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Shock wave numerical structure and the carbuncle phenomenon

Y. Chauvat, J.-M. Moschetta and J. Gressier∗
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École Nationale Supérieure de l’Aéronautique et de l’Espace
31400 Toulouse, France

SUMMARY

Since the development of shock-capturing methods, the carbuncle phenomenon has been reported to
be a spurious solution produced by almost all currrently available contact-preserving methods. The
present analysis indicates that the onset of carbuncle phenomenon is actually strongly related to
the shock wave numerical structure. A matrix-based stability analysis as well as Euler finite volume
computations are compared to illustrate the importance of the internal shock structure to trigger the
carbuncle phenomenon.
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1. INTRODUCTION

Shock-capturing upwind methods developed since the 1980’s can be classified into two distinct
categories: 1. upwind methods which exactly preserve contact discontinuities (which might
be referred to as contact-preserving methods), 2. upwind methods which introduce spurious
diffusivity in the resolution of contact discontinuities. Schemes belonging to the second
category never produce the carbuncle phenomenon but are hardly suitable for Navier-Stokes
computations (e.g. Van Leer’s method, see Fig. 3(a)) since they artificially broaden boundary
layer profiles. On the other hand, schemes taken from the first category are attractive for
viscous computations but turn out to be sensitive to the carbuncle phenomenon at various
degrees [1] [2] with very few exceptions [3]. It has been recently observed [4] that the internal
shock structure is essential to trigger the carbuncle phenomenon. This is consistent with former
heuristic explanations for the onset of the carbuncle phenomenon [5] in which intermediate
shock points play an important role to generate shock instabilities. In the same way, Karni
and Čanić [6] conclude on the influence of the numerical viscosity inside the shock structure.
The purpose of the present paper is to investigate the exact influence of the internal shock
structure on the carbuncle phenomenon.
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2. METHOD

A matrix-based stability analysis [4] has been used to study the occurence of unstable modes
during the shock wave computation. The matrix stability analysis consists of examining the
temporal evolution of spatial perturbations of a steady solution prescribed as the initial flow
condition. In compact form, the temporal evolution of initial perturbations δ ~Wm satisfies

d

dt
(δ ~Wm) = S · δ ~Wm (1)

A shock instability will be detected if the stability matrix S has at least one eigenvalue whose
real part is positive. Matrix S contains all numerical flux gradients at every cell interfaces
and also includes the effect of grid distorsion and boundary conditions. It should be noticed
that the present analysis is continuous in time. Consequently, it does not depend on the
time discretization. If an instability is detected, it would occur for any CFL number, even
arbitrary small. Results obtained from the matrix-based stability analysis are compared with
two-dimensional Euler computations, using a standard finite volume method on structured
grids (Figs 3). All numerical methods are first order in time and space since high order
reconstruction techniques do not affect the onset of carbuncle solutions.

3. RESULTS

3.1. The normal steady shock wave problem

As a first test case, the analysis is conducted on the simple steady normal shock wave problem.
First, a steady one-dimensional solution is obtained with a given upwind scheme. Then, the
one-dimensional solution is projected onto a two-dimensional Cartesian grid whose vertical
gridlines are aligned with the shock wave. The first step consists of analyzing the capability of
numerical fluxes to capture a one-dimensional steady shock wave. For standard shock-capturing
finite volume methods, the computation of shock waves may require up to three internal
points. Within the contact-preserving schemes family, some schemes, such as Godunov, Roe
and HLLC, have at most one intermediate point while Osher’s method usually resolve steady
shock waves with 2 internal points. In the special case of AUSM-M, a unique internal point
value is possible for a given upstream mach number above a limit value: M∞ ≥ 1.367. Finally,
dissipative schemes usually produce 2 (e.g. Van Leer’s method) to 3 internal points (such as
Pullin’s EFM scheme). In the finite volume method, the cell that contains the shockwave has
a state Wm which can be interpreted as an average between upstream (W0) and downstream
(W1) conservative state vectors

~Wm = ~W0 + δx
(

~W1 −
~W0

)

(2)

where δx is the shock position within the internal grid cell. It is observed that a simple
finite volume average of conservative states using the shock position (Eq. 2) is not preserved
by any standard schemes. This means that an initially sharp shock wave located at some
intermediate position between the upstream cell and the downstream cell will not remain
steady but will move toward another intermediate state. This observation appears consistent
with the conclusion of Arora and Roe [7] concerning the slowly moving shock problem. Indeed,



during the integration in time, the steady shock wave is the result of a moving shock slowly
converging to its final position. Further investigation is certainly needed to establish a closer
relationship between both problems. For Roe’s method, it has been reported that the internal
steady shock point belong to a Hugoniot curve [8] (Fig. 1(a)) defined as

~FH1 −
~F1 = uS1

(

~WH1 −
~W1

)

(3)

It turns out that all states obtained from the Hugoniot curve based on the downstream
state are left unchanged by contact-preserving schemes which allow one-internal point in the
computation of shock waves, i.e. Godunov, Roe and HLLC schemes. The steady intermediate
states taken from the Hugoniot curve can be represented as an average between upstream and
downstream primitive states:

ρH1 = ρ0 + αρ (ρ1 − ρ0)
uH1 = u0 + αu (u1 − u0)
pH1 = p0 + αp (p1 − p0)

(4)

where

αρ = δx

αu = 1 − (1 − δx)

(
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(5)

Any internal shock state can be represented by a set of three components (αρ, αu, αp) which
correspond to a point in the frame illustrated on figure 1(a). During the integration process, any
initial intermediate state will converge toward a steady internal shock state which is located
along the Hugoniot curve. Thousands of intermediate states randomly chosen inside or outside
the cube represented in figure1(a) have been used as initial condition to compute a steady
shock solution. After convergence, all points have converged toward the Hugoniot curve. For
Van-Leer’s method internal converged points belong to a different curve, the upstream internal
point lay on the supersonic part and the downstream internal point on the subsonic part of the
curve (Fig. 1(b)). Internal points being fully determined (through a single free parameter), one
can apply the matrix stability analysis to evaluate the effect of the internal shock wave structure
on the carbuncle phenomenon. This is done on a 25 × 25 Cartesian grid after projecting the
steady 1D solution along the horizontal gridlines. For a given upstream Mach number, it can
be observed (Fig. 2(a)) that there is a common critical point for Godunov, Roe and HLLC
schemes, above which the 2D shock remains stable. Furthermore, a stability diagram (Fig. 2(b))
illustrates that : 1. All 2D steady shock waves are stable when the upstream Mach number
is less than a value close to 2.0, 2. even for arbitrary high upstream Mach number, Godunov,
Roe or HLLC methods can produce carbuncle-free solutions, provided that the internal shock
point is sufficently close to the downstream state (Fig. 2(b)).

3.2. The blunt body problem

As a second test case, the supersonic blunt body problem is considered in order to illustrate
the importance of the numerical shock structure on the carbuncle phenomenon. The geometry



is a half cylinder placed in a supersonic freestream flow at Mach 10. The mesh has 80 cells in
the radial direction and 160 along the wall. Van Leer’s method is first used to obtain a steady
solution with the bow shock located at a certain stand-off distance from the stagnation point.
Then, Roe’s method is applied using Van Leer’s solution as an initial condition to observe the
evolution of the shock structure. All computed solutions are double-precision steady solutions
in which time residuals have been decreased by 10 orders of magnitude. As expected, Van
Leer’s method produces a carbuncle-free solution (Fig. 3(a)) while Roe’s method produces
the carbuncle phenomenon using the same mesh (Fig. 3(b)). When Roe’s method is used
from Van Leer’s converged carbuncle-free solution, the shock wave structure is resolved from
two internal points to only one. The interesting observation is that depending on the initial
shock wave structure of Van Leer’s solution, Roe’s method can produce the carbuncle or not.
More precisely, a subcritical shock profile, in which the intermediate shock point is closer to
the downstream state does not produce the carbuncle (Fig. 3(c)). Also, a supercritical shock
profile, in which the intermediate shock point is closer to the upstream state does result in a
carbuncle solution (Fig. 3(d)). A Van Leer subcritical shock profile is observed when internal
points are close to the downstream state (Fig. 4). Finally, it should be acknowledge that
between the two results obtained with Roe’s method (Figs. 3(c) 3(d)) a full range of solution
is available, in which the carbuncle phenomenon is more or less visible. The present method
based on Van Leer’s subcritical shock profile cannot be regarded as a practical cure since it
would require several ad hoc gridlines adaptation of the bow shock.

4. CONCLUSION

The present analysis provides a clue to explain why, in the blunt body problem, certain grids
lead to carbuncle solutions while others do not. Also, the effect of the internal shock structure
on shock instabilities indicates that one might cure the carbuncle phenomenon by simply
acting on the 1D form if the numerical flux function without degrading the contact-preserving
property.
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Figure 1. 1D shock numerical structures - M0 = 2 - primitive states ratios

δx

m
ax

(r
ea

l(
λ(

S
))

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1

2

3

4

5

6

7

8

9

10

Mach = 2
Mach = 10

Unstable

Stable

(a) Stability as a function of the internal point location

Mach

δ x

100

100

101

101

102

102

0 0

0.1 0.1

0.2 0.2

0.3 0.3

0.4 0.4

0.5 0.5

0.6 0.6

0.7 0.7

0.8 0.8

0.9 0.9

1 1

Stable

Unstable

(b) Stability diagram: effect of Mach number and
internal point location

Figure 2. effect of shock numerical structure on 2D stability - Godunov, Roe, HLLC - 25× 25 grid
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Figure 3. effect of shock numerical structure on the carbuncle phenomenon - M∞ = 10 - density
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Figure 4. Shock numerical structure along symmetry line (Y = 0)- M∞ = 10




