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1. Introduction 

In their classic 1939 paper, OPPENHEIMER & SNYDER [9] introduced the 

first mathematical model for gravitational collapse of stars based on spherically 

symmetric solutions of the Einstein gravitational field equations. In this pioneering 

paper, OPPENHEIMER & SNYDER gave the first rigorous results describing gravi- 

tational collapse of stellar objects, and the remarkable conclusion of this work was 

that "black holes" could form from gravitational collapse in massive stars. In his 

comprehensive article on the history of the subject of gravitation [4, page 226, 

paragraph 4] ISRAEL references the Oppenheimer-Snyder paper as having 

strong claims to be considered the most daring and uncannily prophetic paper ever 

published in thefield. Indeed, the paper appeared a quarter of a century before the 

process of gravitational collapse was widely accepted as the explanation for 

a variety of astronomical events. The Oppenheimer-Snyder paper also provided 

the first example in which a solution of the Einstein equations having interesting 

dynamics was constructed by using the covariance of the equations to match two 

simpler solutions across an interface. However, it is well known that the 

Oppenheimer-Snyder model requires the simplifying assumption that the 

pressure be identically zero. In this paper we obtain a generalization of the 

Oppenheimer-Snyder model describing gravitational collapse which extends 

their model to the case when the pressure is non-zero. Our idea is to treat the 

case p + 0 by replacing the boundary surface of the star in the Oppenheimer- 

Snyder model by a shock-wave interface across which mass and momentum 

are transported. In the limit p = 0 we obtain the Oppenheimer-Snyder solution, 

and in this limit we observe that the interface reduces to what is referred to as 

a contact discontinuity in the mathematical theory of shock waves, a degenerate 

discontinuous solution in which neither mass nor momentum crosses the interface 

[1, 5, 11]. 
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The Oppenheimer-Snyder model was constructed by matching two particular 

solutions of the Einstein field equations 

c = ~ T  (1.1) 

across an interface which represents the boundary of a star, and in Section 3 of this 

paper we present a general theory for matching two solutions of the Einstein field 

equations at arbitrary shock-wave interfaces across which the metric g is only 

Lipschitz continuous, i.e., smooth surfaces across which the first derivatives of the 

metric suffer at worst a jump discontinuity. Here G denotes the Einstein curvature 

tensor which is determined by g and derivatives of g up to second order, and 

T denotes the stress-energy tensor, the source of the gravitational field. In Sections 

4 and 5 we apply this general theory to explicitly construct shock-wave interfaces in 

spherically symmetric solutions of the Einstein equations (1.1). These provide 

a natural generalization of the Oppenheimer-Snyder model to the case of non-zero 

pressure. 

The general theory in Section 3 is based on formulas first derived by ISRAEL [-3] 

(see also [8]) which relate the jump in the second fundamental form across a shock 

surface to the Rankine-Hugoniot jump relations for conservation across the 

surface. We give a reasonably self-contained development of this theory (Section 3, 

Theorem 2), and we apply it in later sections to derive conditions for conservation 

across shock surfaces that generalize the Oppenheimer-Snyder case. One of our 

purposes in Section 3 is to make the theory of shock waves in general relativity 

readily accessible to researchers in the field of nonlinear hyperbolic conservation 

laws. Indeed, this subject, which is referenced by the heading junction conditions in 

[8], has received little notice since the early sixties, and is not even mentioned in 

most introductory texts on the subject, e.g., WEIN~ERG [15]. Our second purpose is 

to clarify the physical significance of Lipschitz continuous shock surfaces, and to 

derive conditions under which delta-function singularities can appear in compo- 

nents G u when the Einstein equations are interpreted in the weak sense. 

Our interest here is motivated by the observation that there is a remarkable 

simplification that occurs in the Einstein equations over the classical Euler equa- 

tions which form a subsystem of (1.1) when T is taken to be the stress-energy tensor 

for a perfect fluid, and we are interested in pursuing the idea that this may produce 

computational advantages for shock waves. The point is that in calculating 

solutions of the classical Euler equations div T = 0, one must deal with differencing 

discontinuous functions in T (the fluid density p, pressure p and velocity u), when 

shock waves form, and this generates the unpleasant Gibbs-type oscillations in 

approximate solutions generated by finite-difference schemes. But in solving 

G = • T, the Euler equations follow as a subsystem due to the fact that the Einstein 

curvature tensor G satisfies div G = 0 identically as a consequence of the Bianchi 

identities of geometry. Said differently, since (1.1) does not involve derivatives of T, 

using (1.1) one can solve shock wave problems without ever taking a derivative of 

the fluid variables in T, i.e., the variables (p, u, p) that become discontinuous and 

non-differentiable at the shock. Now G involves second derivatives of the metric 

potentials gu, so it is natural to ask whether the difficulties in solving div T = 0 

when T becomes discontinuous at shock waves is replaced by corresponding 
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difficulties in the Einstein equations due to the formation of discontinuities in 

the first derivatives of the metric components  9ij. Theorem 4 of Section 3 

gives a sense in which this is not the case. Indeed, in Theorem 4 we show that the 

Einstein tensor G, and hence the stress tensor T itself, are free of delta-function 

sources at a shock in any coordinate system if and only if there exists some 

coordinate system in a neighborhood of the shock in which the metric potentials 

are continuously differentiable functions of these coordinates, with Lipschitz con- 

tinuous first derivatives (i.e., C a, 1 functions). Thus, in numerically simulating the 

second derivatives that appear  in the Einstein tensor G when we solve G = ~T, we 

need only difference Lipschitz continuous functions at a shock wave, while in 

numerically simulating div T = 0, we must difference discontinuous functions and 

deal with the disturbing Gibbs-type oscillations that appear in the approximate 

solutions. 1 

The advantage of having the Euler equations div T = 0 as identities in the 

Einstein equations also is essential in our construction of the Oppenheimer-Snyder 

shock-wave solutions in Sections 4 and 5. In this setting, the presence of the metric 

potentials 9ij allows us to solve the problem by first matching the metric across the 

shock, and this gives us directly an explicit formula for the shock position without 

requiring that we solve the implicit jump conditions (the weak form of div T = 0) 

for the fluids across the shock. Moreover, after the matching is done, the jump 

conditions reduce in complexity from two to one nontrivial constraint. This 

reduction of the jump conditions after the metrics are matched represents a con- 

straint on the weak solutions of div T = 0, which follows because div T -- 0 is an 

identity on solutions of G = ~r T. 

As another corollary of the results in Section 3 we also show (Theorem 1 below) 

that a weak solution of R u = 0 that contains a Lipschitz continuous shock surface 

S is equivalent (under a singular coordinate transformation) to a metric that is 

smooth across S. This gives a sense in which shock waves can only arise as 

coordinate anomalies in the source-free Einstein equations. 

We now briefly discuss the issues that arise in the general theory of Lipschitz 

continuous shock waves for the Einstein equations, and the relevance of this theory 

to our generalization of the Oppenheimer-Snyder problem. ISRAEL [3] was the first 

to derive the formulas that express the jump conditions 

[G}] ni = 0 (1.2) 

across a shock interface in terms of the second fundamental form K (the extrinsic 

curvature) of the surface, K being determined separately on each side of the 

interface. Throughout  this paper, I-f]  denotes the jump in the quantity f across 

a shock interface. The n~ denote the components of the normal vector to S. In light 

1 The gravitational potentials 9ij play a role similar to that of the vector potential A in 

the theory of electro-magnetism. In the latter, choosing F --- dA has the effect of making the 

Maxwell equations dF = 0 hold automatically, in the same way that choosing G = ~T has 

the effect of making the Euler equations div T = 0 hold automatically. 
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of the Einstein equations (1.1), equation (1.2) is equivalent to the Rankine- 

Hugoniot  jump relations [121 

i 
[ T j ] n i  = 0. (1.3) 

The result (due to ISRAEL [3] - -  we reprove it here for completeness) is that (1.2) 

holds if and only if the jump in K across the surface satisfies what we refer to as the 

Israel equations (cf. equations (2.1 1), (2.12)): 

[ tr(K 2) - ( trK) 2] = 0, (1.4) 

[-divg - d( t rK)]  = 0. (1.5) 

(Here, tr denotes the trace and d denotes exterior differentiation restricted to the 

surface 27.) ISgAEL used this to show that if 22 is a smooth, non-null hypersurface 

across which the metric components are only Lipschitz continuous, but arbitrarily 

smooth on either side (we always assume that all derivatives are continuous up to 

the boundary S from either side of S, and we refer to such a surface as a Lipschitz 

continuous shock wave), then a necessary and sufficient condition for the surface to 

be coordinate transformable to a surface across which the derivatives of the metric 

are continuous is the condition that the second fundamental form be continuous 

across 27, a coordinate invariant condition. It  then follows from (1.4) that the weak 

form (1.3) of conservation also holds when K is continuous across 27. Note that the 

jump in the derivatives of the metric cannot be transformed away by smooth 

coordinate transformations. The idea here is to allow C 1,1 coordinate transforma- 

tions, (transformations with Lipschitz continuous first derivatives), i.e., those 

smooth enough to preserve the tensor transformation laws, but weak enough to 

allow jumps in the second derivatives of the transformation in order to adjust the 

jumps in the first derivatives of the metric tensor across S. In this paper we show 

that C 1,1 is natural for the formulation of weak derivatives in the curvature tensor. 

In Section 3 we show that delta-function sources in the Einstein tensor G (which 

involves second derivatives of the metric tensor) exist at a point P ~ S if and only if 

I-K] ~ 0 at P (cf. [-8]). Moreover, we show that the existence of delta-function 

sources in G on 22 for an arbitrary Lipschitz continuous shock wave has a covariant 

meaning in the sense that the existence or non-existence of delta-function sources in 

G is independent of coordinates when we restrict to C 1,1 coordinate transforma- 

tions. Thus we conclude in general that G is free of delta-function sources on 

a Lipschitz continuous shock surface if and only if [K]  = 0. It remains to give an 

interpretation of the jump conditions (1.3) when there are delta-function sources in 

G (and hence in the stress tensor T)  on a Lipschitz continuous shock surface 27. 

When [ K ]  = 0, and hence there are no delta function sources on the surface, the 

metric is coordinate transformable to a C 1 metric, and thus it is straightforward to 

show that there exist "locally Lorentzian" coordinate frames in a neighborhood of 

each point P e 27, coordinates in which 9ij = rh~ -- diag{ - 1, 1, 1, 1} and 9ij, k = 0 

at P. In such coordinates one can show that the jump conditions (1.3) express local 

conservation of energy and momentum,  i.e., exact conservation to within errors due 

to the perturbation from flat space caused by the non-vanishing curvature. It  is 

important  to note that it is the global, integral formulation of conservation of 
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energy and momentum that has a fundamental physical interpretation in flat space, 

and such integral conservation laws do not hold globally, but can be localized, 

when curvature is present. The physical justification for the localization is based on 

the existence of locally Lorentzian coordinate frames. When [K] 4= 0 at a point 

P ~ 22, we show that there do not exist coordinate transformations within the class 

of C 1,1 mappings that take the given coordinates to a locally Lorentzian coordi- 

nate frame at P. As a final comment, consider the case of a Lipschitz continuous 

shock surface that does not satisfy [-K] = 0, so that there are delta-function sources 

in G and T on the surface, but such that conservation in the form of the jump 

conditions (1.3) does hold across the surface. (An example of such a shock is 

given in the last paragraph of Section 3.) Then in terms of the fluid flowing across 

the surface, the surface is not acting as a source of momentum or energy. Thus, 

in a sense, the delta-function sources of energy and momentum in T are not 

affecting the fluid flow directly, but are only affecting the gravitational field, 

i.e., the space-time metric that connects up continuously at the shock. It remains 

an open question whether such Lipschitz continuous shock waves can appear 

in the time dynamics of the Einstein equations after the fluid variables shock. 

We show in Section 5 that in the case of spherically symmetric solutions (the 

case that applies to the Oppenheimer-Snyder problem), all conservative shock 

wave solutions are coordinate-transformable to metrics that are in C 1 across the 

shock because, in the presence of spherical symmetry, the jump conditions (1.3) 

imply that [K] = 0 (cf. [-3] on this point). Thus, in particular, G contains no 

delta-function sources on spherically symmetric shock wave solutions of the 

Einstein equations. 

As a corollary of the results in Section 3 we prove Theorem 1 below, which 

states that shock-wave-type singularities across which g remains Lipschitz continu- 

ous cannot form in weak solutions of the source-free Einstein equations Rij = 0 or 

Gii = 0. Thus, if we view Rij (gij) = 0 o r  Gij (g~j) as a second-order hyperbolic partial 

differential equation in the metric components g~j, then a natural question arises as 

to what type of singularities can form in solutions starting from smooth initial data 

on some space-like hypersurface. For  example, the equations R~j = 0 or G~j = 0 can 

be written as first-order quasi-linear partial differential equations in g and deriva- 

tives of g, and the theory of shock waves tells us that in general such non-linear 

partial differential equations form shock-wave discontinuities in finite time [1, 11]. 

The following result, which is an immediate consequence of Corollary 5 of Section 

3, partially validates the statement that such shock-wave singularities in Rij = 0 or 

G~j = 0 are only coordinate anomalies, and can be transformed away by coordinate 

transformation: 

Theorem 1. I f  a smooth shock surface Z, forms in weak solutions of  R ~  = 0 or 

G~ = 0 posed in some given coordinate system y, such that the y-components g~  of 

the metric tensor 9 are Lipschitz continuous across Z, and are Ck functions of y on 

either side of  Z (continuous up to the boundary on either side separately), then there 

exists a regular C a, 1 coordinate transformation taking y ~ x, such that the compo- 

nents gi~ of g in x-coordinates are actually Ck functions of x in a neighborhood of  each 

point on the surface Z. 
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It is important at this point to discuss carefully our contributions here in the 

context of the important earlier work of ISRAEL [-3] as expounded in M~SNER, 

THORNE & WHEELER [-8]. The treatment in [8] is based upon arguments due to 

ISRAEL which relate the jump conditions for conservation to the jump in the second 

fundamental form across a shock surface. The main conclusion of ISRAEL is that 

there exists a coordinate system in which the metric is of class C 1 across a shock if 

and only if the jump in the second fundamental form K vanishes at the shock. 

MISNER, THORNE & WHEELER argue that the vanishing of the jump in K across 

a shock surface is also equivalent to the absence of delta function sources in the 

fluid variables at the shock. Their analysis is based on the construction of Gaussian 

normal coordinate systems, the coordinate systems in which the metric is in C 1 

whenever the jump in K vanishes across the shock. Their goal is to be physically 

intuitive, and as a result their arguments seem to us to be mathematically incom- 

plete. In particular, this comment applies to their derivation of the important 

conclusion (equation 21.167, page 553 of their book) which reads 

absence of surface layers ~=~ "continuity" of 9u and Kij. (1.6) 

Furthermore, the sense in which this equation has a coordinate-independent 

meaning is not made clear. Our point of view is that the natural notion of 

"continuity" (their quotes) is Lipschitz continuity, and the natural class of coordi- 

nate transformations is C l'~. In fact, we show that a mathematically rigorous 

formulation of (1.6) is the statement: "The absence of surface layers is equivalent to 

the continuity of K, in the presence of Lipschitz continuity of the metric." In our 

development we are led naturally to classes of coordinate frames that are related to 

each other by coordinate transformations that are precisely of class C 1'1 in 

a neighborhood of a shock surface. This is important because we use the fact that 

this is the weakest smoothness class for test functions that leads to a consistent 

weak formulation of the curvature tensor. Using distribution theory, we prove that 

G is free of delta-function sources at any Lipschitz continuous matching of the 

metrics, if and only if K is continuous across the shock, which holds if and only if 

there exists a coordinate system (the Gaussian normal coordinates) which is related 

to the original coordinates by a C ~' 1 coordinate transformation, such that in this 

new coordinate system, the metric is of class C 1' a across the shock (see Theorem 4). 

We believe that these are not just technical points. Indeed, several interesting new 

results emerge once we identify the natural smoothness class of the metrics and the 

natural smoothness class of the  coordinate transformations at the shock. In 

particular, we need this extra rigor in order to prove that the above equivalencies 

are also equivalent to the existence of locally Lorentzian frames on the surfaces 

which can be reached within the class of C ~' 1 coordinate transformations. In 

Theorem 1 we also show the sense in which shock waves cannot form in the 

source-free Einstein equations, G = 0. This result seems to have been overlooked in 

other treatments of surface layers, e.g., [3]. Our analysis also leads us to the 

interesting conclusion that conservation alone implies no delta-function sources on 

surfaces for spherically symmetric metrics which match Lipschitz continuously 

across a shock surface. (This result is of fundamental importance in our generali- 

zation of the Oppenheimer-Snyder construction.) As a third application of our 
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analysis, we also obtain the result that the (Ricci) scalar curvature never has 

delta-function sources at any Lipschitz continuous shock wave. 

In conclusion, we believe that we have discovered some new results here, but we 

wish to make it clear that our analysis of general Lipschitz continuous shock waves 

is based essentially upon ISRAEL'S important paper [3]. 

In Section 4 we begin our discussion of the generalization of the Oppen- 

heimer-Snyder model to the case of non-zero pressure. Our procedure is to 

first match the Friedmann-Robertson-Walker-type metrics (which we refer to 

as R-W metrics, cf. [15, p. 412]) to the Oppenheimer-Tolman-type 2 metrics (O-T 

metrics) in a Lipschitz continuous fashion across a shock interface. Here our 

method is quite general in that we allow arbitrary equations of state on both 

sides of the shock interface. We also derive a global principle of conserva t ion  o f  

mass  for these solutions in general. However, such a matching does not ensure 

that local conservation of energy and momentum (1.2) holds across the shock 

interface. Thus, in order to ensure the physical conservation requirements, we 

must apply the general theory of Section 3 to impose the further constraint that 

the jump in the second fundamental form on the surface be continuous at the 

shock interface. In the case of spherical symmetry, the one dealt with in this 

application, the jump conditions impose two independent constraints, but the 

condition on the second fundamental form reduces these two conditions to a 

single constraint on the shock surface. This means that the Lipschitz continuity 

of the metr ic  across the shock reduces by one the number of constraints that must 

be met to guarantee conservation of energy and momentum across the shock, and 

this indicates the advantage of introducing the gravitational potential into the 

problem of constructing fluid-dynamical shock waves in multi-dimensions. In 

order to meet the remaining constraint of conservation, we obtain ordinary 

differential equations for the shock surface in which the pressure on one side of the 

shock is not determined by an equation of state, but rather is one of the unknowns 

in the system of equations. We end the section by deriving an autonomous system 

of two ordinary differential equations ((5.35) and (5.46)) in two unknowns that 

simultaneously determine the pressure and the shock surface, and we conclude that 

one need only solve these in order to obtain shock-wave solutions across which 

local conservation holds. The global dynamics of the shock surface, its stability, 

and the behavior of the pressure jump in the large, will be addressed in a future 

paper. 

It is interesting to comment that the problem of checking the jump conditions 

(1.3) across an interface can be difficult to do directly in a given application. 

To understand the apparent simplification in constructing shock waves in the 

setting of general relativity vs. classical fluids, we note that the inclusion of the 

2 We choose this as a name for static, spherically symmetric metrics that satisfy the 

Einstein equations for a perfect fluid. It appears that O-T solutions have not been given 

a name in the literature, and we consider this name to be oppropriate; cf. [14]. The case 
when the equation of state is of the form energy density = const, is referred to as the interior 

Schwarzschild metric. 
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gravitational potential in the fluid equations allows for the introduction of the 

curvature tensor Gij, which always being (identically!) divergence-free, guarantees 

the conservation laws div T = 0 automatically on solutions of the Einstein equa- 

tions, G = •T. 3 As we are not aware of any similar formulas for spherically sym- 

metric shock waves in classical conservation laws, we pose the question as 

to whether the limits tc ~ 0 and c ~ oe in G = ~:T might help in the classical 

problem of constructing shock waves in fluids. This will be considered in future 

publications. 

Thus, to summarize, our point of view is that the reduction of the jump 

conditions (1.3) on solutions of (1.1) to covariant conditions on the second funda- 

mental form of the shock surface validates the general method of constructing 

solutions of the Einstein field equations by matching one simple solution to 

another (written in a different coordinate system) across a shock interface. This 

establishes a procedure by which solutions with interesting dynamics can be 

constructed out of simpler solutions, the interesting dynamics arising because the 

matched solution dynamically evolves from one solution to a coordinate trans- 

formation of the other as the shock surface propagates. We interpret this procedure 

as a way of bringing the power and covariance of Riemannian geometry to 

bear upon the problem of constructing shock wave interfaces for fluids in multi- 

dimensions. 

The plan of this paper is as follows: in Section 2, we give a quick introduction 

to the Einstein equations, together with some background material. In Section 3, 

we derive the necessary and sufficient conditions on K in order that (1.2) 

hold across a shock surface. In Section 4 we introduce the Robertson-Walker 

and the Oppenheimer-Tolman metrics, and derive a generalization of the Oppen- 

heimer-Snyder model by matching these solutions in a Lipschitz continuous 

manner across a shock-wave interface. This is accomplished for arbitrary 

equations of state. In Section 5 we apply the results of Section 3 in order to derive 

a system of differential equations for the Robertson-Walker pressure so that local 

conservation holds across the shock. In Appendix i we discuss Gaussian normal 

coordinates, and Appendix ii is devoted to the derivation of several important 

identities needed in the matching of the Robertson-Walker and Oppenheimer- 

Tolman metrics. 

2. Preliminaries 

We consider a four dimensional space-time manifold with metric tensor g hav- 

ing signature ~/j = diag( - 1, 1, 1, 1). The Einstein field equations (1.1) represent 

ten equations for the unknown gravitational field, which by definition, is the metric 

tensor. In a given coordinate system x = (x ~ . . . ,  x3): M ~ R 4 on space-time M, 

3 Moreover, the curvature tensor Gij involves second derivatives, yet being a tensor, it 

transforms under the same transformation rules as the undifferentiated metric tensor. 
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the metric tensor has components g~j--g~i(x), which defines a 4 x 4 symmetric 

matrix at each point. 4 Here, x ~ = ct, where c is the speed of light. 

The Einstein equations (1.1) in a given coordinate system x take the form (see 

[13, 151) 

Gij = ~cTi~, (2.1) 

where 

Gij - Ri~ - �89 Rg l j  (2.2) 

is the Einstein curvature tensor, Tij denotes the stress-energy tensor (the source of 

the gravitational field), ~c = 8 n ~ / c  4 where ~q is Newton's universal gravitational 

constant, and R~j and R denote, respectively, the Ricci tensor and the scalar 

curvature formed from the Riemann curvature tensor of the metric 9. The Riemann 

curvature tensor, with components R}k~, is given by 

R ~kl i i i tr i a = ffjk, l -- I ' j l ,k + F r  - F ~ k F j t ,  (2.3) 

and R~j and R are obtained by the contractions 

R i  j a cr = Ri~j,  R = R~.  

Here we use the Einstein summation convention whereby summation is assumed 

(from 0 to 3) over repeated up-down indices in the same summand of a formula. 

The notation ",i" denotes differentiation with respect to the variable x z, and in 

general (except for Section 3), all indices run from 0 to 3. The /'}k denote the 

Christoffel symbols for the metric connection determined by g, and are defined (in 

x-coordinates) by the formulas 

r } k  = l g ~ i { _  gjk,~ + g~j,k + gk,,)}" (2.4) 

These functions determine the geodesics of the metric g, which are by definition 

solutions of the equations 

d 2 x  i dx  j dx  k 

ds 2 - r } k  ds ds ' 

where s denotes the arc-length parameter. The raising and lowering of the indices is 

accomplished via the metric tensor. For  example, 

G} = 9 i~ G~j, (2.5) 

Ti j  = gi~r T ~ ,  (2.6) 

where 9 iJ denotes the inverse of 9~. 

4 In Einstein's theory, all physical properties of the gravitational field are determined by 
the metric tensor. Indeed, the "free-fall" paths through a gravitational field are given by the 

geodesics of the metric; the "aging time" or "proper time" change for an observer traversing 

a path through space-time is given by the Minkowski arc length of the path as determined by 

the metric 9; and the non-rotating frames carried along geodesic free-fall paths are precisely 
the frames that are parallel relative to the unique symmetric connection determined by the 
metric g. 
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The Einstein tensor G satisfies the condition div G = 0, where div denotes the 

covariant divergence defined in terms of the covariant derivative V of the metric 

connection for g. That is (in components), 

i a a i 
VkG~ =-- GS;k G},k + F~kGj  - F j k G , ,  (2.7) 

so that 

(div G)~ - G};o = Gj.~ + F ~ G j  - F j~G~. (2.8) 

It is important to note that since div G = 0, it follows that for solutions of (1.1) we 

must have div T = 0. The distinction here is that div G -- 0 is a geometric identity, 

independent of the Einstein equations, and holds as a consequence of the Bianchi 

identities, while div T = 0 relies on both the identity div G - - 0  as well as the 

Einstein equations (1.1). For  example, in Section 4, we shall consider the case of 

a "perfect fluid", wherein the stress-energy tensor takes the form 

Tij = (P q- pc2)uiuj q- Pgij. (2.9) 

In this equation, p denotes the pressure, u denotes the four-velocity of the fluid 

particle (the velocity of the frame of isotropy of the perfect fluid), and p denotes the 

mass-energy density (which we refer to as the energy density, except when making 

the analogy with classical fluids, in which case we refer to it as the mass density) of 

the fluid, as measured in a reference frame moving with the fluid particle. In the 

case of a barotropic gas, p is assumed to be given by a function ofp  alone: p = p(p). 

Thus in this case, div T = 0 gives four additional equations which hold on solu- 

tions of (1.1). These are four non-linear p equations which reduce to the Euler 

equations for compressible fluid flow (which express the conservation of energy and 

momentum) when g is taken to be the flat Minkowski metric gij = thj= 

d i a g ( -  1, 1, 1, 1). It is well known that shock wave discontinuities form in solutions 

of the Euler equations for compressible flow [12]. In the case when shocks form, 

the Rankine-Hugoniot jump conditions (1.3) express the weak formulation of 

conservation of energy and momentum across shock surfaces. In Section 4 

we generalize the Oppenheimer-Snyder model for gravitational collapse by match- 

ing two (metric) solutions of the Einstein equations (1.1) in a Lipschitz continuous 

manner. We were not able to verify the Rankine-Hugoniot jump relations (1.3) 

directly because these involve the fluid variables in (2.9), and a direct verification of 

(1.3) requires using div T = 0, which is not an identity, and so cannot be managed 

without invoking the full Einstein equations (1.1). However, in the next section we 

bypass this problem with a general theorem (cf. [3]) that (1.3) follows as a 9eometric 

identity from the corresponding identities div G = 0 together with geometrical 

constraints on the second fundamental form on the shock surface, once one knows 

that the metric is Lipschitz continuous across the shock surface. The second 

fundamental form K : Tx  -~ T z  on a codimension-one surface Z with normal vector 

field n, imbedded in an ambient Riemannian space with metric tensor 9~, is 

a tensor field defined on the surface in terms of the metric g, and describes how the 

surface is imbedded in the ambient space. Here, Tz  denotes the tangent space of Z. 

The second fundamental form K is defined by the condition 

K ( X )  = - Vxn  (2.10) 
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fo rX e T~. When the metric is only Lipschitz continuous across a codimension-one 

surface, the second fundamental form K is determined separately from the metric 

values on either side. In the next section we give necessary and sufficient conditions 

(the Israel conditions) for conservation to hold at a Lipschitz continuous shock- 

wave interface, the condition being given in terms of geometric conditions on the 

jump in the second fundamental form across the surface. The conditions are that 

[tr(K 2) - (trK) 2] = 0, (2.11) 

[div g - d( t rK)]  = 0, (2.12) 

where tr denotes trace, div denotes covariant divergence, and d denotes exterior 

differentiation in the surface. We conclude that the physical conservation laws (1.3) 

turn out to be a consequence of geometrical constraints built a priori into the 

Einstein tensor, together with geometrical constraints that describe how the shock 

surface is imbedded in the ambient space-time manifold. We note that a sufficient 

condition for conservation is that [K] = 0 everywhere across the surface. In fact, 

this implies that in Gaussian normal coordinates the metric is then in C 1 because 

K~j = g~j,, in these coordinates, where n denotes differentiation in the direction 

normal to the surface. (See Appendix i and [3, 8, 2].) As we point out in the next 

section, the transformation to Gaussian normal coordinates is in general only 

a C 1' ~ coordinate transformation, but once this transformation is made, the C ~ 

coordinate transformations alone are sufficient to describe the locally Lorentzian 

properties of the spacetime. (Recall that by C ~'~ we mean C ~ with Lipschitz 

continuous derivatives.) In the case of metrics that are only Lipschitz continuous, 

the natural class of coordinate transformations is the class of C 1' 1 transformations. 

Indeed, if the mapping x ~ y  is in C 1'1, then ax/t?y and Oy/Ox are Lipschitz 

continuous, and thus Lipschitz continuous tensors are mapped to Lipschitz con- 

tinuous tensors under the mapping x ~ y, and this is the least smooth class of 

transformations that preserves this mapping. Note that by allowing C L a trans- 

formations, we allow derivatives of Ox/~y and @/Ox to jump, and this allows us to 

adjust the jump in the derivatives of tensors across a shock surface. For  example, if 

g = gL~gR,  then 

0y ~ 0y ~ 

g~j = g~ 0x ~ ~x j '  

so the jumps in the derivatives of Oy~/Ox ~ change the jumps in the derivatives of 

gi; across Z, and ISRAEL'S result states that within the class of C ~'~ transformations, 

we can match the derivatives in g across Z if and only if [K] = 0, the map to 

Gaussian normal coordinates being in C 1'~. Now in the Einstein equations 

G~j = ~cT~j, G~j is the image of a second-order differential operator on the metric 

entries gij, and thus in general we expect metrics that are Lipschitz continuous 

across Z to have delta-function sources in G, and hence in the fluid variables T, on 

Z. It is natural to ask, first, when do such delta-function sources appear at a shock 

wave Z given that the metric is only Lipschitz continuous across Z, and second, 

what is the physical significance of such delta-function sources when they do 

appear? For  the first question, we present a proof in the next section that if 
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9 = gL W 9g is Lipschitz continuous across 2; in a coordinate system x, then delta 

function sources appear in G on s in x-coordinates if and only if [ K ] .  0 (cf. [8]). 

For  the physical interpretation of the delta-function sources in G, and hence in T, 

when [K] + 0 at S, we comment that the equivalence of the jump conditions 

[G}]ni = 0  = [T~]ni and the weak formulation of d i v G =  0 at a point P in 

space-time is based on the existence of locally Lorentzian coordinate frames at P; 

i.e., coordinates in which g~j,k(P)= 0. In such coordinate frames, space-time is 

locally flat, and the physical principles of special relativity can thus be identified 

locally. In particular, the covariant divergence agrees with the classical divergence 

in locally Lorentzian frames, and the global physical conservation laws Sae = 0 of 

special relativity can be reduced in local form to div T = 0 in curved spacetime. (It 

is well known that, except in special cases, there do not exist global conservation 

laws in general relativity.) In the next section we show that, within the class of C 1' 

coordinate transformations, there do not exist locally Lorentzian coordinate 

frames in a neighborhood of a point P E s where G~j has a delta-function source. 

Thus, space-time is not locally flat at points on a Lipschitz continuous shock wave 

where G has delta-function sources. In Section 5 we show that for spherically 

symmetric shock waves, [-G~] n~ = 0 implies [K] = 0, and thus conservation im- 

plies that there are no delta-function sources in the shock waves we construct as 

generalizations of the Oppenheimer-Snyder case, and thus these solutions are 

locally Lorentzian at each point on the shock. It is an interesting open question as 

to whether general Lipschitz continuous shocks can appear in the time evolution of 

G=~cT.  

It is interesting to note also that in Section 4, when we generalize the Oppen- 

heimer-Snyder solution to arbitrary barotropic equations of state p = p(p), we 

identify a principle of conservation of mass-energy in the large, valid in a physically 

interesting coordinate system arising quite naturally in the problem. 

3. Lipschitz Continuous Metrics 

In this section we give the proof that the jump conditions (1.2) hold at 

a Lipschitz continuous shock surface if and only if (2.11) and (2.12) hold. We 

formulate the theorem in n dimensions for a nonsingular metric g of fixed signature 

t / =  diag(~l . . . . .  e,) where each ei = _+ 1. Before stating the theorem, we introduce 

some notation. Thus let y -- ( y l , . . . ,  y,)  be a smooth coordinate system defined on 

an n-dimensional manifold M, y: M ~ R ~, and let 2; be a smooth hypersurface in M. 

Assume that Z is given locally by 0(y) = 0, where 0 is a smooth function satisfying 

nidy i - ~ d y  i #: O. (3.1) 
cy 

Let L and R (for "left" and "right") denote the two sides of M defined by the surface 

2;, and let 9L and gR denote smooth metrics defined on the left and right side of N, 

respectively. (It suffices to assume 9L and 9R are at least in C z, with derivatives 

uniformly bounded at 2;, and we assume this from here on out.) For  completeness, 

we give a proof of the following theorem due to ISRAEL [-3, 8]. 
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Theorem 2. Let g = gLt_)gR denote a non-singular metric of arbitrary signature 

whose components gij in y-coordinates are smooth on the left and right sides of Z, 

separately, and Lipschitz continuous across the surface. Assume that Z is given locally 

by q) = O, where ~o is smooth, assume that (3.1) holds, and assume that the normal 

vector n is non-null relative to the metric g, so that (without loss of generality) n may 

be taken to be a unit vector g~jn~n j = 1. Then 

[Gfly(P))] n,(y(P)) = 0 (3.2) 

at a point P E X if and only if both 

[ ( t rK z) - tr(K)] = 0, (3.3) 

[divK - d( t rK)]  = 0, (3.4) 

hold. (Here, the invariant operations div, tr and d on K are restricted to the surface X.) 

Note that by a smooth transformation of the coordinates in a neighborhood of 

a point P e X we may assume that the surface S is given by cp = yn = 0, SO that 

n = 8/8y". In this case, the invariant conditions (3.3) and (3.4) reduce in y-coordi- 

nates to 

[(KI(y(P))) - (KI(y(P))) 2] = 0, (3.5) 

i [K);i(y(P)) - KIj(y(P))] = 0, (3.6) 

where the summation in (3.5) and (3.6) is assumed to run from 1 to n - 1. 

The proof of Theorem 2 follows as a consequence of several lemmas. The idea is 

to construct Gaussian normal coordinates for the surface S, these being coordi- 

nates in which the components of the second fundamental form take the simple 

form Kij = - � 8 9  gij,,. We then use this identity to write the Einstein curvature 

tensor G and the jump conditions (1.2) in terms of the Kij and obtain (3.5) and (3.6) 

(cf. [3, 8]). We use the following identities for the components of the curvature 

tensor G} in an arbitrary coordinate system: 

Lemma 1. The components of G are given by 

GI = -  Z RIb;I, i =  1 . . . . .  n, (3.7) 
a,'C ~=i 

G}= E R[i:,~, i *  j, (3.8) 
z .t= i , j  

where the square braces [ ] around a set of indices indicates that summation is to be 

taken only over the increasing sequences of indices occurring inside the braces. 

Proof. To prove (3.7), we have 

But 

G} = R } -  �89 R@ 

RI = g~i = Y', g~i 
z + - i  

(3.9) 
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because R ~  is antisymmetric in (eft) and (76). Moreover ,  

9 R  [a~] R = R ~  = - " [ ~ l '  

and so 

o l  = REE;I l - - -  - 

a, z 4 - i  

To prove (3.8) we have 

zi I~  [~i] 
G ~ = R } = R ~ j =  ~ [ ]  

. [ z j l .  
z 4- i , /  

We now construct  a Gaussian normal  coordinate  system (w 1 . . . . .  w n) asso- 

ciated with the surface S in a ne ighborhood  of Po ~ S [21. To this end, we assume 

that  g has y-components  gq, and by making a smooth  coordinate  t ransformation 

we may  assume without  loss of generality that  Z is defined (near P0) by y" = 0. Fo r  

each P ~ S let ?e(s) denote the geodesic satisfying 

7r(0) = P, 9e(0) = n, 

where n is the normal  vector to X at P, s is arc length, and for convenience we 

assume that  n points into the right side of X. We define the w"-coordinate in 

a ne ighborhood  of Po e X as the "distance from X" as follows: if 7v(s) -- Q, then set 

w"(Q) = s. In this way, w" < 0 on the left side of X, and w ~ > 0 on the right side o rS .  

N o w  define the wi-coordinates for i = 1 . . . . .  n - 1, by wi(P) = yi(p)  for P E X, and 

define w ~ in a ne ighborhood  of X by taking w ~ to be constant  along each 7p(S); i.e., 

wi(Q) = w I ( p )  if and only if Q = 7e(S) 

for some P and s, i =  1 , . . . , n .  The coordinates w = (w 1 . . . . .  w ~) are called 

Gaussian normal coordinates in a ne ighborhood  of Po e Z. Note  that  the Gaussian 

normal  coordinates  w are in general only C 1' 1 related to the original y-coordinates  

because the geodesics normal  to the surface S are in general only C 1 curves since 

the F}k can in general have jump discontinuities at S when g is only Lipschitz 

cont inuous across s (Indeed, to see this, consider the curves yf(s) where 

y = (yl . . . . .  y , -  1 ) and (y, 0) ~ R" is the coordinate  value of the point  P on S such 

that  7e(s )=  Q has y-coordinates  yf(s). Thus, y ( P ) =  uS(P) for P c  S. But being 

constructed from families of geodesics on each side of  s yy (s) - (p(y, s) is a smooth  

function of  y and s on each side of  27 separately. It  remains to check continuity of 

derivatives at y "  = 0. But, at s = 0, 

c~y i c~y} (S'~ " 
~?v5 j - ~ , ,  = 6), (3.10) 

because y = 07, 0) at s -- 0. Moreover ,  

OYi - ~ s  aus" (s) = n ' ,  (3 .11)  
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where n ~ denote the y-coordinates of the normal to S at P. Since the metric is 

continuous at S, this latter derivative is continuous across X as well.) 

Gaussian normal coordinates satisfy the following well-known lemma, whose 

proof  we include in Appendix i for the convenience of the reader. 

Lemma 2. In Gaussian normal coordinates, 

ds 2 = d(wn) 2 + g, f lwidw j, 

where the summation on i and j is f rom 1 to n - 1. 

(3.12) 

Note  that Lemma 1 implies that the surfaces w n = const, are orthogonal to the 

coordinate directions 3/Ow ~, for i = 1 , . . . ,  n - 1. 

For  a smooth metric g, the components of the second fundamental form are 

given by the following lemma: 

Lemma 3. In Gaussian normal coordinates, 

K i  j 1 
= - -  2 g i j ,  n .  (3.13) 

Proof. For  every vector field X ~, we have 

i a i a i a 
- K ~ X  =(Vxn) i = n  ~ X ~ + F ~ . X  = F ~ . X  , ,ff 

so that 

But 

(3.14) 

i a i o" 
= F ~ , X  . K~X - (3.15) 

F ~ , = l g ~ r  . . . .  + g  . . . .  + g  .. . .  }=~g~ ~r162 (3.16) 

where we used the fact that in Gaussian normal coordinates, g~,,k = 0, i = 1 , . . . ,  n. 

Thus 

K~  = - �89 9~ . . . .  (3.17) 

as asserted. [] 

In the Gaussian normal  coordinates w associated with a given codimension- 

one surface X and a Lipschitz continuous metric g = g Lw g R (where we assume as 

usual that 9L and OR are smooth), the metric 9 is determined on s but the first 

derivatives of the metric suffer a jump discontinuity at N. Thus the second 

fundamental form K, which depends on the first derivatives of the ambient metric 

g, also suffers a jump discontinuity at 22 In this case it follows from Lemma 2 that 

K L and K R, the second fundamental forms on X for the metrics gL and g e  

respectively, are given by (3.17), for g = 9 L, 9 R, respectively. Thus the following 

corollary of ISRAEL is immediate. 

Corollary 1. The metric components o f  9 = gL~ gR in Gaussian normal coordinates 

are C 1 functions o f  the coordinate variables if and only if [K] -- (K R -- K L) = 0 at 

each point on the surface X. 
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The next lemma expresses the components of the connection coefficients for the 

ambient metric g in Gaussian normal coordinates in terms of quantities intrinsic to 

the shock surface. We state this for a smooth metric, and see that it applies to each 

side g = gL and g = gR separately when the metric is only Lipschitz continuous. 

Lemma 4. The components in Gaussian normal coordinates of  the connection coeffi- 

cients for a metric g at a point P ~ X are given by 

F i ~ ~k = F~j, i,j, k 4= n, (3.18) 

F~ = K~j, i ,j  ~ n, (3.19) 

F ~ =  - K ~ ,  i , k + n ,  (3.20) 

F,",, = 0. (3.21) 

Here, ff denotes the (n - 1)-dimensional connection coefficients computed from the 

intrinsic metric ~ on X with w-components gij, i , j  = 1 , . . . ,  n - 1. 

Proof. To obtain (3.18), use (2.4) to write 

Fi~ = �89 - gij,~ + g,i,j + 9j~,,}. (3.22) 

Since gk~ = 0 when a = n and k # n, it follows that 

Fig = F~,, (3.23) 

which is (3.18). Similarly, statement (3.19) follows from 

Fi5 = �89 g " ~ { -  9ij,~ + 9~i,j + gj~,~}; (3.24) 

statement (3.20) follows from 

F,~ = �89 9k~{-- 9i..* + g., , .  + g..,,}; (3.25) 

and statement (3.21) follows from 

finn = �89 gin, a Jr- gai, n + gna, i} (3.26) 

upon noting that in Gaussian normal coordinates w we have g"~ = 0 unless ~ = n, 

a n d g ~ , , p = 0 f o r ~ , f i =  1 , . . . , n .  [] 

The next lemma uses Lemmas 1 and 4 to express the components in Gaussian 

normal coordinates of the Riemann curvature tensor for the ambient metric g in 

terms of quantities intrinsic to the shock surface (Gauss-Codazzi Equations). Again 

we state this for a smooth metric, and see that it applies to each side g = gL and 

g = gR separately when the metric is only Lipschitz continuous. 

Lemma 5. The components in Gaussian normal coordinates of  the Riemann curva- 

ture tensor for a metric 9 at a point P ~ X are given by 

R~kt = R~kt + KIKjk - K~Kjl, i,j, k, 1 4= n, (3.27) 
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which is equivalent to 

i i i j i , j ,k ,  14=n; (3.28) R~ = R~ + K t K  k - K k K  l, 

moreover, 

Ri~k = Kik;j -- Kij;k, i,j, k ~= n (3.29) 

where in (3.29), the semicolon denotes covariant differentiation in the surface Z. 

Statement (3.29) is equivalent to 

R~  = Kik;j -- Kij;k" i,j, k =~ n. (3.30) 

Proof.  Fo r  (3.27), write 

i a i a 

Thus, since only a can be n, we have 

R~kt ~ i  i n i n = Rjk t + F.kFjl - -  FniFjk , 

which by (3.18) gives (3.27). Statement  (3.28) follows because gi, = 0 for i + n. For  

(3.29), write 

RiSk = C i ~ , j -  FiS, k + r ; f  ,; - r: r, 5, 

which gives (3.29) on applying (3.19). In this case as before, (3.30) follows from (3.29) 

because 0 i" = gin when i + n. [ ]  

The next lemma uses (3.28) and (3.30) to express the components  in Gaussian 

normal  coordinates  of the Einstein curvature tensor for the ambient  metric g in 

terms of quantities intrinsic to the shock surface. Again we state this for a smooth  

metric, and see that  it applies to each side g = gL and g = gR separately when the 

metric is only Lipschitz cont inuous (cf. [8]). 

L e m m a  6. The components in Gaussian normal coordinates of  the Einstein curvature 

tensor for a metric g at a point P ~ Z are given by 

G~ = �89 2 - tr(K2)} - �89 (3.31) 

G7 = - {(trK);i + (divK)~}, (3.32) 

where R denotes the curvature scalar for the metric ~ intrinsic to Z, and the semicolon 

denotes covariant differentiation in the surface Z. 

Proof.  To  prove (3.31), use (3.14) to write 

6 ."-  ~'[cr~], 
a , z  ~ n 

so that  by (3.28) 

G," = -  ~, ~7t~1 (3.33) 
GZ4~t l  ff, z : + n  
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where the sum must be taken over indices a < r. But by definition, 

and 

"" [r 
~,~ ~ n  

(trK)Z t r (Ka)=(Ki )2  i j i ~ i j 
- -  - -  = {K iKj KjK i}. KjK~ 2 ~ 

i < j  

Using these in (3.33) yields (3.31). 

To prove (3.32), we use (3.15) to write 

n - - 1  

G i E R [n~] n j  -till ~ (3.34) _ _  n = _ _  = R [ i j ] ,  

v == i , n  j = l  

where we have applied the antisymmetry of the curvature tensor. Thus by (3.30), 

n - 1  

- G7 = Z {Kj;,- G } ,  (3.35) 
j = l  

from which (3.32) follows at once. [] 

We can now give the 

Proof of Theorem 2. Assume that g = g LUg g, where the metric g is smooth on 

either side of a codimension-one shock surface S, and is Lipschitz continuous 

across the surface. Let w denote the Gaussian normal coordinates associated with 

the surface S and the metric g- Then we can apply (3.31) and (3.32) of Lemma 5 to gL 
from the left and gg from the right of S, respectively, to obtain 

[G,]] = [�89 {(trK) 2 - tr(K2)}] 

= �89 {(trKa) 2 -- tr((KR)2)} -- �89 {(trKL) 2 -- tr((KL)2)}, (3.36) 

[-GT] = [ { -  (trK),i + (divK)i}-I 

= { -  (trKR),~ + (divKR)~} - { -  (trKR),~ + (divKR)~}. (3.37) 

Here we use the fact that/~ and S,~-~ {Kkig~JF~j - KkJJF~i} are equal on S for gL 
and gR because they depend only on intrinsic properties of the metric g restricted to 

N, and these agree because of the assumed continuity of g. But in Gaussian normal 

coordinates, n = ~/~w", and so the jump conditions (1.2) in Gaussian normal 

coordinates reduce to the conditions 

[ G ~ ] = 0 ,  c ~ = l , . . . , n .  (3.38) 

Now since G transforms like a tensor under arbitrary Cl-coordinate transforma- 

tions, the conditions (3.38) are equivalent to the statement [G}]G = 0 in the 

original y-coordinates. Thus, in light of (3.38), we conclude that (3.14) and (3.15) of 

Theorem 2 follow directly from (3.36) and (3.37). []  
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In view of Corollary 1 of Lemma 3, we can also conclude the following 

corollary of Theorem 2 (due to ISRAEL), which gives a global criterion for conserva- 

tion across X (see [3, 83). 

Corollary 2. I f  [K] = 0 at each point of S, then the jump conditions [G}]n~ = 0 

must hold at the point P. Moreover, since in this case the metric is of class C t in 

Gaussian normal coordinates, the condition [K]  = 0 is also a necessary and sufficient 

condition for the original Lipschitz continuous metric components g~ in the y- 

coordinates to be equivalent to a C I metric under a C 1" 1 transformation of  the 

coordinate variables. 

Proof. The sufficiency is clear, and the necessity of this condition follows because, if 

the metric is equivalent to a C 1 metric under some regular C l'a coordinate 

transformation, then the mapping from these coordinates to the Gaussian normal 

coordinates is a C 2 mapping, and thus the metric in Gaussian normal coordinates 

is in C ~, which implies that the second fundamental form is continuous across the 

surface. (Note that [K]  = 0 at a point is not sufficient for conservation [G}]n~ - 0 

at the point.) [] 

We now show that Ri~ and G~j, viewed as second-order operators on the metric 

components El j, have delta-function singularities at a point P e S if and only if 

[K]  # 0 at P. Thus, let g = gLWgR be Lipschitz continuous across a shock 

surfaces in x-coordinates. The strategy is as follows: we first treat the case when 

x is a Gaussian normal  coordinate system defined in a neighborhood of P e S. We 

then show that delta-function sources appear at P e Z in x-coordinates if and only 

if they appear  in any coordinate system related to x by a C 1' 1 coordinate trans- 

formation. Since any coordinate system in which g is Lipschitz continuous is 

related to the Gaussian normal coordinates by a C ~' ~ coordinate transformation, it 

follows that delta functions appear  if and only if [K]  # 0. We then show that when 

delta function singularities appear  in G~j at P e S in a given coordinate system x, 

the metric is not locally Lorentzian at P in the sense that there does not exist a C 1' 1 

coordinate transformation that takes x-coordinates to coordinates in which the 

metric is locally Lorentzian at P, more specifically, such that glj, k(P) = 0. Finally, 

we show, surprisingly, that delta-function singularities never appear  in the scalar 

curvature R at any point on a shock wave discontinuity on either side of which g is 

smooth, but across which g is Lipschitz continuous, and this is due to a cancella- 

tion of delta functions in the sum R~. 

Lemma 7. Let x be the Gaussian normal coordinates containing a point P ~ S, where 

Y. is any smooth surface, so that Olin is the normal direction on Z. Then the second 

order n-derivatives of gii that appear in the formula for the Ricci tensor Rij occur only 

in the terms Rij, i =l = n, j ~ n, and in R, , ,  and these are given by 

Rij 1 = -- ~gi~,,n + lower-order n-derivatives, i # n, j # n, (3.39) 

1 a~ 
Rn~ = ~g g~,,~ + lower-order n-derivatives, (3.40) 
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where  the sum in the last f o rmu la  is taken over ~, fl 4= n. 

Proof.  F r o m  (3.21), assuming  Gauss i an  n o r m a l  coordinates ,  we have 

Fi", = 0. (3.41) 

Cons ider  Rij  = Rg~j, which is given by  the formulas  

R i ~ j =  F ~ F ~ ~ ~ _ ~ ij,~ - -  i~,j + F ~ F i j  F ~ j F ~ ,  (3.42) 

R ~ j =  RT~j= FT. - F ~. . ~ ~ - ~ ,s . . . . .  s + F ~ F i j  F~jFi~.  (3.43) 

N o w  since g is Lipschi tz  con t inuous  across E, and  Rzj involves second der iva-  

tives of g, it follows tha t  del ta  funct ions in Rij  can arise at  P e E only in the 

second-order  n-derivat ives appea r ing  in the fo rmula  for R~ s. To see this, note  tha t  

in Gauss i an  n o r m a l  coordina tes ,  gi, = ~ , ,  and  gij are  a rb i t r a ry  for i, 

j -- 1 . . . .  , n - 1. Thus  the first der ivat ives  in k 4 = n are  Lipschi tz  con t inuous  across  

because gr  = gR on Z, and  thus gij, kn involves at wors t  j u m p  discont inui t ies  for 

k 4= n. N o w  from (3.43), the second-order  n-der ivat ives  can come only f rom F~,r  or  

F .~ . In  the former  case, this can only happen  when o- = n, so consider  tO', d �9 

F n. 1 ~rnf 
,j,n = g g  ~ - -  g i j ,~ .  -}- g~i.jn -1- gj~, in}.  (3.44) 

But g~n = 0 unless o- = n, which implies  

l~i~,n = i { _ _  ffij ,  nn -~ gni , jn  ~- g i n , i n } '  (3.45) 

Thus  we conc lude  tha t  when i = n or  j = n, there are  no  non-zero  second-order  

n-derivat ives in F.". and  when i, j 4= n, F .~. gives rise to only one second-orde r  t J, n, tJ~ t7 

n-derivative,  namely,  t �9 ~gl j , , , ,  i.e., 

FT. i ,j,~ = ~  gij, nn + l ower -o rde r  n-derivatives.  

Cons ide r  now F ~  . . . .  which can have second-orde r  n-derivat ives only f o r j  = n: 

rT~, .  = } o ~ {  - g~ . . . .  + g~,,,n + g~, ,n}.  (3.46) 

N o w  the first two terms g~ . . . .  and  g~,~n inside the b racke t  in (3.46) can have 

second-orde r  n-der ivat ives  only when a = n or  z = n, in which case a = n = r 

(because gin = 0), which implies  tha t  bo th  of these terms are  zero because  F~", = 0. 

But the th i rd  te rm g~, m in the b racke t  in (3.46) has second-order  n-derivat ives only 

when i = n, and  thus  we have 

Fn~, ~ n = �89 g~P g~,nn + lower -o rde r  n-derivatives,  

and  F .~ . is a lower -order  n-der ivat ive if i # n o r j  4= n. Thus  we conclude  tha t  the ~O' ,J  

second-orde r  n-der ivat ives  in the Ricci tensor  occur  only in the terms R~j, i 4= n, 

j 4= n, and  in Rnn, and  these are  given by (3.39) and  (3.40). [ ]  

We  now cons ider  the scalar  curva ture  R and  the curva ture  tensors  Rij  and  

Gij as second-order  d i s t r ibu t ion  derivat ives of the metr ic  c ompone n t s  gij in Gaus -  

sian no rma l  coord ina tes  when g is only  Lipschi tz  con t inuous  on Z. In  general  we 
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expect that second-order distribution derivative of 9 introduce delta-function 

singularities on ~. The following corollary gives necessary and sufficient conditions 

for the appearance of such delta-function singularities on Z. 

Corollary 3. Let g = gLk3gR be any metric that is Lipschitz continuous across 

a shock surface Z, and smooth on either side of Z. Then in Gaussian normal 

coordinates the scalar curvature R, viewed as a second-order distribution derivative of  

the metric components 9~j, has at worst a jump discontinuity at each P ~ ~; the Ricci 

and Einstein curvature tensors Rij and Gij have delta-function singularities at P ~ Z if 

and only if [K] + 0 at P. 

Proof. Assuming Gaussian normal coordinates, we have from (3.39) and (3.40) that 

R = 9~g  . . . . .  -- 9iJgij,,n + lower-order n-derivatives. 

and thus the formula for R in terms of 9 contains no second-order n-derivatives in 

Gaussian normal coordinates for any Lipschitz continuous shock wave, and hence 

R is at most discontinuous on ~. Moreover, in Gaussian normal coordinates, 

Kit = gt~,,, i, j :t = n, and hence if [K] + 0 at P ~ 2;, then g~j,, must suffer a jump 

discontinuity at P for some (i,j), i, j + n. Thus by (3.39), Rij is given by the delta 

function gij,,, plus a discontinuous function. Conversely, if [K]  = 0 at P e Z, then 

g~,,, is at most discontinuous at P, and thus Rij is at most discontinuous at P. Since 

G u = R~ - �89 Rgij, and R is at most discontinuous, we conclude that in Gaussian 

normal coordinates, R~j and Gij contain delta-function singularities if and only if 

[K]  * O. [ ]  

Now let N = R~k t denote the components of the full Riemann curvature tensor 

in x-coordinates, and let ~ =/~}~a denote the components in a coordinate system 

y related to x by a C a' 1 coordinate transformation. Note that in any coordinate 

system, the components of the curvature are given by (3.42), and hence are 

determined by the same second-order differential operator L on the metric compo- 

nents, thus ~ = L[9],  and ~ = L[-0]. We note that the highest-order derivative 

terms in L are of the form of a function of the unknowns gij times linear 

second-order differential operators. Thus it is possible to define solutions 9 that 

have only weak (distributional) derivatives of second order. The following lemma 

demonstrates that curvature tensors defined from L in the weak sense continue to 

transform by the tensor transformation laws under arbitrary C a, 1 transformations 

of the coordinates. 

Lemma 8. Let ~ be a weak solution of ~ = L [ 9 ]  in x-coordinates. Then 

= ~(t?x/~y) is a weak solution o f ~  = L [ j ]  for any coordinate system y related to 

x by a C a' 1 coordinate transformation, where we use the short-hand notation 

~X i ~xJ ~xk ~xl ~Ya 

~ y  ~ "~jkI ~yp Oy~ Oy~ ~x i , 

and multiplication by a function is taken in the weak sense. 
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Proof. For  smooth g and smooth test functions (p, let 

LEg]e= }" L*[g,~0] 
R'* R* 

where L*[g,  9] denotes the expression obtained from L(g) by integrating the 

second-order derivatives in g once by parts. Since the second-order derivatives in 

L are given by s 

R~k , = F~ , , k -  F~k,, + 1.o.t. (3.47) 

= (g'~{ -- gj,,~ + g~j,, + gz~,j}),k (3.48) 

_ (gi~{ _ gjk,~ + g~j,* + gk~d}),Z + 1.o.t., (3.49) 

= gi~{ _ gji,~k + g*~jk + gjk,~i -- gk~,;*} + 1.o.t., (3.50) 

i.e., are of the form gin, g~j, k~, it follows that L* [ g, ~0] contains at worst products of 

the metric entries g~j, the test function (p, and their first derivatives. Thus the 

integral in the weak formulation IR~ L* [g, (o] is finite for any Lipschitz continuous 

metric g and any Lipschitz continuous test function ~o of compact support. 

Now assume that N = R}k~ is a weak solution of N = L [ g ] ,  i.e., ~ is a linear 

functional on the space of Lipschitz continuous test functions (a distribution) that 

satisfies 

R 4 R 4 

for every Lipschitz continuous test function ~0. Note  that if ~x/@ is Lipschitz 

continuous, then the derivatives are bounded, and thus if we let ~ = g(~?x/@) be 

short-hand notation for 

0x ~ 0x j t?x 

0 =- J~p = gij c~y~ c~y ~ - g @ ,  

then L* [g(c~x/@), qo] is bounded for any Lipschitz continuous test function ~o. 

So to prove the lemma, let g be an arbitrary (non-degenerate) Lipschitz continu- 

ous metric, let qo be an arbitrary Lipschitz continuous test function, and assume 

that the coordinate systems x and y are related by a C 1, ~ coordinate transforma- 

tion (so that, in particular, both Ox/c~y and c~y/Ox are regular, Lipschitz continuous 

maps). Let j~ denote a smooth regularization of the metric ~ ,  and let x ~(y) denote 

a regularization of the coordinate map x(y)  so that x~(y) is smooth and has 

a smooth inverse. We can clearly choose these regularizations so that j~p ~ ~ 

in C O ,1, x " ( y ) ~ x ( y )  in CL1, ~x~(y)/c~y~c~x(y)/~?y in C O ,1 and 

c~y(x~)/~x ~ --> @(x)/c~x in C O, ~. Then 

g~-- ~ ~ Y  

0x ~ ~ g, 

j~--, j 

s Here "l.o.t." denotes "lower-order terms", i.e., terms that contain lower order n-deriva- 

tives. 
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in C O, 1. Define 

~ = L(j~), (3.51) 

~ = ~ ~Y (3.52) 
~3x~ �9 

Now it follows directly from definitions that 

F ~ ~y 
< ~ - - ~ Y x ~ , q ~ ) : ( ~ , c p ) :  f L * L g  ~x~,qo ] .  (3.53, 

R 4  

But (3.53) simply says that N~(c~y/c~x ~) is the curvature tensor for the metric 

g~(Oy/Ox~), and since everything in (3.53) is smooth, we know from the fact that the 

curvature transforms as a tensor that ~ '  must be the curvature tensor for the 

metric g ' ;  i.e., since everything in (3.53) is smooth, we know that (3.53) holds for 

every q) e C o. 1 if and only if 

( ~ , ~ 0 )  = ~ L*[g~,cp] (3.54) 
R 4 

holds for every ~0 e C o, 1. Since g~ --* g in C o, 1, (3.54) implies that, as s ~ 0, N~ tends 

in the sense of distributions to the distribution T, where T satisfies 

(T ,  ~0) = ~ L* [g ,  ~03. (3.55) 
R 4 

Therefore (3.55) demonstrates that T = N as a distribution. Thus, in the limit s ~ 0, 

we conclude from (3.55) that N ~ ~ N, from (3.53) that N --* ~ ,  and hence from (3.52) 

that ~ = N(c?y/Ox) in the sense of distributions. This completes the proof  of the 

lemma. []  

F rom this we conclude that if the Riemann curvature tensor has no delta- 

function singularities at P e Z in x-coordinates, then it has no delta-function 

singularities in any coordinates y that are related to x by a C 1'1 coordinate 

transformation (cf. [8]). 

Theorem 3. Assume that g = gL U ga is smooth on either side of a 3-dimensional 

shock surface Z, and is Lipschitz continuous across Z. Then the scalar curvature R, 

when viewed as a second-order operator (in the weak sense) on the metric components 

gq, produces at most a jump discontinuity (i.e., no delta-function singularities) at 

P ~ S, and the curvature tensors R~kt, Rij and Gq produce no delta-function singular- 

ities at P e S if and only if the jump in the second fundamental form K satisfies 

[K-] = 0 at P. 

Proof. By Corollary 1, the theorem is true in Gaussian normal coordinates x, and 

thus by Corollary 3 and Lemma 8 it holds in any coordinate system y which is C 1' i 

related to x. Since for any metric g = gz u gR which is smooth on either side of 

S and Lipschitz continuous across Z, the transformation to Gaussian normal 

coordinates is an invertible C 1' 1 coordinate transformation, the theorem follows at 

once. [] 
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As a direct corollary of Theorem 3 we see that there exists a locally Lorentzian 

coordinate frame in a neighborhood of a point P on a Lipschitz continuous shock 

surface S if and only if [K]  = 0 at P; namely, we have 

Corollary 4. Assume that g = gL W gR is smooth on either side o f  a 3-dimensional 

shock surface S, and is Lipschitz continuous across Z in a coordinate system y defined 

in a neighborhood of  P ~ S. Then there exists a regular C 1' 1 coordinate transforma- 

tion y ~ x such that x is locally Lorentzian for  g at P (gi) = thj and gij, k = 0 at P) if 

and only if [K]  = 0 at P. 

Proof. Assume that I-K] = 0 at P, and choose locally Lorentzian coordinates at 

P for the smooth metric obtained by restricting g to the surface S in a neighbor- 

hood of P in the surface ~. Extend these coordinates to Gaussian normal coordi- 

nates x based on these surface coordinates, the x coordinates being defined in an 

n-dimensional neighborhood of P. Then in x coordinates the metric components 

glj satisfy gij = t l i j  and K i j  = g i j ,  n - - - -  0 at P, and so x is locally Lorentzian at P. 

Conversely, assume that [ K ] .  0, but that there exists a coordinate transformation 

y --* x such that, in x-coordinates, g~j = rhj and g~j,k = 0 at P. Then in x-coordinates, 

g is of class C 1 at P, and hence there are no delta-function singularities in the 

components gij of g in x-coordinates. Thus by Theorem 3, [K]  = 0, and hence the 

locally Lorentzian coordinates x cannot exist when [ K ] .  0. [] 

The following corollary directly implies Theorem 1 of the Introduction: 

Corollary 5. Assume that the components o f  g = gLk)gR in a coordinate system 

y are Lipschitz continuous across a smooth 3-dimensional shock surface Z and are 

Ck functions o f  y on either side of,Y,, and that all k derivatives are continuous up to 

the boundary S f rom either side o f  Z. Assume also that g is a weak solution of  

R~p = 0 or G~p = 0 when viewed as second-order operators on the metric com- 

ponents g~p. Then in Gaussian normal coordinates x (which are C 1' ~ related to 

the original coordinates), the metric components glj are actually C k functions o f  

x across ~. 

Proof. Assume first that g = gz w gR is a weak solution of R ~  = 0. But Rij = 0 in 

the weak sense across S implies that there are no delta-function sources in Rij on S, 

and thus by the previous theorem, [K]  = 0 across S. Thus ISRAEL'S result implies 

that the gij, k are all continuous across ~, and since G~j -- 0, the jump conditions are 

automatically satisfied across S. It follows from (3.39) and (3.40) that in Gaussian 

normal coordinates, 

Rij 1 (3.56) = - :~g~j,n, + lower-order n-derivatives, i + n, j ve n 

1 ij  
R, ,  = -~g g~j,,, + lower-order n-derivatives. (3.57) 

But since the g~j,k are continuous across Z, it follows that the lower-order terms in 

(3.56) and (3.57) must be continuous functions across Z, our assumptions implying 

that the derivatives of g in the surface ~ are the same for gz and gR. But since 
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Rij = 0 for both gL and gR, we can solve for gij, n, in (3.56) and (3.57) in terms of 

lower-order derivatives that are continuous across Z, and conclude that g~j,,, must 

also be continuous across Z for all i,j = 1 . . . .  , n. (Recall that g,~ = constant in 

Gaussian normal coordinates.) This shows us that kth order derivatives of 

g~j which are up to second order in x" are in fact continuous functions of x across 

Z in Gaussian normal coordinates. Now differentiate (3.56) and (3.57) with respect 

to x". Then the differentiated lower-order terms in (3.56) and (3.57) are continuous 

across Z, and hence again we can solve for g~j,,,, in terms of functions that are 

continuous across Z. Thus we conclude that kth order derivatives of g~j which are 

up to second order in x" are in fact continuous functions of x across Z in Gaussian 

normal coordinates x. Continuing, we see that all the k th order derivatives of g~ are 

continuous across Z in Gaussian normal coordinates. Since, by Corollary 3, the 

scalar curvature never contains delta-function singularities on Z, the result for 

R~j implies the same result for Gij. []  

The same argument establishes the following more general version of this 

corollary: 

Corollary 6. Assume that g = gL WgR is smooth on either side of  a 3-dimensional 

shock sulface S, and is Lipschitz continuous across Z in some coordinate system y. 

Assume that g is a weak solution of G~p = ~cT~p that contains no delta-function 

singularities on Z. Then in Gaussian normal coordinates the metric components g~j are 

C2 functions of x if  and only if [-G] = 0 across Z. 

Summary. The results of this section are summarized in the following theorem: 

Theorem 4. Let Z denote a smooth, 3-dimensional shock surface in space-time with 

spacelike normal vector n. Assume that the components glj of the gravitational metric 

g are smooth on either side of  Z (continuous up to the boundary on either side 

separately) and Lipschitz continuous across ~ in some fixed coordinate system. Then 

the following statements are equivalent: 

(i) [K]  = 0 at each point of  Z. 

(ii) The curvature tensors R~k l and Gij, viewed as second-order operators on the 

metric components g~j, produce no delta-function sources on Z. 

(iii) For each point P ~ ~ there exists a C 1' 1 coordinate transformation defined in 

a neighborhood of P, such that, in the new coordinates (which can be taken to be the 

Gaussian normal coordinates for the surface) the metric components are C l' i f  unc- 

tions of these coordinates. 

(iv) For each P ~ S,, there exits a coordinate frame that is locally Lorentzian at P, and 

can be reached within the class of  C 1' 1 coordinate transformations. 

Moreover, i f  any one of  these equivalencies hold, then the Rankine-Hugoniot jump 

conditions [G]'[n~ = 0 (which express the weak form of conservation of  energy and 

momentum across S, when G = ~:T) hold at each point on Z. 

Here [K]  denotes the jump in the second fundamental form (extrinsic curva- 

ture) K across N (this being determined by the metric separately on each side of 
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Z because g~j is only Lipschitz continuous across S). By C a' a we mean that the first 

derivatives are Lipschitz continuous. Theorem 1 should be credited mostly to 

ISRAEL, who obtained results (i)-(iii) in Gaussian normal coordinates. Our  contribu- 

tion is to identify the covariance class of C a, a transformations, and thereby to 

obtain precise coordinate-independent statements for (ii) and (iii), as well as to 

show the equivalence with (iv). As a consequence of this, we obtain the result that 

the Ricci scalar curvature R never has delta-function sources at a Lipschitz 

continuous matching of the metrics, as well as the results in Corollaries 5 and 

6 which validate the statement that shock-wave singularities in the source-free 

Einstein equations R~j = 0 or Gij = 0 can only appear as coordinate anomalies, and 

can be transformed away by coordinate transformation. Note  that when there are 

delta-function sources in G on a surface S, the surface should be interpreted 

as a surface layer (because G = ~cT), and not a true shock wave I-3, 8]. In Lemma 9, 

Section 5, below, we show for spherically symmetric solutions that 1-G]~n~ = 0 

alone implies the absence of surface layers (and hence t h e  other equivalencies 

in Theorem 5), so long as the areas of the spheres of symmetry match smoothly at 

S. We use this result in our construction of the shock waves that extend the 

Oppenheimer-Snyder model to the case of non-zero pressure. The following 

counter-example shows that in general, the above equivalencies can fail even when 

[G~] n~ = 0 holds at each point on Z. 6 

For the counter-example it suffices to show that there exist Lipschitz continu- 

ous shock waves which satisfy the Israel jump relations (3.3) and (3.4) across 

a shock-wave interface, but which cannot be transformed to a metric that is in class 

C a in a neighborhood of each point on the shock. By Corollary 1, it suffices to 

construct a shock-wave interface across which the Israel conditions are satisfied, 

but such that the second fundamental form K is not continuous across the 

interface. To this end, let g~j denote the coordinates of a metric in Gaussian normal 

coordinates, such that the spacelike normal to the shock surface is given by 

n = c3/c~x", and gij is of the form 

~ d 
Assume now that the hij are given by 

f rhj + aijx" i f  x" > O, 
hij (3.59) 

( t h j  + b~jx" if x" < 0, 

where ai; and bij are constants to be determined. Thus by Lemma 3, the second 

fundamental forms K L and K R on the left and right of the shock surface are given 

by K~ = aij and K~ = bij, i , j  = 1 . . . . .  n - 1. Since K~  and K~ are constant, 

K .~ = (trK),i = 0, t ,  6 r 

6 See I-3] where such an example is given in which G -= 0 on both sides of S. 
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for K = K L, K R. Thus the Israel jump conditions (3.3) and (3.4) reduce to 

[ ( t r / )  2 - tr(K2)] = 0. 

Hence to satisfy the Israel jump conditions it suffices to find a -- aij and b - b~j 

satisfying 

(tra) z - tr(a 2) = 0 = (tr b) a - tr(b2). 

But in the simplest case where a and b are 2 x 2 matrices, 

tr a = a l l  + a22, 

tr(a 2) = a21 + 2 a 2 1 a 1 2  + a22,  

and so 

(tr a) 2 - tr(a z) = 2 det a. 

Thus we can satisfy the Israel jump conditions by choosing a and b to be any 2 x 2 

matrices with zero determinant. If in addition, aij 4: b~j, then ]-K] = K R - K r =4= O, 

and so by Theorem 2, the conservation ]-GT] = 0 holds across the interface x" = 0, 

but, in view of Corollary 1, the metric cannot be transformed to a metric that is 

globally of class C ~ across the shock. 

4. A Generalization of the Oppenheimer-Snyder Model 

In this section we construct a generalization of the Oppenheimer-Snyder model 

for gravitational collapse in spherically symmetric solutions of the Einstein equa- 

tions (1.1). It is well known that the Oppenheimer-Snyder model requires the 

simplifying assumption that the pressure p be identically zero. We shall construct 

a corresponding solution when the pressure is given by an arbitrary barotropic 

equation of state p = p(p ) ,  and in this section we allow the equation of state to be 

chosen separately on either side of the shock surface. 

The Oppenheimer-Snyder model is a spherically symmetric solution of the 

Einstein equations that is constructed by matching the (empty-space) Schwarz- 

schild solution to the Robertson-Walker (R-W) solution (a spherically symmetric 

homogeneous solution) across an interface which is interpreted as the boundary of 

a collapsing star. The R-W metric is a solution with T given by (2.9), and the 

Schwarzchild solution has stress tensor T --- 0, which implies that, if energy and 

momentum are conserved, no energy or momentum can cross any interface that 

connects the two solutions. This is the case in the Oppenheimer-Snyder model 

where the pressure is taken to be identically zero. We generalize this to the case 

p ~ 0 by matching the R-W metric to the Oppenheimer-Tolman (O-T) metric [14], 

a spherically symmetric solution of the Einstein equations with nonzero stress- 

energy tensor of the form (2.9). In the limit p = 0, the shock interface goes over to 

a contact discontinuity [11], and we recover the Oppenheimer-Snyder solution 

]-6, 7, 9, 103. 
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In the case of non-zero pressure, energy and momentum must cross the 

interface between the two solutions, and thus the interface propagates like a 

gas-dynamical shock wave. When p 4= 0, conservation of energy and momentum 

does not hold automatically across the shock interface; this problem will 

be considered in the next section. Here we show that the R-W metric and the 

O-T metric can be matched in a Lipschitz continuous manner for arbitrary 

equations of state on both sides of the shock. In addition, we identify a global 

principle of conservation of mass that applies to these matched solutions. In 

the following section, in order to force the additional constraint of conservation 

to hold across the shock interface, we allow the pressure on one side to be 

determined dynamically with the shock position. We end the next section with the 

derivation of an autonomous systems of two ordinary differential equations that 

determine the O-T shock waves across which conservation holds. When conserva- 

tion fails to hold, the surface is a boundary layer and carries mass and momentum 

(see [3]). 

We begin by introducing three metrics which are spherically symmetric solu- 

tions of the Einstein equations relevant to our development: the Schwarzschild, the 

Oppenheimer-Tolman (O-T) and the Robertson-Walker (R-W) metric. These are 

defined, respectively, by (cf. [15, Chapter 11] ): 

M = Const. 
(4.1) 

(O-T) dg 2 = - B(f)dt -2 + A(f)-1dr2 + 172 dQ 2, (4.2) 

(R-W) ds2= -d t2+  R2(t ){ l~ lkr2dr2  + r2dQ2}. (4.3) 

(The first two metrics are written in barred coordinates so that they can be 

distinguished from the unbarred coordinates when we do the matching of metrics 

below.) The quantity d~22 = dO 2 + sin20 d(o 2 denotes the standard metric on the 

2-sphere. The metric (4.1) describes an empty-space solution of the Einstein 

equations (t.1) generated by a fixed total mass-energy M (which, hereafter in this 

section, we refer to as the mass) centered at the origin. The metric in (4.2) describes 

the interior of a star, and satisfies (1.1) with stress-energy tensor given by that of 

a perfect fluid (2.9): 

Tq =/sgi; + (/5 + fi)ulu~, (4.4) 

where in this section we assume a barotropic equation of state/5 = p(fi), and we 

take c = 1. Here, A is given by 
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where M - M(f) and fi - fi(f) satisfy the following system of ordinary differential 

equations: 

dM 
df - 47cFz fi' (4.6) 

_ - 4rcf3i6 2fqM) -1 

The equation (4.7) is referred to by WE~N~ERC as the fundamental equation of 

Newtonian astrophysics, with 9eneral-relativistic corrections supplied by the last 
three factors [15, page 3013. The metric component B - B(f) in (4.2) satisfies the 

equation 

B'(F) if(f) 
- -  - 2 - - .  ( 4 . 8 )  

B f f+f i  

Notice that the equations (4.6) and (4.7) are equations that determine M(F) and fi(f) 

once we specify the equation of state/~ = ff(fi). The total mass is then given by 

U( f )  = ~ 4n~ z ~(~)d~. (4.9) 
o 

The coordinates (t, r, 0, ~p) in (4.2) are assumed to be "co-moving" with respect to 

the source fluid. That  is, coordinates are said to be co-moving relative to a back- 

ground diagonal metric 9ij if the spatial components of the 4-velocity u of the fluid 

vanish, u i = 0, i = 1, 2, 3. Since u is a unit vector relative to g, i.e., since 

g'Juiuj = - 1, (4.10) 

it follows that for diagonal metrics, 

Uo = x / -  900. (4.11) 

In case of the I-S metric (4.2), equation (4.11) becomes 

ut : B ~ .  (4.12) 

Finally, for the R-W metric (4.3), which describes a spherically symmetric, homo- 

geneous space-time, the field equations (1.1) imply that the function R(t) (the 

"cosmological scale factor", cf. [15] ), satisfies the following equations (see [15, 

Chapters 11 and 14]): 

3JR = - 4rcfq(p + 3p)R, (4.13) 

RR + 2J~ 2 + 2k = 47r~(p - -  p)e 2, (4.14) 

together with 

d 3 3 = { a  (p + p)} .  (4.15) 
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Equation (4.15) is equivalent to 

d 
d---R ( p R 3 )  = - 3 p R 2  (4.16) 

Substituting (4.13) into (4.14) we get 

8 ~  
RZ + k = ~ - -  p R  2. (4.17) 

In the R-W metric (4.3), p and p are assumed to be functions of t alone, in which 

case equations (4.16) and (4.17) give two equations for the two unknowns R and p, 

again for an equation of state of the form p = p(p).7 The coordinates for the R-W 

metric in (4.3) are also assumed to be co-moving with respect to the fluid, and in 

this case (4.11) implies that 

u ~ = u o = u ~ = O ,  ut= l. (4.18) 

Note that if R( t )  and p( t )  satisfy (4.13)-(4.15), then so does R ( -  t) and p( - t). 

Moreover, from (4.15), we find 

i 6R3 = RB(/~ + P) + 3R2/~(P + P). 

This implies that 

from which we conclude that 

Rp + 3/~(p + p) = 0, 

~/~ < 0. (4.19) 

Thus to every expanding solution there exists a corresponding contracting solu- 

tion, and conversely. 

We now construct a coordinate system (f, f)  for the R-W metric and a shock 

surface written in these coordinates so that the metrics (4.2) and (4.3) match in 

a Lipschitz continuous manner along the surface in the (f, f)-coordinates. To do 

this we must define a coordinate mapping that takes the unbarred frame of the 

R-W metric (4.3) over to a barred coordinate system that leaves fixed the 0 and 

(p coordinates and is consistent with the coordinates in the O-T solution (4.2). To 

ensure that the areas of the 2-spheres agree in the two frames, we require 

~2d~2  = R2r2dO 2, 

and thus choose 

r = Rr.  s (4.20) 

7 Note that p and p need not satisfy the same equation of state. 

s Note that at this stage the transformation f = Rr is defined globally, and in the 

development below it is important that this equality hold in an open neighborhood of the 

shock surface in order to ensure conservation, (cf. Lemma 9, equation (5.3)). 
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In order to rewrite the R-W metric in (t,/7)-coordinates, we have from (4.20) that 

d/7 = R dr + Rr  dt, (4.21) 

SO 

and thus 

1 R 
dr = ~ d/7 - -~ r dt, (4.22) 

/~2 - -  2 ~-2/7 d L  dr 2 = ~ d/72 q- - ~  r 2 dt 2 dt 

Thus, the R-W metric (4.3) is given in (t,/7)-coordinates by 

/~2/72 ) R 2 2R/~/7 
ds  2 = - 1 R ~ ~ - k / 7 2 I  dr2 + R 2  - -  kV2 d/72 R 2  - -  k/72 

(4.23) 

1 
d s  2 m _ _  

R 2 __ k/72 

becomes 

which, by using 

{RZ-k/72-/~2/72}=R 2 1 - - ~ - p g  r , 

then 

(4.25) 

We next define a mapping t = t(f,/7) that eliminates the cross term dtd/7 in (4.25). 

We do this first for a general metric of the form 

dg 2 = - C(t, ~7)dr 2 + D(t,  /7)d/7 2 q- 2E(t,  ~7)dr dL  (4.26) 

It is not hard to verify that if Ip = 0(t,/7) is chosen to satisfy the equation 

~ ( 0 C )  = ~ E - ~7(~ ), (4.27) 

dr = O(t, /7) {C(t,  ~7)dr - E(t,  /7)dr}, (4.28) 

is an exact differential. With this choice, the ({,/7) line element for (4.26) becomes 

d~ 2 = - (0 -2C-1)d f  2 + D + - C  d/72' (4.29) 

Now in terms of the metric 

dg 2 = - R 2 1 ~-- pRZr 2 dt 2 + d/7 e - 2R/~/7 d{ d/7, (4.30) 

- -  dt d/7 +/72 dr22, (4.24) 
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which appears in (4.25), C, D and E are given by 

C = R 2 { 1 - ~ - p R 2 r  2} ,  (4.31) 

D = R 2, (4.32) 

E = - R/~f. (4.33) 

Thus, in view of (4.30), the R-W metric in (f, i)-coordinates becomes 

1 { -  (0 2 c)-1 dr2 
ds 2 R 2 - kF2 

But from (4.31)-(4.33) we obtain 

E 2 R2/~t7  2 

g 2 

R R Z r  2 

(4.34) 

= R 2 = R z (4.35) 
O + ~ -  +R2(1 - - ~ f f  pF 2) + 1 - ~ - ~ p R Z r  2" 

Now equating the dr 2 coefficients in the O-T solution (4.2) and the R-W solution 

(4.34) and using (4.35), we obtain the equation for the shock surface: 9 

(R a -- kF 2) 1 2 -1 = R 2 + 1 - ~ ( ~ p R 2 r  2' (4.36) 

which (4.17) simplifies to 

M(t =) = ~ p(t)F 3 . (4.37) 

Hence (4.37) defines the shock surface, and the shock surface in (t, r)-coordinates 

can be obtained from (4.37) by making the substitution f = R(t)r. (We assume that 

the shock surface remains within the domain of definition of the R-W metric, 

namely, that 1 - kr 2 > 0, when k > 0.) It remains only to determine ~b from (4.27) 

so that the df 2 terms in the O-T and R-W metric agree on this surface. To obtain 0, 

which globally determines the coordinate t in terms of the (~-, f) coordinates for the 

R-W metric, we solve (4.27) subject to initial data on the shock surface which are 

forced upon us by the condition that the df 2 terms match on the shock surface. 

That is, 

1 1 
R2 _ kf 2 ~z C - B(f), (4.38) 

on the shock surface (4.37). To carry out this program, we rewrite (4.27) in the form 

of a first-order linear partial differential equation for 0, 

CO~ + EOt = f ( t ,  F, 0). (4.39) 

Here, C and E are functions of t and f given by (4.31) and (4.33), and thus we can 

solve the initial-value problem (4.39) in (t, f)-coordinates with initial data (4.38) 

9 Note that, interestingly, the di z coefficients are independent of ~0. 
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given on the shock surface (4.37), provided that the shock surface is non-character- 

istic for (4.39). 

Now the characteristics for (4.39) are given by 

d7 C 
2 - d t  = E '  (4.40) 

so that the function ~9 is obtained by solving the ordinary differential equation 

~ = f ( t ,  7, ~,), (4.41) 

starting with initial values on the shock surface (4.37), where d/d# denotes differen- 

tiation in the (E, C)-direction in (t, 7)-coordinates. Solving (4.38) for 0 gives the 

initial values of 0 to be met on the shock surface, namely, 

1 
~9 z - (4.42) 

B ( R  2 -- kf2)C" 

Thus, if dUdt denotes the speed of the shock surface in (t, 7)-coordinates, then by 

(4.40) the condition that the shock surface be non-characteristic at a point is that 

d7 C 
+ (4.43) 

dt E" 

If (4.43) holds at a point on the shock surface (4.37), then we can solve (4.39) 

uniquely for ~ in a neighborhood of the point, thereby matching the R-W and O-T 

solutions in a Lipschitz continuous manner in a neighborhood of such a point on 

the surface in the (f, 7)-coordinate system. Since we need only define local coordi- 

nate systems in order to define a space-time manifold, the shock surface (4.37) 

defines a complete Lipschitz matching of the metrics R-W and O-T at each point of 

the surface where the non-characteristic condition (4.43) holds. It is interesting to 

observe that one need not explicitly solve the partial differential equation (4.39) for 

in order to determine the shock-surface equation (4.37), and the solution of (4.37) 

can be calculated even when the f-coordinate, defined in terms of ~, cannot be 

constructed. This has obvious numerical implications. 

We consider the condition (4.43) below in Propositions 2 and 3, but first we 

discuss the equation for the shock surface (4.37). This is necessary in order to obtain 

an expression for the shock speed, and to motivate the conditions in Propositions 

2 and 3 below. We begin by noting that we have not made any choice regarding 

whether the R-W metric is on the "inside" or the "outside" of the O-T solution. For 

the case of a star, the R-W metric is on the inside (at small values of 7 within the 

shock surface) and the O-T is on the outside of the shock surface. For definiteness, 

we only consider this case, although the discussion we give below applies equally 

well to the case when the R-W metric is on the outside. Note first that (4.37) allows 

an interpretation of a global principle of conservation of mass in the special 

coordinate 7. Indeed, M(7o) is the total mass that would appear inside the radius 7o 

were the Oppenheimer-Tolman solution continued to values of 7 < 7o. Thus, M(f) 

represents the total mass that is generating the O-T solution outside the radius 
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f = to. This describes the left-hand side of (4.37). The right-hand side of (4.37) can 

be interpreted as the total mass inside the sphere of radius f0 at a fixed time t in the 

Robertson-Walker solution. This says that the "total mass" is conserved as the 

shock propagates, if we compute the total mass in f-coordinates at fixed t for 

f < fo, and at fixed ffor  r > ro. Therefore, we have shown that the total mass in the 

O-T solution that an observer sees out at infinity is fixed, and this equals the total 

mass in the inside R-W metric plus the total mass in the outside O-T metric, so long 

as these latter masses are computed from the densities in the f-coordinate at fixed 

t and f, respectively. As an application of this global principle of conservation of 

mass, we note that since in a "physically relevant" model for a star, the density fi(f) 

for the O-T metric should be decreasing function of f, the global conservation 

principle cannot hold when/5 - p - [p]  = 0 across the shock surface. Indeed, if 

dfi/df < 0 for r < ro, and p(to) = fi(ro), then 

~o 

p(to)f  3 = ~ f i ( f o ) f  3 < ~ 4~fi(~)~2d~ = M(fo), (4.44) 
0 

and so by (4.37), the point (to, ro) cannot lie on the shock surface. That is, the global 

conservation of mass principle implies that if dfi/df < 0, then [p] + 0 across the 

shock. 

With this motivation, we can now calculate the shock speed unless the condi- 

tion [p] q= 0. Indeed, by the implicit function theorem, the shock surface (4.37) is 

given by f = f(t) provided that 

d M  
df 4~p(t)f2 + 0. (4.45) 

But, using (4.6) enables us to write (4.45) as 

4rcf2(fi - p) q= 0, (4.46) 

at a point on the shock surface. Thus, as we have shown above, if we assume that 

dfi/df < 0, this condition is always valid on the shock surface. We can now 

calculate the speed of the shock s - fi, (where "dot" denotes d/dt). Using (4.37), 

which we write in the form 

M(f(t)) = ~ p (t) f(t) 3, (4.47) 

and differentiating with respect to t, we find 

s =- r -  pr (4.48) 
3 [ p ]  

Since [p] < 0 (we are assuming that d~/Of < 0), the shock speed is negative if15 > 0 

and is positive if ~5 < 0. Observe that, from (4.40), the condition on the shock speed 

(4.48) that guarantees that the surface be non-characteristic at a point is (cf. (4.42)) 

/ ~f C 2 (-83 ~ ~ O f  2 - -  1) 2 
l / 2 =~ ~ = - -  (4.49) 
\ 3 [ p ]  } ~ fqpf2 kr 2, 
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where we have used (4.17), (4.20), (4.31), (4.33). Note that in the classical theory of 

shock waves, only the shock waves that move into the fluid with lower pressure are 

stable, and the corresponding shock waves that move into the higher-pressure side 

are unstable, and are referred to as rarefaction shocks [11]. This means that if 

d~/f > 0, then the shock is stable ifs > 0 (~ < 0), and unstable ifs < 0 (ti > 0). We 

remark that all of the above development is independent of the equations of state 

p = p(p) and/5 =/5(fi). In the limiting case of OPPEYHEIMER & SYYDER [9], the 

pressure p -- 0, and the O-T solution is replaced by the Schwarzschild solution (4.1) 

having a constant mass function M(f)  - M = const. In this case the R-W solution 

satisfies p(t)R(t)3= p(O), and so for a particular solution satisfying R(0)=  1, 

/~(0) = 0, (4.17) implies that k = ~- rc.~. Thus (4.37) gives the well-known result that 

the radius of the star a at time t = 0 is given by the relation (see [15, page 346]) 

M = ~p(O)a 3. 

The following proposition is useful. 

Proposition 1. On the shock surface (4.37) the following identities hold: 

0 2 c 2 - B  1 +  C 2 j  

C = RZA, 

(4.50) 

(4.51) 

E -- Rr 
C A ' (4.52) 

E 2 - A q- (1 - kr 2) 

C-- 5 = A2 , (4.53) 

R2rZ = - A + (1 - kr2). (4.54) 

The proof is given in Appendix ii. 

We end this section by giving conditions under which the shock surface is 

non-characteristic; i.e., that (4.42) holds. We assume here that the shock surface lies 

within the domain of definition of the R-W metric if k > 0. The first proposition 

gives conditions on the equation of state/5(p) that guarantee that the shock surface 

(4.37) is non-characteristic provided it does not intersect the Schwarzschild radius 

A = 1 - (2ffM/f) = 0 of the O-T solution. 

Proposition 2. I f  the equation of state/5(~) satisfies the condition 

dr> o, 
dfi 

and if 

A @ O  

everywhere on the shock surface (4.37), then the shock surface is nowhere characteristic. 
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Proof.  We al ready have that  (cf. (4.40), (4.33)) 

C C 
Z - E - R ( -  R ) f '  (4.55) 

s - 3 l-p]" (4.56) 

F r o m  the equat ion  (4.7) for dp/df, we see that  the sign of dp/df is posit ive inside 

the Schwarzschild radius and negative outside. Thus  s i g n ( [ p ] ) = s i g n  

(@~dr) = - sign(A). But on the shock surface, we also have by (4.51) that  

C = RZA,  

and so sign(A) = sign(C). Finally, we also have f rom (4.19) that/~/5 < 0. Thus,  

sign(Z) - sign(s) -- sign(C) - s ign( [p]  ) 

=- - sign ~ + s ign( [p ] )  =t = 0. [ ]  (4.57) 

We shall also need the following proposi t ion:  

Proposit ion 3. I f  R = 0 and A :t= 0 at a point on the shock surface (4.37) (i.e., the point 

is not on the Schwarzschild radius), then, if  the shock speed is finite at the point, the 

shock surface is also non-characteristic at the point. 

Proof.  By (4.39), the characterist ic surfaces satisfy 

df  
- - =  C = R Z A ,  
ds 

dt E = - R 3 R,  
ds 

where we have used (4.51) and (4.52). Therefore,  i f /~  = 0, the characterist ic is 

tangent  to t -- constant ,  and thus any finite speed s = df/dt is a non-character is t ic  

speed. [ ]  

Summary. The results of  this section can be summar ized  as follows: Let  (4.2) and 

(4.3) denote  the O - T  and R-W metrics for arbi trar i ly chosen equat ions  of state 

/~ = p(p)  and p = p(p), respectively. Then  we have identified the following condi-  

t ions under  which there exists a smoo th  regular  coordinate  t rans format ion  

~': (t, r) -~(f, e), 

and a cor responding  shock surface r = r(t) in (t, r )-coordinates (which maps  to the 

curve f = f(f)  in barred  coordinates  by (f, f(f))  = 7~(t, r(t))), such that  the metrics 

(4.2) and  (4.3) agree and are Lipschitz cont inuous  across the shock surface when 

wri t ten in the same coordinates  (for example,  they agree when bo th  are writ ten in 

either the barred  or unbar red  coordinates);  namely,  we have the following theorem: 
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Theorem 5. Assume that the shock surface f = f(t) is defined implicitly by 

M(f)  = ~ pf3 (4.58) 

in a neiohborhood of a point (to, ~o) that satisfies (4.58). Assume that 

T:(t, r) = R(t)r = f, (4.59) 

so that the spheres of symmetry agree in the barred and unbarred frames, and the 

shock surface in (t, r)-coordinates is 9iven by r(t) = f(t)/R(t). Assume finally that both 

1 -- kr(t) 2 > 0, (4.60) 

df C Rr 
dt + E - A (4.61) 

hold at t = to (cf (4.31), (4.33) and (4.52)). Then the coordinate F = 7Jl(t, r) can be 

defined smoothly and in such a way that ~P = (7Jl, lf2) is one-to-one and regular in 

a neighborhood of the point (to, ro), (cf (4.39)), and the metrics (4.2) and (4.3) match in 

a Lipschitz continuous fashion across the shock surface r = r(t) in a neighborhood of 

(to, ro). 

Note that by the implicit function theorem, a sufficient condition for (4.58) to 

define a surface locally through (to, ro) is that 

0 M 4~ 
~?ff3 - M - -~ - f i  ~: 0. (4.62) 

By differentiating (4.58) directly, we obtain the alternative sufficient condition (cf. 

(4.46)) 

[ p ] ,  0. (4.63) 

5. An Extension of the Oppenheimer-Snyder Model Satisfying Conservation 

In the last section we constructed a generalization of the Oppenheimer-Snyder 

model to the case of non-zero pressure by matching the R-W metric to the O-T 

metric in a Lipschitz continuous fashion across the shock surface (4.37). Two 

important problems remain to be answered: first, what is the smoothness class of 

the matched metrics, and second, under what conditions does conservation of 

energy and momentum hold across the shock interface? In this section we answer 

these questions by deriving the constraint equations on the R-W metric that 

guarantees conservation to hold across the shock surface when an arbitrary O-T 

solution is given. We show that conservation imposes one (not two!) additional 

constraints, and so we can meet this constraint by allowing the R-W pressure to 

be an additional unknown. We then reduce the constraint of conservation to 

an autonomous system of ordinary differential equations in which the coefficients 

are defined implicitly through identities obtained in the previous section. In a 
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for thcoming  pape r  we shall  p rove  the existence of local  so lu t ions  and  the posi t iv i ty  

of the R - W  pressure  for these equat ions .  

The  fol lowing l emma asserts tha t  the smoothness  p r o b l e m  and  the conserva-  

t ion p r o b l e m  are related: 

L e m m a  9. Assume that g and 0 are two spherically symmetric metrices that match 

Lipschitz continuously across a three-dimensional shock interface S to form the 

matched metric g wO. That is, assume that g and ~ are Lorentzian metrics given by 

ds 2 = - a(t, r)dt 2 + b(t, r)dr 2 + c(t, r)df2 2, (5.1) 

d~g 2 = -- a(f, r ) d f  2 q- b(t, r ) d r  2 q- g'(L t;)d 02 ,  (5.2) 

and that there exists a smooth coordinate transformation T : ( t ,  r )  ~ (f, f), defined in 

a neighborhood of a shock surface S given by r -= r(t), such that the metrics agree on 

E. (We implicitly assume that 0 and ~o are continuous across the surface.) Assume that 

c(t, r) = e ( ~ ( t ,  r)) (5.3) 

in an open neighborhood of the shock surface S, so that, in particular, the areas of the 

2-spheres of symmetry in the barred and unbarred metrics agree on the shock surface. 

Assume also that the shock surface r = r(t) in unbarred coordinates is mapped to the 

surface f = f(f)  by (f, f(f)) = IF(t, r, (t)). Assume, finally, that the normal n to S is 

non-null, and that n(c) ~ 0 where n(c) denotes the derivative of the function c in the 

direction of the vector n. 1~ Then the following are equivalent to the statement that the 

components of the metric g u j in any Gaussian normal coordinate system are C 1' 1 

functions of these coordinates across the surface Z: 

[G}] n; = 0, (5.4) 

[G ij] ninj = 0, (5.5) 

[ K ]  = O. (5.6) 

Here I f ]  = f - f denotes the jump in the quantity f across Z, and K is the second 

fundamental form on the shock interface defined by (2.10). 11 

ProoL Let  (w 1, W 2, W 3) = (Z 1, 0, q)) be a smoo th  coord ina t e  system on S, and  let 

z = (z ~ . . . . .  z 3) denote  the extension of these coord ina tes  to a Gauss i an  no rma l  

lo I.e., we assume that the areas of the 2-spheres of symmetry change monotonically in 

the direction normal to the surface. E.g., if c = r 2, then ~c/& = 0, so the assumption n(c) 4:0 

is valid except when n = O/&, in which case the rays of the shock surface would be spacelike. 

Thus the shock speed would be faster than the speed of light rays if our assumption n(c) ~ 0 
failed in the case c = r 2. 

11 This does not contradict the spherical shell example of ISRAEL in [3] because (5.3) fails 

in that example. 
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coordinate system in a neighborhood of S. Here, in the case of space-time, we 

let O/•z" = c~/~?z ~ (cf. Appendix i). Then by Lemma 2 of Section 3, n = ~?/c~z 3, 

and T = c~/c~z I is tangent to the shock surface. Now in light of Corollary 2 of 

Theorem 2 it suffices to verify that (5.5) implies (5.6). By Theorem 2, in w-coor- 

dinates we have 

[_GiJ-lninj = [G ~176 = [tr(K 2) - ( t r K ) Z ] .  (5.7) 

But in Gaussian normal coordinates the metric 9 ~ J is diagonal on the surface S. 

To see this, note that the restriction of the metric (9 u 0) to the surface S is diagonal 

because the off-diagonal cp and 0 components are zero in both (5.1) and (5.2), and 

the metric components (gw0)0j for j @ 0 are zero throughout any Gaussian 

normal coordinate frame in a whole neighborhood of S. Thus, by Lemma 3 of 

Section 3, 

1 (5.8) K i j  = - -  ~ g i j ,  o .  

Therefore, since 9 u j is diagonal on S, K is also diagonal, and so the only non-zero 

components of K are 

K11 1 (5.9) 
= -- 2~ii,0, 

K2 2 1 = --  5922,0,  (5.10) 

K33 = - l g 3 3 , o .  (5.11) 

But, since c and g (defined in (5.1) and (5.2)) transform like functions under 

arbitrary (t, r)-transformations, (5.3) implies that c and g define the same invariant 

function in a neighborhood of 2;. Thus, by (5.3) and the fact that c = 922 = c = 92a 

on S, we see that 922,0 = n(c) = g22 ,0  ::~ 0 and 933,0 = n(c) sin20 = g33,o :4 = 0 on 

the surface S, and hence 

1-K22 ] = 0, (5.12) 

[K33 ] = 0 (5.13) 

across S. Now we have 

0 = [Gij]ninj  = [-Goo] = [-tr(K 2) -- t rK) 2] = - 2 [Kl l ] (K22  + K33), (5.14) 

and since (K22 + K33) @ 0 (by the assumption n(c) q= 0), we conclude that (5.5) and 

(5.14) imply that 

[-Kll] = 0. (5.15) 

Since Kij  is diagonal, (5.12), (5.13) and (5.15) imply (5.6), so (5.5) implies (5.6), and we 

are done. [] 

Now in order to obtain the constraint equations for conservation of energy and 

momentum, we begin by assuming that a known O-T solution is given; namely, we 
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assume that ~(f), i6(f), B(f) A(f) and M(f)  are known functions that satisfy (cf. 

(4.5)-(4.8)) 

dg 2 = - Bdf  2 + A -1 d f  2 + r2d(22, (5.16) 

A ( f  2) = 1 2fqM(f) , (5.17) 

_ f2~_ = ~M#A-~ [i + ~] [ 1 4~g3/~1 
+ M _]' 

(5.18) 

M(f)  = 4---~p(t)f*, (5.22) 

ds z =  - d t  2 + R : ~  dr2 . +rZdQZ~ 
[1 - kr z J 

matches the metric (5.16) across the shock surface defined implicitly by 

B'(f) 2/~'(f) 
- /~ + .  (5.20) 

Note that when the equation of state/5 =/~(fi) is specified, (4.6) and (4.7) yield 

a system of equations that determine ~ and M. Now assuming the barred O-T 

metric is given, we attempt to find R(t) and k such that the R-W metric 

(5.21) 

and such that conservation holds across the surface. To do this we proceed 

formally. Assume first that the hypotheses (4.58)-(4.61) of Theorem 3, Section 4, 

hold, so that the metrics match Lipschitz continuously across the surface (5.2). In 

particular, we assume for our derivation of the conservation constraints that the 

shock surface can be written as 

3 M(f) 
P -  4~ f3 - f ( f ) ,  (5.23) 

tha t f ' ( f )  ~: 0, so that the shock surface defines f as a function of p via 

f = f - l ( p )  = f(p), (5.24) 

and that the identities (4.50)-(4.54) of Proposition 1 hold all along the shock 

surface. Assuming this and assuming that the shock surface is given by r = r(t), we 

derive a system of ordinary differential equations in (R, r) that express conservation 

across the surface. Note that since Rr = f holds in a neighborhood of the shock 

surface, (5.3) of Lemma 9 holds. In this section, we finish the paper by obtaining the 

differential equations for a shock surface across which conservation holds, under 

the assumptions of Lemma 9. We investigate the regime in which such shocks are 

physical in a forthcoming paper. To start, use the Einstein equation G = ~:T, the 

condition [G i j] ninj = 0 for conservation across the shock (cf. Lemma 7), and the 

d M  
df = 47cf2#' (5.19) 
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assumpt ion  that  the source fluid is co -moving  with respect  to the metrics on either 

side of  the shock (cf. (4.4)) to rewrite the condi t ion for conserva t ion  as 

_, rio 2 
[ r ] i Jn in j  = (p - P)lnl a + (p + p)n~ - (fi + p ) ~  = 0. (5.25) 

Here  we let ni and  ri~ denote  the / -coord ina tes  of the no rma l  vector  n to the shock 

surface (5.22) in unbar red  (R-W) and bar red  (O-T) coordinates,  respectively, and  

In 12 = gUninj. (Note  tha t  u i = 6~ in R-W coordinates,  u i = B-1 /2  6~ in O - T  coordi-  

nates, thus giving rise to the factor  B.) Since ni = 0 = rii, i -- 2, 3, we need only pay  

a t tent ion to the 0- and  1-coordinates  ofn.  To  verify (5.25), note  that,  for example,  in 

the R-W unbar red  f rame (4.4) gives 

r U n i n j  = pgiJnin j + (p + p)(uini) 2 = pin[ 2 q- (p q- p)(no) 2. 

Moreover ,  we need not  choose the vector  n to be of  unit  length, so long as n~ and  ti~ 

are the coordinates  of the same vector. Since the left-hand side of (5.25) is an 

invar iant  scalar, so is the r ight -hand side. In order  to evaluate  ni and  t/ ,  let (5.22) 

(formally) define the surface r = r(t), which we can write as the level curve of the 

scalar cp(t, r) = r - r(t) = 0. Then  we can choose nidx ~ = do,  so that  

d o  = nodt + n l d r  = - id t  + dr, 

which yields 

/ 1 /0  ~ - -  /~ ,  

n 1 = l .  

To obta in  ~ ,  we write the function O in (f, f ) -coordinates :  

O(F, f) - - -  r(t(f, f)). 
R(t( f ,  f ) )  

Then  

so that  

do(t ,  f)  = - ~ s R ~ _ -  /~ ~ d [ +  fi, dF, 

But using the fact tha t  

together  with (4.28): 

we have 

t ~  o - -  

R 8f" 

f = Rr, 

d[ = ~(t,  F) {C(t,  f ) d t  - E(t,  f)df},  

E 
dt = (~bC)- i d f  -~- -.C d~, 

(5.26) 

(5.27) 

(5.28) 

(5.29) 

(5.30) 
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which implies that 

0t 
~ ?  = ( ~ , c )  - 1  

Putting this into (5.30) yields 

~o =- ROC" (5 .31)  

Using the identity (4.50) of Proposition 1 we obtain 

rio 2 = B(1 - kr2)f 2, (5.32) 

wher  .and  1 (1 = are the coefficients of df 2 and df 2 in the O-T 

metric (4.2). Finally, using the R-W metric (5.21) to compute In 12, we obtain 

1 -- kr 2 n2 = _ i 2  1 -- kr 2 
Inl  2 = - n g + ~ a -~ R2 (5.33) 

Now substituting (5.26), (5.32) and (5.33) into (5.25) yields 

1 - kr 2 "2 
[r]iSnins = (,6 + p)~2 _ (~ + / ~ ) ~  + (p _/5)  

1 --  kr 2 
- 0. (5.34) 

R 2 

Equation (5.34) gives the additional constraint imposed by conservation across the 

shock in terms of the quantities r = r(t) (the shock position) and the values that 

p, p, p, p and R take on the shock surface. The following proposition explains why 

the pressure must be taken to be zero in the Oppenheimer-Snyder model: 

Lemma 10. I f  ~ = f = 0 identically (so that the O-T  solution reduces to the Schwarz- 

schild solution (4.1)), and p > 0 and p > 0 everywhere, then (5.34) implies that p = 0 

and r(t) = const, all alon9 the shock. 

Proof. When ~ =/5 = 0, (5.34) reduces to 

1 - kr 2 
pi  2 + p ~  = O. 

Since (1 - kr2)/R z > 0 in the R-W metric, the lemma follows at once. [] 

We now derive an ordinary differential equation for the unknowns (r(t), 

R(t)), the shock position r(t) and the cosmological scale factor R(t) in the R-W 

metric, so that we can guarantee that solutions of the ordinary differential equation 

necessarily give the shock-wave interfaces that are conservative. In order that 

the functions R, p and p in the R-W metric not be over-constrained when we 

impose the conservation constraint (5.34), we must allow the pressure p in the R-W 

metric to be determined by the unknown functions r and R, rather than by an 
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equation of state p = p(p). To see this, recall that the R-W metric satisfies the 

equations, (cf. [15]) 

/~2 87"C4ff R 2 
= - 5 - p  - k, (5.35) 

~t(pR 3) 
p - 3R2/~ �9 (5.36) 

In the case when p is given by equation of state p = p(p), equations (5.35) and (5.36) 

give a system of two equations in two unknowns which determine R and p. Thus if 

we also ask that (5.34) hold on the shock surface for some fixed known functions 

and ~, then we obtain a third constraint on the functions R, p and p, and then we 

let p be one of the unknowns in order to have as many unknowns as equations. To 

construct the ordinary differential equation, note that/3(f) and/~(f) can be taken to 

be known functions of r(t) and R(t) in (5.34) through the identity 

f(t) = R(t)r(t), 

which holds all along the shock surface. Thus, on the shock surface, 

[~ = fi(R(t)r(t)), (5.37) 

p = fi(R(t)r(t)). (5.38) 

Moreover, the function'/) in equations (5.34) and (5.35) can be written as a function 

of (r(t), R(t)) through the shock surface equation (5.22): 

p =f(R(t)  r(t)), (5.39) 

where 

3 M(/;) 
f(/;) - 4re i:3 �9 (5.40) 

Therefore, we can write equations (5.34) and (5.35) in terms of the two unknowns 

(r, R) once we obtain an expression for the pressure p on the shock surface in terms 

of r(t) and R(t). For  this we use the final equation (5.36). Differentiating, we obtain 

~(pR 3) DR 
P -- 3R2t~ = -- P 3/~' (5.41) 

and using the relations 

/5 = f '  (f) {/~r + iR }, 

3 { M '  3M)  3 
f ' ( f )  = 47c \ f 3  ~ = r ( f i  -- P), 

we obtain, after simplification (cf. (5.39), (5.43)) that 

1 M'(f)  R2f ' ( f )  R2U ' . R 
P -  4re t=2 3/~ i = - f i  ~ - - r = - f i +  ( p - C S ) R  , 

(5.42) 

(5.43) 

(5.44) 
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which gives the final variable p in terms of the unknowns (r(t), R(t)) and their 

derivatives on the shock surface. Substituting (5.44) into (5.34) yields 

[T]iJninj = (fi + p)i2 _ (15 + i6) ( - krZ)(Rr AR  2 + Rt:) 2 

+ { _ f i + ( p _ ~ ) r R / ~ i } ( l - k r 2 )  - ( 1 - k r 2 )  
~ 7  p RE - 0, (5.45) 

which, upon multiplying by (1 - kr2) - 1 and simplifying, puts the constraint im- 

posed by conservation into the final form 

[r]iJninj = ~i 2 + fli + y = 0, (5.46) 

where 

/5 + p /3 +/~ (5.47) 
-- 1 -- kr 2 A ' 

Rr 1 
fi = - 2 ~ ( f i  + if) + ~ ( p  -/5),  (5.48) 

( /~2 r2"~ (fi + /5"~ 
7 = - 1 + ~ j  \ ~ T - j "  (5.49) 

For a given O-T solution /3(f), /5(f), M( f ) ,A( f )=  1 , B(f), all of the 

functions appearing in (5.46) can be expressed in terms of the unknowns (r(t), R(t)) 

by means of the transformation f =  rR, the shock surface equation 

3 M 8rely 2 
p(t) = f ( f )  - 4re f3, and the R-W identity/~2 = T pR - k. Thus equation (5.46) 

gives the conservation constraint in terms of a first-order ordinary differential 

equation with independent variable t and unknowns (r, R). It follows that the 

system (5.35), (5.46) forms a first-order autonomous system of two equations in the 

two unknowns (r, R). Moreover, the solutions (r(t), R(t)) of this ordinary differen- 

tial equation determine the R-W metrics that match a given O-T metric across 

a shock surface r = r(t) such that the additional condition of conservation is 

maintained across the shock. The density and the pressure in the R-W metric are 

then determined by R(t) through the relations p(t) = f ( f )  and (5.44), respectively. 

We summarize this result in the following theorem: 

Theorem 6. Let M(f),/5(f), if(f) be determined by a fixed O-T solution of the Einstein 

equations, and assume the coordinate identification f = rR and f = f(t, r), where f satis- 

ties (4.28). Then the R - W  metrics p(t), p(t), R(t) that match the given O-T solution 

across the shock surface r = r(t), such that the weak form of conservation [T]iJnj = 0 

holds across the surface, satisfy the system of ordinary differential equations 

R2 87~G 2 
= - - ~ - - - p R  - -  k ,  (5.50) 

~i2 + fir + 7 = O, (5.51) 
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where :~, fl, 7 are the functions of(r, R) 9iven by (5.47)-(5.49). Solutions of(5.50), (5.51) 

then determine the R - W  density and pressure through the identities 

3 M  
p(t) - 4re f3,  (5.52) 

~(pR 3) 
p - 3R2/~ . (5.53) 

Moreover (by Lemma 9), the surface r = r(t), so obtained, is a true shock surface, and 

not a surface layer, because all of the equivaIencies (i) (iv) of Theorem 4 must hold at 

the surface r = r(t). 

The following corollary asserts that for every "collapsing" (~ > 0) solution of 

(5.35), (5.46) there exists a corresponding "expanding" (~5 < 0) solution and vice 

versa. 

Corollary 7. I f  (r(t), R(t)) satisfies (5.35) and (5.46), then so does ( r ( -  t), R ( -  t)). 

Proof. When t-* - t ,  the only term in (5.35) and (5.46) that changes sign is 

/~ -~ - / ~ ,  and thus fl changes sign in (5.46), but not e or 7. The result follows. [] 

6. Concluding Remarks 

Theorem 6 reduces the problem of constructing shock-wave solutions of the 

O-T and R-W metrics to the level that the O-T and R-W metrics themselves are 

given; i.e., to a system of two ordinary differential equations in two unknowns. In 

a forth-coming publication we shall study solutions of the equations (5.50) and 

(5.51) for the shock position r(t) and the cosmological scale factor R(t) which 

determine the pressure jump across the shock in these models. It remains to 

compare the qualitative behavior of solutions in the case p + 0 to the case p = 0, 

the Oppenheimer-Snyder case, where there is available an explicit formula for the 

solution. This analysis should have implications relevant to the long-standing open 

problem as to whether the pressure forces can prevent "continued gravitational 

contraction" in stars [9]. 

It is also interesting to consider the consequences of admitting solutions of the 

Einstein equations which are only Lipschitz continuous across shock interfaces; it 

is not known whether such Lipschitz continuous shock waves can evolve out of 

smooth solutions of the field equations. Consider, for example, the case of the free 

Einstein equations Gi~ = 0. By allowing any solution metric that is only Lipschitz 

continuous across an interface, it appears that one could construct many solutions 

of Gij = 0 across the interface by solving the initial-value problem with arbitrary 

derivatives on the surface. (Of course this is not an issue for C 1 metrics.) In the case 

of spherically symmetric solutions, Birkhoff's Theorem (see [8]) tells us that 

shock-wave discontinuities cannot form because all solutions are coordinate- 

equivalent to the Schwarzschild solution. This is consistent with our Lemma 7 
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which states that any Lipschitz continuous spherically symmetric solution of 

Gi; = 0 is coordinate-equivalent to a C ~ metric. However, our counter-example at 

the end of Section 3 shows that solutions having less symmetry can admit conserva- 

tive shock-wave solutions ([G}]ni = 0) across which K is not continuous, and 

hence across which the metric suffers jumps in the first derivatives which cannot be 

transformed away. We conclude that the introduction of Lipschitz continuous 

solution metrics raises interesting new questions of existence, uniqueness and 

admissibility for weak solutions of the Einstein equations. 

7. Appendix i: Gaussian Normal Coordinates 

In this appendix we give the proof of Lemma 1; i.e., that 

ds 2 =_ d(wn) 2 + 9ijdwi dw j, 

where w denotes the Gaussian normal coordinate system constructed in the 

paragraph preceding Lemma 1.12 To verify (3.12) it suffices to show that 

for all i =t = n, where ( , )  denotes the inner product with respect to the metric 9. This 

is a consequence of the following well-known identities: 

0 (~wi , ~ @ ) =  (Vs~w, ' ~ , ! \ +  (~w~ V~w, ,~wj)  ' (7.1) ~ W  n ~w ~ ~wJ / 

Vx Y -  VrX = IX, Y], (7.2) 

where X and Y denote arbitrary smooth vector fields, V denotes the covariant 

derivative defined (in coordinates) by (2.7) and [ ,  ] denotes the Lie bracket. Since 

~3 d 
by construction of Gaussian normal coordinates, ~w" = ds 7p(s) for some P e S, 

this implies that ~ is parallel along the curves 7. Thus 

0 
V~ - - = 0  

~w"-7, ~W n 

in the w-coordinate system, and (7.1) implies that 

/ 6 , 0 @ ) = / ~ w ~  ' V ~  ~w/). (7.3) 7w" 

12 This result is well known, [2]; we include it for completeness. 
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F r o m  (7.2), 

V__ a = - -  + = (7.4) 

because j~wX . . . . .  are coordinate  vector fields. Therefore,  using (7.3) and 

(7.4) we have 

Thus, ~-~w"' ~ - 0 in w-coordinates, so 0w"' ~wSw ~ is identically equal to 

a constant ,  which must  be zero because it is zero on N by construction.  This 

completes the proof  of Lemma  2. [ ]  

8. Appendix ii: Proof of Proposition 1 

In this appendix we supply the proof  of statements (4.50)-(4.54) of Proposi t ion  

1. The t ransformat ion T that  maps the (t, r ) -coordinates  of the R-W metric to the 

(f, f ) -coordinates  of the O-T  metric is given by 

df = f{r dt + R dr, 

dr= ~Cdt  - ~ E d f  = (~C - ~ERr)dt  - tpERdr, 

where we have used (4.28) together  with the fact that  f = T2(t, r) = R(t)r. F r o m  

these it follows that  

afi  [ 0  C - OERr - OER T 

~ x  j - /~r R JJ , (8.1) 

where in this section we use the nota t ion  x = (t, r), 2 = (f, f), and 2 = (t, f), and we 

suppress the (0, ~o) coordinates.  (Here, the upper  i and lower j on the r ight-hand 

side of (8.1) denotes the (i , j)-entry of the matrix.) F r o m  these relations it follows 

easily that  

El 0]i - -  = , ( 8 . 2 )  

Ox [~r R j 

= l J j  " (8.3) 

Now in the (tr)-coordinate plane, the R-W and I-S metrics have components  
U i j  gRW and goT in x- and 2-coordinates  given respectively by 

R 2 ) 
gRw = 0 ~ l J  

goTiJ = I-B-1 01i 
0 A j' 

(8.4) 

(8.5) 
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where A = 1 - 2~M/f ,  and B satisfies (4.8). Now on the shock surface M = ~ pf3, 

the metrics gRw and 9or agree, by which we mean that 

~x~gij g]X ~ 
g~Pw = ~2i or  ~2j .  

Rather than calculate this out directly, we use the fact that the R-W and O-T 

metrics must have components that agree on the shock surface in the Y-coordi- 

nates. Thus we calculate 

a2~ i~ 02P I - 1  - " r  ] ~' 
O]~w = ~xTg"w~xJ = - Rr --/~2r2 + (1 -- kr 2) ' (8.6) 

E =02i  Is o2j - T- 

(Again, the superscript ~/~ on the right-hand side of (8.6) and (8.7) denotes the (c~, fl) 

entry of the matrix.) Equating the (0, D-entries in (8.6) and (8.7) we obtain (4.52). 

Equating the (1, D-entries in (8.6) and (8.7) we obtain (4.54), and this together with 

(4.52) gives (4.53). Equating the (0, 0)-entries in (8.6) and (8.7) gives the first equality 

in (4.50), and applying (4.54) gives the second. Finally, (4.51) follows from (4.52) 

together with (4.33), E = - RRr. This concludes the proof of Proposition 1. [] 

Alternatively, we can derive (4.50)-(4.54) directly from (4.5), (4.17) and (4.37), 

together with the expressions (4.31), (4.33) and (4.38) for C, E, and B, respectively. 

To obtain (4.54), solve (4.37) for p, solve (4.5) for M, and substitute these into (4.17). 

To obtain (4.51), multiply (4.17) by r z, solve for (8n~/3)pR2R 2, and substitute this 

into (4.31). Using (4.51) together with (4.33) gives (4.52). The identity (4.52) together 

with (4.54) yields (4.53). Statement (4.38) together with (4.51) gives 

1/@2C 2 = (B/A)(1 - k r 2 ) .  Using (4.51) together with (4.33) and (4.54), in the ex- 

pression 1 + AE2/C 2 gives the last equality in (4.50)). 
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