and (7.4) reduces to the

following 6× 6 linear system:

(7.11) A~v = ~w
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with unknowns

(7.12) ~v = T
(
[J t0,0], [J t0,1], [J t1,1], [Jr0,0], [Jr0,1], [Jr1,1]

)
,

where T denotes the transpose. The right hand side in (7.11) is given by

~w = T(w1, w2, w3, w4, w5, w6)

= T(w000, w010, w110, w001, w011, w111) ,(7.13)

for

(7.14) wαβγ = J0
αJ

0
β [A,γ]− J1

αJ
1
β [B,γ].

The matrix A reads

(7.15) A =



2a 0 0 2d 0 0

c a 0 b d 0

0 2c 0 0 2b 0

0 2a 0 0 2d 0

0 c a 0 b d

0 0 2c 0 0 2b


,

with a := −J0
0A, b := J1

1B, c := −J0
1A and d := J1

0B. Observe the we already incor-

porated the integrability condition (7.10) into the linear system (7.11) by considering

only 6 unknowns in (7.12).

(7.11) has a unique solution given by, (we used MAPLE to compute this),

[J t0,0] =
2w2d− bw1 − dw4

2AB|J |
;

[J t0,1] =
dw3 − bw4

2AB|J |
;

[J t1,1] =
dw6 + bw3 − 2bw5

2AB|J |
;

[Jr0,0] =
aw4 − w2a+ cw1

2AB|J |
;

[Jr0,1] =
cw4 − aw3

2AB|J |
;

[Jr1,1] =
2cw5 − aw6 − cw3

2AB|J |
,(7.16)
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where |J | = det (Jµα) = J t0J
r
1 − J t1Jr0 denotes the determinant of the Jacobian.

It remains to perform a change of coordinates in the expression in (7.16) to SSC,

in order to recover the expressions in (7.9).14 From the chain rule and the continuity

of the inverse Jacobian Jσγ we get

[Jµα,ν ] = [Jµα,γ]J
γ
ν

and (for σ = t, r)

[gµν,γ] = [gµν,σ]Jσγ .

Employing furthermore the definition of wi in (7.14) together with (7.16) and the

jumps in the integrability condition (7.5) it is a straightforward (but lengthy) calcu-

lation that leads to (7.9).

In order to exemplify the procedure we outline the calculation leading to the ex-

pression for [J t0,t] in (7.9):

[J t0,t] = [J t0,0]J0
t + [J t0,1]J1

t

= [J t0,0]
Jr1
|J |
− [J t0,1]

J t1
|J |

,(7.17)

where we used Cramer’s rule in the last equality. Substituting now (7.16) together

with the definition of wi in (7.14) and the integrability condition (7.5) a straightfor-

ward calculation leads to

[J t0,t] = −1

2

(
[At]

A
J t0 +

[Ar]

A
Jr0

)
,

as claimed in (7.9). Performing similar computations for the remaining expression

finishes the proof. �

14Equation (7.16) together with (7.5) yields a necessary and sufficient condition on the first

derivatives of the Jacobian for smoothing the metric to C1,1, however, since we need to consider the

shock curve γ in the coordinates we start in, (that is, in SSC), we must express the above condition

in terms of the given coordinates xµ.
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Condition (7.4) is a necessary and sufficient condition for [gαβ,γ] = 0 at a point

on a smooth single shock surface. Because Lemma 7.1 tells us that we can uniquely

solve (7.4) for the jumps in the Jacobian derivatives, it follows that a necessary and

sufficient condition for [gαβ,γ] = 0 is that the jumps in the Jacobian derivatives be

exactly the functions of the jumps in the original SSC metric components recorded in

(7.9). It is remarkable that, in order to lift the metric regularity, the Jacobian must

mirror the regularity of the metric in order to compensate for all discontinuous first

order derivatives of the metric by its own discontinuous first order derivatives. (This

is why we expect that only C1,1 transformations can possibly lift the metric regularity

from C0,1 to C1,1, and that C1,α is not an appropriate choice for the atlas regularity

if α 6= 1.) In light of this, Lemma 7.1 immediately implies the following corollary:

Corollary 7.2. Let p be a point on a single smooth shock curve γ, and let gµν be a

metric tensor in SSC, which is C0,1 across γ (in the sense of Definition 6.1). Suppose

Jµα is the Jacobian of an actual coordinate transformation defined on a neighborhood

N of p and suppose Jµα is C0,1 across γ. Then the metric in the new coordinates gαβ

is in C1,1(N ) if and only if Jµα satisfies (7.9).

Proof. We first prove that gαβ ∈ C1,1(N ) implies (7.4). Suppose there exist coordi-

nates xα such that the metric in the new coordinates gαβ is in C1,1, then

[gαβ,γ] = 0 ∀ α, β, γ ∈ {0, ..., 3}.

This directly implies (7.4) and since Jµα are the Jacobians of an actual coordinate

transformation they satisfy the integrability condition (7.5) as well. By Lemma 7.1

the jumps in the derivatives of the Jacobian [Jµα,γ] then satisfy (7.9).

We now prove the opposite direction. Suppose that the Jacobians Jµα satisfy (7.9),

then by Lemma 7.1 they satisfy the smoothing condition (7.4), which implies that

all metric derivatives gαβ,γ match continuously across the shock curve γ, that is,

[gαβ,γ] = 0 for all α, β, γ ∈ {0, ..., 3}. Since gµν and Jµα are assumed to be C2
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away from γ it follows that gαβ ∈ C1(N ). In fact, the C2 regularity of gµν and Jµα

away from γ, together with the existence of the limit towards γ of all second order

derivatives15 already implies gαβ ∈ C1,1(N ), since for any q ∈ Σ one can bound

(7.18) |gαβ,γ(t, r)− gαβ,γ(q)| < c |(t, r)| ,

by a finite constant16 c, for instance set

c =
∑
α,β,γ,δ
=0,1,2,3

(
sup
q′∈Σ′

∣∣(gαβ,γσ)L (q′)
∣∣+ sup

q′∈Σ′

∣∣(gαβ,γσ)R (q′)
∣∣)+

∑
α,β,γ

=0,1,2,3

sup
(t,r)∈N ′

|gαβ,γ(t, r)| ,

for N ′ ⊂ N a compact neighborhood of q and Σ′ = Σ ∩N ′. �

We conclude that (7.9) is a necessary and sufficient condition for a coordinate

transformation to lift the regularity of an SSC metric from C0,1 to C1,1 around a

point on a single smooth shock surface. The condition relates the jumps in the

derivatives of the Jacobian to the jumps in the metric derivatives across the shock.

This establishes the rather remarkable result that there is no algebraic obstruction to

lifting the regularity in the sense that the jumps in the Jacobian derivatives can be

uniquely solved for in terms of the jumps in the metric derivatives, precisely when the

integrability condition (7.5) is imposed. The condition is a statement purely about

spherically symmetric spacetime metrics in SSC because neither the RH conditions

nor the Einstein equations have yet been imposed. But we know by Israel’s theorem

that the RH conditions must be imposed to conclude that smoothing transformations

exist. The point then, is that to prove the existence of coordinate transformations

that lift the regularity of SSC metrics to C1,1 at p ∈ Σ, we must prove that there

exists a set of functions Jµα defined in a neighborhood of p, such that (7.9) holds at p,

and such that the integrability condition (2.5), (required for Jµα to be the Jacobian of

a coordinate transformation), holds in a whole neighborhood containing p. In Section

8 we give an alternative proof of Israel’s Theorem by showing that such Jµα exist in a

15The existence of limits of all second order derivatives (in SSC) of gµν and Jµα to Σ, is implicitly

assumed by requiring Jµα to be C0,1 across Σ.
16The continuity of gαβ,γ at q is crucial in (7.18), since otherwise the left hand side in (7.18) does

not tend to zero for x→ 0, (since gαβ,γ is not well-defined at q).
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neighborhood of a point p on a smooth single shock surface if and only if the Einstein

equations and the RH jump condition hold, and in Section 9 we prove that no such

functions can exist in a neighborhood of a point p of shock wave interaction, unless

det (Jµα) = 0 at p.
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8. Metric Smoothing on Single Shock Surfaces and a Constructive

Proof of Israel’s Theorem

We have shown in Corollary 7.2 that (7.9) is a necessary and sufficient condition

on a Jacobian derivative Jµα for lifting the SSC metric regularity to C1,1 in a neigh-

borhood of a shock curve. We now address the issue of how to obtain such Jacobians

of actual coordinate transformations defined in a whole neighborhood of a point on a

single shock surface. For this we need to find a set of functions Jµα that satisfies (7.9),

as well as the integrability condition (2.5) in a whole neighborhood. In this section

we show that this can be accomplished in the case of single shock surfaces, thereby

giving an alternative constructive proof of Israel’s Theorem for spherically symmetric

spacetimes:

Theorem 8.1. (Israel’s Theorem) Suppose gµν is an SSC metric that is C0,1 across

a radial shock surface γ in the sense of Definition 6.1, such that it solves the Einstein

equations (2.21) - (2.24) strongly away from γ, and assume T µν is everywhere bounded

and in C0 away from γ. Then around each point p on γ there exists a C1,1 coordinate

transformation of the (t, r)-plane, defined in a neighborhood N of p, such that the

transformed metric components gαβ are C1,1 functions of the new coordinates, if and

only if the RH jump conditions (3.4) - (3.5) hold on γ in a neighborhood of p.

The main step is to construct Jacobians acting on the (t, r)-plane that satisfy

the smoothing condition (7.9) on the shock curve, the condition that guarantees

[gαβ,γ] = 0. The following lemma gives an explicit formula for functions Jµα satisfying

(7.9). The point then is that, in the case of single shock curves, both the RH jump

conditions and the Einstein equations are necessary and sufficient for such functions

Jµα to exist.

Lemma 8.2. Let p be a point on a single shock curve γ across which the SSC metric

gµν is Lipschitz continuous in the sense of Definition 6.1. Then there exists a set of
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functions Jµα ∈ C0,1(N ) satisfying the smoothing condition (7.9) on γ ∩ N if and

only if (6.8) holds on γ ∩ N . Furthermore, all Jµα that are in C0,1(N ) and satisfy

(7.9) on γ ∩N are given by

J t0(t, r) =
[Ar]φ(t) + [Bt]ω(t)

4A ◦ γ(t)
|x(t)− r|+ Φ(t, r)

J t1(t, r) =
[Ar]ν(t) + [Bt]ζ(t)

4A ◦ γ(t)
|x(t)− r|+N(t, r)

Jr0 (t, r) =
[Bt]φ(t) + [Br]ω(t)

4B ◦ γ(t)
|x(t)− r|+ Ω(t, r)

Jr1 (t, r) =
[Bt]ν(t) + [Br]ζ(t)

4B ◦ γ(t)
|x(t)− r|+ Z(t, r) ,(8.1)

for arbitrary functions Φ, Ω, Z, N ∈ C0,1(N ), where

(8.2) φ = Φ ◦ γ, ω = Ω ◦ γ, ν = N ◦ γ, ζ = Z ◦ γ .

Moreover, each arbitrary function U = Φ,Ω, Z or N satisfies

(8.3) [Ur] = 0 = [Ut].

Proof. Suppose there exists a set of functions Jµα ∈ C0,1(N ) satisfying (7.9), then

their continuity implies that tangential derivatives along γ match across γ, that is

(8.4) [Jµα,t] = −ẋ[Jµα,r]

for all µ ∈ {t, r} and α ∈ {0, 1}. Imposing (8.4) in (7.9) and using (6.3) - (6.4) yields

(6.8). (For instance imposing [J t0,t] = −ẋ[J t0,r] in (7.9) yields

−1

2

(
[At]

A
J t0 +

[Ar]

A
Jr0

)
=
ẋ

2

(
[Ar]

A
J t0 +

[Bt]

A
Jr0

)
and using (6.3) - (6.4) most terms cancel out, leaving behind [Ar] = −ẋ[Bt] as

claimed.)

To prove the opposite direction it suffices to show that all t and r derivatives of

Jµα , defined in the above ansatz (8.1), satisfy (7.9) for all µ ∈ {t, r} and α ∈ {0, 1}.
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This follows directly from (6.3), (6.4) and (6.8), upon noting that (8.2) implies the

identities

(8.5) φ = J t0 ◦ γ, ν = J t1 ◦ γ, ω = Jr0 ◦ γ, ζ = Jr1 ◦ γ .

This proves the existence of functions Jµα satisfying (7.9).

Furthermore, applying Corollary 6.3 (which allows Φ to have the lower regularity

Φ ∈ C1,1 but imposes the jumps (9.4) along γ), confirms that all such functions can

be written in the canonical form (8.1), which proves the supplement. �

To complete the proof of Israel’s Theorem, we must prove the existence of coordi-

nate transformations xµ → xα that lift the C0,1 regularity of gµν to C1,1. It remains,

now, to show that the functions Jµα defined above in ansatz (8.1) can be integrated

to coordinate functions, i.e., that they satisfy the integrability condition (2.5) in a

whole neighborhood. This is accomplished in the following two lemmas. The first

lemma gives an equivalent form of the integrability condition (2.5) that is suitable

for the Jacobian ansatz (8.1), as it gives a PDE on the free functions Φ, Ω, Z and

N in SSC. The main step in the proof of the following lemma is to express (2.5) in SSC.

Lemma 8.3. The functions Jµα defined in (8.1) satisfy the integrability condition

(2.5) if an only if the free functions Φ,Ω, N and Z satisfy the following system of two

PDE’s:

(α̇|X|+ Φt) (β|X|+N) + Φr (ε|X|+ Z)− (α|X|+ Φ)
(
β̇|X|+Nt

)
(8.6)

−Nr (δ|X|+ Ω) + fH(X) = 0

(
δ̇|X|+ Ωt

)
(β|X|+N) + Ωr (ε|X|+ Z)− (ε̇|X|+ Zt) (α|X|+ Φ)(8.7)

−Zr (δ|X|+ Ω) + hH(X) = 0 ,
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where X(t, r) = x(t)− r, H(X) denotes the Heaviside step function, and

α =
[Ar]φ(t) + [Bt]ω(t)

4A ◦ γ(t)
;

β =
[Ar]ν(t) + [Bt]ζ(t)

4A ◦ γ(t)
;

δ =
[Bt]φ(t) + [Br]ω(t)

4B ◦ γ(t)
;

ε =
[Bt]ν(t) + [Br]ζ(t)

4B ◦ γ(t)
;(8.8)

and

f = (βδ − αε) |X|+ αẋN − βẋΦ + βΩ− αZ

h = (βδ − αε) ẋ|X|+ δẋN − εẋΦ + εΩ− δZ ,(8.9)

where, α, β, δ, ε, f and h are all C1 functions of t.

Proof. Recall the integrability condition (2.5),

(8.10) Jµα,β = Jµβ,α .

A set of functions Jµα is integrable to coordinate functions if and only if they satisfy

the above PDE, (c.f. Appendix A). The partial differentiation in (8.10) is expressed

in coordinates xα, the coordinate system we are trying to construct, but our Jacobian

ansatz (8.1) is given in SSC, therefore we need to perform a change of coordinates in

the above PDE (8.10). From the chain rule we find that (8.10) implies

(8.11) Jµα,νJ
ν
β = Jµβ,νJ

ν
α ,

(where xν denote SSC), in fact, (8.11) is equivalent to (8.10), as we prove in the fol-

lowing. Once the equivalence of (8.11) and (8.10) is proven the equivalence of (8.10)

and (8.6) follows immediately by substituting the Jacobians (8.1) into the above in-

tegrability condition (8.11) and separating all discontinuous terms into the functions

f and h defined in (8.9).
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We now prove that the integrability condition in SSC (8.11) implies (8.10), (thus

both equations are equivalent). Our strategy is to show that (8.11) implies the inte-

grability condition

(8.12) Jαµ,ν = Jαν,µ ,

on the inverse Jacobian Jαµ . If (8.12) hold then we can integrate the function Jαµ up

to coordinates xα, (c.f. Appendix, Lemma A.1), and since xα is a bijective function

in SSC xµ, we are able to introduce the functions

(8.13) Jµα =
∂xµ

∂xα
.

Moreover, the functions defined in (8.13) do coincide with the pointwise linear alge-

braic inverse of Jαµ , (by the chain rule). The functions introduced in (8.13) satisfy

the original integrability condition 8.10 by the commutativity of partial derivatives,

thereby proving Lemma 8.3, (once we proved that (8.11) imply (8.12)).

We now show that (8.11) implies (8.12). Suppose that 8.11 holds, which is equiva-

lent to

Jr1J
t
0,r − Jr0J t1,r = J t0J

t
1,t − J t1J t0,t(8.14)

Jr1J
r
0,r − Jr0Jr1,r = J t0J

r
1,t − J t1Jr0,t .(8.15)

It remains to show that the expression on the left hand side of 8.12 equal the ones

on the right hand side. We are going to first use Cramer’s rule to get the algebraic

inverse Jαµ of Jµα , substitute its components into (8.12) and then apply (8.14) - (8.15)

to the resulting expressions. In more detail, the linear algebraic inverse Jαµ of Jµα is

given by

(8.16)

 J0
t J0

r

J1
t J1

r

 =
1

|J |

 Jr1 −J t1
−Jr0 J t0

 ,

where |J | denotes the determinant of Jµα . A straightforward computation yields

J0
t,r =

(
Jr1
|J |

)
r
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=
J t1
|J |2

(
Jr1J

r
0,r − Jr0Jr1,r

)
− Jr1
|J |2

(
Jr1J

t
0,r − Jr0J t1,r

)
,

and exchanging the first term using the second integrability condition (8.15) and the

second term using (8.14) we get

J0
t,r =

J t1
|J |2

(
J t0J

r
1,t − J t1Jr0,t

)
− Jr1
|J |2

(
J t0J

t
1,t − J t1J t0,t

)
= −

(
J t1
|J |

)
t

= J0
r,t .

Similarly we compute

J1
t,r = −

(
Jr0
|J |

)
r

=
Jr0
|J |2

(
Jr1J

t
0,r − Jr0J t1,r

)
− J t0
|J |2

(
Jr1J

r
0,r − Jr0Jr1,r

)
and substitute (8.14) for the first and (8.15) for the second term leads to

J1
t,r =

Jr0
|J |2

(
J t0J

t
1,t − J t1J t0,t

)
− J t0
|J |2

(
J t0J

r
1,t − J t1Jr0,t

)
=

(
J t0
|J |

)
t

= J1
r,t .

This proves that (8.11) implies (8.12) and therefore completes the proof. �

The proof of Israel’s Theorem is complete once we prove the existence of solutions

Φ,Ω, N and Z of (8.6), (8.7) that are C0,1, such that they satisfy (8.3). For this it

suffices to choose N and Z arbitrarily, so that (8.6) - (8.7) reduce to a system of

2 linear first order PDE’s for the unknown functions Φ and Ω. The condition (8.3)

essentially imposes that Φ,Ω, N and Z be C1 across the shock γ. Since (8.6), (8.7)

are linear equations for Φ and Ω, they can be solved along characteristics, and so the

only obstacle to solutions Φ and Ω with the requisite smoothness to satisfy condition

(8.3), is the presence of the Heaviside function H(X) on the right hand side of (8.6),

(8.7). Lemma 8.3 thus isolates the discontinuous behavior of equations (8.6), (8.7) in

the functions f and h, the coefficients of H. Israel’s theorem is now a consequence

of the following lemma which states that these coefficients of H(X) vanish precisely
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when the RH jump conditions hold on γ.

Lemma 8.4. Assume the SSC metric gµν is C0,1 across γ, (in the sense of Definition

6.1), and solves the first three Einstein equations strongly away from γ. Then the

coefficients f and g of H(X) in (8.6), (8.7) vanish on γ if and only if the RH jump

conditions (2.15) hold on γ, (in the sense of (6.3)-(6.8)).

Proof. The first terms of f ◦ γ and f ◦ γ in (8.9) drop out, since X ◦ γ = 0. (Alter-

natively, (6.5)-(6.7) yield

16AB (βδ − αε) =
(
κAB2r

)2 (
[T 00][T 11]− [T 10]2

)
(νω − φζ) ,

which vanishes by the jump conditions (3.4)-(3.5).)

It follows that only the second terms in f ◦ γ and f ◦ γ remain, that is,

f ◦ γ = αẋν − βẋφ+ βω − αζ

h ◦ γ = δẋν − εẋφ+ εω − δζ,(8.17)

where we used (8.2). Employing the definition of α and β (8.8) in (8.17) a straight-

forward computation shows that

f ◦ γ = 0

is equivalent to

(8.18) ([Ar] + ẋ[Bt]) (φζ − νω) = 0.

Using now that

(8.19) (φζ − νω) = det (Jµα ◦ γ) 6= 0,

we conclude that f ◦ γ = 0 if and only if (6.8), which is equivalent to the second

Rankine Hugoniot jump condition (3.5) via the Einstein equations (6.6)-(6.7).
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Furthermore, substituting the definition of δ and ε (in (8.8)) into (8.17) gives that

h ◦ γ = 0

if and only if

(8.20) ([Bt] + ẋ[Br]) (φζ − νω) = 0.

Using again (8.19) yields the equivalence of (8.20) to (6.4), (that is, [Bt]+ ẋ[Br] = 0),

and we conclude that h ◦ γ = 0 is equivalent to the first RH jump condition through

the Einstein equations (6.5)-(6.6). This completes the proof. �

In summary, Lemma 8.4 shows that Φ, Ω ∈ C1(N ) (or that (8.3) holds) if and

only if the Rankine Hugoniot jump conditions (3.4)-(3.5) hold. We can now complete

the proof of Israel’s Theorem.

Proof. (Theorem 8.1)

The metric coefficient C is C1,1 regular in every coordinate system that can be

reached from SSC by a C1,1 coordinate transformation in the (t, r)-plane, since then,

C transforms as a scalar and the smoothness of C(t, r) = r2 in SSC is at worst reduced

to C1,1. It remains to construct Jacobians acting on the (t, r)-plane that smooth the

remaining metric coefficients A and B.

We first prove that if there exist coordinates xα such that gαβ is in C1,1 then the RH

jump condition (3.4)-(3.5) hold. According to the considerations in section 6 the first

RH jump condition is already implied by the continuity of the metric gµν , (c.f. (6.3)),

and it remains to prove that (6.8) holds on γ. Now gαβ ∈ C1,1 implies, (by Lemma

8.2), that the Jacobians of the coordinate transformation from SSC to xα are of the

canonical form (8.1). Moreover, the functions Φ, Ω, N and Z satisfy the integrability

condition (8.6) as well as the regularity condition (8.3), which immediately implies

that f ◦ γ = 0 and h ◦ γ = 0 by taking the jumps of the integrability condition (8.6)

and using (8.3). By Lemma 8.4 we conclude that (6.8) and therefore the second RH
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jump condition (3.5) holds.

We now prove the reverse implication. Suppose the RH jump conditions (3.4)-(3.5)

hold on γ∩N , then by Lemma 8.2 there exist a set of functions Jµα defined in (8.1) on

N that satisfy the smoothing condition (7.9) and thus lift the metric regularity from

C0,1 to C1,1. It remains to prove that there exist C0,1 functions Φ, Ω, N and Z, that

satisfy the integrability condition (8.6) and the regularity condition (8.3), to obtain a

metric C1 in the new coordinates xα. In order to apply Corollary 7.2 and obtain the

higher C1,1 metric regularity (not just C1), we need to show that one can construct

Jacobians with a C2 regularity away from γ. In the following we first show that a

given solution of (8.6) is C1 across γ and C2 away from γ, and then we prove the

existence of functions Φ, Ω, N and Z that satisfy (8.6). Without loss of generality

we solve (8.6) for Φ and Ω, which allows us to choose N and Z arbitrarily as long

that N and Z are sufficiently smooth and satisfy (8.3) together with

(8.21) ζ 6= ẋν

on the shock curve, where ν = N ◦γ and ζ = Z ◦γ. Condition (8.21) implies that the

characteristic curves close to γ are not parallel to the shock curve, since the vector

(ν, ζ) is tangent to the characteristic curve on γ, (c.f. [7] for a definition of charac-

teristic curves)17.

We now prove the C1 regularity of the solution (Φ,Ω). Away from the shock curve

γ and tangential to γ all coefficients in (8.6) are smooth, thus its solution (Φ,Ω) is

smooth away from and tangential to γ. (Note that we assume N , Z and the initial

data prescribed to be smooth.) It remains to prove a C1 regularity across the shock

curve, i.e. that (8.3) holds. A given (weak) solution (Φ,Ω) of (8.6) is Lipschitz

continuous, since the weak form of (8.6) yields that weak derivatives in direction of

17Roughly speaking, for a scalar linear first order equation the characteristic curves are defined

to be the flow of the vectorfield given by the coefficients of the first order derivatives, for example,

the coefficients of Φt and Φr in the first equation in (8.6).
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the characteristic curves across γ are bounded. Furthermore, by assumption the RH

jump condition hold on γ and thus Lemma 8.4 yields that

(8.22) f ◦ γ = 0 = h ◦ γ.

Now, using (8.22), the continuity of the coefficients in (8.6) and the continuity of

(Φ,Ω), the integrability condition (8.6) implies that there are no jumps in the deriva-

tives in direction of the characteristics, that is,

[Φt]ν + [Φr]ζ = 0

[Ωt]ν + [Ωr]ζ = 0,(8.23)

where (ν(t), ζ(t)) is a tangent vector of the characteristic curve of (8.6) at γ(t). Since

by (8.21) the characteristic curves are not parallel to the shock curve, the continuity

of (Φ,Ω) across γ imposes another independent condition (c.f. (6.1)), namely, that

derivatives tangent to the shock curve match up continuously:

[Φt] + [Φr]ẋ = 0

[Ωt] + [Ωr]ẋ = 0.(8.24)

Thus, (8.23) together with (8.24) imply that (Φ,Ω) meets (8.3).

We now prove the existence of a C0,1 solution of (8.6). Picking smooth initial values

on the shock curve, i.e. Φ ◦ γ = φ and Ω ◦ γ = ω, the derivatives φ̇ and ω̇ that appear

in (8.6) (inside the terms α̇ and δ̇) are given functions and (8.6) is a linear coupled

first order PDE in Φ and Ω. Now, with the shock curve γ being non-characteristic,

we can apply the method described in [7], (chapter 2.5, pp. 46 - 48), except that we

use a L∞-norm whenever a maximum norm is employed in [7], since the coefficients

in (8.6) are in general only in C0,1. (Note that all coefficients in (8.6) are in C0,1,

since (8.22) together with the Lipschitz continuity of (Φ,Ω) imply that fH(X) and

hH(X) are continuous.) For smooth initial data assigned on the shock curve γ the

method in [7] yields existence of a C0,1 solution (Φ,Ω) of the integrability condition

(8.6) on some open set containing γ. Moreover, we can pick the initial values and
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the free functions, φ, ..., ζ, such that det (J) 6= 0 everywhere on the shock curve and

once we proved continuity of the solution it is non-zero in a neighborhood N of γ.

In summary, under the assumption that the RH jump conditions hold on γ, we can

integrate the Jacobians Jµα to coordinate functions that smooth the metric gµν to C1,1.

This completes the proof of Theorem 8. �
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9. Shock Wave Interactions as Regularity Singularities in GR;

Transformations in the (t, r)-Plane

The main step in the proof of Theorem 1.1 is to prove that there do not exist C1,1

coordinate transformations of the (t, r)-plane in a neighborhood of a point p of regular

shock wave interaction in SSC that lifts the regularity of the metric g from C0,1 to

C1,1 in a neighborhood of p. We then prove in Section 10 that no such transformation

can exist within the full C1,1 atlas that transforms all four variables of the spacetime,

i.e., including the angular variables. We formulate the main step precisely for lower

shock wave interactions in R2
− in the following theorem, which is the topic of this

section. A corresponding result applies to upper shock wave interactions in R2
+, as

well as two wave interactions in a whole neighborhood of p.

Theorem 9.1. Suppose that p is a point of regular shock wave interaction in SSC,

in the sense of Definition 3.1, for the SSC metric gµν. Then there does not exist

a C1,1 coordinate transformation xα ◦ (xµ)−1 of the (t, r)-plane, defined on N ∩ R2
−

for a neighborhood N of p in R2, such that the metric components gαβ are C1 func-

tions of the coordinates xα in N ∩ R2
− and such that the metric has a non-vanishing

determinant at p, (that is, such that lim
q→p

det (gαβ(q)) 6= 0).18

In the remainder of this section we present the proof of Theorem 9.1, which mirrors

the constructive proof of Israel’s Theorem in Section 8 in that it uses the extension

of our Jacobian ansatz (8.1) to the case of two interacting shock waves. But now, to

prove non-existence, we must show the ansatz is general enough to include all C0,1 Ja-

cobians that could possibly lift the regularity of the metric. Our strategy is to assume

for contradiction that there does exist a Jacobian of a coordinate transformation that

takes a C0,1 SSC metric gµν to a metric gαβ which is C1,1 in a neighborhood of the

18Note that Theorem 1.1 states the non-existence of coordinates on an entire neighborhood N of

p in R2, but here we have prove the stronger result that such coordinates do not exist on the upper

or lower half planes separately.
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point p, and then use that the necessary and sufficient condition (7.9) of Corollary 7.2

holds in a deleted neighborhood of the two shock curves that enter the interaction at

p. We then restrict to the half plane where two shock waves enter p at distinct speeds,

and use the smoothing condition (7.9) to construct a canonical form for the Jacobians

in a neighborhood of p, that generalizes (8.1) to the case of two shock curves, with

the weaker assumption of C0,1 regularity on the functions Φ, Ω, Z, N . We conclude

the proof by showing that this canonical form is inconsistent with the assumption

that det (gαβ) 6= 0 at p, by using the continuity of the Jacobians up to p.

To implement these ideas, the main step is to show that the canonical form (6.19)

of Corollary 6.4 can be applied to the Jacobians Jµα in the presence of a shock wave

interaction. The result is recorded in the following lemma:

Lemma 9.2. Let p be a point of regular shock wave interaction in SSC in the sense

of Definition 3.1, corresponding to the SSC metric gµν defined on N ∩R2
−. Then there

exists a set of functions Jµα ∈ C0,1(N ∩R2
−) satisfying the smoothing condition (7.9)

on γi ∩ N , i = 1, 2, if and only if (6.8) holds on each shock curve γi ∩ N . In this

case, all Jµα in C0,1(N ∩ R2
−) assume the canonical form

J t0(t, r) =
∑
i

αi(t) |xi(t)− r|+ Φ(t, r),

J t1(t, r) =
∑
i

βi(t) |xi(t)− r|+N(t, r),

Jr0 (t, r) =
∑
i

δi(t) |xi(t)− r|+ Ω(t, r),

Jr1 (t, r) =
∑
i

εi(t) |xi(t)− r|+ Z(t, r) ,(9.1)

where

αi(t) =
[Ar]i φi(t) + [Bt]i ωi(t)

4A ◦ γi(t)
,

βi(t) =
[Ar]i νi(t) + [Bt]i ζi(t)

4A ◦ γi(t)
,

δi(t) =
[Bt]i φi(t) + [Br]i ωi(t)

4B ◦ γi(t)
,
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εi(t) =
[Bt]i νi(t) + [Br]i ζi(t)

4B ◦ γi(t)
,(9.2)

with

(9.3) φi = Φ ◦ γi, ωi = Ω ◦ γi, ζi = Z ◦ γi, νi = N ◦ γi ,

and where Φ,Ω, Z,N ∈ C0,1(N ∩R2
−) have matching derivatives on each shock curve

γi(t),

(9.4) [Ur]i = 0 = [Ut]i ,

for U = Φ,Ω, Z,N , t ∈ (−ε, 0).

Proof. The proof is analogous to the proof of the single shock version in Lemma 8.2.

In more detail, suppose that there exist C0,1 functions Jµα that meet the smoothing

condition (7.9) on each γi, (i = 1, 2), then the continuity implies that (c.f. (6.1) and

(8.4))

(9.5) [Jµα,t]i = −ẋi[Jµα,r]i .

Substituting the expressions for [Jµα,ν ]i from the smoothing condition (7.9), (w.r.t.

γi), into the above equation (9.5) and using that the metric is Lipschitz continuous

across γi, (that is, (6.3)-(6.4) hold w.r.t. γi), we finally get that (6.8) holds on γi.

Now, (6.3) together with (6.8) imply the RH jump condition on γi.

We now prove the opposite direction. Suppose that the RH jump condition holds

on each γi, i = 1, 2, then (6.3), (6.4) and (6.8) hold on each shock curve. Now,

a straightforward computation using (6.3), (6.4) and (6.8) shows that the Jacobian

ansatz defined in (9.1) meets the smoothing condition (7.9) on each shock curve γi,

therefore proving the existence of functions satisfying (7.9).

From Corollary 6.4 we conclude that if C0,1 functions Jµα satisfying the smoothing

condition (7.9) on each shock curve exist, then there exist functions Φ, Ω, Z, N ∈
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C0,1(N ) satisfying (9.4), such that the Jµα can be written as in (8.2). This completes

the proof. �

The essence of the canonical form (9.1) is that the jumps in derivatives across the

shock waves have been taken out of the functions Φ,Ω, Z,N in (9.4). We now have

a canonical form for all functions Jµα that meet the necessary and sufficient condition

(7.9) for [gαβ,γ] = 0. However, for Jµα to be proper Jacobians that can be integrated

to a coordinate system, we must use the free functions Φ,Ω, Z and N to meet the

integrability condition (2.5). The following lemma gives an equivalent integrability

condition in SSC to (2.5) in the spirit of Lemma 8.3, tailored to our canonical ansatz

of the Jacobian (9.2).

Lemma 9.3. For the ansatz (9.1) the integrability condition (2.5) is equivalent to

(9.6) Aϕt +Bϕr + Cϕ+
∑
i=1,2

Di
d

dt
(ϕ ◦ γi) +

∑
i=1,2

FiH(Xi) = 0,

where Xi(t, r) = xi(t) − r and H(.) denotes the Heaviside step function. A, B, C

and Di are (2 × 2)-matrix valued continuous functions, (in fact, A and B are both

diagonal), and ϕ denotes any of the pairs T (Φ, Ω), T (Φ, Z), T (N, Z) or T (N, Ω).

The vector valued function Fi =T (fi, hi) is Lipschitz continuous and continuous on

the shocks up to p, where on the shocks the fi and hi are given by

fi ◦ γi = (αiẋiνi − βiẋiφi + βiωi − αiζi)

+ (αiẋiβl − βiẋiαl + βiδl − αiεl) |xi(.)− xl(.)|

hi ◦ γi = (δiẋiνi − εiẋiφi + εiωi − δiζi)

+ (δiẋiβl − εiẋiαl + εiδl − δiεl) |xi(.)− xl(.)| ,(9.7)

for i = 1, 2 and l 6= i.

Proof. The proof resembles the proof of Lemma 8.3 in that the equivalence of the

integrability condition (2.5) and the integrability condition in SSC (8.11)

Jµα,νJ
ν
β = Jµβ,νJ

ν
α
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follows by the same arguments, (in fact, this result holds independently of the Jaco-

bian ansatz (8.1)). Furthermore, substituting the Jacobian ansatz for the intersecting

shock curves (9.1) into the integrability condition in SSC (8.11) leads to a system of

two first order PDE’s similar to (8.6) except that we now sum over two shock curves

instead of one. In particular, the resulting system of PDE’s is of the form (9.6). The

main difference to (8.6) is the appearance of additional mixed terms in the coefficients

f and h of the discontinuous terms multiplying the Heaviside function H(X), which

if restricted to either of the shock curves γi are given by (9.7). �

Note that depending on the choice of ϕ the matrix valued coefficient functions A

and B in (9.6) might depend on ϕ itself, such that (9.6) is nonlinear. Nevertheless,

there are choices of ϕ such that (9.6) is linear, for instance choosing ϕ = T (Φ, Ω) and

picking N, Z ∈ C1(N ) arbitrarily (not subject to the PDE’s in (9.6)) leads to linear

PDE’s.

For our purposes here, the point of interest in the integrability condition (9.6) is

that the coefficients f and h of the discontinuous Heaviside step functions H(X), in

contrast to the single shock case (8.6), now contain some additional mixed terms and

those mixed terms do not vanish on the shock curves γi by the RH jump condition

alone, but require a further constraint. However, taking the limit of this constraint

to the point p of shock wave interaction yields exactly the condition that the Jaco-

bian determinant det (Jµα) must vanish at p. Now, to finish the proof of Theorem

9.1 we show that as a consequence of (9.4), (that is, the free functions Φ,Ω, Z,N

are C1 regular at the shocks), the coefficient functions fi and hi must vanish on the

shock curves. In summary, using the continuity of fi and hi the Jacobian determi-

nant det (Jµα) must thus vanish at the point of shock interaction, which then implies

det (gαβ) = 0.

The main step in the proof of Theorem 9.1 is recorded in Lemma 9.4. Before stating

the lemma we compute the determinant of the Jacobian restricted to the shock curve
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γi, using (9.3) together with the canonical form (9.1) we compute that it is given by

(9.8) det (Jµα ◦ γi(t)) =
(
J t0J

r
1 − J t1Jr0

)
|γi(t) = φi(t)ζi(t)− νi(t)ωi(t).

Now, since the Jµα are continuous and since Definition 3.1 requires the limits

lim
t→0

[gµν,σ]i(t) = [gµν,σ]i(0)

to exist, we obtain the same limit along each shock curve γi, (for i = 1, 2), that is,

φ0 = lim
t→0−

φi(t),

ω0 = lim
t→0−

ωi(t),

ζ0 = lim
t→0−

ζi(t),

ν0 = lim
t→0−

νi(t),(9.9)

and we finally get

(9.10) lim
t→0+

det (Jµα ◦ γi(t)) = φ0ζ0 − ν0ω0.

We are now ready to state the lemma and to realize its significance for the determi-

nant of the Jacobian at p, (through (9.10)):

Lemma 9.4. Let p ∈ N be a point of regular shock wave interaction in SSC in the

sense of Definition 3.1. Then if the integrability condition

(9.11) Jµα,β = Jµβ,α

holds in N ∩R2
− for the functions Jµα defined in (9.1), (so that Φ, Ω, N and Z satisfy

(9.4)), then

(9.12)
1

4B

(
ẋ1ẋ2

A
+

1

B

)
[Br]1[Br]2 (ẋ1 − ẋ2) (φ0ζ0 − ν0ω0) = 0.

holds at t = 0. (The coefficients A and B in (9.12) are evaluated at p = (0, r0) and

φ0, ..., ω0 defined according to (9.9).)
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Proof. Suppose the functions Jµα defined in our Jacobian ansatz (9.1) solve the inte-

grability condition (9.11). By Lemma 9.3 the functions Φ,Ω, Z,N ∈ C0,1(N ) then

satisfy the regularity constraint (9.4) and to solve the integrability condition in SSC

(9.6). Furthermore, the coefficients in (9.6) are continuous in N ∩R2
− and thus taking

the jump of the integrability condition (9.6) across each γi, i = 1, 2, gives

A[ϕt]i +B[ϕr]i +
∑
j

Dj

[
d

dt
ϕ ◦ γj

]
i

= Fi[H(Xi)]i ,

and [H(Xi)]i = 2 together with (9.4), (that is, [ϕt]i = 0 = [ϕr]i), yields

f ◦ γi(t) = 0 = h ◦ γi(t),

for all t ∈ (−ε, 0) and for i = 1, 2.

In the following we compute the limit of the equation h ◦ γi(t) = 0 as t approaches

0 explicitly,19 which directly leads to (9.12) and finishes the proof. Without loss of

generality we choose i = 1 (and thus l = 2 in (9.7)). Using (6.3) with respect to γ1,

which holds since the metric is C0,1 across γ1, the first term in (9.7) vanishes on γ1

by the same arguments than in the proof of Lemma 8.4, explicitly we obtain

(9.13) h1 ◦ γ1 = (δ1ẋ1β2 − ε1ẋ1α2 + ε1δ2 − δ1ε2) |x1(.)− x2(.)| .

Furthermore, for t 6= 0 our initial assumption that ẋ1(0) 6= ẋ2(0) implies |x1(t)− x2(t)| 6=

0 for all t 6= 0 sufficiently close to 0 and thus h ◦ γ1(t) = 0 is equivalent to

(9.14) δ1ẋ1β2 − ε1ẋ1α2 + ε1δ2 − δ1ε2 = 0,

sufficiently close to 0 and by continuity (9.14) holds at t = 0 as well.

19Note, one can prove that h◦γi(t) = 0 implies f ◦γi(t) = 0 and if the shock speed ẋi(t) 6= 0 does

not vanish, then the inverse implication holds as well. However, computing the limit of f ◦ γi(t) = 0

as t approaches 0 leads to (9.12) multiplied with the shock speeds at t = 0, which is not enough to

prove Theorem 9.1, unless we assume the shock speeds are all nonzero.
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We next compute the limit of (9.14) as t approaches 0 from below. From the

definition of αi and δi, (9.2), together with the RH jump condition in the form (6.3)

and (6.8) we get the identity

(9.15) αi = −ẋi
B

A
δi ,

for i = 1, 2, where A and B are evaluated at p = (0, r0). Now, from the definition of

εi and βi, (9.2), as well as (9.15) and the continuity of the Jacobian at p (9.9) we get

that (9.14) at t = 0 is equivalent to({
ẋ1

[Ar]2
A
− [Bt]2

B

}
δ1 −

{
ẋ2

[Ar]1
A
− [Bt]1

B

}
δ2

)
ν0

+

({
ẋ1

[Bt]2
A
− [Br]2

B

}
δ1 −

{
ẋ2

[Bt]1
A
− [Br]1

B

}
δ2

)
ζ0 = 0.(9.16)

Using (6.3) and (6.8) to eliminate [Bt]i and [Ar]i we find that the coefficients to δ1

and δ2 in (9.16) are related as follows:

ẋl
[Bt]i
A
− [Br]i

B
= −

(
ẋ1ẋ2

A
+

1

B

)
[Br]i ,

ẋl
[Ar]i
A
− [Bt]i

B
= ẋi

(
ẋ1ẋ2

A
+

1

B

)
[Br]i ,(9.17)

for i = 1, 2 and l 6= i. Substituting (9.17) back into (9.16) yields

(9.18)

(
ẋ1ẋ2

A
+

1

B

)
((ẋ2[Br]2δ1 − ẋ1[Br]1δ2) ν0 + (−[Br]2δ1 + [Br]1δ2) ζ0) = 0,

and using the definition of δi (9.2) at t = 0, that is,

δi(t) =
[Bt]i φ0 + [Br]i ω0

4B
,

for i = 1, 2, in (9.18) we obtain that (9.14) is indeed equivalent to (9.12). This

completes the proof. �

Proof. (Theorem 9.1)

Assume there exists a C1,1-coordinate transformation in the (t, r)-plane mapping

SSC to coordinates xα such that gαβ is in C1(N ∩ R2
−) for some neighborhood N

of p. By Lemma 7.2, the Jacobian Jµα of the coordinate transformation satisfies

the necessary and sufficient smoothing condition (7.9) on each of the shock curves
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γi, (i = 1, 2), since the metric gµν satisfies the RH jump conditions (6.3) and (6.4)

across each of the shock curves. Consequently, the Jacobians Jµα can be written in

terms of the canonical form (9.1) with C0,1 functions Φ,Ω, N and Z, which meet

the regularity condition (9.4) that their derivatives are continuous across the shock

curves. Furthermore, by assumption the Jµα are integrable to coordinates and thus

they satisfy the integrability condition (2.5), (c.f. Appendix A). Applying Lemma 9.4

yields (9.12) at the point p of shock wave interaction, that is,

(9.19)
1

4B

(
ẋ1ẋ2

A
+

1

B

)
[Br]1[Br]2 (ẋ1 − ẋ2) (φ0ζ0 − ν0ω0 ) = 0.

To finish the proof of Theorem 9.1, observe that the first three terms in (9.19) are

nonzero by our assumption that shock curves are non-null, and have distinct speeds

at t = 0. In more detail, by our assumptions in definition 3.1

(ẋ1 − ẋ2) 6= 0,

while

ẋiẋl
A

+
1

B
6= 0

for time-like shock curves, which satisfy

ẋ2
j <

A

B
.

Finally,

[Br]i 6= 0,

since otherwise [T µν ]i = 0 for all µ, ν = 0, 1 due to the Einstein equations (6.5)-(6.7),

in contradiction to our assumptions about points of regular shock wave interaction in

SSC, (c.f. Definition 3.1). We conclude that indeed

(9.20) φ0ζ0 − ν0ω0 = 0

and using the explicit expression for the Jacobian at the point p of interaction (9.8)-

(9.10) we finally conclude that

(9.21) det Jµα(p) = (φ0ζ0 − ν0ω0) = 0,
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as claimed. This completes the proof of Theorem 9.1. �

Theorem 9.1 is stated for the upper (R2
+) or the lower half plane (R2

−) separately.

(In this way, one can apply the theorem to initial value problems at the t = 0 axis.)

A straightforward consequence of Theorem 9.1 is the following corollary:

Corollary 9.5. Suppose that p is a point of regular shock wave interaction in SSC, in

the sense of Definition 3.1, for the SSC metric gµν. Then there does not exist a C1,1

coordinate transformation xα ◦ (xµ)−1 of the (t, r)-plane, defined on a neighborhood N

of p in R2, such that the metric components gαβ are C1 functions of the coordinates

xα in N and such that the metric has a non-vanishing determinant at p, (that is,

det (gαβ(p)) 6= 0).

Proof. Assume there exist a coordinate transformation of the (t, r)-plane defined on a

neighborhood N of p. Then, this coordinate transformation is also defined on N ∩R2
−

and smooth the metric gαβ to C1. Applying Theorem 9.1 completes the proof. �

We remark that at first there appears to be more than enough freedom to choose

the free functions Φ,Ω, Z,N of the canonical form to arrange for the discontinuous

term in the integrability condition to vanish. This together with the fact that the

derivatives of Jµα are uniquely solvable in condition (7.9), lead us to believe until the

very end that one could construct coordinates in which gαβ was C1,1. But at the

very last step, taking the limit of the integrability constraints to the limit of shock

wave interaction p, we find that the condition (9.4), expressing that [gαβ,γ] vanishes

at shocks, has the effect of freezing out all the freedom in Φ,Ω, Z,N , thereby forcing

the determinant of the Jacobian to vanish at p. The answer was not apparent until

the very last step, and thus we find the result remarkable, and most surprising!
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10. Shock Wave Interactions as Regularity Singularities in GR;

the Full Atlas

For the proof of Theorem 1.1, we have established the nonexistence of C1,1 coordi-

nate transformations in the (t, r)-plane that can map a C0,1 regular SSC metric gµν

over to a C1,1 metric gαβ in Theorem 9.1. It remains to extend this result to the

full atlas of coordinate transformations that depend on all four coordinate variables,

including the SSC angular variables. For completeness we state Theorem 1.1 again:

Theorem 10.1. Suppose that p is a point of regular shock wave interaction in SSC,

in the sense of Definition 3.1, for the SSC metric gµν. Then there does not exist a

C1,1 coordinate transformation xα ◦ (xµ)−1, defined on a neighborhood N of p in R2,

such that the metric components gαβ are C1 functions of the coordinates xα in N and

such that the metric has a non-vanishing determinant at p, (that is, det (gαβ(p)) 6= 0).

The proof method is as follows, we assume for contradiction that there are coordi-

nates in which the metric is C1, in general the metric does have the full ten component

and is not of the box diagonal form (2.19), that is, a metric of the form

(10.1) ds2 = −Ādt̄2 + B̄dr̄2 + 2Ēdt̄dr̄ + C̄dΩ̄2 ,

where Ā, B̄, Ē and C̄ depend on coordinates t̄ and r̄ only and

dΩ̄ := dϑ̄2 + sin2(ϑ̄)dϕ̄2

is the induced metric on the unit sphere. However, (partially following the arguments

in [18]), we can always transform a general spherically symmetric metric back to one

of the box diagonal form (2.19) with the same induced metric on the spheres of sym-

metry than gµν and still preserve the C1 metric regularity. The resulting metric is then

related to gµν by a transformation in the (t, r)-plane, in contradiction to Theorem 9.1.

Before we begin with the proof of Theorem 10.1 we need to study the regularity of

the Killing vector, which solve Killing’s equations. In the following lemma we assume
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that a C0,1 solution of Killings equation is given, as it will be the case in the proof of

Theorem 10.1 below. (The existence of a solution is a consequence of our incoming

assumption of spherical symmetry and the C0,1 regularity is a consequence of the fact

that the isometries of the metric in SSC are smooth rotations acting on the spheres

of symmetry, which then give rise to smooth Killing vectors, thus the Killing vectors

are at least C0,1 in any other coordinate system that can be reached within the atlas

of C1,1 coordinate transformations).

Lemma 10.2. Let Xi be a C0,1 solution of Killing’s equation in a given coordinate

system xi, that is,

(10.2) Xi,j +Xj,i = 2ΓkijXk,

and suppose that the Γkij’s denote the Christoffel symbols of a C1 metric gij, then Xi

and the Killing vector X i = gijXj are in C1 in the coordinates xi.

Proof. Suppose that with respect to partial differentiation in coordinates xi the metric

gij is C1 and the Killing vectorX i is in C0,1 and solves (10.2). The Lipschitz continuity

of Xi implies that the derivatives Xi,j exist almost everywhere and are at worst

discontinuous, (c.f. [2]). Assume for contradiction that p is a point at which Xi is

not in C1, then there exist a smooth hypersurface Σ containing p such that

[Xi,j] 6= 0,

for some i, j ∈ {0, ..., 3}, where [·] denotes the jump at p across Σ. Since Σ is smooth

all tangent vectors are smooth and tangential derivatives of Xi match up continuously

across Σ, (c.f. (6.1)),

(10.3) [Xi,j]v
j = 0

for any vector vj tangent to Σ. (Note, in (10.3) the derivatives of Xi tangent to Σ

could be discontinuous, however, the point is that their value agrees on both sides

across Σ, since the difference quotient of Xi composed with some curve tangent to
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Σ contains only expressions that match up continuously across Σ.) Pointwise, [Xi,j]

is a matrix and (10.3) implies that [Xi,j] has a three dimensional nullspace at each

point on Σ. Furthermore, taking the jump across Σ of Killing’s equations (10.2) and

using the continuity of the Christoffel symbols Γkij, (a consequence of our incoming

assumption that gij is C1), leads to

(10.4) [Xi,j] + [Xj,i] = 0.

We conclude that [Xi,j] is antisymmetric and thus has a vanishing trace,

tr ([Xi,j]) = 0.

However, the trace of a matrix is the sum of its eigenvalues, but three of the eigen-

values of [Xi,j] are zero, due to the three dimensional nullspace. Thus (10.4) implies

that all eigenvalues vanish and therefore

(10.5) [Xi,j] = 0 for all i, j ∈ {0, ..., 3}.

This contradicts the assumption that Xi is not in C1 at p, and since p is an arbitrary

point we conclude that Xi is in C1. Now, since by assumption gij is in C1 we proved

that X i = gijXj is in C1. �

Proof. (Theorem 10.1)

Assume for contradiction there exist coordinates xj in which the metric gij is C1

and has a non-vanishing determinant at p. In general gij is not of the box diagonal

form (2.19). In the following we first prove that (a) one can always transform back

to a metric gαβ in box diagonal form and preserve the metric regularity and (b) the

resulting metric is then related to the SSC metric (in which p is a point of regular

shock wave interaction) by a coordinate transformation in the (t, r)-plane. This then

contradicts Theorem 9.1 and proves Theorem 10.1.
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For the moment assume that (a) holds and that the metric gij is in the box diagonal

form (10.1) with an induced metric dΩ̄ := dϑ̄2 + sin2(ϑ̄)dϕ̄2, is in C1 and has a non-

vanishing determinant. This induced metric can be taken over to the line element

dΩ := dϑ2+sin2(ϑ)dϕ2 of the SSC metric we started in by a coordinate transformation

on the spheres of symmetry alone, that is, by a change of the angular variables

only (ϑ̄, ϕ̄) → (ϑ, ϕ), (see [18], chapter 13.2, for a detailed proof). Since both

induced metrics, dΩ̄ and dΩ are smooth, the coordinate transformation is smooth

and preserves the C1 regularity of the full metric. Now, the resulting metric,

(10.6) ds2 = −Ādt̄2 + B̄dr̄2 + 2Ēdt̄dr̄ + C̄dΩ2 ,

can be taken over to our original SSC metric by a transformation in the (t, r)-plane,

since both metrics, gij and this SSC metric, are assumed to be related by a coordinate

transformation in the first place. (For instance, defining C̄ as the new radial coordi-

nate and suitably rescaling the time coordinate to eliminate the resulting off-diagonal

element we can map (10.6) to the SSC metric we started in.) However, this contra-

dicts Theorem 9.1 since the metric (10.6) is in C1, has a non-vanishing determinant

and can be reached from the SSC metric we started in by a coordinate transformation

in the (t, r)-plane.

It remains to prove (a), that is, in a spherically symmetric spacetime there always

exist a coordinate transformation that takes the C1 metric gij over to a metric of box

diagonal form (10.1) which is still in C1 with respect to the new coordinates. We

now construct this coordinate transformation, partially following the construction in

[18], (chapter 13.5). (The result that this coordinate transformation preserve the C1

metric regularity is our own contribution.)

We now prove that, if gij is in C1, then there exist a C2 coordinate transformation

such that all Killing vectors have two identically vanishing components, that is, in
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the new coordinates all Killing vectors satisfy

(10.7) X i = 0 for i = 0, 1.

To prove the existence of such a coordinate transformation it suffices to choose two

linearly independent Killing vectorfields and two linearly independent vectorfields

that are pointwise orthogonal to the two Killing vectorfields, such that the flow of

these four vectorfields defines a coordinate system. (Such a set of vectorfields exists

since, by assumption, the metric gij is related to a SSC metric through a coordi-

nate transformation.) Integrating those vectorfields leads to a coordinate system in

which (10.7) holds. The metric in the new coordinates has again a non-vanishing

determinant, since the vectorfields are linearly independent in a neighborhood of p.

Furthermore, if the Killing vectorfields are C1 then the orthogonal vectorfields are

C1, resulting in a C2 coordinate transformation that preserves the C1 metric regu-

larity and maps to coordinates where (10.7) holds. Thus, it remains to prove that

the Killing vectors in coordinates xi are C1, which follows from Lemma 10.2, since

gij is in C1 and since the Killing vectors are C0,1 regular. (In more detail, the Killing

vectors are C0,1 since the isometries of the metric in SSC are smooth rotations acting

on the spheres of symmetry and, being the flux of Killing vectors, the Killing vectors

in SSC are smooth as well and must be C0,1 regular in any other coordinate system

that can be reached within the atlas of C1,1 coordinate transformations.) We denote

the new coordinates again with xi.

In the following we adapt the notation in [18], splitting up the coordinate indices

as follows

ui = xi for i = 2, 3

and va = xa for a = 0, 1.(10.8)

We first prove that the metric takes on the form

(10.9) ds2 = gab(v) dva dvb + f(v)ḡij(u) dui duj ,
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where summation over a and b runs from 0 to 1, summation over i and j runs from

2 to 3, f is some C1 function and ḡij(u) denotes the induced metric on the space of

symmetry. A major advantage of the notation (10.8) is that in the coordinates we

constructed above the metric satisfies

(10.10) gia = 0,

for a = 0, 1 and i = 2, 3. From (10.10) and (10.7) we find that Killing’s equation

(10.2) (for indices a, b ∈ {0, 1}) implies

(10.11) Xk ∂gab
∂uk

= 0

and since this holds true for all Killing vectors we conclude that

(10.12)
∂gab
∂uk

= 0.

To verify (10.9) it remains to prove that gij(v, u) = f(v)ḡij(u) for some function

f . This follows from Killing’s equations, which imply that any symmetric 2-form

Cij(u, v) dui duj on the spaces of symmetry agrees with the metric ḡij(u) dui duj up

to a factor f(v), (see [18], chapter 13.4, for a detailed derivation). This proves that

in the coordinates xi the metric is of the form (10.9).

For an induced metric on the spaces of symmetry with positive eigenvalues only

and with a positive constant curvature K, the metric (10.9) can be written in the

(“Euclidean”) form

(10.13) ds2 = gab(v) dva dvb + f(v)

(
d~u2 +

(~u · d~u)2

1− ~u2

)
,

for ~u = (u1, u2). (By assumption a spherically symmetric spacetime has a positive

constant curvature.) To finish the proof introduce angular variables via

u1 = sinϑ cosϕ

u2 = sinϑ sinϕ,(10.14)
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in those coordinates the metric is of the box diagonal form (10.6) and (10.14) preserves

the C1 metric regularity. This proves (a) and completes the proof of Theorem 10.1.

�

A straightforward consequence of Theorem 10.1 is that at points of regular shock

wave interaction the Einstein equations can only hold in the weak sense. From this

we conclude that the weak formulation of the Einstein Field Equations is more fun-

damental and essential.

Corollary 10.3. Suppose that p is a point of regular shock wave interaction in SSC,

in the sense of Definition 3.1, for the SSC metric gµν. Then there does not exist

a coordinate system that can be reached from SSC in the class of C1,1 coordinate

transformations, such that the metric g is C1,1 and solves the Einstein equations in

the strong sense, that is, pointwise almost everywhere.

Theorem 10.1 proves that the lack of C1 regularity is invariant under all C1,1

coordinate transformations and the atlas of C1,1 coordinate transformations is generic

to address shock waves in General Relativity for the following two reasons. Firstly,

C2 coordinate transformations cannot lift the metric regularity in the first place (c.f.

Section 7), while a C1,α atlas presumably fails to provide enough free parameters

to the smoothing condition (7.4), for α 6= 1, (it seems to be appropriate only for

metric tensors in C0,α). Secondly, a C1,1 atlas is natural as it preserves the weak

formalism of the Einstein equations, while for any atlas regularity below C1, we

expect that a weak formulation of the Einstein equations fails to exist (e.g., a C0,1

atlas with resulting discontinuous metric components). Given this, points of regular

shock wave interaction in SSC are singularities that cannot be removed by the means

of C1,1 coordinate transformations, that either have unbounded second order metric

derivatives or a vanishing metric determinant at the point of shock interaction and

which we therefore call regularity singularities.
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11. The Loss of Locally Inertial Frames

Finally we shed light on the non-existence of locally inertial frames around a point

of regular shock wave interaction, that we claimed in the Introduction. This is in vast

contrast to the situation of only a single shock wave (c.f. [11]), where such coordinates

always exist. We first clarify what we mean by a locally inertial frame:

Definition 11.1. Let p be a point in a Lorentz manifold and let xj be a coordinate

system defined on a neighborhood of p. We call xj a locally inertial frame around p

if the metric gij in those coordinates satisfies:

(i) gij(p) = ηij, where ηij = diag(−1, 1, 1, 1) denotes the Minkowski metric,

(ii) gij,l(p) = 0 for all i, j, l ∈ {0, ..., 3},

(iii) gij,kl are bounded on every compact neighborhood of p.

We refer to a metric gij, that satisfies (1)-(3), as a locally Minkowskian (or locally

flat or locally inertial) metric around p.

Condition (iii) of Definition 11.1 ensures that physical equations in GR (which are

tensorial) differ from the corresponding equations in flat Minkowski space only by

gravitational effects, since those are of second order in the metric derivatives. (In the

standard literature the metric is assumed to be smooth, thus implying condition (iii)

of Definition 11.1 right away.)

Now, by Theorem 1.1, there exist distributional and thus unbounded second order

derivatives of the metric. Therefore, the following Corollary is a straightforward con-

sequence of Theorem 1.1:

Corollary 11.2. Let p be a point of regular shock wave interaction in SSC in the

sense of Definition 3.1, then there does not exist a C1,1 coordinate transformation

such that the resulting metric gij is locally Minkowskian around p.
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Proof. Assume for contradiction that there exist a locally inertial frame xi around the

point p of regular shock wave interaction. Then the metric in coordinates xi satisfies

gij(p) = ηij and thus has a non-vanishing determinant, namely

det gij(p) = 2 6= 0.

By Theorem 10.1 the metric gij is not in C1, thus, there exist indices i, j, l ∈ {0, .., 3}

such that gij,l is discontinuous and therefore there exist indices i, j, l, k ∈ {0, .., 3}

such that gij,lk is distributional and not bounded. This completes the proof. �

Corollary 11.2 proves that the gravitational metric cannot be locally Minkowskian

at points of regular shock wave interaction in SSC since unbounded second order

metric derivatives occur. However, at the present state it is not clear to the author

if there exist coordinates in which the metric satisfies condition (i)-(ii) of Definition

11.1 at least and if those coordinates could play the role of locally inertial frames in

some physically satisfying sense.
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12. Construction of a Jacobian on a Deleted Neighborhood and the

Gluing Conditions

The proof of Theorem 9.1 was constructive, providing a canonical form for Jaco-

bians necessary and sufficient to smooth the metric to C1 in a neighborhood of a

point p of shock wave interaction, (c.f. (9.1)). In fact, for the proof of Theorem 9.1

it suffices to consider the upper or lower half plane only, (R2
+ or R2

−), and the only

obstruction to the existence of such Jacobians was a vanishing metric determinant at

p. In this section we outline how to extend the Jacobian ansatz (9.1) to a deleted

neighborhood20 of p, ensuring its integrability and thereby smoothing the metric to

C1 in the new coordinates. The key point is that some “gluing conditions” need to

be imposed at the surface {t = 0} for a shock wave interaction at t = 0.21

As in the construction of the Jacobians in Theorem (8.1), requiring the Jacobians

to be C1 regular away from the shock surfaces is a generic condition for smoothing the

metric, in order to avoid the appearance of additional points where the metric is not

C1. On R2
±, the regularity of the Jacobian Jµα away from the shocks is governed by

the integrability condition (9.6) and the choice of the free functions in the Jacobian

ansatz (9.1), (without loss of generality we take N and Z to be those free functions

and solve (9.6) for Φ and Ω). However, at the surface {t = 0} a C1 regularity of

the Jacobian imposes some additional conditions on Φ, Ω, N and Z. In more detail,

20By a deleted neighborhood we mean a neighborhood of p from which some open set containing

p is excluded. It is conceivable that one can construct an integrable Jacobian on a neighborhood of

p from which only the point p is excluded. However, it is not clear if the integrability condition (9.6)

is well-posed at the point p, if initial values are prescribed at the surface t = 0, due to the tangential

derivatives dφi

dt in (9.6).
21 The purpose of this section is to introduce the idea of matching Jacobians constructed on R2

±

across t = 0 according to the gluing conditions, however, this section does not contain anything

relevant for our main results Theorem 9.1 and 10.1.
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denoting with {·} the jump across t = 0, that is,

{u}(r) = lim
t↘0

u(t, r)− lim
t↗0

u(t, r)

for some function u, the conditions ensuring a C1 regular Jacobian are

{Φt} = − (α̇1 + α̇2 − α̇3 − α̇4) |r0 − r|

{Ωt} = −
(
δ̇1 + δ̇2 − δ̇3 − δ̇4

)
|r0 − r|

{Nt} = −
(
β̇1 + β̇2 − β̇3 − β̇4

)
|r0 − r|

{Zt} = − (ε̇1 + ε̇2 − ε̇3 − ε̇4) |r0 − r|(12.1)

and

{U } = 0

{Ur} = 0,(12.2)

where U ∈ {Φ, Ω, N, Z} and α̇i, ..., ε̇i are the derivatives with respect to t of the

Jacobian coefficients αi, ..., εi in (9.2) evaluated at t = 0. We refer to the conditions

(12.1) - (12.2) as “gluing conditions”. In the following lemma we prove that the

Jacobian Jµα is C1 across the surface {t = 0} if and only if the gluing conditions

(12.1) - (12.2) hold for all r 6= r0.

Lemma 12.1. Suppose the functions Φ, Ω, N and Z of the Jacobian ansatz 9.1 are

in C1(R2
±), defined on a neighborhood of a point p of regular shock wave interaction

in SSC, then Jµα is C1 at the surface {(t, r) ∈ R2 : t = 0, r 6= r0} if and only if

Φ, ..., Z satisfy the gluing conditions (12.2)-(12.1).

Proof. From the canonical form of the Jacobian 9.1, it is straightforward to compute

that {J t0} = 0 if and only if

(12.3) (α1(0) + α2(0)− α3(0)− α4(0)) |r0 − r|+ {Φ}(r) = 0,

for all r 6= r0. Now, at t = 0 the jumps of the metric derivatives across the shocks

satisfy

(12.4) [gµν,σ]1 + [gµν,σ]2 = [gµν,σ]3 + [gµν,σ]3,
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for all µ, ν, σ = 0, 1, due to the C1 regularity of the metric away from the shock

curves, thus (12.3) is equivalent to

{Φ}(r) = 0.

We conclude that J t0 ∈ C0(R2) if and only if {Φ} = 0. The proofs the remaining

equivalences follow by similar arguments, using (12.4) whenever appropriate. This

completes the proof. �

The proof of the next lemma gives a construction of functions that are in C1(R2
±)

and satisfy the gluing conditions (12.2)-(12.1). The key idea is to use a mollifier in

time to approximate a function that is only Lipschitz continuous with respect to r,

namely a function of the form c|r− r0| with c prescribed by the respective right hand

side of equations (12.1).

Lemma 12.2. Let c ∈ R be a constant, then there exist a function Φ in C1(R2
+ ∪

R2
−) ∩ C0,1(R2) such that

{Φ } = 0

{Φr} = 0

{Φt} = c|r − r0|.(12.5)

Proof. Without loss of generality assume that r0 = 0. Define

φt(x) = exp

(
t2

x2 − t2

)
,

then

(12.6)
(
φt ? | · |

)
(r) =

∞∫
−∞

φt(r − x)|x|dx

is a smooth function that converges pointwise to the absolute value function | · | as t

approaches 0, [2]. Now, define

(12.7) Φ(t, r) =

t∫
0

c

2
H(τ) (φτ ? | · |) (r)dτ,
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where H denotes the Heaviside step function, then Φ(0, r) = 0 for all r ∈ R and thus

{Φ} = 0 = {Φr}. Furthermore,

Φt(t, r) =
c

2
H(t)

(
φt ? | · |

)
(r),

and it is straightforward to check that {Φt} = c|r|, as claimed. �

The gluing conditions (12.1) on Φ and Ω need to be consistent with the evolution

of (Φ, Ω) imposed by the integrability condition (9.6). The next Lemma states the

surprising result that the integrability conditions (9.6) always ensures that the gluing

conditions (12.1) hold:

Lemma 12.3. Let N and Z be in C1(R2
±) such that both functions satisfy the gluing

conditions (12.2) across the surface {t = 0} and such that

(12.8) (β1 + β2) |r − r0|+ lim
t↘0

N(t, r) 6= 0.

Furthermore, suppose that Φ and Ω solve the integrability condition (9.6) on both

R2
+ and R2

− separately, and that {Φ} = 0 = {Ω}. Then Φ and Ω satisfy the gluing

conditions (12.2).

Proof. First observe that the assumed continuity of Φ and Ω across the surface {t = 0}

implies that the tangential derivatives match up, that is, {Φr} = 0 = {Ωr}, (by

the same argument leading to (6.1)). It remains to prove that the derivatives of

Φ and Ω with respect to time t match up continuously across the t = 0 surface.

Subtracting the upper from the lower limit of the integrability condition (9.6), using

that N and Z satisfy the gluing conditions (12.2) and using that {Φ} = 0 = {Ω} and

{Φr} = 0 = {Ωr}, we get

{Φt}a<(r) +
(
β̇1 + β̇2 − β̇3 − β̇4

)
a<(r)|r0 − r| = 0

{Ωt}(r)a<(r) +
(
δ̇1 + δ̇2 − δ̇3 − δ̇4

)
a<(r)|r0 − r| = 0,(12.9)

where

a<(r) = (β1 + β2) |r − r0|+ lim
t↘0

N(t, r).
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Since a< is non-zero we conclude that {Φt} = 0 = {Ωt} and thus, the gluing condition

(12.2) hold. This completes the proof. �

For the construction of a Jacobian smoothing the metric to C1 on a deleted neigh-

borhood around p we now prescribe initial data on the surface {t = 0} and solve the

integrability condition (9.6) for (Φ,Ω) forward and backward in time. Then (Φ,Ω)

match up continuously across t = 0 and choosing in addition N and Z such that the

gluing conditions (12.2) and the technical assumption (12.8) hold, Lemma 12.3 yields

that (Φ,Ω) satisfy the gluing conditions as well.22 Finally, we can choose N ◦γi(t) and

Z ◦ γi(t) such that the gluing conditions hold and fi(t) = 0 = hi(t) for i ∈ {1, 2, 3, 4}

and thereby ensuring (Φ,Ω) ∈ C1(R2
±). This construction leads to a Jacobian that

lifts the metric regularity to C1 on a deleted neighborhood of p.

22Initially we thought that arranging for the gluing condition would remove two free parameters,

(e.g., φ0 and ω0), thus, we are very surprised that the integrability condition implies the gluing

condition. This originally strengthened our believe that one can smooth the metric to C1 and, in

light of this, the discovery that the metric determinant must vanish was extremely unexpected and

surprising.
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13. Discussion

Our results stated in Theorem 9.1 and Theorem 10.1 show that at points of regular

shock wave interaction in SSC the lack of C1 metric regularity cannot be removed

by any C1,1 coordinate transformation, in contrast to the situation of a single shock

wave, (c.f. Theorem 8). We thus interpret points of regular shock wave interaction

as spacetime singularities, (which we called “regularity singularities”), since we do

not expect that one can extend the C1,1 atlas to an even lower regularity. Namely, in

view of the necessary (but not sufficient) smoothing condition 7.9, there is a unique

solution [Jµα,β] for (possibly) lifting the metric regularity to C1, however, a Jacobian

which is Hölder but not Lipschitz continuous cannot meet this condition, since it does

not “mirror” the C0,1 metric regularity in an appropriate way. Furthermore, it is not

obvious if the Einstein equations with a bounded source term are well-posed under

general coordinate transformation with only Hölder continuous Jacobians. Moreover,

lowering the atlas regularity to anything less smooth than C1 would conflict with

the weak formulation of the Einstein equations. For example, a C0,1 atlas gives rise

to coordinates in which the metric is discontinuous, now the nonlinear structure of

the Einstein equations prohibits first order metric derivatives to be shifted to test

functions, resulting in a breakdown of the weak formulation of the equations. We

therefore conclude that points of regular shock wave interaction in SSC are spacetime

singularities.

The scalar curvature is bounded at a regularity singularity, since the energy momen-

tum tensor is bounded and the scalar curvature is given by the trace of the Einstein

tensor, that is,

R = Rµ
µ = −Gµ

µ = −T µµ .

Nevertheless, we believe that the unbounded second order metric derivatives could

provide effects similar to an unbounded curvature. Moreover, points of regular shock

wave interaction are not hidden from observation by an event horizon, which opens

up the opportunity of direct measurement of effects that could resemble unbounded
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scalar curvature. Maybe, such a measurable effect could be predicted by analyzing

some differential equation (for example, the Maxwell or Dirac equation) defined on

a background manifold containing a point of shock wave interaction in SSC. For in-

stance, in a beam of electrons or photons emitted from the center of a supernovae,

one might be able to measure some effect (e.g., a phase shift) when the outer shell

of the star collapses onto the inner cooled off core. Regarding such a presumable

effect, a regularity singularity provides an opportunity similar to a naked singularity,

namely, a direct measurement of infinite second order metric derivatives.

At points of regular shock wave interaction in SSC the Einstein equation can only

hold weakly and the metric has distributional second order derivatives. It is some-

times postulated to exclude points from spacetime at which the metric has a regularity

lower than C2 (c.f. [5]), however, we oppose to this requirement in cases where the

Einstein equations can still be made sense of within the theory of distributions, since

we expect weak solutions to have the same physical significance than strong ones.

Thus, we consider points of shock wave interaction and regularity singularities to be

included in spacetime. This point of view is further strengthened by Israel’s Theo-

rem, which shows that around each point q on any of the incoming or outgoing shock

surfaces there exist a coordinate system such that the metric in the new coordinates

is C1,1 regular, except when q is the point p of shock wave interaction itself. Thus,

there exists coordinates such that the Einstein equations hold strongly in a deleted

neighborhood of the point p of shock wave interaction. In other words, for an appro-

priate choice of coordinates a strong solution of the Einstein equations evolves into a

shock wave interaction, there it solves the equations only weakly, but then instantly

continues evolution as a strong solution again. We take this as a definite physical

proof that weak solutions have the same significance than strong ones.
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When the first singularities in solutions of the Einstein equations where found,

(notably the Schwarzschild, Reisner-Nordström and Kerr metrics), the idea was pro-

posed that the appearance of those singularities are due to the assumption of spher-

ical symmetry, but that they do not reflect real physical effects. It was not until

the late sixties when Penrose and Hawking clarified that singularities do also arise in

spacetimes without any symmetries, (c.f. [5]). An analogous question arises for the

(regularity) singularity we discovered as well, since the assumption of a spherically

symmetric metric and of radial shock surfaces enter our methods in Sections 7 - 9

heavily. However, we expect that removing our symmetry assumptions does not alter

our results, since for a metric without any symmetries the smoothing condition (7.4)

gives 64 equations in 64 unknowns [Jµα,β] after imposing the integrability condition

[Jµα,β] = [Jµβ,α].

We expect that (7.4) still has a unique solution, that one can construct a extended

ansatz for the Jacobians similar to the one in spherical symmetry (9.1) and that a

procedure analogous to the one in Section 9.1 proves again the existence of a regu-

larity singularity.

To end this section we discuss the loss of locally inertial frames stated in Corollary

11.2 and the effects of incorporating viscosity terms. Conceptually, if one includes

points of shock wave interaction into spacetime, this conflicts with Einstein’s original

postulate that gravity shall enter the equations of physics as a (bounded) second order

correction only. At a regularity singularity this correction is unbounded, seemingly

contradicting the basic framework of General Relativity. However, we expect this con-

tradiction to be resolved in a more physical model, that is, after introducing viscosity

into the equations. (Note that the issue of how to incorporate a relativistic viscosity

that meets the speed of light bound is problematic, [18], but we believe viscosity in

the framework of General Relativity to exist.) Namely, introducing (Navier Stokes

type) viscosity terms into the perfect fluid source of the Einstein equation causes a
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small scale smoothing of the discontinuities in the fluid variables, thus smearing out

the shock profiles, such that the metric tensor is smoothed out correspondingly. Then

locally inertial frames exist and gravity enters the equation of physics with second

order. (In the limit to zero viscosity the discontinuities in the fluid source is recovered

and a (regularity) singularity appears again in the metric.) However, even if viscos-

ity is introduced, steep gradients in the fluid sources persist and we still expect to

recover large second order metric derivatives that blow up as the viscosity tends to

zero. From this we conclude that there should be some physical effect on the metric,

even if viscosity terms in the fluid source are present.
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14. Conclusion

Our results show that points of shock wave interaction give rise to a new kind of

singularity which is different from the well known singularities of GR. The famous

examples of singularities in GR are either non-removable singularities beyond phys-

ical spacetime, (for example the center of the Schwarzschild and Kerr metrics, and

the Big Bang singularity in cosmology where the curvature cannot be bounded), or

else they are removable in the sense that they can be transformed to locally inertial

points of a regular spacetime under coordinate transformation, (for example, the ap-

parent singularity at the Schwarzschild radius, the interface at vacuum in the interior

Schwarzschild, Oppenheimer-Snyder, Smoller-Temple shock wave solutions, and any

apparent singularity at smooth shock surfaces that become regularized by Israel’s

Theorem, [6, 11]). In contrast, points of shock wave interaction are non-removable

singularities that propagate in physically meaningful spacetimes in GR, such that the

curvature is uniformly bounded, but the spacetime is essentially not locally inertial

at the singularity. For this reason we call these regularity singularities.

Since the gravitation metric tensor is not locally inertial at points of shock wave

interaction, it begs the question as to whether there are general relativistic gravita-

tional effects at points of shock wave interaction that cannot be predicted from the

compressible Euler equations in special relativity alone. Indeed, even if there are

dissipativity terms, like those of the Navier Stokes Equations,23 which regularize the

gravitational metric at points of shock wave interaction, our results assert that the

steep gradients in the derivative of the metric tensor at small viscosity cannot be

removed uniformly while keeping the metric determinant uniformly bounded away

from zero, so one would expect the general relativistic effects at points of shock wave

interaction to persist. Moreover, points of regular shock wave interaction are not

hidden from observation by an event horizon, which opens up the opportunity of

23The issue of how to incorporate a relativistic viscosity that meets the speed of light bound is

problematic, [18].
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direct measurement of effects that could resemble unbounded scalar curvature. We

thus wonder whether shock wave interactions might provide a physical regime where

new general relativistic effects might be observed, (see Section 13 for a more detailed

discussion).
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Appendix A. The Integrability Condition

In this section we review the (well known) equivalence of the existence of an inte-

gration factor and the integrability condition (2.5). Suppose we are given a coordinate

transformation from coordinates xµ to xα, then the Jacobian is defined as

(A.1) Jαµ =
∂xα

∂xµ
,

where the indices α = 0, 1 and µ = t, r label a set of four functions. For a Jacobian in

the (t, r)-plane all other components are either 0 or 1, thus, we restrict without loss

of generality to the two dimensional case. In this paper we always use this notation,

moreover, an index ν, µ, σ or ρ always refers to SSC xµ = (t, r), while α, β or γ refer

to coordinates xα = (x0, x1), provided they exist.

Lemma A.1. Let Ω be the square region (a, b)2 ⊂ R2 with coordinates xν = (t, r).

Suppose we are given a set of functions Jαµ (xν) in C0,1(Ω), C1 away from some curve

γ(t) = (t, x(t)), satisfying det(Jαµ ) 6= 0. Then (i) and (ii) are equivalent:

(i) there exist locally invertible functions xα(t, r) ∈ C1,1(Ω), for α = 0, 1, such that

∂xα

∂xµ
= Jαµ and

(ii) the set of functions Jαµ ∈ C0,1(Ω) satisfy the integrability condition

(A.2) Jαµ,ν = Jαν,µ .

Proof. The implication from (i) to (ii) is trivial, since (weak) partial derivatives com-

mute. We now prove that (ii) implies (i). Set for (t, r) ∈ Ω

(A.3) xα(t, r) =

∫ r

a

Jαr (t, x)dx+

∫ t

a

Jαt (τ, a)dτ ,

then

∂xα

∂r
= Jαr

follows by the definition of xα and using the integrability condition A.2 we get

∂xα

∂t
(t, r) =

∫ r

a

Jαr,t(t, x)dx+ Jαt (t, a)
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=

∫ x(t)

a

Jαt,rdx+

∫ r

x(t)

Jαt,rdx+ Jαt (t, a) .

Now that the integral is split up around the point of discontinuity x(t) ∈ (a, r) we

apply the fundamental theorem of calculus and obtain

∂xα

∂t
(t, r) = Jαt (t, r).

The bijectivity of the function xα on some open set follows from the Inverse Function

Theorem, since

det

(
∂xµ

∂xα

)
= det (Jµα) 6= 0,

in Ω. �

Appendix B. The existence of coordinates from Section 4

We now construct a coordinate transformation that transforms a general spherically

symmetric metric (2.19) to a metric of the form

(B.1) ds2 = a(τ, x)
(
dx2 − dτ 2

)
+ C(τ, x)dΩ2 .

Following the procedure in [18] (to obtain Birkhoff’s Theorem) we remove the off-

diagonal component E of the general spherically symmetric metric (2.19) by defining

new variables (t′, r′), subject to a first order PDE (the integrability condition (2.5))

containing combinations of metric components as coefficients. We denote the new

variables again by (t, r) and the resulting metric by

(B.2) ds2 = −A(t, r)dt2 +B(t, r)dr2 + C(t, r)dΩ2 ,

where the coefficient C transforms like a scalar. Analogously to the procedure of re-

moving the off-diagonal metric component we define new coordinates, subject to the

integrability condition (2.5), together with some algebraic conditions that ensure the

resulting metric to assume the form (B.1). The method of characteristics then yield

the existence of a coordinate transformation between a general spherically symmetric

metric (2.19) and a metric of the form (B.1).
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Suppose the metric (B.2) is given. Define new coordinates

dτ = η1dt+ η2dr

dx = ρ1dt+ ρ2dr ,(B.3)

subject to solve the integrability condition (2.5), in order to ensure that these defini-

tions are integrable. Explicitly the system of PDEs read

∂η1

∂r
=

∂η2

∂t
∂ρ1

∂r
=

∂ρ2

∂t
.(B.4)

In addition we impose the algebraic condition

a
(
−dt′2 + dr′2

)
= −Adt2 +Bdr2 ,

arranging that the transformed metric indeed assumes the form (B.1). Substituting

the above definition (B.3) of the new coordinates yields

ρ1ρ2 = η1η2

ρ2
1 − η2

1 = −A
a

ρ2
2 − η2

2 =
B

a
.(B.5)

We solve this system for a, ρ1 and η1, which yields

a =
A

η2
1 − ρ2

1

η1 = ±
√
A

B
ρ2

ρ1 = ±
√
A

B
η2 .(B.6)

Restricting to positive square roots and substituting (B.6) into the integrability con-

dition (B.4) results in (√
A

B
ρ

)
r

= ηt(√
A

B
η

)
r

= ρt ,(B.7)
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where the indices r and t denote the respective partial differentiation, η := η2 and

ρ := ρ2. Introducing new functions µ := η + ρ and ν := η − ρ the above system

decouples

µt =

(√
A

B
µ

)
r

νt = −

(√
A

B
ν

)
r

.(B.8)

Given non-characteristic initial values, that is all characteristic curves intersect the

Cauchy surface once, this system of PDEs has a unique solution [7]. This proves

the existence of the coordinate transformation from (2.19) to (B.1). If the general

spherically symmetric metric (2.19) is in C1,1, then the solution (µ, ν) and hence a =

B
ρ2−η2 is in C1,1 as well.
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