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Abstract

Stationary shock wave solutions for Generalized Burnett Equations (GBE) [A.
V. Bobylev, J. Stat. Phys. 132, 569 (2008)] are studied. Based on results of [M. Bisi,
M. P. Cassinari, M. Groppi, Kinet. Relat. Models 1, 295 (2008)], we choose a unique
(optimal) form of GBE, and solve numerically the shock wave problem for various
Mach numbers. The results are compared with numerical solutions of Navier–Stokes
equations and with the Mott–Smith approximation for the Boltzmann equation (all
calculations are done for Maxwell molecules), since it is believed that the Mott–
Smith approximation yields better results for strong shocks. The comparison shows
that GBE yield certain improvement of the Navier–Stokes results for moderate Mach
numbers.

1 Introduction

We continue in this paper to study equations of hydrodynamics (derived from the Boltz-
mann equation) at the Burnett level. The well–known instability [1] of classical Burnett
equations became a starting point for several different methods to regularize these equa-
tions (see [2, 3, 4] and the references therein for a review). We use in this paper the
approach of one of the authors [2] based on the idea of “small” changes of variables. In
other words, we consider the equations not for true hydrodynamic variables (density ρtr,
bulk velocity utr, and temperature T tr), but for slightly modified quantities

ρ = ρtr + O(ε2) , u = utr + O(ε2) , T = T tr + O(ε2) , (1)

for which the standard notations (ρ,u, T ) are used. A small parameter ε denotes the
Knudsen number, i.e. a mean free path divided by a typical macroscopic length.

It was shown in [5] how this approach leads to the so–called generalized Burnett
equations (GBE). These equations are not defined uniquely, they depend on two free
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parameters θ1,2 ≥ 0. A possible choice of the parameters was discussed in [5, 6] on the
basis of solutions to some linear problems. The authors of these papers presented several
arguments in favour of the choice θ1 = 1, θ2 = 0. Therefore we consider the corresponding
version of GBE (GBE (1,0,0) in the notation of [5]) in the present paper. Our aim is to
study the shock–wave profile for different Mach numbers in order to see if GBE lead to
certain improvement of the Navier–Stokes approximation. We shall consider below the
case of Maxwell molecules, since this is the only model for which the classical Burnett
equations are known in fully explicit form.

We would like to mention that Carlo Cercignani was always interested in the problem of
the shock wave structure (in particular, the case of infinite Mach number). The papers [7,
8, 9, 10] can be considered as a part of his contribution to this problem. We regret that
it is too late now to discuss our results with him.

The paper is organized as follows. The unique form of GBE, used in the paper, is
discussed in detail in Section 2. The statement of the problem for shock–wave solutions
and transition to dimensionless variables is given in Section 3. The Mott–Smith approxi-
mation for the Boltzmann equation is explained in Section 4. We use this approximation
for comparison with our numerical results in Section 5 because of numerical evidence [11]
that it works relatively good for strong shocks. Another reference model is for us the
classical Navier–Stokes equations. The shock profiles for all three models are compared
for different Mach numbers in Section 5.

2 Generalized Burnett Equations

First we define a unique version of GBE which corresponds to values of parameters (θ1 = 1,
θ2 = 0), in [5]. Equalities (1) for this version read

ρ = ρtr, u = utr, T = T tr +
ε2

ρ
div

(
R

ρ

)
, (2)

where
R = a(T )∇(log ρ) + b(T )∇(log T ) , (3)

with coefficients a(T ) and b(T ) having for Maxwell molecules the following form

a(T ) =
13

18
η2T 2 , b(T ) =

2

3
η2T 2 , η = const. (4)

The constant parameter η is given by equality

η−1 =
3

2
π

∫ 1

−1

g(µ) (1− µ2) dµ , g(cos θ) = |V| σ(|V|, θ) , (5)

where σ(|V|, θ) is the differential scattering cross–section for Maxwell molecules, |V| is
the absolute value of relative velocity of colliding particles, θ ∈ [0, π] is the scattering
angle.
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Generalized Burnett Equations for variables (ρ,u, T ) read [5]

∂ρ

∂t
+ div(ρu) = 0 ,

ρ D̂uα +
∂p

∂xα

+
∂Παβ

∂xβ

= 0 ,

3

2
ρ D̂T + p div(u) + Παβ

∂uα

∂xβ

+ div(Q) = 0, α, β = 1, 2, 3,

(6)

where the Einstein convention on repeated indices is used and

D̂ = ∂t + u · ∂x , p = ρ T ,

Παβ = ε πNS
αβ + ε2

(
πB

αβ − δαβ div

(
R

ρ

))
,

Qα = ε qNS
α + ε2qB

α +
ε2

ρ

{
3 Rβ

∂uα

∂xβ

+

(
3

2
a + b

)
∂

∂xα

(div(u))

}
,

(7)

in the case of Maxwell molecules. Here

Ψαβ =
1

2

(
Ψαβ + Ψβα − 2

3
δαβ Ψγγ

)
,

and the upper indices NS and B denote Navier–Stokes and Burnett terms respectively.
In particular, the Navier–Stokes terms are

πNS
αβ = − 2 η T

∂uα

∂xβ

, qNS
α = − 15

4
η T

∂T

∂xα

. (8)

The Burnett terms πB
αβ and qB

α for Maxwell molecules can be found in books [12, 13, 14],
and in the paper [2]. For brevity we present below these and other terms for the simplest
case of one–dimensional flow:

ρ = ρ(x, t) , u = (u(x, t), 0, 0) , T = T (x, t), x ∈ R . (9)

Then, Eqs. (6) read

ρt + (ρ u)x = 0 ,

ρ (ut + uux) + px + Πx = 0 ,

3

2
ρ (Tt + uTx) + p ux + Π ux + Qx = 0 ,

(10)

where lower indices denote partial derivatives, Π and Q denote respectively xx–component
of Παβ and x–component of Qα. These functions are given by

Π = − 4

3
η Tux + πB −

(
R

ρ

)

x

,

Q = −15

4
η TTx + qB +

1

ρ

[
2 R ux +

(
3

2
a + b

)
uxx

]
,

R = a
ρx

ρ
+ b

Tx

T
, a = a(T ) =

13

18
η2T 2 , b = b(T ) =

2

3
η2T 2 ,

(11)
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where

πB =
2 η2

9 ρ

[
4 Tu2

x + 9(T Tx)x − 6 T

(
px

ρ

)

x

]
,

qB =
η2T

8 ρ

[
95 Txux − 16 T ux

ρx

ρ
− 14 T uxx

]
.

(12)

Note that the Knudsen number ε in Eqs. (7) is used as a formal parameter and we set
ε = 1 in the final results. Thus, we obtain

Π = − 4

3
ηTux +

2 η2

3 ρ

[
− 37

12

T 2

ρ
ρxx +

25

6

T 2

ρ2
ρ2

x +
4

3
T u2

x + 2 T 2
x −

19

6

T

ρ
ρx Tx

]
, (13)

Q = − 15

4
η TTx +

η2T

3 ρ2

(
317

8
ρ Tx − 5

3
T ρx

)
ux . (14)

Eqs. (10), with the constitutive equations (13), (14), are the final one–dimensional version
of Generalized Burnett Equations (GBE), which we study in this paper. Equations (1)
for this version read

ρ = ρtr, u = utr, T tr = T − η2

ρ

(
13

18

T 2ρx

ρ2
+

2

3

TTx

ρ

)

x

(15)

where the parameter η is given in Eqs. (5). This parameter is important for comparison
with solutions of the Boltzmann equation. Note that Eqs. (10), (13), (14) are simpler
than the classical Burnett equations since they contain only one third derivative ρxxx.

The conservative form of Eqs. (10) reads

ρt + (ρ u)x = 0 ,

(ρ u)t +
(
ρ u2 + ρ T + Π

)
x

= 0 ,
[
ρ(u2 + 3T )

]
t
+

[
ρ u(u2 + 5T ) + 2(u Π + Q)

]
x

= 0 .

(16)

These equations will be used below for study of shock waves.

3 Shock wave solutions

Equations (10), (13), (14) are Galilei–invariant. In other words, the transformation

ρ(x, t) = ρ̃(x+ct, t) , u(x, t) = −c+ ũ(x+ct, t) , T (x, t) = T̃ (x+ct, t) , (17)

with any constant c ∈ R, leads to the same Eqs. (10), (13), (14) for ρ̃(x, t), ũ(x, t),
T̃ (x, t). If these functions do not depend on time t, then (ρ̃, ũ, T̃ ) are stationary solutions
of Eqs. (10), (13), (14). The transformation (17) defines in this case travelling waves,
moving with constant velocity (−c). It is convenient for our goals to assume that c > 0
and to introduce boundary conditions

ρ̃(−∞) = ρ− , ũ(−∞) = ũ− = c , T̃ (−∞) = T− , (18)
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which correspond to unperturbed gas in front of the shock.
Thus, we consider stationary Eqs. (10), (13), (14) for (ρ̃, ũ, T̃ ) on the whole real line

−∞ < x < ∞ with boundary conditions (18). Equations (10) can be presented in the
conservative form (16). Then, we integrate Eqs. (16) and obtain, omitting all tildas,

ρ u = J1 , ρ(u2 + T ) + Π = J2 , ρ u(u2 + 5T ) + 2(u Π + Q) = J3 , (19)

where constant fluxes J1,2,3 are given by

J1 = ρ− c , J2 = ρ−(c2 + T−) , J3 = ρ− c(c2 + 5 T−) (20)

and Π and Q are defined in Eqs. (13) and (14). Note that the speed of sound at x → −∞
(unperturbed gas) is equal to c0 = (5 T−/3)1/2, therefore

c = M

√
5 T−

3
, (21)

where M denotes the Mach number. It is well known (at the formal level) that the shock
wave solution exists for M > 1 with limiting values

ρ(∞) = ρ+ , u(∞) = u+ , T (∞) = T+ , (22)

satisfying Rankine–Hugoniot conditions

ρ+ u+ = J1 , ρ+(u2
+ + T+) = J2 , J1(u

2
+ + 5 T+) = J3 . (23)

Then we obtain (see Eqs. (20))

ρ+ =
4 ρ− c2

c2 + 5 T−
, u+ =

c2 + 5 T−
4 c

, T+ =
(c2 + 5 T−)(3 c2 − T−)

16 c2
, (24)

assuming that c > (5 T−/3)1/2.
The density ρ(x) can be eliminated from Eqs. (19) since

ρ(x) =
J1

u(x)
=

ρ− c

u(x)
. (25)

Then Eqs. (19) can be written in the form

J1(u
2 + T ) + u(Π− J2) = 0 ,

J1(u
2 + 5 T ) + 2(u Π + Q)− J3 = 0 ,

(26)

where now

Π = − 4

3
η Tux +

2 η2

3 J1

u

(
37

12
T 2uxx

u
− 2 T 2 u2

x

u2
+

4

3
T u2

x + 2 T 2
x +

19

6

T

u
uxTx

)
,

Q = − 15

4
η T Tx +

η2T

3 J1

uux

(
317

8
Tx +

5

3
T

ux

u

)
.

(27)
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Eqs. (26) can be transformed to

J1(u
2 + T ) + u(Π− J2) = 0 ,

J1(3 T − u2) + 2 Q + 2 J2 u− J3 = 0 ,
(28)

where Π and Q are given in Eqs. (27). It is convenient to pass to dimensionless variables.
We denote

x̂ =
ρ+ x

η u+

, u(x) = u+ û(x̂) , T (x) = T+ T̂ (x̂) , S =
u2

+

T+

, (29)

and omit hats below. Then

Π = ρ+ T+

[
− 4

3
Tux +

2 u

3 S

(
37

12
T 2uxx

u
− 2 T 2 u2

x

u2
+

4 S

3
T u2

x + 2 T 2
x +

19

6

T

u
uxTx

)]
,

Q =
ρ+ T 2

+

u+

[
− 15

4
T Tx +

T

3
uux

(
317

8
Tx +

5

3
T

ux

u

)]
.

(30)
Similarly, we obtain from Eqs. (28)

T + S u2 + u

(
Π

ρ+ T+

− 1− S

)
= 0 ,

3 T − S u2 + 2
Q

ρ+ u+ T+

+ 2(1 + S)u− (S + 5) = 0 .

(31)

Finally we denote ux = w and obtain from Eqs. (30), (31) the following set of three first
order ODE:

ux = w ,

Tx =
12

T (317 uw − 90)

[
− 10

9
T 2w2 + S2u2 − 2 S(1 + S)u− 3 S T + S(S + 5)

]

= A(u, T, w) ,

wx =
2

37 T 2

[
− 12 A2u− 19 ATw + 12 T 2 w2

u
− 8 S Tw2u + 12 S Tw

− 9 S
T

u
− 9 S2u + 9 S(1 + S)

]
= B(u, T, w) .

(32)

These equations coincide with Eqs. (33) from [6], where the stability of their stationary
solutions were studied. Asymptotic values of u(x), T (x), w(x) at infinity can be found
from Eqs. (24), (29). We obtain

u(∞) = T (∞) = 1 , w(∞) = 0 ,

u(−∞) =
S + 5

4 S
, T (−∞) =

(S + 5)(3 S − 1)

16 S
, w(−∞) = 0 .

(33)

Hence,

ρ− = ρ+
4 S

S + 5
, c = u+

S + 5

4 S
, T− = T+

(S + 5)(3 S − 1)

16 S
, S =

u2
+

T+

, (34)
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in the notations of Eqs. (18). The parameter S can be expressed therefore through the
Mach number M of the shock wave. We obtain

M2 =
3 c2

5 T−
=

3(S + 5)

5(3 S − 1)
⇒ S =

5(M2 + 3)

3(5 M2 − 1)
. (35)

The parameter S decreases from S = 5/3 to S = 1/3, when M increases from M = 1 to
M = ∞. A convenience of such units is that all terms of Eqs. (32), (33) remain finite in
the formal limit M = ∞ (infinitely strong wave).

Note that w = A(u, T, w) = B(u, T, w) = 0 , if u = u(±∞), T = T (±∞), w = w(±∞)
from Eqs. (33). Hence, these values of (u, T, w) correspond to singular points of the
dynamical system

ux = w , Tx = A(u, T, w) , wx = B(u, T, w) . (36)

The shock wave solution is a heteroclinic orbit of this dynamical system, which begins at
x = −∞ at the supersonic singular point (provided M > 1 or, equivalently, S < 5/3)
and ends at x = ∞ at the subsonic singular point. It follows from results of [6] that
the supersonic point is an unstable node, whereas the subsonic end is a saddle point,
which has only one (out of three) eigenvalue with negative real part that corresponds
to incoming phase trajectory. To be more precise, the linearization of Eqs. (32) near
(u = 1, T = 1, w = 0) in its standard exponential form

u = 1 + ũ eλ x + . . . , T = 1 + T̃ eλ x + . . . , w = w̃ eλ x + . . . , (37)

where dots denote nonlinear in (ũ, T̃ , w̃) terms, leads for 0 < S < 5/3 to three different
eigenvalues λ: one real negative and the other two complex conjugate with positive real
part (they can also be real positive for small S > 0). Actually, this is a saddle point
for S < 5/3 and an unstable node for S > 5/3 (S = 5/3 or, equivalently, M = 1
is a bifurcation point for Eqs. (32)). Similar linearization near (u(−∞), T (−∞), 0)
leads for S < 5/3 to three eigenvalues λ with positive real part. This means that the
dimension dst

A of stable manifold near the subsonic end x = ∞ is equal to one, whereas
the similar dimension dst

B near the supersonic end x = −∞ (note that x < 0!) is equal to
three. Hence, we have an equality dst

B = dst
A + 2, which is also fulfilled for general Discrete

Velocity Models of the Boltzmann equation with arbitrary number of velocities [15]. This
equality is not valid for Navier–Stokes equations, dst

B = dst
A + 1 in that case. Hence,

GBE (32) yield certain improvement of NSE in a qualitative picture of solutions (see
also [6] for discussion of half–space problems).

Our goal is to show that Eqs. (10) improve Navier–Stokes approximation for the shock
wave problem. In order to do this we need to compare our results with exact solutions
of similar problem for the Boltzmann equation. Such solutions, however, are not known.
On the other hand, numerical data [11] show that lower moments ρ(x), u(x), T (x) of the
distribution function, obtained by Monte Carlo method, are very close for strong shocks to
similar hydrodynamic moments of approximate Mott–Smith solutions of the Boltzmann
equation. Therefore we explain briefly in Section 4 how to construct such solutions and
compare the solutions of all three models in Section 5.
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4 Mott–Smith solutions of the Boltzmann equations

The plane stationary Boltzmann equation for Maxwell molecules for a distribution func-
tion f(x,v), x ∈ R, v = (v1, v2, v3) ∈ R3, can be written in the following weak form

d

dx

∫

R3

vx ψ(v) f(x,v) dv =
1

2

∫

R3×R3

〈∆ψ〉f(x,v)f(x,w) dv dw , (38)

where ψ(v) is any “good” test function,

〈∆ψ〉 =

∫

S2

g

(
V · ω
|V|

)[
ψ

(
U +

|V|
2

ω

)
+ ψ

(
U− |V|

2
ω

)
− ψ(v)− ψ(w)

]
dω , (39)

where

V = v −w , U =
1

2
(v + w) , |ω| = 1 , g(cos θ) = |V|σ(|V|, θ) ,

where σ(|V|, θ) is a differential cross–section, 0 ≤ θ ≤ π is a scattering angle. The
connection of f(x,v) with hydrodynamic quantities (ρ,u, T ) is given by

ρ(x) =

∫

R3

f(x,v) dv , u(x) =
1

ρ

∫

R3

v f(x,v) dv

T (x) =
1

3 ρ

∫

R3

|v − u|2f(x,v) dv .

(40)

We are interested in this paper in a specific solution of Eq. (38), which corresponds to
the shock wave moving in the negative direction in x with the speed c > 0. This means
that we have to consider a solution f(x,v), which tends for x → −∞ and x → ∞ to
Maxwellians M−(v) and M+(v) respectively, where

M±(v) = ρ± (2π T±)− 3/2 exp

[
− (vx − u±)2 + v2

y + v2
z

2 T±

]
. (41)

The values of parameters (ρ±, u±, T±) are exactly the same as in Eqs. (18), (24).
The Mott–Smith solution (see, for example, the book [11]) is an approximate solution

of Eq. (38), having the following form:

fMS(x,v) = Θ(x) M−(v) +
[
1−Θ(x)

]
M+(v) , (42)

where Θ(−∞) = 1, Θ(+∞) = 0. It is clear that this function with any such 0 ≤
Θ(x) ≤ 1 is non–negative and satisfies Eqs. (38) for ψ(v) = 1,v, |v|2. For any other
ψ(v) = ψ(vx, |v|) we obtain from Eq. (38) the following equation for Θ(x)

dΘ

dx
= λ[ψ] Θ(1−Θ) , λ[ψ] =

A[ψ]

B[ψ]
, (43)

where

A[ψ] =

∫

R3×R3

〈∆ψ〉M+(v)M−(w) dv dw ,

B[ψ] =

∫

R3

[
M−(v)−M+(v)

]
vx ψ(v) dv .

(44)
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In the typical case ψ = v2
x we obtain after some calculations

λ[v2
x] = − 1

3 η

ρ+(u+ − u−)2

u−(T+ − T−)
, (45)

in the notations of Eqs. (5). A weakness of the Mott–Smith approximation is that the
parameter λ[ψ] in Eq. (43) is very sensitive to the choice of the test function ψ(v). On
the other hand, it is known [11] that the approximation with ψ = v2

x is in very good
agreement with DSMC simulation for hard spheres for a wide range of Mach numbers.
This is the main reason why we chose the Mott–Smith approximation with ψ = v2

x and
the Navier–Stokes solutions as two reference solutions for comparison with solutions of
Eqs. (32).

The general solution of Eq. (43) reads

Θ(x) =
[
1 + C exp(−λx)

]−1

, (46)

where the arbitrary constant C is due to translational invariance in x. We choose C = 1
and λ = λ[v2

x] given in Eq. (45). Note that T+ > T− and therefore λ[v2
x] < 0. Hence, Θ(x)

satisfies boundary conditions at x = ±∞. Then Eq. (42) is equivalent to

fMS(x,v) = M−(v) +
1

2

[
M+(v)−M−(v)

]
(1 + tanh y) ,

y = − 1

2
λ[v2

x] x =
1

6 η

ρ+(u+ − u−)2

u−(T+ − T−)
x = a(S) x̂ ,

(47)

where (see Eqs. (29), (34))

x̂ =
ρ+

η u+

x , S =
u2

+

T+

<
5

3
,

a(S) =
u+(u+ − u−)2

6 u−(T+ − T−)
= S

u+

(
1− u−

u+

)2

6 u−
(
1− T−

T+

) =
2S(5− 3S)

3(S + 1)(S + 5)
.

(48)

Hence, for any “good” test function ψ(v)

CMS[ψ] = D[ψ]
1

2
(1 + tanh y) , y = a(S)x̂ , (49)

where

CMS[ψ] =

∫

R3

[
fMS(v)−M−(v)

]
ψ(v) dv ,

D[ψ] =

∫

R3

[
M+(v)−M−(v)

]
ψ(v) dv .

(50)

For comparison with solutions of Eqs. (32) we need just functions (ρMS, uMS, TMS). Tak-
ing ψ = 1 in Eq. (49) we obtain

ρMS(x)− ρ− = (ρ+ − ρ−)
1

2
(1 + tanh y) . (51)
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Then uMS(x) can be obtained from conservation law

uMS(x) =
ρ± u±

ρMS(x)
, (52)

whereas TMS(x) can be obtained from Eq. (49) with ψ = |v|2

ρMS

(
u2

MS + 3 TMS

)−ρ−(u2
−+3 T−) =

[
ρ+(u2

++3 T+)−ρ−(u2
−+3 T−)

]1

2
(1+tanh y) . (53)

Eqs. (51)–(53) define (ρMS, uMS, TMS) as functions of y = a(S) x̂ , in the notation of
Eqs. (48). The next step is to use these functions for comparison with solutions of equa-
tions of hydrodynamics.

5 Comparison of results for different models

Our goal in this section is to solve equations (32), (33) and to compare the solutions
with similar results from (a) Navier–Stokes equations and (b) Mott–Smith approxima-
tion described in Section 4. The Navier–Stokes equations can be obtained directly from
Eqs. (30)–(31) by omitting Burnett terms. The resulting system of two ODE for u(x) =
uNS(x) and T (x) = TNS(x) (lack of third derivative reduces dimension of dynamical
system) reads

4

3
T ux + 1 + S = S u +

T

u
,

15

2 S
T Tx + S + 5 = −S u2 + 2(1 + S)u + 3 T ,

(54)

S =
5(M2 + 3)

3(5 M2 − 1)
, u(∞) = T (∞) = 1 ,

u(−∞) =
S + 5

4 S
, T (−∞) =

(S + 5)(3 S − 1)

16 S
.

(55)

It is clear that these equations and Eqs. (32), (33) are invariant under translations x →
x + const. However, we can choose a unique solution by demanding that

ρ(0) =
1

2

[
ρ(∞) + ρ(−∞)

]
, (56)

or, equivalently,

u−1(0) =
1

2

[
u−1(∞) + u−1(−∞)

]
, (57)

since ρ(x) u(x) = const. Note that the Mott–Smith solutions (51)–(53) are already chosen
in such a way that the above conditions for ρ(0) and u(0) are satisfied. To keep the same
notation in all three cases we need to denote

y =
2 S(5− 3 S)

3(S + 1)(S + 5)
x̂ , ρMS(x) = ρ+ ρ̂MS(x̂) ,

uMS(x) = u+ ûMS(x̂) , TMS(x) = T+ T̂MS(x̂) ,

(58)
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Figure 1: Profiles of the shock-wave and of the Mott-Smith solution for M = 1.1: GBE
(dotted line), NSE equations (dashed line), MS solution (solid line).

in Eqs. (51)–(53) and then omit hats in final results. Note that

ρ(0) = ρNS(0) = ρMS(0) =
1

2

[
ρ(∞) + ρ(−∞)

]
. (59)

It is convenient to choose for comparison three normalized functions

Φ1(x) =
ρ(x)− ρ(−∞)

ρ(∞)− ρ(−∞)
, Φ2(x) =

u(x)− u(−∞)

u(∞)− u(−∞)
,

Φ3(x) =
T (x)− T (−∞)

T (∞)− T (−∞)
.

(60)

Then obviously Φi(−∞) = 0, Φi(∞) = 1, i = 1, 2, 3. Moreover, 0 < Φi(x) < 1 for all
i = 1, 2, 3 are monotone functions provided ρ(x), u(x) and T (x) are monotone functions.

Thus, we fix a Mach number M > 1, solve numerically Eqs. (32), (33) and Navier–
Stokes equations (54), (55), and then present functions Φ1,2,3(x) for the three models on
Figs. 1–8. Shock profiles for GBE are not clearly visible on Figs. 1 and 3, because they
are very close to the corresponding curves for NSE when M = 1.1 (Fig. 1) and for MS
approximation when M = 2 (Fig. 3).

It is expected that Navier–Stokes solutions are good for relatively small M , whereas
the Mott–Smith approximation is better for large M . If this assumption is true, then it
is clear from our results that GBE (32) improve results of Navier–Stokes approximation
for large Mach numbers (strong shocks).

As expected, all three models yield similar results for weak shocks (M = 1.1, Figs. 1
and 2; M = 2, Figs. 3 and 4). We also present on Figs. 2 and 4 the corresponding phase
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Figure 2: (Left) Shock-wave curve in the phase space for GBE for M = 1.1. (Right)
Comparison between the projection of the shock-wave curve in the (u, T ) plane for GBE
(solid line) and the shock-wave for NSE equations (dashed line).
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Figure 3: Profiles of the shock-wave and of the Mott-Smith solution for M = 2: GBE
(dotted line), NSE equations (dashed line), MS solution (solid line).
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Figure 5: Profiles of the shock-wave and of the Mott-Smith solution for M = 5: GBE
(dotted line), NSE equations (dashed line), MS solution (solid line).
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Figure 6: (Left) Shock-wave curve in the phase space for GBE for M = 5. (Right)
Comparison between the projection of the shock-wave curve in the (u, T ) plane for GBE
(solid line) and the shock-wave for NSE equations (dashed line).

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

0.5

1

x

Φ
1(x

)

M = 7

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

0.5

1

x

Φ
2(x

)

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

0.5

1

x

Φ
3(x

)

MS
GBE
NSE

Figure 7: Profiles of the shock-wave and of the Mott-Smith solution for M = 7: GBE
(dotted line), NSE equations (dashed line), MS solution (solid line).
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trajectory in the phase space (u, T, w) of dynamical system (32). The direction of the
phase trajectories are always from the supersonic state B (x = −∞) to the subsonic
state A (x = ∞). Similar curves for Navier–Stokes equations were studied in detail
in [16]. The difference becomes more visible for strong shocks with M = 5 (Figs. 5, 6)
and M = 7 (Figs. 7, 8). In all these cases the results obtained form GBE (32) are closer
to Mott–Smith solutions than to solutions of the Navier–Stokes system. At the same
time the projection of the phase trajectory to the plane (u, T ) remains relatively close to
similar curve for Navier–Stokes equations even for M = 5 (Fig. 6) and M = 7 (Fig. 8).

Strictly speaking, we should use for comparison not the function T (x) from Eqs. (32),
but

T tr(x) = T − 1

ρS

(
13

18

T 2 ρx

ρ2
+

2

3

T Tx

ρ

)

x

(61)

obtained from transformation (15). We do not do it for two reasons: (a) the difference
is negligible for small Mach numbers and (b) it becomes visible (see Fig. 9) for larger M
near the front of the shock, where, generally speaking, no hydrodynamics can be ap-
plied because of large gradients. The shock wave problem is therefore not very good test
for equations of hydrodynamics. The most important result, however, is that our equa-
tions (32) are apparently uniquely solvable for all Mach numbers M > 1 (this assumption
is supported by linear stability analysis of subsonic and supersonic states from [6]). They
yield qualitatively correct results, improving the Navier–Stokes approximation for mod-
erate Mach numbers.

We also present some data on thickness of the shock and asymmetry of the density
profile. According to the book of Carlo Cercignani [17], in our dimensionless units the
thickness of the shock is defined as

δ =
1

Φ′
1(0)

(62)

where x = 0 is the central point of the shock (Φ1(0) = 0.5). Values corresponding to the
examples of our paper are reported in Table I.

M=1.1 M=2 M=5 M=7
GBE δ = 35.0 δ = 13.7 δ = 14.6 δ = 14.8
NSE δ = 34.6 δ = 10.8 δ = 9.89 δ = 9.86
MS δ = 39.7 δ = 14.0 δ = 15.2 δ = 15.6

Table I.

The asymmetries of the shock profiles can be captured by measuring the areas

A− =

∫ 0

−∞
Φ1(x) dx , A+ =

∫ +∞

0

(1− Φ1(x)) dx . (63)

Results corresponding to our cases are reported in Table II.
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M=1.1 M=2 M=5 M=7

GBE
A− = 5.94
A+ = 6.15

A− = 2.36
A+ = 2.36

A− = 2.74
A+ = 2.45

A− = 2.80
A+ = 2.48

NSE
A− = 6.06
A+ = 5.91

A− = 1.96
A+ = 1.70

A− = 1.79
A+ = 1.47

A− = 1.78
A+ = 1.46

MS
A− = 6.87
A+ = 6.87

A− = 2.43
A+ = 2.43

A− = 2.64
A+ = 2.64

A− = 2.70
A+ = 2.70

Table II.

6 Conclusions

We studied the shock wave structure for Generalized Burnett Equations [5]. The previous
results obtained in [6] suggest a unique choice of parameters of GBE and therefore we
considered precisely this unique version of GBE in this paper. The advantage of this ver-
sion is that third derivatives of u(x, t) and T (x, t) are absent in the equations. Therefore
GBE are even simpler than classical (unstable) Burnett equations. We confined ourselves
to the case of Maxwell molecules since it is the only case, for which all Burnett terms are
known in explicit form.

The shock wave problem reduces for GBE to a set of three nonlinear ODE. The shock
wave solution is, in terminology of the theory of dynamical systems [18], a heteroclinic
orbit that connects two singular points of the corresponding vector field. This solution
was studied for different Mach numbers and compared with solutions of Navier–Stokes
equations and with the Mott–Smith approximation for the Boltzmann equations. The
results show that GBE yield certain improvement of the Navier–Stokes approximation
for moderate Mach numbers. It is also important that GBE have, roughly speaking, the
correct difference ∆ = 2 of dimensions of stable manifolds near subsonic and supersonic
singular points (see [15] for details). This means that a qualitative picture of solutions
of GBE is, in some sense, more similar to the Boltzmann equations than in the case of
Navier–Stokes equations.

At least two problems in this area remain open: (a) similar one–dimensional flows for
non–Maxwell gases (hard spheres, for example) and (b) boundary conditions and multi–
dimensional flows. We hope to return to these problems in the future.
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