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Executive Summary 

We study the structure of planar shock waves in a two-temperature model of a fully ionized plasma 
that includes electron heat conduction and energy exchange between electrons and ions. For steady flow 
in a reference frame moving with the shock, the model reduces to an autonomous system of ordinary 
differential equations which can be numerically integrated. A phase space analysis of the ODEs provides 
additional insight into the structure of the solutions. For example, below a threshold mach number the 
model produces fully dispersed shocks; while above another threshold mach number, the solutions contain 
embedded hydrodynamic shocks. Between these two threshold values, the appearance of embedded 
shocks depends on the electron diffusivity and the electron-ion coupling term. We also find that the 
ion temperature may continue to increase after the shock and reaches a maximum near the isothermal 
sonic point. We summarize the methodology for solving for two-temperature shocks, and show results for 
several values of shock strength and material parameters to quantify the shock structure and explore the 
range of possible solutions. Such solutions may be used to verify hydrodynamic codes that use similar 
plasma physics models. 

1 Introduction 

We study the structure of planar shock waves in a two-temperature model of a fully ionized plasma that 

includes electron heat conduction and energy exchange between electrons and ions. For steady flow in a 

reference frame moving with the shock, the model reduces to an autonomous system of ordinary differential 

equations which can be numerically integrated. The primary focus of this study is to compute and explore the 

range of possible shock solutions for a model plasma. These solutions may be used to verify hydrodynamic 

codes that use similar plasma physics models. 

The first qualitative picture of the shock wave structure in a two temperature electrically neutral plasma 

was provided by Zel'dovich, for the case of strong shock waves in air [5J. Shafranov computed the shock 
profiles for a specific model of hydrogen with shocks of varying strength [4]. Imshennik analyzed a generalized 

version of Shafranov's model to determine a critical shock strength between fully continuous (fully dispersed) 

shock profiles and discontinuous (embedded hydrodynamic shockS) shock profiles [2J. Most subsequent work 

focused on the radiative effects of strong shocks or magnetic field effects in non-neutral plasmas. However, the 

importance of electron heat conduction in ICF pellets and some astrophysical regimes has made the inclusion 

of plasma models with separate ion and electron temperatures in simulation codes desirable. Producing 

analytic (or semi-analytic) solutions for two temperature plasmas in the absence of radiation is useful for the 

verification of the physics algorithms (or a subset of the physics algorithms) within a full simulation code. 

In this study we focus only on the interactions of the electrons and ions with a shock moving through a 

fully ionized gas. We assume that strong Coulomb interactions keep the electrons and ions rigidly coupled, 

so that the plasma remains electrically neutral. We neglect all radiative effects and assume that both the 

electron heat conduction and the energy exchange between the electrons and ions is linear. While the our 

model will be invalid for determining the true details of plasma shock structures, the solutions described 
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in this study are simple to compute and provide additional insight into the shock structure. Simulating 

shocks in plasmas remains a challenging problem and simulation codes should be verified against available 

exact results [1]. The simple model we employ captures the primary effects of shocks on the electron and 

ion temperatures and may lead to a more complete picture of the range of possible solutions. For instance, 

we show that the ion temperature may continue to increase behind a hydrodynamic shock and achieve a 

maximum in the region downstream of the shock, similar to an effect seen in radiative shocks [3]. We also 

improve on Imshennik's derivation [2] of the boundary between continuous and discontinuous shock profiles. 

In Section (2), we provide the governing equations for and describe our plasma model. In Sections (3-4), 

we reduce the governing equations to the simple case of a steady shock in a reference frame that is stationary 

with' respect to the shock and describe the overall jump conditions from the upstream to the downstream 

states and the jump conditions at a shock. In Section (5), we further reduce the governing equations to a 

2 x 2 system of coupled nonlinear ordinary differential equations. In Section (6), we describe the numerical 

procedure we employ to compute solutions. In Section (7), we depict solutions for several values of material 

parameters and shock strength and describe two novel observations. We summarize our results and address 

possible future investigations in Section (8). 

2 Governing Equations 

Assume a fully-ionized flow of a single material in a I-D planar geometry. The governing equations are given 

by 

OtP + ox(pv) = 0, 

Ot(pv) + ax (pv2 + p) = 0, 

ot(pE) + Ox [v (pE + p)] = Ox(KeoxTe), 

Ot(pee) + Ox (pvee) + PeOxV = "Iei(Ti - Te) + ax (KeoxTe) , 

(Ia) 

(Ib) 

(Ic) 

(Id) 

where p is the density, v the velocity, P the bulk pressure and "Iei(P, Te) the electron-ion coupling coefficient. 

The subscript-e corresponds to an electron quantity and the subscript-i denotes an ion quantity. So for 

example, ee is the specific electron energy and Ti is the ion temperature. The total material energy is 

denoted by E = e + v2 /2. Also, Ke(P, Te) is the thermal diffusivity for the electrons. 

The material's equation-of-state (EOS) is assumed to be of the form 

P = p(p, T), e = e(p, T), (2) 

The ion and electron quantites are assumed to be related as 

P=Pi+Pe, (3) 

with the further assumption that 

e = CvT = Cv,iTi + Cv,eTe = ei + ee· (4) 

In this ionized flow model, the quantity T is a mathematically useful average ofTi and Te. Several calculations 
are simplified by considering T and Te, instead of Ti and Te. Physically, we think of T(x) as an equilibrated 

temperature, the limit of Te(x) and Ti(X) as "lei -> 00, The ratios of electron and ion specific heats to the 

bulk specific heat are written as a fractional quantity with the single parameter Z. 

Cv,i = _1_ Cv,e Z (5) 
Cv Z + 1 ' Cv Z + 1 . 

Note also that the electron advection equation (Eq, (ld)) can be expressed as 

pTe DBe = "Iei(Ti - Te) + Ox(KeoxTe) (6) 
Dt 

where Be is the electron entropy. We use Eq. (6) to derive the additional jump condition required for the 

system (1). 
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i 

In this section we define the shock problem we wish to solve. We select a reference frame where the 
shock speed is zero and the flow . moves in the +x direction. The non-zero shock speed case may be found 

through a Galilean transformation. The reference state (subscript-a) will refer to the far upstream conditions 

(x -+ -00), while the subscript-l refers to far downstream conditions (x -+ 00). We assume that far from 

the shock, the electron and ion temperatures equilibrate, so that 

(7) 

where j E {O, I}. 

The problem statement is then: 

• Given: 

- The upstream state (p, v, T)a and the upstream Mach number Ma = va/eo. 

- The constants 'Y, C,,, Z, 'Yei and "'e· 
- The functions pep, T) and e(p, T). 

• Calculate: 

- The functions p(x), u(x), Te(x) , and Ti(X) . 

4 Jump Conditions 

We first provide the overall jump conditions between the upstream and downstream equilibrium states at 

x = ±oo and then the jump conditions at a shock. 

In a reference frame where the shock speed is zero, state-a and state-l (overall jump conditions) are 

related by 

( 
pvr+ p) = ( pvr+ p ) 

v(pE+p) a v(pE+p) I 

(8) 

These equations follow from Eqs. (la-c,7) and can be solved to find state-l, given state-a and the upstream 

Mach number Ma [6]. Note that Eq. (8) does not involve Eq. (ld), since the equilibrium assumption, Eq. (7), 
determines the final values of Te and T i . 

The nonlinear system (1) can produce a discontinuity (an embedded hydrodynamic shock) in the flow 

variables, which we denote as a jump from a left state (subscript-d to a right state (subscript-R). This 
discontinuity is governed by the shock conditions 

(9) 

which are determined by integrating (1,6) over an infinitesimal domain surrounding the shock. Note that 

while Te (for "'e =I- 0) and pv are continuous, a"Te and Se may be discontinuous at a shock. 
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In the steady-state, Eqs. (la-d) simplify to 

(pv)' = 0, 

(pv2 + p)' = 0, 

[v(pE + p)l' = (~eT~)', 

(pvee)' + Pev' = "(ei(Ti - Te) + (~eT:)' 
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(lOa) 

(lOb) 

(lOc) 

(lOd) 

where (.), == d(·)/dx. Assuming a "(-law EOS (p = pe("(-l)), we use the analysis in Zel'dovich and Raizer [6J 
to simplify Equations (lO(a-c)): 

~ = 1 + "(M~(1-1)) (1) - "(~~) = (1 + "(M~)1) - "(M~1)2 (lla) 

dTe _ mov6 "( + 1 (1)( ) 
~e - - ---- - 1) 1) - 1)1 . 

dx 2"(-1 
(lIb) 

Here mo = pv = PoVo, Mo = vo/co is the upstream Mach number, 1) = vivo = Po/p and 

,,(-1 2 1 

1)1 = "( + 1 + "( + 1 M~ . 

We use Eq. (lOd) to derive an expression for ;Px . Assume Cv,e is constant and note that 

(12) 

follows from the expressions in Eq. (5). Then Eq. (lOd) can be written as 

2(Z+I)I< . -Y. , Cu., (T - T) - tl.!(1 -1))(1) - 1) ) 
C~ •• mg --;;-g- e -y_1 I 

2("(,;-1) %(Te + ¥i(21) - (1 + 1)d) 

(13) 
moCv,e dx 

We now introduce some additional notation. Define the length scales LD = ~c and Lc = moC~ .• 
rno \J, e leI 

and the scaled temperature e = ~T . The scaled ion and electron temperatures are defined similarly; 
Vo 

e i e = ~Ti e · For convenience, let 1)tO = 1 + MI " and J-t2 = ~+-11. Note that 
, V o ) 'Y 0 "Y 

We write Eqs. (11) as 

and 

We write Eq. (13) as 

Z 1 e = ---- (1)tO -1)) 1) 
Z+l"(-l 

d1) 2(Z + l)~L (8 - Be) - ::\-(1 -1))(1) -1)1) 
L _- c Jl. 

D dx - 2("( - 1) B_2 (!.±!1!. - 1)) . 
'1 e j7I 2 

We also write Eq. (9d) as 

(14) 

(15) 

(16) 

(17) 

(18) 
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We use Eq. (18) to determine the jump in flow variables when a discontinuity occurs in the system of 

differential equations, Eqns. (16-17). 

Finally, we make one additional substitution and rewrite ofEqs. (16,17). Let ( = 2J1.!f
LD 

and R = ~:I ~. 

Then Eq. (16) becomes 

and Eq. (17) becomes 

de 
_e = (1 - 7])(7] - 7]J) 
d( 

d7] = -7]R (Z + 1) 8e - e~2. 
d( Z ee - eg l 

Both e~1 and 8~2 are quadratic curves in (7], ee) phase space with 

eel ( ) ' = (1 + 7]1 _) 7] 
e 7] . 2 7] J1.2b-l) 

and 
8 e2 ( ) := e _ ~ (7] - 7]J)(1 - 7]) = Z [(1 - R)7]2 + (R7]tO - (1 + 7]d)7] + 7]d . 

e 7] Z + 1 b - l)R (Z + 1)(r - l)R 

(19) 

(20) 

(21) 

(22) 

Note that Eqs. (18,19,20) remain unchanged if the constants "'e and 'Yei are replaced by the functions 

"'e(P, Te) and 'Yei(P, Te), respectively. 

6 Solution Procedure 

Equations (19) and (20) form a 2 x 2 autonomous system of ODEs, with independent variable ( and 

dependent variables 7] and ee . Numerically integrating this system from the initial equilibrium state 

(7], ee) = (1,8e,o) = (1, eo) to the final equilibrium state (7], ee) = (7]1, ee,l) = (7]1,8 1) determines the 

functions 7](() and 8 e ((), which ultimately determine the functions p(x), v(x), Te(x), and 1i(x). However, 

such a direct integration is only possible while the ODEs remain continuous. Note that equation (20) has 

a discontinuity along the curve 8 e = e~1 (7]). If the initial and final states are not separated by this curve, 

the solutions are continuous. When the initial and final states are separated by this curve, the solutions 

may exhibit an embedded hydrodynamic shock, depending on the value of R. This separation occurs when 

Mo is greater than a critical value Me. Above another threshold mach number, Mq, the solutions always 

exhibit a shock; we derive Me and Mq in Subsection 7.2. Shocks complicate the solution procedure; when 

shocks occur, we integrate away from both the initial and final equilibrium states towards the discontinuity 
and connect the resulting numerical solutions by enforcing the shock condition, Eq. (18). 

In Appendix A, we classify the initial and final equilibrium states. The initial state is always a saddle 

point, therefore we integrate away from state-o in the +x-direction. When Mo < Me, the solutions are 

continuous and the final state is a stable point (an attractor); we then integrate from state-o to state-I. For 

Mo > Me, the final state is also a saddle point, so we integrate away from state-I in the -x-direction. In this 
case, the two solution curves may meet at the intersection of 8~1 and e~2 and form a continuous solution, 

or a hydrodynamic shock will connect the two solution curves. 

At state-o and state-I, equations (19) and (20) are singular. To start the integration, we evaluate dee / d7] 
at the end states (see Appendix B.) We then perturb 7] from 7]j as 
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where we select If I « 1. A simple argument ( [6]) requires that 8 e be monotone in 'r/, so that for state-o we 

use f < 0 and for state-I we use f > O. The corresponding electron temperature is 

8 ~ 8 +f (d8
e

) e,. J d ' 
'r/ j 

which is accurate to O(f2). Using ('r/,8e ). as the initial state at a freely specified spatial coordinate xo, we 

then integrate Eqs. (19, 20) numerically, using an explicit Runge-Kutta scheme. 

The numerical procedure may be summarized as follows: 

• Determine (171, 8d given the upstream mach number, Mo, the ideal gas constant, ,,(, and the ionization 
number, Z. 

• Determine Me and Mq. See Subsection 7.2. 

• If Mo <= Me 

- evaluate d8 e /d'r/ at 'r/ = 1 

- determine 8 e ,. 

- integrate from starting state ('r/, 8 e ). near (1,80 ) to an end state near ('r/I, 8d in the +x-direction 

• If Me < Mo < Mq 

- evaluate d8e1d'r/ at 'r/ = 1 and 'r/ = 'r/I 

- determine 8 e ,. at both end states 

- integrate from a starting state ('r/,8 e ). near (1,80 ) in the +x-direction 

- integrate from a starting state ('r/, 8 e ). near ('r/I, 8d in the -x-direction 

- if the two solution curves intersect at the intersection of 8~1 and 8~2, note the value of 8 e at this 

intersection. 

- otherwise, a hydrodynamic shock connects the two solution curves, which have intersecting 8 e 

ranges. Use the method of false position (Newton's Method without derivative evaluations) to 

find a value of 8 e (and corresponding 'r/L and 'r/R) that satisfies the shock condition, Eq. (18). 

- Translate the state-I solution curve so that the solution curves intersect at the resulting value of 

8 e . 

• If Mq < Mo 

- evaluate d8e /d'r/ at 'r/ = 1 and'r/ = 'r/I 

- determine 8 e,. at both end states 

- integrate from a starting state ('r/, 8 e ). near (1,80 ) in the +x-direction 

- integrate from a starting state ('r/, Be). near ('r/I, 8 1) in the -x-direction 

- a hydrodynamic shock connects the two solution curves, which have intersecting 8 e ranges. Use 

the method of false position (Newton's Method without derivative evaluations) to find a value of 

8 e (and corresponding 'r/L and 'r/R) that satisfies the shock condition, Eq. (18). 

- Translate the state-I solution curve so that the solution curves intersect at the resulting value of 

8 e . 
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In this section, we present several example solutions. Upon initial inspection it appears that three parameters, 
'Yei, /'i,e and Mo, influence the classification of possible solutions. The electron ion coupling term, 'Ye; appears 

in Eqs. (20) through the length scale ratio, R. The electron thermal diffusivity, /'i,e, appears (through LD) 

in both R and the scaled independent variable, (, which determines the integration length scale. Thus, for 

fixed values of Mo and R, varying /'i,e will produce a range of self-similar solutions differing only by length 
scale, i.e., qualitatively different solutions will not be produced. Therefore, only the two parameters, Mo and 
R, determine the qualitative solution behavior. The upstream mach number, Mo, determines the strength 

of the flow, while R determines how strongly the ion and electron temperatures couple. For R » 1, the 

electron and ion temperatures are strongly coupled, while for R « 1, the electron and ion temperatures are 
weakly coupled. We will refer to solutions with R » 1 as strongly coupled, and solutions with R « 1 as 

weakly coupled. 
For the solutions presented below, we provide both temperature profiles (plots of Te and Ti versus x) 

and the corresponding (f/,8) phase space diagrams. We use Po = 1, Uo = 0, 'Y = 5/3, Z = 1, Cv = 2 (so 

that Cv,e = Cv,i = 1) and Po = 'Y-
1 = 3/5 (so that Co = 1 and mo = POVo = Mo). We fix /'i,e = 1 so that the 

integration length scale depends only on Mo. With these settings, the value of Mo below which solutions 

are continuous, regarless of the value of R, is Me ~ 1.125 and the value of Mo above which solutions are 

discontinuous, regardless of the value of R, is Mq ~ 1.661. We then vary Mo and R = W to explore the 
o 

range of possible solutions. Figure (1) indicates the values of Mo and R that we present. 
In Figures (2-4), we present three continuous solutions with upstream Mach number Mo = 1.1 and 

varying values of the length scale ratio, R. The solutions are continuous because the initial and final states 

are not separated in phase space by the curve 8 e = 8~1(f/), along which ~ is discontinuous. Note that 
in each case, 8 e > 8 i upstream, but the phase space curves intersect and 8 i > 8 e downstream. Since 

~ < 0 throughout the solution and 8 e > 8~', we also have the inequality 8 e > 8;2, but note that 8 e 

approaches 8;2 near the final state, particularly evident in Figure (2) . This limiting behavior suggests that 

for continuous solutions, 8;2 serves as a lower bound for 8 e near the final equilibrium state. Note that in 

Figure (2), 8 i (f/) is not monotone and a peak occurs in T;(x) . As R increases, 8;2 approaches 8 and the 
electron and ion temperatures become strongly coupled . At R = 10.0, the coupling of the temperatures is 
such that the differences in the temperatures are imperceptible in the profile and phase space diagrams. 

In Figures (5-10), we present four solutions with upstream Mach number Mo = 1.4 and varying values of 
the length scale ratio, R. In each of these solutions, the initial and final states in phase space are separated by 

the curve 8 e = 8~'(f/), however not all of the solutions are discontinuous. In Figures (5-7), a hydrodynamic 
shock connects the 8 e solution curves; in phase space, the shock causes 8 e to cross both 8~' and 8;2, so 

that ~ < 0 throughout the solution. Again, we have 8 e > 8 i near the upstream state and 8 i > 8 e near 
the downstream state. We also note that 8 i (f/) is not monotone and a peak occurs in Ti(x). Note that for 

R = 0.1 and R = 1.0, the peak in 7i(x) occurs at the hydrodynamic shock, while for R = 10.0, the peak 
occurs downstream of the shock. We investigate the occurence of this post-shock maximum in Subsection 

7.1. This behavior is reminiscent of a Zel'dovich spike [6]. In Figure (9), a continuous solution exists, despite 
the separation of the initial and final states by the curve 8 e = 8~1. The continuity of the solution is possible 
because 8 e passes through the intersection of 8~' and 8~2 . We describe the boundary between continuous 
and discontinuous solutions in Subsection 7.2. 

In Figures (11-13), we present three solutions with upstream Mach number Mo = 1.7 and varying values 
of the length scale ratio, R. In each of these solutions, the initial and final states in phase space are separated 

by the curve 8 e = 8~'(f/) and each solution contains an embedded hydrodynamic shock. Note that in the 
phase space diagrams, the intersection of 8 and 8;' occurs at a value of 8 e > 8, . As R increases, 8~2 
approaches 8, and so the intersection of 8~' and 8;2 approaches the intersection of 8~' and 8 . Since this 

intersection occurs at 8 e > 8, and ~ < 0, the solution curves can not meet at the intersection of 8;' and 

8;2 for large values of R . For smaller values of R where the intersection of 8~' and 8~2 may occur in the 

rectangle [f/l, 1] x [80 ,8,], the solution branches do not approach the intersection. 
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Figure 1: Solution Parameter Space. Me is the cutoff in the upstream mach number, Mo, such that for any 

value of Mo < Me the solutions will be continuous. For Me < Mo < Mq , hydrodynamic shocks may appear 

in the solutions, depending on the value of R. For Mo > Mq , hydrodynamic shocks appear in the solutions, 

regardless of the value of R. For R» I, the electron and ion temperatures are strongly coupled . For R« 1, 
the temperatures are weakly coupled. Points indicate solutions presented below. 
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(b) Solutions in Phase Space 

Figure 3: Continuous Solution with Moderate Coupling. Mo = 1.10 and R = 1.0. 
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Figure 4: Continuous Solution with Strong Coupling. Mo = 1.10 and R = 10.0. 
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Figure 5: Discontinuous Solution with Weak Coupling. Mo = 1.40 and R = 0.1. 
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Note peak in Ti is downstream of the hydro shock. 
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Figure 11: Discontinuous Solution with Moderate Coupling. Mo = 1.70 and R = 1.0. 
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Figure 13: Discontinuous Solution with Strong Coupling. Mo = l.70 and R = 100.0. 

7.1 Maximum Ion Temperature 

In this section, we explain why a maximum in the ion temperature, T i , can occur in the post-shock relaxation 

region. Differentiating Eq. (12) provides a simple condition for when dTddx = 0: 

(Z + l)dT = ZdTe . 

dx dx 

In (7], ee) phase space, this condition translates to 

(Z + 1) de = Z de e . 

d7] d7] 

Since de e /d7] < 0, a maximum in the ion temperature can only occur when de/d7] < O. Thus, by differen

tiating Eq. (15), we derive a necessary condition for the formation of a maximum ion temperature: 

7] > 7]tO/2. 

Consider the hydrodynamic shock in the phase space diagrams, Figures (5-7(b)). Let 7]. be the value of 

7] on the downstream (left in the phase space diagrams) side of the shock and let 7]pe be value of 7] on the 

upstream (right) side of the shock. The necessary condition for a maximum in the ion temperature to occur 

in the post-shock relaxation region is then: 

7]. > 7]tO/2. (23) 

With, = 5/3 and Mo = 1.4, as in Figures (5-7),7]tO/2 ~ 0.65. In both Figure (6(b)) and Figure (7(b)), 

7]. > 7]tO/ 2. However, the ion temperature passes through a post-shock maximum only in Figure (7(b)). 

The condition in Equation (23) can be expressed alternatively in terms of the local Mach number, M, of 

the flow. The local Mach number is given by 

M = ~ = Mo7] (To) -1/2 = j 7]ft . 
c T 7]tO - 7] 

(24) 

We substitute 7]1,7]., 7]pe and 7] = 1 into Equation (24) to obtain the associated terms M I , M., Mpe and Mo. 

We use the expression Mi,e to denote the value of MI when Mo = Me . When 7] = 7]tO/2, M = Mrsp where 
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Figure 14: Plots of M I , M. and Mpe versus Mo for "lei = 26.13. R = 10.0 at Mo = 1.4. 

is the isothermal sonic point. With Z = 1 and "I = 5/3, MIsP ~ 0.7746 and MI,e ~ 0.8944 . Recall that in 

steady solutions of the Euler equations with material heat conduction, values of Mo larger than MIsp result 

in an isothermal shock [6]. Equation (23) is expressed as 

In Figure (14), we plot M I , M. and Mpe as functions of Mo for a fixed value of lei . Note that M. and 

Mpe are not applicable for continuous solutions with Mo < Me. At Mo = 1.4, M. > MISP > MI and the 

jump from Ms to Mpc is small relative to the difference in Mo and M J ; most of the compression that occurs 

between the far upstream and downstream states is not due to the hydrodynamic shock. 

Physically, the presence of electron heat conduction and electron-ion coupling serve to weaken the hy

drodynamic shocks that occur in the solutions. Note that the quantity R is proportional to the product 

Ke"lei, so that for positive R « 1 the diffusion and relaxation effects are minor and the hydrodynamic shock 

is responsible for most of the compression in the solutions. When R » 1, significant continuous compression 

occurs in both the precursor and relaxation regions and not at the shock. A maximum ion temperature 

occurs in the relaxation region when the energy flowing into the ions from the compression is balanced by 

the energy flowing from the ions into the electrons. These extrema are only possible when Ke =f 0, which 

results in regions of continuous compression. 
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7.2 Boundary Between Continuous and Discontinuous Solutions 

We combine Eqn. (19,20) to determine a first order differential equation for e e = 8 e (1)). 

(1 -1))(1) -1)d 8 e - e~1 

1)R(1 + Z-I) 8 e - 8~2 

September 3, 2009 

(25) 

Imshennik [2] integrated this differential equation for nonlinear K-e = K-e(P, Te) and ,ei = ,ei(P, Te) and 

used this equation to derive the boundary between continuous and discontinuous solutions. However, that 

derivation failed to consider a possibility that complicates this boundary. 

The only solutions to Eq. · (25) that are physically realizable [6] satisfy 

d8 e 0 -< . 
d1) 

(26) 

Note that the right hand side of Eq. (25) changes sign along the two quadratic curves 8 e = e~l(1)) 

and 8 e = 8~2(1)). The existence of continuous or discontinuous solutions then depends largely upon the 

arrangement of the far upstream and downstream states ((1,80) and (1)1,81), respectively) with respect to 

these two quadratic curves in (1), 8 e ) phase space. 

Imshennik derived the boundary between continuous and discontinuous solution behavior by solving for 

the conditions under which the far downstream state, (1)1,8d, lies on the curve 8 e = 8~1(1)). We do this 

here in two steps. First we use Eqs. (15,21) to solve for the value of 1) where 8 = 8~1, 

( 1) Z+, 
1)e = 1 + , MJ 2Z + , + 1 . 

We then set 1)e = 1)1 to arrive at a condition on Mo, the upstream Mach number . Let 

and note that 

M _ [~ ,2 + (3Z + 1){ - Z] 1/2 

e - , (3Z + 1) -,(Z - 1) 

. ( 1 3, -1) 1/2 
hm Me = M. = - - --

Z->oo , 3 - , 

We add that M. is the cut-off between continuous and discontinuous solutions in the simpler case of hydro

dynamic flow with material heat conduction [6]. Also note that for all values of Z, Me < M.; for Z = 1 

and, = 5/3, Me ::::: 1.125 and M. ::::: 1.342. For Mo < Me, the far upstream and downstream states are 

always above the curve 8 e = 8~1 (1)) and the solutions proceed continuously from the upstream state to the 

downstream state. For Mo > Me, the states (1,80) and (1)1,81) are separated by the curve 8 e = 8~1(1)). 
Imshennik claimed that this separation necessitated discontinuous solutions. However, this overlooks the 

possibility that 8~1 (1)) and 8~2 might intersect in the rectangle [1)1, 1] x [80, 81] and that the solution 

curves that pass through the far upstream and downstream states might also pass continuously through this 

intersection. Figures (9-10) present an example of such a continuous solution. 

We now assume that Mo > Me and investigate the true boundary between continuous and discontinuous 

solutions. For Mo > Me the far upstream and downstream states are separated by the curve 8 e = 8~1(1)). 
Since the curve 8 e = 8~2(1)) passes through the far upstream and downstream states , 8~1 and 8~2 have an 

intersection for a value of 1) between 1)1 and 1. For R sufficiently small, this intersection occurs at a value of 

8 e less than 8 0; hence, this intersection is inaccessible for solutions that pass through (1)1, 8d and (1,80) 

and satisfy Eq. (26). In this case, an embedded hydrodynamic shock connects the two solution curves that 

pass through the far upstream and downstream states. As R increases, the intersection of 8~1 and 8~2 

enters the rectangle [1)1,1] x [80,81]; it then b.ecomes possible for solutions to pass continously from the far 

upstream state (1,80) through the intersection and to the far downstream state (1)1,81). In this case, the 
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continuity of the solution depends on whether the solution curves pass through this intersection; we have not 

found a simple condition that quantifies the conditions for the solutions to pass through this intersection. 

In the limit R -t 00, 8~2 -t e, so that the intersection of 8~1 and e~2 approaches the intersection 

of e~1 and e. We then have two possibilities for large values of R. Depending upon the upstream mach 

number Mo, the intersection of e~l and e will either have ee > 8 1 or ee <= 8 1. For Me < Mo < M., the 

intersection of e~1 and 8 will have 8 e < 8 1 , by definition of M.; see Zel'dovich [6]. For Mo > M., e = 8 1 

has two solutions; one at '1'/ = '1'/1 and the other at '1'/ = 'l'/tO - '1'/1 > '1'/1· We then set 'l'/e = 'l'/tO - '1'/1, to determine 
the value of Mo > M. where e~l = 8 = 8 1 and '1'/ > '1'/1. Let 

M = [.!. (3, - l)Z + (')' + 1)(2, - 1)] 1/2 
q , (3-,)Z+(')'+1)(2-,) 

and note that 

lim Mq = M •. 
Z->oo 

Note further that for all values of Z, Mq > M.i for Z = 1 and, = 5/3, Mq ~ 1.661. For Mo > Mq, the 

intersection of 8~1 and e will have ee > 8 1, while for Mo < Mq, the intersection will have 8 e < 8 1 . For 

Me < Mo < Mq and R sufficiently large, the intersection of 8~1 and 8~2 will satisfy 8 e < e 1 and therefore 

be accessible to continuous solution curves that pass through both the far upstream and downstream states. 

The numerical results above suggest that for a fixed value of Mo with Me < Mo < Mq, the solutions are 
always continuous for R greater than some value that depends nontrivially on Mo. For Mq < Mo , the 

intersection of 8~1 and 8~2 will only satisfy 8 0 < 8 e < 8 1 for R in a range of values that contains R = 1. 

The numerical results above suggest that for a fixed value of Mo with Mq < Mo, the solutions are never 

continuous. We hypothesize that the .boundary between continuous and discontinuous solutions is a curve 

R = Re(Mo) in the (Mo, R) plane that begins near (Me,O) and increases monotonically with 

8 Conclusion 

We have developed solutions for a simple model of shocks in a fully ionized plasma. These solutions cap

ture the essential elements of plasma shocks: electron preheating in the region upstream of the shock and 

electron-ion relaxation in the downstream region. As predicted by Imshennik, for weak enough flows, fully 

continuous solutions occur; while for stronger flows, the solutions exhibit embedded hydrodynamic shocks. 

In contrast with Imshennik, we find that the boundary between continuous and discontinuous solutions is 

not independent of the electron diffusivity, "'e, or 'ei, the electron-ion coupling parameter. The character 

of the solutions is largely dependent on two terms: the upstream Mach number Mo and a term R that is 
proportional to K;)2'. Below the critical Mach number derived by Imshennik, continuous solutions emerge 

o 
from our model. However, continuous solutions are still possible above that threshold Mach number, if 

the term R is large enough. For discontinuous solutions that occur near the boundary between continuous 

and discontinuous solutions, the ion temperature may continue to increase and achieve a maximum in the 

post-shock relaxation region. This observation of a post-shock maximum temperature is similar to an effect 

seen in radiating flows [3]. 
The assumption of constant electron diffusivity and electron-ion coupling terms simplifies the analysis of 

this model. However, using a more realistic model of these terms would not impose additional difficulties on 

the numerical integration of the system of differential equations that govern this model. This model could 

also be used to verify the treatment of the electron diffusivity with flux limiters. A more serious restriction 

of our model is the assumption of an ideal gas equation of state and the subsequent splitting of specific 

internal energy and pressure into electron and ion components. A more general EOS, for both the electrons 

and the ions, should be the subject of future work. 
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While we have shown that the boundary between continuous and discontinuous solutions does depend 
on the electron diffusivity and the electron-ion coupling parameter, calculation of precise conditions for the 

existence of an embedded shock are left for a future work. In each discontinuous solution we have considered, 
we have always been able to connect the two solution branches with an embedded hydrodynamic shock by 
finding points on both branches that satisfy the shock condition. An interesting mathematical question 

would be to prove the general existence and uniqueness of the solutions with embedded hydrodynamic shocks. 
Finally, our work complements previous models of two-temperature (material and radiation) radiating flows; 

combining these models and investigating simple three-temperature (electron, ion and radiation) models 

seems like a natural progression of this work. 
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A Stationary Points 

Equations (19,20) form a 2 x 2 autonomous system of ODEs. The system has two stationary points in 

(1], Be) space: (1, Bo) and (1]1, B I) ; In order to numerically integrate this system, it is useful to classify these 
stationary points. 

We write the system Eqn. (19,20) as 

d1] 

d( 

dBe 

d( 

(27) 

(28) 

We linearize the system above near a stationary point p = (1]p , Bp) to obtain a system of the form O(Y = Afj, 

where fj = (1] - 1]p, Be - Bp)T and 

A = (OT/f(P) oeef(p)) 
0T/g(p) 0 . 

The eigenvalues of A are 

OT/g = [(1-1]) - (1] -1]1)] 

and note that at 1] = 1, oT/g < 0 and at 1] = 1]1, 0T/g > O. We write oeef as 

oe f = -1]R (1 + Z-l) B~2(1]) - B ~ I(1]) 
e (Be - B~I(1]))2 
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and note that 8~2(1) = 8 0 and 8~2(7]d = 8 1, Evaluating this derivative at the stationary points leads to 

the following inequalities: 

and 
7] I R (1 + Z-I) 

8e.!(7]1,81)=-8e1 ( ) 8 ' 
-e 7]1 --I 

which is negative for Mo < Me and positive for Mo > Me. 
We now have enough information to classify the stationary point (1,80 ), At this point, 8'7g < 0 and 

8e.! < O. Hence A+A_ < 0 and so (1,80 ) is a saddle point. We can also classify the point (7]1,81) in the 

case of Mo > Me . In that case, we have 8'7g > 0 and 8e.! > O. Again, A+A_ < 0 and so (7]1,81) is a saddle 

point for flows with Mo > Me. 

In the case of flows with Mo < Me, we must consider both the sign of 8'7! and the sign of the discriminant 

b.. 
2 = !~ + 4g'7!e. 

to classify (7]1,81), We evaluate 8'7! at this stationary point 

For Mo < Me, the 8'78~2(7]1) term in the numerator above is negative and the denominator is positive. 

Hence, for Mo < Me, 8'7!(7]1, 8 1) < O. The discriminant can be written as 

which after a non-trivial amount of algebra can be expressed as 

Since the discriminant is positive, the eigenvalues are both real; the other derivative evaluations above imply 

that the eigenvalues are both negative. Hence (7]1,81) is a stable point for Mo < Me . 

B Limit Calculations 

B.1 TJ = 1 

We now calculate the limit 

I
. d8e 
lm

'7->1 d7] 

and show that near 7] = 1, 8 e > 8. First, we write Eq. (25) as 

7]/(1 - 1) d8e 1 

- 8 - 8 el (n) dn = 1 + ('V - I)R(1 + z-I) ere 
e e'/'/ / (1-'7 (ry-'7,) 

Then we use the first order approximations near 7] = 1 

8. ::::> 8 0 + lim -' (7] - 1) ( 
d8) 

'7->1 d7] 

(29) 
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ee - e ~ [lim dee - de (1)] (7] -1). 
'1--->1 d7] d7] 

We then have a quadratic equation for the desired limit: 

1 
-ax = --.---:-

1 - b(x - c) 

which has the solutions 

Here 

and 

a = [(-y -1) (eo - e~1(1))]-1 > 0, 

b= (-y-l)R(1+Z-1) > 0 

1 - 7]1 

de 
c = d7] (1) < O. 

Note that x_ < 0 and x+ > O. Since ~ < 0, we choose the negative solution above. 

( 1)2 4 
c +- +-

b ab 

We now show that for 7] < 1 and 7] ~ 1, ee > e . First note that 

. (de dee) 1 [( 1) ( 1) 2 4 (1 ) 
~~ d7] - d7] = 2 c - b + c - b + b ; + c 

Differentiate Eq. (15) and use Eq. (21) to show that 

Hence, 

~ + c = _1 ___ 1_ (1 __ 1_) > O. 
a Z + 1 'Y - 1 MJ 

I· (de dee) 0 Im--->. 
'1--->1 d7] d7] 

September 3, 2009 

Since ee = 8 at 7] = 1 and the slope of ee(7]) is more negative than the slope of 8(7]) near 7] = 1, we have 

ee > e for 7] < 1 and 7] ~ 1. 

B.2 'T/ ='T/l 

We now calculate the limit 

I
. dee 
Im-. 

'1--->7)1 d7] 

We follow the same procedure as above to arrive at the quadratic 

a 
x = --.---:-

l+b(x-c) 



To Distribution 

LA-UR-07-xxxx 

which has the solutions 

Here 
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(be - 1) ± ';(1 - be)2 + 4ab 
x± = 2b . 

=: Z(3-,)+(-r+1) (1- M'1) 
a (r2-1)(Z+1) MJ' 

which is positive for Mo > Me. We also have 

and 

e - ~ 3 -, (1 _ M;) 
- Z + 1,2 - 1 MJ' 

September 3, 2009 

which is positive for Mo > M •. Note that if Mo > Me, then x_ < 0 and x+ > O. Since 1:fF < 0, we then 

choose the negative solution above. If Mo < Me, it can be shown that be - 1 < 0, so both ."x_ and x+ are 
negative. 

C No Heat Conduction 

With Ke =: 0, Eq. (lOa-c) reduce to the standard Rankine-Hugoniot conditions, so that p and v are both 

constant on either side of the shock. The initial and final compression and temperature are still governed by 

Equation (lla), however there are no regions of continuous compression; T) jumps from T) = 1 in the upstream 

region to T) = T)I in the downstream region. The electron advection equation, Eq. (10d), then reduces to 

(30) 

In the upstream region T =: To, while T = TI in the downstream region. 

Generic solutions to Equation (30) have the form 

Te(x) = T - Ae- x
/

L
, 

where L =: "I:(~~;)' In the upstream region, we require that A=:O so that the solution remains bounded as 

x -+ -00. Therefore, the upstream solution is a constant state with Te =: Ti =: To. The downstream solution 
exhibits differential shock heating (Ti > Te) and a relaxation to a constant state with Te = Ti = T 1 . The 

electron temperature, Te, jumps from the upstream value of To to the initial downstream value at the shock, 

which we denote Te .•. Without loss of generality we may locate the shock at x = O. We then require that 

A = TI - Te .• for the downstream solution. 
We again use Equation (6) to derive a shock condition that determines the jump in values of Te at the 

shock. In the steady frame with Ke =: 0, Equation (6) may be written as 

dSe = ~(Ti-Te). 
dx moTe 

Integrating this equation over an infinitesimal domain surrounding the shock leads to the condition 

for a ,-law gas, this condition becomes 

Te R = Te L PR 
( )

"1-1 

• • PL 
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We then write Te,. in tenns of TJI and To; 

-b-I) 
Te,. = ToTJI . 

The downstream solution can then be written as 

Te(x) = TI - (TI - Te,.) e- x
/

L
, 

h L moC. • d T ,." -b-l) H T· . b were = "(el (z+I) an e,s = .1 OTJI . ere I IS gIven y 

and 

TI ( M2) M2 2 To = 1 + , 0 TJI - , 0 TJI 

, - 1 2 1 

TJI = , + 1 + , + 1 MJ . 

The ion temperature can be determined from Equation (12); 
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(31) 




