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1 Introduction

Black holes induce gravitational shockwave interactions between infalling and outgoing

particles near the horizon [2]. When reduced to 1+1 dimension, the resulting scattering

matrix takes the following simple form [2]

S = exp
(
iκ p−p+

)
. (1.1)
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Here p+ and p− denote the Kruskal momentum operators of the incoming and outgoing

particle, and κ is the Newton constant. Equation (1.1) defines a manifestly unitary 2-to-

2 scattering process. It reflects the geometric statement that when two highly boosted

particles collide, the final Kruskal positions U and V of the particles are related to the

initial positions via a simple coordinate shift proportional to the Kruskal momentum of

the other particle

U → U + κ p−, V → V + κ p+. (1.2)

This description of the gravitational scattering becomes accurate in the region very close

to the horizon, located at V = 0 and U = 0. In this region, the Kruskal coordinates are

related to the Schwarzschild coordinates via U = −e2πu/β and V = e−2πv/β where β is

the inverse temperature of the black hole. The shockwave interaction thus represents an

exponentially growing effect in the Schwarzschild coordinate frame.

This shockwave interaction was shown to lead to exponentially growing commutators

between infalling and outgoing modes in [3, 4]. In recent years, it was recognized that

in holographic settings this exponential growth is a manifestation of maximally chaotic

quantum dynamics of the underlying microscopic theory, and can be exhibited by studying

a suitable class of out-of-time ordered correlation functions [5–13].

An interesting class of solvable theories that displays maximally chaotic behavior are

the Sachdev-Ye-Kitaev (SYK) models [9–11, 14–19]. As first recognized by Kitaev [9–11]

(see also [12]), the IR dynamics of the SYK model is dominated by a single effective degree

of freedom f(τ) representing reparametrizations of a 1D circle (throughout the paper τ

will label Euclidean time, while t will label Lorentzian time), with an unusual action that

consists of the Schwarzian derivative

S[f ] = −C
∫ β

0
dτ
{
F, τ

}
, F ≡ tan

(
πf

β

)
, (1.3)

where
{
F, τ

}
= F ′′′

F ′ −
3
2

(
F ′′

F ′

)2
. The variable f(τ +β) = f(τ) +β defines an element of the

group Diff(S1) of diffeomorphisms of the thermal circle. The parameter C is a dimensionful

constant. This action is also found to describe 2D Jackiw-Teitelboim dilaton gravity with

suitable asymptotic boundary conditions [20–27].

In [1], the Schwarzian theory was shown to arise as a suitable limit of 2D Virasoro

conformal field theory.1 This relation was then used to obtain exact expressions for its

correlation functions, see also [19, 30–33] for a different approach. In this paper we will

focus on the out-of-time ordered (OTO) four-point function 〈V1W3V2W4〉 (with V1 = V (t1),

etc) at finite inverse temperature β. The answer for the four point function can be written

in the form of a momentum space integral〈
V1W3V2W4

〉
=

∏
i=1,4,s,t

∫
dk2

i sinh 2πki AOTO(ki, ti) (1.4)

1The role of the Schwarzian theory relative to the SYK model is indeed similar to that of Liouville theory

relative to any holographic 2D CFT [7, 28, 29]. Both theories capture the dynamics of geometric effective

IR degrees of freedom and are manifestly linked with AdS gravity in one higher dimension. Both are also

exactly solvable.
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where ki labels the energy of the intermediate states via Ei = k2
i /2C and dk2 = 2kdk. The

explicit form of the momentum space amplitudes AOTO(ki, ti) is given in section 3.2. It

can be diagrammatically represented as

AOTO = kskt
`2 `1

k1

k4

t2

t3

t4

t1

Here the lines connect the identical pairs of operators, each placed at different times along

the thermal circle. The OTO property means that, in contrast with the geometric ordering,

the time instances are ordered via t1 < t2 < t3 < t4. The physical properties of the

OTO amplitude, including Lyapunov growth, can be deduced equally well from position

or momentum space.

The OTO four point function encodes direct information about the chaotic behavior

of the quantum theory and about the gravitational scattering in the bulk dual. Indeed, we

can think of the two lines in the above diagrams as world lines of two bulk particles. In the

OTO case, the two worldlines cross, indicating that the amplitude contains a non-trivial

factor in the form of an R-matrix. This R-matrix captures the gravitational shockwave

scattering in the bulk.

The shockwave interaction plays a key role in the Gao-Jafferis-Wall protocol [34] for

sending a signal through a wormhole of an eternal black hole. In [35], this protocol was

refined and tested via the proposed identification between the thermo-field double state of

the SYK model and the two-sided AdS2 black hole geometry. An important motivation for

our study is to see whether the exact results for the correlation functions can be used to

give further support for this proposal. We will focus on the large C limit, or equivalently,

the high temperature regime. In the bulk, this corresponds to the kinematic regime very

close to the black hole horizon.

In this paper we study the large C limit of the exact results [1] and compare with

semi-classical bulk calculations. The bulk answer for the 2-to-2 scattering amplitude due

to the geometric shockwave interaction takes the form of an integral expression

〈V1W3V2W4〉 =

∫ ∞
0

dp+

p+

∫ ∞
0

dp−
p−

Ψ∗1(p+) Φ∗3(p−) S(p−, p+) Ψ2(p+) Φ4(p−). (1.5)

where S(p−, p+) = exp
( iβ

4πC p+p−
)

is the 2D Dray-’t Hooft S-matrix [2] and Ψ1(p+) =

Ψ(t1, p+), etc, are suitable asymptotic wavefunctions with given Kruskal momentum (more

details given in section 4 below). In section 5, we show that our exact expressions for

the OTO four point functions at large C precisely reduces to this semi-classical result.

This confirms our claim that the formulas (1.4) and (5.3) contain the geometric shockwave

S-matrix as a identifiable subfactor.

This paper is organized as follows. In section 2 we compute the matrix elements of the

Dray-’t Hooft S-matrix and discuss its relevance to wormhole traversability. In section 3

– 3 –
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we summarize the exact solution of the Schwarzian. Section 4 discusses the asymptotic

wave functions and the two-point function of the Schwarzian theory. In section 5 we

demonstrate that the exact OTO four-point function of the Schwarzian theory at large C

exactly matches with the shockwave scattering amplitude (1.5). We also explain why the

shockwave amplitude (1.5) coincides with a degenerate limit of a Virasoro conformal block.

Finally, in section 6 we take the semi-classical large mass limit of two-point correlators,

where the mass also scales with C. The resulting expressions are compared to solutions of

the Schwarzian equations of motion, and provide non-trivial checks on the exact formulas

of [1]. Section 7 contains some concluding comments. Some technical results are explained

in the appendices.

2 The 2D shockwave S-matrix

While seemingly perfectly causal, the shockwave interaction is intrinsically non-local. In

this section we will make this non-locality more explicit by decomposing the scattering

matrix (1.1) in a Schwarzschild energy eigenbasis. We will first do the computation in a

first quantized setting and then transfer the results to the second quantized field theory.

2.1 First quantized S-matrix

For a given Schwarzschild energy ν, there are four types of modes: left infalling, right

infalling, left outgoing and right outgoing. They are, up to normalizations〈
U
∣∣ψL,R(ν)

〉
= |U |∓iν−1/2 θ(±U) ;

〈
V
∣∣φL,R(ν)

〉
= |V |∓iν−1/2 θ(±V ) . (2.1)

Alternatively, we can choose to distinguish four types of modes according to the direction

and sign of their Kruskal momenta〈
p+

∣∣ψ±(ν)
〉

= |p+|−iν−1/2 θ(±p+) ;
〈
p−
∣∣φ±(ν)

〉
= |p−|iν−1/2 θ(±p−) , (2.2)

Both choices of sign have obvious physical significance for the support of the respective

wave-functions, and for whether the gravitational shockwave amounts to a time delay

or a time advance. The two types of energy eigenmodes are related via a unitary basis

transformation ∣∣ψ+(ν)
〉

= α̃+R

∣∣ψR(ν)
〉

+ α̃+L

∣∣ψL(−ν)
〉
,

(2.3)∣∣ψ−(ν)
〉

= α̃−R

∣∣ψR(ν)
〉

+ α̃−L

∣∣ψL(−ν)
〉
,

specified by the two-by-two unitary matrix2(
α̃+R α̃+L

α̃−R α̃−L

)
=

Γ(1
2 − iν)
√

2π

(
ei
π
4

+π
2
ν e−i

π
4
−π

2
ν

e−i
π
4
−π

2
ν ei

π
4

+π
2
ν

)
. (2.4)

For the study of wormhole traversability, it is most informative to consider the shock-

wave S-matrix elements in the left- and right energy eigenmodes (2.1). Concretely, we will

consider the amplitude between the two-particle initial state∣∣ν1, ν3

〉
AB =

∣∣ψA(ν1)
〉∣∣φB(ν3)

〉
, A,B = L,R. (2.5)

2This computation is similar to the ones performed in [3, 4] and [36, 37].
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to the final two particle state
∣∣ν2, ν4

〉
CD with C,D = L,R. The 2-to-2 scattering matrix for

given initial and final energies thus reduces to a four-by-four matrix

CD

〈
ν2, ν4| S |ν1, ν3

〉
AB A,B,C,D = L,R. (2.6)

We will find that all matrix elements are non-zero. In particular, there is a non-zero ampli-

tude for the particles to traverse the wormhole, as indicated on the right in figure 1. This

result is an inevitable consequence of the shockwave effect in combination with Heisen-

berg uncertainty. If the ingoing position wave functions are supported on the Kruskal

half-line, the momentum wave functions are analytic on the upper or lower complex half

plane, and thus are necessarily non-zero along the whole real axis. Because the outgoing

coordinate (1.2) includes a shift proportional to the ingoing momentum, the outgoing wave

functions have support on both sides of the horizon.3

To obtain the S-matrix elements (2.6), we first compute the matrix elements in the

basis (2.2) with positive and negative Kruskal momentum, and then apply the basis trans-

formation (2.3). Since the Dray-’t Hooft S-matrix S preserves the Kruskal momentum, in

the ± basis (2.2) it takes the form of a diagonal four-by-four matrix with four identical

eigenvalues

S(ν2, ν4; ν1, ν3) =

∫ ∞
0

dp+

p+

∫ ∞
0

dp−
p−

piν1+ p−iν3− p−iν2+ piν4− eiκ p+p−

(2.7)

= κi(ν2−ν1)e
π
2

(ν2−ν1) Γ
(
i(ν1 − ν2)

)
2πδ(ν1−ν2+ν3−ν4),

where κ ≡ β
4πC . This reduced S-matrix satisfies the unitarity relation∫
dν2

2π

∫
dν4

2π
S†(ν5, ν6; ν2, ν4)S(ν2, ν4; ν1, ν3) = (2π)2δ(ν1−ν5)δ(ν3−ν6). (2.8)

The full unitary four-by-four S-matrix (2.6) in the left- and right mode basis (2.1) thus

takes the form

CD

〈
ν2, ν4| S |ν1, ν3

〉
AB =

∑
s,s′

α̃Cs(ν2) α̃†sA(ν1) α̃Ds′(ν4) α̃†s′B(ν3) S(ν2, ν4; ν1, ν3) . (2.9)

The explicit form of this S-matrix is found by inserting the explicit expressions for

S(ν2, ν4; ν1, ν3) given in (2.7) and for α̃sA(νi) given in (2.4). We will not write it out here.

2.2 Second quantized S-matrix

Indeed, this is not yet the end of the story. Our discussion thus far has been within a

first quantized setting. We would like to translate the above first quantized 2-to-2 particle

S-matrix into a statement about the gravitational shockwave interaction between modes of

an (otherwise freely propagating) quantum field.

Within second quantization, we need the relevant Bogoliubov transformations relating

modes with definite localization in either the L- or R-wedge to modes containing only

3This situation is reminiscent of the GJW protocol. One important difference, however, is that the

particle traverses the black hole with probability less than one.
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U < 0

V < 0

U > 0

V < 0

U > 0

V > 0

U < 0

V > 0

U < 0

V < 0

U > 0

V < 0

U > 0

V > 0

U < 0

V > 0

Figure 1. The 2-to-2 shockwave scattering matrix has non-zero matrix elements between incoming

and outgoing pairs of waves on either side of the black hole horizon. The interaction can produce a

time delay (left) or a time advance (right). In the latter case, the particles traverse the wormhole.

positive (or negative) Kruskal momentum. This is the standard construction of Unruh

modes as in e.g. [38]. We collect the relevant formulas in appendix A. We will denote the

corresponding creation and annihilation operators by a†
L,R

and aL,R . The Kruskal vacuum

state is given by the thermo-field double state in the Rindler basis, and is annihilated

by the annihilation operators c1(ν) and c2(ν) associated with the modes with positive

Kruskal energy:

c1(ν) |TFD〉 = c2(ν) |TFD〉 = 0. (2.10)

A quantum field mode, when acting on the thermo-field double state, cannot carry any

negative Kruskal momentum. This has obvious significance for our discussion, as it appears

to eliminate the possibility that the shockwave due to a single particle can be sourced by

negative Kruskal momentum. However, as we will see, the amplitude for traversing the

wormhole remains non-zero.

Using the vacuum condition (2.10) and the Bogoliubov relations (A.10)

a†
R

(ν) = α+R(ν) c1†(ν) + α−R(ν) c2(ν), (2.11)

we can express the action of the Rindler creation operators a†
R

on the right wedge in terms

of the action of a creation operator c1† with positive Kruskal momentum via

a†
R

(ν)
∣∣TFD

〉
= α+R(ν) c1†(ν)

∣∣TFD
〉
. (2.12)

Analogous equations hold for the other creation and annihilation operators.

In the second quantized setting, the scattering amplitude on the right of figure 1 is

given by

LR

〈
ν2, ν4| S |ν1, ν3

〉
RL =

〈
TFD

∣∣ aL(ν2) aR(ν4) S a†
R
(ν1)a†

L
(ν3)

∣∣TFD
〉
. (2.13)

From the above discussion, it is clear that this matrix element is not the same as the matrix

element computed in the first quantized theory. Instead, it is given by keeping only the

subcomponent S++ of the unitary 2-to-2 scattering matrix S that acts within the positive

Kruskal momentum sector. In other words, the matrix element is found by keeping only

– 6 –
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the s, s′ = ++ term in the expression (2.9) for the first quantized S-matrix.4 Inserting the

explicit expressions (2.7) and (A.10) for S(ν2, ν4; ν1, ν3) and αsA(νi) yields our final answer

for the scattering amplitude in which the two particles traverse the wormhole

LR

〈
ν2, ν4

∣∣ S ∣∣ν1, ν3

〉
RL =

1

4π2
e
π
2

(ν1−ν2+ν3−ν4) Γ(1 + iν1)Γ(1− iν2)Γ(1 + iν3)Γ(1− iν4)

×κi(ν2−ν1) e
π
2

(ν2−ν1) Γ (i(ν1 − ν2)) 2πδ(ν1−ν2+ν3−ν4). (2.14)

Does this non-zero result imply that shockwave interactions enable information to

travel faster than the speed of light? The cautious answer is: no. First, note that even

without interactions, the wormhole traversing amplitude is non-zero LR〈ν2, ν4|ν1, ν3〉RL =
πν1

sinhπν1
πν3

sinhπν3
δ(ν12)δ(ν34). Still we know that free field theory is perfectly causal, and

space-like separated operators commute. Secondly, we observe that the ratio between the

wormhole traversing and non-traversing amplitude is given by a simple thermal factor

LR

〈
ν2, ν4| S |ν1, ν3

〉
RL

RL

〈
ν2, ν4| S|ν1, ν3

〉
RL

= e−π(ν2+ν4). (2.15)

This means that in position space, the wormhole traversing amplitude5

〈
V

L

1 W
R

3 V
R

2 W
L

4

〉
=

4∏
i=1

∫ ∞
−∞

dνi
2π

ei(ν1t1−ν2t2+ν3t3−ν4t4)
LR

〈
ν2, ν4| S |ν1, ν3

〉
RL (2.17)

is obtained from the non-traversing amplitude 〈V L

1 W
R

3 V
L

2 W
R

4 〉 via a simple analytic con-

tinuation (t2, t4) → (t2 + iπ, t4 + iπ) by an imaginary shift in the time coordinates of the

outgoing particles. The physical interpretation of the above wormhole traversing 2-to-2

amplitude is that it is simply the imprint of the causal shockwave interaction onto the

non-local EPR correlations in the thermo-field double state. Hence it does not correspond

to acausal signal propagation and does not by itself give rise to non-zero commutators

between space-like separated local operators. The implementation of a GJW type protocol

indeed requires a more elaborate set up than we have considered here.

3 Schwarzian correlation functions

In this section we give a brief summary of the exact solution of the Schwarzian quan-

tum mechanics, and present the explicit expression of the two- and four-point functions.

A more detailed discussion can be found in [1] and [39]. In the next two sections, we

will then take the large C limit of these results and establish a precise match with the

shockwave scattering.

4We of course also replace the unitary matrix α̃±R,L
with the Bogoliubov matrix α±R,L

.
5These integrals in (2.17) can be explicitly evaluated in terms of the confluent hypergeometric func-

tion [24] 〈
V

L

1 W
R

3 V
R

2 W
L

4

〉
〈V L

1 V
R
2 〉〈WR

3 W
L
4 〉

=
1

z
U(1, 1, 1/z) z =

i e(t3+t4−t1−t2)/2

4κ cosh t12
2

cosh t34
2

(2.16)

with U(1, 1, x) =
∫∞
0
ds e

−xs

1+s
and z the cross ratio. This amplitude is a smooth function of all time

coordinates.
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3.1 Schwarzian QM as a limit of Virasoro CFT

Schwarzian quantum mechanics at finite temperature is defined as a functional integral over

the coset Diff(S1)/SL(2,R) of the group of diffeomorphisms Diff(S1) of the thermal circle

f : τ → f(τ), f(τ + 2π) = f(τ) + 2π, (3.1)

modulo the group SL(2,R) of Möbius transformations

F → aF + b

cF + d
, (3.2)

acting on the periodic function F = tan f/2. For this subsection only, we choose units such

that the inverse temperature β = 2π.

This geometric fact, that the space of all paths in the functional integral forms a coset of

two familiar groups, enables one to use some powerful machinery for solving its correlation

functions [1, 32, 39]. Diff(S1) is also known as the Virasoro group and Diff(S1)
SL(2,R) is called

the special coadjoint orbit of the identity element. A coadjoint orbit of any continuous

group admits a natural symplectic structure, that via the standard quantization rules gives

rise to commutation relations among the Noether charges that equal the Lie algebra of

the infinitesimal symmetry transformations. For Diff(S1)
SL(2,R) this algebra takes the form of the

Virasoro algebra with central charge c related to the quantization parameter ~ via ~ = 24π
c .

The Hilbert space of the corresponding quantum theory is given by the identity module of

the Virasoro algebra.

Suppose we know how to perform a field redefinition from f(τ) to some new set of

canonically conjugate variables φ(τ) and πφ(τ), such that, upon introducing ~, it implies

the commutation relation [φ(τ1), πφ(τ2)] = i~δ(τ12). Consider now the Lagrangian

L2D =

∫ π

−π
dτ
(
πφφ̇+ {F, τ}

)
, (3.3)

where φ̇ = ∂sφ denotes the derivative with respect to an auxiliary extra time variable s,

and where πφ, φ and F = tan f
2 all denote periodic functions on the interval −π < τ < π.

By definition, the quantization of this theory produces a Hilbert space given by the identity

module H0 of the Virasoro algebra with central charge c = 24π
~ .

Let us now place the 2D theory (3.3) on a small periodic time interval 0 < s < T

with period T . Performing the functional integral computes the partition function Z =

trH0(e−TH
)

with

H = −
∫ π

−π
dτ {F (τ, s), τ} , F = tan

f

2
. (3.4)

The exact computations of [1] are based on the observation that the Schwarzian theory is

obtained from the above 2D theory by taking the combined ~ → 0 and T → 0 limit with

T/~ = cT
24π = C held fixed. The theory then dynamically reduces to just the zero-mode

along the s-direction∫
f(π,s)=f(−π,s)+2π

Df e
1
~

π∫
−π

dτ
∫ T
0 ds(iπφφ̇+{F,τ})

→
∫

f(π)=f(−π)+2π

Df e
C

π∫
−π

dτ {F,τ}
. (3.5)

– 8 –
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This identity holds under the condition that the functional integration measure on both

sides is defined in terms of the symplectic form on Diff(S1).

The 2D theory introduced above turns out to be equivalent to Liouville CFT defined

on the strip 0 < τ < π with ZZ-brane boundary conditions [40] at τ = 0 and τ = π.

Here we briefly ouline the argument [39]. Liouville CFT with a boundary is defined by the

Hamiltonian

H =

∫ π

0
dτ

(
π2
φ

2
+
φ2
τ

2
+ eφ − 2φττ

)
, (3.6)

where πφ and φ are canonically conjugate fields. To establish this fact, we perform the

following field redefinition, first introduced by Gervais and Neveu [41–44]

eφ = −8
AτBτ

(A−B)2
; πφ =

Aττ
Aτ
− Bττ

Bτ
− 2

Aτ +Bτ
(A−B)

, (3.7)

where Aτ = ∂τA etc. In terms of these new variables, the ZZ-boundary conditions impose

that A(0) = B(0) and A(π) = B(π). This allows the introduction of a doubled field

variable f(τ)

A(τ) = tan
f(τ)

2
, 0 < τ < π,

(3.8)

B(−τ) = tan
f(τ)

2
, −π < τ < 0,

which defines a continuous function with periodic boundary conditions f(τ + 2π) =

f(τ)+2π. The above two equations (3.7) and (3.8) specify the mapping from the canonical

(φ, πφ) variables to the Diff(S1) variable f(τ). It is easy to verify that the Liouville Hamil-

tonian (3.6), when expressed in terms of f(τ), takes the form (3.4). Moreover – and this is

an essential element in the construction – the canonical Poisson bracket relation between

φ and πφ transforms via the above field redefinition precisely into the correct Virasoro

symplectic form on Diff(S1). This confirms that the two 2D theories are indeed the same.

The classical solution of Liouville field with the above ZZ-brane boundary conditions

is expressed in terms of the single function f via [45, 46]

eφ(u,v) =
2f ′(u)f ′(v)

sin
(
f(u)−f(v)

2

)2 , (3.9)

where u = s + t and v = s − t denote the light-cone coordinates. This formula for the

classical field will be useful in the next subsection.

3.2 Feynman rules in the Schwarzian theory

In the following sections, we will study 2n-point functions in Schwarzian QM of the form〈 n∏
i=1

Vi(τ2i)Vi(τ2i+1)

〉
=

∫
Df e−S[f ]

n∏
i=1

O`i(τ2i, τ2i+1), (3.10)
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where O`(τ1, τ2) denote the SL(2,R) invariant bi-local operators

O`(τ1, τ2) =

( √
2f ′(τ1)f ′(τ2)

sin 1
2 [f(τ1)− f(τ2)]

)2`

. (3.11)

In the microscopic SYK theory, each bi-local operator O`(τ1, τ2) represents the insertion of

a pair V`(τ1)V`(τ2) of local scaling operators with scale dimension `.

In the dictionary between Schwarzian QM and Virasoro CFT, O`(τ1, τ2) gets mapped

to the exponential vertex operators V`(τ1, τ2) = e`φ(τ1,τ2). The derivation of this map makes

use of the classical solution (3.9) of the Liouville field in the presence of the two ZZ-branes.

In [1], exact expressions for the Schwarzian 2n-functions were obtained by taking a suitable

limit of known results from Virasoro CFT. In this subsection, we will just quote the results.

For the derivations and some checks, we refer to [1]. In the next three sections, we will

then compare the exact formulas with the semi-classical bulk expectations.

General finite temperature correlation functions of n bi-local operators in Schwarzian

quantum mechanics can be written in the form of a multi-dimensional ‘momentum integral’〈 n∏
i=1

Vi(τ2i)Vi(τ2i+1)

〉
=
∏
i

∫
dk2

i sinh 2πki A2n(ki, τi), (3.12)

where dk2 = 2kdk. Here each ki labels a complete set of intermediate energy eigenstates

weighted by the appropriate spectral density

1 =

∫
dk2 sinh 2πk |k〉〈k|, E =

k2

2C
. (3.13)

The momentum space amplitudes for each 2n-point function can immediately be written

down by applying the following simple set of Feynman rules.

Every graph is circumscribed by a circle, which represents the thermal circle. Inside

the circle, we draw a line for every bi-local operator, which connects the corresponding

two points on the boundary circle. Propagators on the circular boundary and vertices are

given in terms of Euclidean time by

τ1τ2

k

= e−
k2

2C
(τ2−τ1) ,

k2

k1

` = γ`(k1, k2) . (3.14)

The time dependent factor represents the usual Schrödinger time evolution of the interme-

diate energy eigenstates. The vertex factor takes the following form

γ`(k1, k2) =

√
Γ(`± ik1 ± ik2)

Γ(2`)
. (3.15)

This vertex factor represents the matrix element of each endpoint of the bi-local operator

between the corresponding two energy eigenstates.
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The lines in the diagram divide the disk into several disjoint sectors. In order to write

down a general amplitude, one associates a separate momentum label to each region of

the disk, even those that do not reach the boundary circle. Then for each crossing of lines

within the diagram, one writes the relevant R-matrix or crossing matrix, labeled by the

four momenta of the four regions defined by these crossing lines and the two momenta

attached to the lines. In diagrammatic notation, we write

kskt
`2 `1

k1

k4

= Rkskt

[
k4
k1
`2
`1

]
(3.16)

The R-matrix Rkskt

[
k4
k1
`2
`1

]
is equal to the 6j-symbol of SU(1, 1), whose explicit form derived

in [1] is given in equation (B.1).

It is perhaps instructive to elaborate on how this Feynman rule prescription is deduced

from the Virasoro CFT. In the dictionary of [1], each vertex operator in 2D Virasoro CFT

maps to a bilocal operator in the 1D Schwarzian theory. As a concrete example, let us

consider the three-point function in 2D, or the six-point function in 1D

〈
V`1(z1, z̄1)V`2(z2, z̄2)V`3(z3, z̄3)

〉
=

τ4

τ2

τ5

τ1

τ6τ3

`1

`2

`3

(3.17)

where the time arguments of the bilocal operators are identified with the 2D locations via:

(z1, z̄1)→ (τ2, τ1), (z2, z̄2)→ (τ3, τ6), (z3, z̄3)→ (τ4, τ5).

The Schwarzian limit amounts to taking the length of the cylinder between operator

insertions to be infinitely long. In this limit, only primaries propagate in the intermediate

channels. Inserting a complete sets of states thus amounts to the leading OPE expansion

〈Oi(∞)V`(z)Oj(0)〉 = zhi−h`−hjci`j . (3.18)

The large c limit of the DOZZ OPE coefficients ci`j reduces to the vertex functions

γ`(ki, kj), while the z-dependent pieces in (3.18) become propagators along the cylinder

between insertions.

To obtain the OTO six-point function, we start from the above striped diagram and

swap first τ2 with τ3 and then τ2 with τ4. Swapping operators is achieved by using the

Schwarzian limit of the braiding R-matrix of Virasoro CFT, which was determined by

Ponsot-Teschner in [47]. So we only need to swap the first argument τ2 all the way

through all of the first arguments of the remaining Liouville operators. This means that

this acts fully in the holomorphic sector. As Liouville vertex operators naturally factorize

in chiral and anti-chiral parts, we can just use the exchange algebra of chiral operators,

V`1(z1)V`2(z2) = R12V`2(z2)V`1(z1), to move the holomorphic part of V`1 all the way to the

other side.
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The double shockwave process can now be found by doing a two-move process

τ4

τ2

τ5

τ1

τ6τ3

`1

`2

`3

k1

k2

kj

kiki

kj

→ Rkikk

[
kj
k1
`2
`1

]
τ4

τ3

τ5

τ1

τ6τ2

`1`2

`3

k1

k2

kj

kikk

kj

→ Rkikk

[
kj
k1
`2
`1

]
Rkjkl

[
k2
kk

`3
`1

]
τ2

τ3

τ5

τ1

τ6τ4

`1
`2

`3

k1

k2

kj

kikk

kl

(3.19)

This can be generalized to higher-point functions in a tedious but straightforward way.

We comment on it in appendix C.

4 Two-point function

In this section we will study the large C limit of the Lorentzian two-point function of the

Schwarzian theory. The exact answer for the two point function found in [1] reads

〈
V1(0)V2(t)

〉
=
∏
i=1,2

∫
dk2

i sinh 2πki

k1

k2

` (4.1)

=
∏
i=1,2

∫
dk2

i sinh 2πki e
− i

2C
(k21−k22)t− β

2C
k22

Γ(`± i(k1 ± k2))

(2C)2` Γ(2`)
, (4.2)

where the ± notation denotes the products of all choices of signs.6 The time depen-

dent phase factor represents the usual Schrödinger evolution of the intermediate energy

eigenstates.

As a preparation for the discussion of the OTO four point function, we introduce the

asymptotic wave functions that describe the scattering states in AdS2. We extract these

wavefunctions from the boundary-to-boundary propagator and from the large C limit of

the two-point function.

4.1 Asymptotic wavefunctions

There are two types of asymptotic wave-functions in the bulk gravity theory: the

Schwarzschild wave-functions Ψ`(ν, t) with given frequency ν and the Kruskal wave func-

tions Φ`(q−, V ) and Ψ`(p+, U) with given ingoing and outgoing Kruskal momentum q− and

p+. All wave functions are assumed to satisfy the wave equation of the particle of mass

m2
` = `(`− 1) in AdS units.

6For example Γ(a± b± c) = Γ(a+ b+ c)Γ(a+ b− c)Γ(a− b+ c)Γ(a− b− c).
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We first discuss the Schwarzschild case. We consider an AdS2 black hole of mass M ,

inverse Hawking temperature β and with Schwarzschild coordinates z and t. To simplify

the expressions we take units in which β = 2π. At the holographic boundary, the light-

cone coordinates u = t + z and v = t − z coincide with the time coordinate u = v = t

of the Schwarzian QM. In the semiclassical limit, the asymptotic wave functions in this

coordinate frame can be obtained by decomposing the boundary-to-boundary propagator

as an integral over Schwarzschild frequencies ν

G`(t1, t2) =

(
1

2 sinh(1
2(t12 − iε))

)2`

=

∫
dν

2π
Ψ∗` (ν, t1)Ψ`(ν, t2), (4.3)

Ψ`(ν, t) =
e
πν
2 Γ
(
`+ iν

)√
Γ(2`)

e−iνt. (4.4)

The asymptotic Kruskal wave functions are bulk-to-boundary propagators sourced on

the boundary at the location (U, V ) = (−et, e−t) [8, 24]. For early times t1, we consider

ingoing waves as functions of the ingoing Kruskal coordinate V ; for late times t2, we

consider outgoing waves as functions of the outgoing Kruskal coordinate U . Their explicit

form is determined by the relations

G`(t1, t2) =

∫ ∞
0

dp+

p+
Ψ∗` (p+, U1) Ψ`(p+, U2) =

∫ ∞
0

dp−
p−

Φ∗` (p−, V1) Φ`(p−, V2), (4.5)

Ψ`(p+, U) =
(ip+U)`√

Γ(2`)
eip+U , Φ`(p−, V ) =

(ip−V )`√
Γ(2`)

eip−V , (4.6)

where the parameters p+ and p− are interpreted as bulk null momenta in Kruskal coor-

dinates. The two types of asymptotic wave functions are related via the unitary basis

transformation

Ψ`(p+, U) =

∫
dν

2π
piν+ Ψ`(ν, t) ; Φ`(p−, V ) =

∫
dν

2π
p−iν− Ψ∗` (ν, t). (4.7)

4.2 Large C limit of exact two-point function

We will consider the limit of the two-point function for large C and evaluated at times that

might be large but not bigger than C. Both integrals appearing in (4.1) are dominated by

k1 ∼ k2 � 1. With this in mind we will write

k2
1 = E1 = M + ω, k2

2 = E2 = M, (4.8)

with ω �M . Using this approximation the two-point function (4.1) becomes

〈
V1(0)V2(t)

〉
=

∫ ∞
0
dM e2π

√
M− β

2C
M

∫
dω

2π
e
−i ω

2C
t+π ω

2
√
M

Γ(`± i ω
2
√
M

)

2(2C)2`Γ(2`)
(2
√
M)2`−1. (4.9)

Rescaling ω → 2Cω and M → 2CM , one immediately sees that in the semiclassical limit

the integral over M is dominated by a saddle-point at M0 = 2π2C/β2 � 1, which is the
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mass of an AdS2 black hole with inverse Hawking temperature β. Doing the integral over

M reproduces equation (4.3) if we set β = 2π

〈
V1(0)V2(t)

〉
=

(
2π

β

)2`−1 ∫ dω

2π
e−itω+β

2
ωΓ(`± i β2πω)

Γ(2`)
=

(
π

β sinh(πβ (t− iε))

)2`

. (4.10)

This coincides with the semiclassical two-point function derived in the previous section

from the AdS wavefunctions.7

5 Four-point function

In this section we will focus on the Schwarzian four-point function in the large C limit. Our

goal is to match the out-of-time ordered (OTO) case with the AdS2 shockwave calculation

done in [24]. We will consider ingoing and outgoing matter particles created by local

operators V (t1) and W (t2) with Lorentzian time difference t1 − t2 � β.

For comparison, we first consider the semiclassical limit of the exact time-ordered

four-point function [1]. The exact correlation function in the Schwarzian theory takes the

following form

〈V1W3V2W4〉 =

∫
dk2

1dk
2
4dk

2
s sinh(2πk1) sinh(2πk4) sinh(2πks)

×e−
1
2C (ik21t21+ik24t43+ik2s(−i2π−t21+t43)) Γ(`2 ± ik4±s)Γ(`1 ± ik1±s)

Γ(2`1)Γ(2`2)
,(5.1)

where we took β = 2π. We can take the large C limit following the same proce-

dure as used for the two-point function. A straightforward computation shows that

the TO four-point function simply factorizes into the product of two-point functions

G`1`2(t1, t2, t3, t4) → G`1(t1, t2)G`2(t3, t4). From the bulk perspective, this result illus-

trates that the bulk interactions are suppressed in the large C limit. As we will see, this is

no longer true for the out-of-time-ordered four point function.

5.1 Large C limit of OTO four point function

This OTO amplitude differs from the time-ordered amplitude by an insertion of the R-

matrix, which contains an additional u-integral as shown below. The R-matrix incorporates

the gravitational shockwave interaction. We would like to make this explicit, by comparing

the large C limit of the above expression with the Dray-’t Hooft S-matrix.

The result for the OTO four-point function takes the form〈
V1W3V2W4

〉
=

∏
i=1,4,s,t

∫
dk2

i sinh 2πki AOTO(ki, ti) (5.2)

AOTO(ki, ti) = e−
i

2C
(k21t31+k2t t23+k24t42+k2s(−i2π−t41)) Γ(`1+ik1±s)Γ(`1−ik4±t)Γ(`2− ik1±t)Γ(`2+ik4±s)

Γ(2`1)Γ(2`2)

×
i∞∫
−i∞

du

2πi
Γ(u)Γ(u−2iks)Γ(u+ik1+4−s+t)Γ(u−iks+t−1−4)Γ(`1+iks−1−u)Γ(`2+iks−4−u)

Γ(u+`1−iks−1)Γ(u+`2−iks−4)
,

7If we allow the time difference to be t� C then backreaction turns this exponential decay in time into

a power-law decay, as found in [1, 30, 31].
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where ki+j is shorthand for ki + kj . The integral over the auxiliary variable u can be done

exactly by contour deformation, giving the Wilson function introduced by Groenevelt [48,

49] (which in turn can be expressed in terms of 4F3 generalized hypergeometric functions).

For our study, however, it is more useful to keep the integral expression.

Similar to what happened with the two-point function, the semiclassical limit of large

C is described by a saddle-point where all k’s are of order C, while its differences are

subleading. As we show in appendix B, by looking at the poles and residues of the integrand,

in this limit we only need to take the residue at u = 0 and u = iks+t−1−4. This gives the

following semiclassical expression for the amplitude, in terms of the k-variables〈
V1W3V2W4

〉
=

∏
i=1,4,s,t

∫
dk2

i sinh 2πki e
− 1

2C (ik21(t3−t1)+ik2t (t2−t3)+ik24(t4−t2)+ik2s(−i2π−t4+t1))

× Γ(`1+iks±1)Γ(`1−ik4±t)Γ(`2−ik1±t)Γ(`2+iks±4)Γ(−2iks)Γ(ik−s+t+1+4)Γ(ik−s−t+1+4)

Γ(2`1)Γ(2`2)

+ (k1, k4, ks, kt) → (−k4,−k1,−kt,−ks) . (5.3)

The first and the second term in the right hand side of the previous equation come from

the pole at u = 0 and u = iks+t−1−4 respectively. They are related by taking ks → −kt,
kt → −ks, k1 → −k4, k4 → −k1 as indicated. In the limit of large time difference between

the V and W operators the contribution from the second pole is negligible, and the u = 0

pole dominates. We will accept this for now and come back to the role of this extra term

at the end of this section.

Following the procedure we outlined for the analysis of the two point function, we

rewrite the integrals using the following variables

k2
s = M, k2

1 = M + ω1, k2
4 = M + ω4, k2

t = M + ω4 + ω2 . (5.4)

In the ω �M limit, the OTO correlation function becomes

〈V1W3V2W4〉 '
∫
dMe2π

√
M− π

C
M (2
√
M)2`1+2`2+iν1−iν2−4 (5.5)

×
4∏
i=1

∫
dνi
2π

eiν1t1−iν2t2+iν3t3−iν4t4+π
2

(ν2+ν1+2ν4) 2πδ(ν1 + ν3 − ν2 − ν4)

× Γ(`1 − iν1)Γ(`1 + iν2)Γ(`2 + iν3)Γ(`2 − iν4)Γ(iν1 − iν2)

Γ(2`1)Γ(2`2)
,

where we define ν = ω
2
√
M

, and rescaled ti accordingly, to simplify the notation. Just as

before, the M integral is dominated by the saddle point at M0 = 2π2C/β2. The above

result then manifestly matches the flat space shockwave calculation in section 2 for a

massless (conformally coupled in 2D) particle with ` = 1. It can, equivalently, be read as

being composed of bulk-to-boundary propagators of the type (4.4) and the S-matrix (2.7).

We conclude with a comment about the contribution in the u-integral coming from

the pole at u = iks+t−1−4. Since the form of this term is very similar to the shockwave

integrand, one can perform the integral exactly and check that it vanishes in the large time
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limit. Nevertheless, there is an important reason why this term is present. In this section

we have been implicitly focusing on the OTO four-point function 〈V (0)W (t)V (0)W (t)〉.
If one had chosen t to be large but negative, we would instead have been computing

〈V (t)W (0)V (t)W (0)〉. The expression (5.6) we write down below for the shockwave an-

swer breaks t → −t symmetry and would not be valid in this case. If we had computed

〈V (t)W (0)V (t)W (0)〉 we would have found that the roles of the u-poles are reversed.

Namely, the u = 0 pole would be negligible, and the u = iks+t−1−4 pole would repro-

duce the shockwave calculation. This structure fits nicely into what we would expect from

a non-perturbative formula taken in the semiclassical limit.

The analysis of this and the previous section can be generalized to arbitrary higher-

point OTO correlation functions. We present a few examples in appendix C.

5.2 OTO four point function as a Virasoro conformal block

The OTO four-point function can be expressed in terms of this bulk S-matrix and the

asymptotic wave functions. The integrals can be computed explicitly, with the result [24]8

〈V1W3V2W4〉
〈V1V2〉〈W3W4〉

= z−2`1U(2`1, 1 + 2`1 − 2`2, 1/z), (5.6)

where we define the cross-ratio

z =
iβ

16πC

eπ(t3+t4−t1−t2)/β

sinh πt12
β sinh πt34

β

. (5.7)

If we make the choice of the insertions times similar to [24], explicitly t1 = −iβ2 , t2 = 0,

t3 = t − iβ4 and t4 = t + iβ4 , then the cross-ratio becomes z = β
16πC e

2π
β
t
. The shockwave

calculation is valid for t > 0 large with this combination z held fixed.

In the previous section we got this result from our exact formulas derived from 2d

Liouville CFT between ZZ-branes. The purpose of this section is to rederive the semiclas-

sical limit directly from the 2d picture without having to go through the details of the

exact expressions. Instead of taking large C with fixed β we will consider units in which

C = 1/2. Since the dimensionless coupling is 2πC/β the semiclassical limit is equivalent

to taking β → 0 in these units.

In the 2d picture, the inverse temperature β of the Schwarzian gives the distance

between the ZZ branes. Taking β → 0 in the Schwarzian means sending the distance

between the ZZ-branes to zero faster than the size of the circle in the extra dimension.

Namely, β goes to 0 faster than q → 1, where q = e2πiτ denoted the q-modulus of the 2d

annulus. In this limit the Schwarzian becomes equivalent to Liouville between two infinite

ZZ-branes, namely on a strip of width β instead of an annulus.

The upshot of the previous argument is that we can reproduce the semiclassical

Schwarzian correlators from local operators between two infinite ZZ-branes. The Liou-

ville one-point function, which corresponds to the Schwarzian two-point function, is easy

8Even though it is not obvious from this expression one can verify using the properties of the hyperge-

ometric function U(a, b, z) that the right hand side is invariant under `1 ↔ `2.
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to compute exactly from the 2d CFT perspective, since the system can be mapped to

the upper-half-plane by a conformal transformation. The answer immediately has the

required form

〈V 〉strip =

(
π

β sin πτ
β

)2`

, (5.8)

where ` corresponds to the conformal dimension of the Liouville operator. This can be

related to the real time answer (4.3) by analytic continuation.

Now we compute the Liouville 2pt function/Schwarzian 4pt function using this ap-

proach. Again, we can map the infinite strip to the upper-half plane, and we take the

positions of the two local vertex operator insertions to be z1 and z3, while the images of

these operators will be denoted by z2 and z4 (even though they should strictly be given by

z∗1 and z∗3 we will allow them to be generic). The two-point function can be written in two

equivalent ways. First, we can take the OPE between the two insertions and between the

two images, obtaining〈
V1V2W3W4

〉〈
V1V2

〉〈
W3W4

〉 =

∫
dP ΨZZ(P )CVWP F

(
V
W

V
W , P, η

)
, (5.9)

where η = z13z24
z14z23

is the cross-ratio, ΨZZ is the ZZ-brane wavefunction, CVWP represents the

Liouville OPE coefficient between the operators V , W and an intermediate channel operator

with Liouville momentum P . F(P, η) denotes the conformal block in this channel. Another

representation of this correlation function can be obtained by performing the OPE between

an operator and its image. In this case it was shown that only the vacuum block appears

(see section 6 of [40] and also [50] for a different perspective on this result). Defining the

new cross ratio via x = 1−η and using the exponential map zi = e
2π
β
τi , the ZZ identity gives

〈V1V2W3W4〉
〈V1V2〉〈W3W4〉

= x2∆V F
(
V
V
W
W , vac, x

)
, x = −

sinh πt12
β sinh πt34

β

sinh πt32
β sinh πt41

β

. (5.10)

For fixed t1, . . . , t4 ∼ O(1) and c → ∞, the cross-ratio is finite and the vacuum block

becomes trivial, implying that 〈V1V2W3W4〉 ∼ 〈V1V2〉〈W3W4〉. For the time-ordered four-

point function this is the final answer.

The out-of-time ordered four-point function is equal to the vacuum block evaluated on

the second sheet. It turns out this indeed exactly reproduces the shockwave calculation.

The vacuum block on the second sheet is found by performing a monodromy operation on

the block. As observed in [51], this monodromy remains non-trivial in the combined x→ 0

and c→∞ limit, with the product c · x is held fixed and finite. The exact formula for the

identity block in this limit was found to be [51]

〈V1W3V2W4〉
〈V1V2〉〈W3W4〉

= lim
c→∞,cx fixed

x2∆V F2ndsheet

(
V
V
W
W , vac, x

)
= z−2`1U(2`1, 1 + 2`1 − 2`2, 1/z), (5.11)

where the right hand side involves the cross ratio z defined in equation (5.7). Here we used

the precise relation between the Virasoro central charge c and the Schwarzian coupling

2πC/β. This matches exactly with the shockwave calculation in equation (5.6).
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6 Large ` limit of the exact correlation function

In this section we study the limit in which we simultaneously take the mass ` of the

insertions to be heavy in combination with C large, keeping `/C finite. We will take the

relevant limit directly in the Euclidean regime of our expression (4.1) (and compare that

to a direct solution of the Schwarzian equation of motion in appendix D). This regime was

explored from a geometrical perspective in [52].

6.1 Two point function

Consider the two-point function for a Schwarzian bilocal operator, where we write the

operator in the action:

G`(τ) =

∫
[Df ] exp(−S) with S = −C

∫
dt {F, τ} − ` ln

Ḟ1Ḟ2

(F1 − F2)2
. (6.1)

Here F = β
π tan

(
π
β f
)

where f maps the interval Iβ monotonically into itself: f(τ + β) =

f(τ)+β. Within the semiclassical regime, we set the weight of the bilocal operator to scale

as ` ∼ O(C) with C → +∞, such that both terms in the action are equally important. In

this section we would like to make a connection between the large ` limit, with `/C fixed,

of the exact two-point function and extract a practical geometric representation along the

lines of [52, 53].

The exact two-point function (4.1), in Euclidean signature, can be simplified in this

semi-classical regime (C � τ, β − τ) by using Stirling’s formula to

〈
V1(0)V2(τ)

〉
≈
∫
dk2

1dk
2
2 e
− τk

2
1

2C
− (β−τ)k22

2C e2π(k1+k2)
(
(k1−k2)2+ `2

)`− 1
2
(
(k1+k2)2+ `2

)`− 1
2

× 1

(2C)2`(2`)2`
e−2(k1 + k2)arctan

(
k1+k2
`

)
− 2(k1− k2)arctan

(
k1−k2
`

)
.

These momentum integrals are dominated by their saddle points. The saddle point equa-

tions are

τk1

C
+ 2arctan

(k1 + k2

`

)
+ 2arctan

(k1 − k2

`

)
= 2π,

(6.2)
(β − τ)k2

C
+ 2arctan

(k1 + k2

`

)
− 2arctan

(k1 − k2

`

)
= 2π,

which demonstrates that ki ∼ O(C). Performing the saddle point gaussian integral yields

the semi-classical result

Gβ` (τ) ' e−S0

√
π

detA
, (6.3)

with classical “action”9

Sclass. =
τk2

1

2C
+

(β − τ)k2
2

2C
+ ` ln

[
((k1 + k2)2 + `2)((k1 − k2)2 + `2)

(4C`)2

]
, (6.4)

9Here and in what follows, we denote the solution of the saddle equations by ki as well.
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and fluctuation determinant

detA =
τ(β − τ)

4C2
+

β`
C (`2 + k2

1 + k2
2) + 4`2

((k1 + k2)2 + `2)((k1 − k2)2 + `2)
. (6.5)

We would like to give these formulas a more evident geometrical interpretation, at least for

the classical action. Nevertheless this variational problem does not have enough variables

to be compared with the geometric one, as we explain below. Therefore we need a different

representation of the two-point function.

We again start with the exact two-point function (4.1). To take the large ` limit of

this formula in a way that will help make the geometric interpretation more transparent,

we first rewrite the product of gamma functions in the exact two-point function (4.1) using

the following formula10

Γ(`± i(k1 ± k2))

Γ(2`)2
=

∫
dy1

π

dy2

π

ei2(k1+k2)y1+i2(k1−k2)y2

(4 cosh y1 cosh y2)2`
. (6.6)

This allows to write the two-point function (4.1) as an integral over ki and yi. In the large

C and large ` limit we can approximate the density of states by a simple exponential and

rewrite the integrand as〈
V1(0)V2(τ)

〉
=
∏
i=1,2

∫
dyidki exp

(
− S0 − S(k1, k2, y1, y2)

)
, (6.7)

where S0 is independent of the variational parameters k’s and y’s, and the classical action

in the exponent is given by

S = −(2π + 2iy1 + 2iy2)k1 − (2π + 2iy1 − 2iy2)k2

+
k2

1

2C
τ +

k2
2

2C
(β − τ) + ` log(cosh(y1) cosh(y2))2, (6.8)

where we ignore terms that are subleading in this limit. In a large C limit with `/C fixed

this is dominated by a saddle-point at real k’s and complex y’s. To make the physics of

this expression more transparent we change variables as

2π + 2iy1 + 2iy2 = θ1, 2π + 2iy1 − 2iy2 = θ2. (6.9)

The action then simplifies to

S(ki, θi) =
k2

1

2C
τ +

k2
2

2C
(β − τ)− θ1k1 − θ2k2 + ` log

(
cos θ12 + cos θ22

2

)2

. (6.10)

The saddle-point equations of this action become

k1 = − `
2

(
tan

θ1 + θ2

4
+ tan

θ1 − θ2

4

)
, θ1 =

k1

C
τ,

k2 = − `
2

(
tan

θ1 + θ2

4
− tan

θ1 − θ2

4

)
, θ2 =

k2

C
(β − τ). (6.11)
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A1, L1

A2, L2

X

Y

Figure 2. Geometric minimization problem. The gray circle is euclidean AdS2. The blue line is

the cut-off boundary of AdS. X and Y correspond to the insertions of the two-point function. We

separate the boundary in two arcs of length L1, L2 and enclosing area A1,A2.

After solving for θ1 and θ2, one recovers the saddle-point formulas of (6.2).11 In particular,

the saddle-point gives k ∼ O(C), θ ∼ O(1) and S ∼ O(C).

Following [52] this can be given a geometric meaning. In that work the authors show

that the calculation of the two-point function is equivalent to the geometric problem of

minimizing an action proportional to the sum of the area enclosed by the boundary curve

and an extra term

` log coshD, (6.12)

where D is the geodesic distance between the insertions of the two-point function.

The minimization can be done in steps. First one can minimize both halves of the

boundary curve independently and get two arcs of a circle. We show this configuration

in figure 2. Then the minimization is done with respect to the opening angle and its

area. This is manifest in our formula (6.10). The variables θ1 and θ2 correspond to the

opening angle of both circles while k1 and k2 are inversely proportional to the radius of

each arc. Moreover the first four terms in (6.10) are proportional to the total area inside

the boundary curve while the term proportional to ` corresponds to the geodesic length

between the boundary insertions.

For concreteness one can check this with an example. If `/C is fixed but much smaller

than one then the solutions is k1 ∼ k2 = 2πC/β and θ1 = 2π τβ , θ2 = 2π β−τβ . This is

consistent with the two-point function that do not backreact the geometry and simply

computes the renormalized geodesic distance between the two points in AdS. On the other

hand for large `/C, the solution is k1 ∼ 2πC/τ , k2 ∼ 2πC/(β − τ) and θ1 ∼ θ2 ∼ 2π. In

this limit the points X and Y become close and the boundary turns into two full circles

touching at a point, as in figure 7 of [53].

All of this matches with a classical solution of the Schwarzian equations of motion,

sourced by the heavy bilocal operator. We present this computation in appendix D.

10We are still using our short-hand notation Γ(a± b) = Γ(a+ b)Γ(a− b).
11We thank Z. Yang for discussions on these variables.
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6.2 Application: Eigenstate Thermalization Hypothesis

As a final application, we will study the Eigenstate Thermalization Hypothesis (ETH) using

the exact expressions from [1] (for discussions in the context of the SYK model see [53–55]).

For this purpose we will evaluate the two-point function of a light operator V of dimension

` between energy eigenstates

〈E|V (t)V (0)|E〉 ≈ Tr
[
e−β(E)HV (t)V (0)

]
, (6.13)

where the energy E of the eigenstate is large and will be taken of order C. We will

check this statement in the Schwarzian theory where β(E) is a function (given below)

of the eigenstate’s energy. We will achieve this by taking the semiclassical limit of non-

perturbative formulas.

Schwarzian energy eigenstates are labeled by a parameter k, which is real and positive,

with energy E(k) = k2/2C and density of states ρ(k) = 2k sinh 2πk. The expectation value

we need is given by

〈E|V (t1)V (t2)|E〉 = 〈k(E)|O`(t1, t2)|k(E)〉, (6.14)

in terms of the Schwarzian bi-local field O`(t1, t2) and with k(E) =
√

2CE. An exact

expression for this quantity can be easily extracted from the exact two point function at

finite temperature (4.1). The final answer is

〈E|V (t1)V (t2)|E〉 =

∫
dp2 sinh(2πp)e−i

1
2C

(p2−k2)t12 Γ(`± i(p± k))

Γ(2`)
, (6.15)

where again we use k =
√

2CE. It is important to note that even though we extracted this

from the thermal two-point function, the right hand side of (6.15) is a zero-temperature

expectation value between energy eigenstates. To study ETH we take `� C and k(E) ∼ C
with large C. Similar to the situation in section 4.2, the integral is dominated by p ≈ k.

Therefore we can rewrite the integral using the following variables

k2 = M, p2 = M + ω , (6.16)

where we follow the same notation as in section 4.2. Then in the same way we obtained

the semiclassical limit of the two-point function, we find the integrals are dominated by

ω ∼ O(C) � M ∼ O(C2). Applying the same approximations used in section 4.2 for the

gamma functions, the two-point function on an energy eigenstate becomes

〈E|V (t1)V (t2)|E〉 ≈
∫
dω e

−i ω
2C
t12+π ω

2
√
M

Γ(`± i ω
2
√
M

)

Γ(2`)
(2
√
M)2`−1 . (6.17)

This is precisely the Fourier transform of the thermal two-point function in terms of

Lorentzian times t1 and t2 with the effective inverse temperature β = 2πC/
√
M . Then

performing the integral over ω gives

〈E|V (t1)V (t2)|E〉 ≈

(
π

β(E) sinh π
β(E) t12

)2`

= Tr[e−β(E)HV (t1)V (t2)], (6.18)
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where the effective inverse temperature involved in the right hand side is a given function

of the eigenstate energy

β(E) = 2π

√
C

2E
. (6.19)

This shows how the two-point function of light operators thermalizes in an eigenstate of

high energy. It is important to notice that we needed to take E large and of order C. For

example, had we taken large C and E ∼ O(1), the integral appearing in (6.15) would have

no simplification, the expectation value would look very different from thermal and the

eigenstate would not have thermalized.

Finally we will compute the semiclassical limit of the heavy-light four-point function

at zero temperature. We take W of dimension `2 to be heavy while V is a light operator

of dimension `1. Using the methods from [1], the relevant correlator is

〈W1V2V3W4〉 =

∫
dk2

1dk
2
2 sinh(2πk1) sinh(2πk2)ei

k21
2C

(t21+t43)+i
k22
2C
t32

× Γ(`1 ± ik1±2)Γ(`2 ± ik1)2

Γ(2`1)Γ(2`2)
. (6.20)

We will take large C with the heavy operator W satisfying `2 ∼ C while for the light one

V instead `1 � C. We have put the heavy operators at Lorentzian times t1 and t4 for

now, below we will take the limit t14 →∞. We can rewrite the integral using the following

variables k2
2 = M and k2

1 = M +ω with ω �M . Applying the appropriate approximation

used in the semiclassical limit and the large ` limit for two-point function, the four-point

function becomes

〈W1V2V3W4〉 ≈
∫
dM

(`22 +M)2`2−1

(2`2)2`2
e

2π
√
M− iM

2C
t41−4

√
M arctan

√
M
`2

×
∫
dωe

− iω
2C
t32+π ω

2
√
M

Γ(`1 ± i ω
2
√
M

)

Γ(2`1)
(2
√
M)2`1−1 .

(6.21)

The first integral is dominated by the saddle point, similar to the situation in section 6.1.

The saddle-point equation fixes the value of M in terms of `2. In the large t41 →∞ limit

the solution is
√
M = i`2. After substituting the saddle point value of M , the second

integral can be identified as the thermal two-point function

〈W1V2V3W4〉β→∞ =

(
π

α(`2) sin π
α(`2) t23

)2`1

, α(`) =
2πC

`
. (6.22)

In analogy with the situation in CFT2/AdS3 we interpret this result in the following way.

The heavy operator W of dimension `2 creates a conical defect geometry in the bulk with

parameter α(`2).

It is interesting to compare the results of this section with the situation in 2d CFT.

In the latter, the state-operator correspondence relates the energy eigenstate calculation

to a heavy-light correlator, and one can see a transition between the creation of a conical

defect and a BTZ black hole as we increase the scaling-dimension/energy. The situation in
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the Schwarzian theory is different due to the lack of state-operator correspondence. High

energy eigenstates |k〉 (which do thermalize) are not related to heavy operators of dimension

` (which create conical defects instead). Looking at the derivation of the Schwarzian action

from 2d Liouville [1] one can trace this back to the fact that Liouville itself does not have

a state-operator correspondence (see for example [56]).

7 Concluding remarks

In this paper we have studied in detail the correlators in the Schwarzian/Jackiw-Teitelboim

theory. Our analysis was based on the exact formulas found in [1] for these quantities. In

particular, we have verified (in the semiclassical limit) the proposal put forward in [1]

that the R-matrix, given by the 6j-symbols of SL(2,R), controls the out-of-time-ordered

correlators of the Schwarzian theory and also correspond to the gravitational S-matrix in

the 2d Jackiw-Teitelboim gravity theory. This resonates with the ideas put forward in [7]

for the case of 3d gravity.

As a side comment, in this paper we have focused on the semiclassical limit of large

2πC/β from the perspective of the non-perturbative expressions. We have also taken time

differences between operators insertions to be large but smaller than C. When t � C

quantum effects become important and correlation functions, even OTO, go to power laws

with different exponents [1, 30, 31]. It would be interesting to understand this cross-over

from a bulk perspective.

We would like to conclude by describing an interesting open problem that we leave

for future work. In this paper we have analyzed different semiclassical limits of the exact

correlators of the Schwarzian theory [1]. These results have been obtained as a certain

limit of 2d Liouville CFT. In this section we want to raise some points that give a new

perspective on this approach.

The Schwarzian theory arises as the low energy limit of holographic quantum mechan-

ical models [9–11]. The main example is the SYK model of N Majorana fermions ψi with

Hamiltonian

H = iq/2
∑

ji1...iqψi1 . . . ψiq , (7.1)

where the disorder average over couplings j is described by

〈j2
1...q〉 = J 2 2q−1(q − 1)!

qN q−1
. (7.2)

As explained in [9–11] one can reformulate this theory and go from a path integral over

ψ and j to a mean field formulation with fundamental fields G(τ1, τ2) and Σ(τ1, τ2). The

former is identified with

G(τ1, τ2) ≡ 1

N

∑
i

〈ψi(τ1)ψi(τ2)〉, (7.3)

and the latter with the self-energy. Fermion correlators can then be replaced by correlators

of this bilocal mean field G(τ1, τ2), integrated over with a semiclassical action [16]

− SE/N =
1

2
Tr log (∂τ − Σ)− 1

2

∫
dτ1dτ2

[
Σ(τ1, τ2)G(τ1, τ2)− J

2

q2
G(τ1, τ2)q

]
. (7.4)
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Analyzing the saddle point equations associated to this action one can find that in the

strong coupling limit of large βJ the two-point function becomes G(τ1, τ2) ∼ |τ12|−2∆ with

scaling dimension ∆ = 1/q. We will focus now on the large q limit. This means we can

approximate the bilocal field in the following way up to 1/q corrections

G(τ1, τ2) =
sgn(τ12)

2
e−∆g(τ1,τ2) =

sgn(τ12)

2

(
1 +

1

q
g(τ1, τ2)

)
, (7.5)

and study the dynamics of g(τ1, τ2). On-shell the self-energy is also given in terms of

g(τ1, τ2) as Σ ∼ J 2eg(τ1,τ2)/q2. Since we are interested in fermion correlators that can

be obtained from correlators of the bilocal field g(τ1, τ2) one can integrate first over Σ.

This can be done in the large q limit to obtain an effective action for g. This was done

in [16, 19, 57] giving

Seff =
N

8q2

∫
dτ1dτ2

[
∂τ1g∂τ2g − 4J 2 exp g(τ1, τ2)

]
. (7.6)

It was also noted that this is precisely the Liouville action for g(τ1, τ2). This bilocal action

from the point of view of the original quantum mechanical system becomes local in the two

dimensional kinematic space (τ1, τ2). These two parameters behave like null coordinates in

the 2d space (x0, x1) such that z = τ1 = −x0 +x1, z̄ = τ2 = x0 +x1 and g(τ1, τ2)→ g(z, z̄).

Then we can use this relabeling to write the action as a 2d theory for a scalar field g

Seff =
N

8q2

∫
d2z

[
∂g∂̄g − 4J 2 exp g

]
. (7.7)

We should compare this with standard Liouville CFT. Liouville theory with a cosmological

constant µ and central charge as c = 1 + 6(b + 1/b)2 is described by the action SL =
1

4π

∫
d2z

[
∂φ∂̄φ+ 4πµe2bφ

]
. We will take the limit b→ 0 and therefore c = 6/b2. To make

contact with the effective SYK-model action we change variables 2bφ→ g. This turns the

Liouville action into SL = 1
16πb2

∫
d2z

[
∂g∂̄g + µ̂eg

]
, where µ̂ = 16πµb2 is finite in the

b → 0 limit. This allows us to identify the relevant parameters of the 2d CFT with the

SYK mean field action. The renormalized cosmological constant is µ̂ ∼ J 2, and the central

charge is given by

c =
12πN

q2
. (7.8)

Moreover, the bilocal field G ∼ e∆g precisely corresponds to a Liouville primary operator

V∆ = e2b∆φ, which in the small b limit has conformal dimension ∆ (for the specific value

of small ∆ = 1/q). This allows us to relate the general correlators via

〈G(τ1, τ2) . . . G(τn−1, τn)〉SYK = 〈V∆(z = τ1, z̄ = τ2) . . . V∆(zn/2 = τn−1, z̄n/2 = τn)〉Liouville,

as anticipated in [1].

There is a subtlety in the above discussion regarding boundary conditions. In the

SYK context the right boundary conditions are given by g(τ1, τ2) → 0 as τ12 → 0. This

is consistent with the UV of the theory being described by the free fermion model. With

– 24 –



J
H
E
P
1
1
(
2
0
1
8
)
1
8
2

this boundary conditions the Liouville analysis would reproduce the full SYK correlators.

Nevertheless this boundary condition is not conformally invariant. This takes us away

from the 2d CFT framework which has been so useful to classify and compute in theories

with boundaries.

If we stay within the holographic regime of large βJ , then the situation simplifies. In

this case the correct boundary conditions become g(τ1, τ2) ∼ log τ12 as τ12 → 0. This is

an appropriate prescription as long as τ12 is small but still bigger than 1/J . Ignoring the

correction when the two times become so close to each other is equivalent to considering

ZZ-brane type boundary conditions on the 2d Liouville theory, as anticipated in [1].
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A Rindler and Unruh modes

We collect some relevant formulas on the construction of Unruh modes and the Bogoliubov

transformations, used in section 2.2. The Klein-Gordon inner product is defined for any

Cauchy slice Σ as:

(φ1, φ2) ≡ −i
∫

Σ
dΣµ (φ1∂µφ

∗
2 − φ∗2∂µφ1) . (A.1)

Normalizing all modes as

(φi, φj) = δij ,
(
φ∗i , φ

∗
j

)
= −δij ,

(
φi, φ

∗
j

)
= (φ∗i , φj) = 0, (A.2)

a (chiral component of a) massless field can be expanded in Rindler modes:

φ(U) =

∫ +∞

0
dν
[
aR(ν)ψRν (U) + a†

R
(ν)ψ∗

Rν
(U) + aL(ν)ψLν (U) + a†

L
(ν)ψ∗

Lν
(U)
]
, (A.3)

with

ψLν (U) =
1√
4πν
|U |−iν θ(−U), ψRν (U) =

1√
4πν

U iν θ(U), (A.4)

or in Unruh modes:

φ(U) =

∫ +∞

0
dν
[
c1(ν)h1

ν(U) + c1†(ν)h1∗
ν (U) + c2(ν)h2

ν(U) + c2†(ν)h2∗
ν (U)

]
, (A.5)
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where h1
ν and h2

ν are two orthogonal Unruh modes that only contain positive Kruskal

frequencies:

h1
ν(U) =

i√
2πν

Γ(1− iν)
[
e
πν
2 ψRν (U) + e−

πν
2 ψ∗

Lν
(U)
]
, (A.6)

h2
ν(U) = − i√

2πν
Γ(1 + iν)

[
e
πν
2 ψLν (U) + e−

πν
2 ψ∗

Rν
(U)
]
, (A.7)

mainly supported in the R-, respectively L-wedge. These expansions are related by a

Bogoliubov transformation:12

a†
R

(ν) =
−iΓ(1 + iν)√

2πν

(
eπν/2 c1†(ν) + e−πν/2 c2(ν)

)
, (A.10)

aL(ν) =
−iΓ(1 + iν)√

2πν

(
e−πν/2 c1†(ν) + eπν/2 c2(ν)

)
. (A.11)

E.g. a Rindler mode can be expanded in Unruh and then subsequently into Kruskal (i.e.

Minkowski) modes as13

ψRν (U) =
1√
4πν

U iνθ(U)

= −ie
πν/2Γ(1 + iν)√

2πν
h1
ν(U) + i

e−πν/2Γ(1 + iν)√
2πν

h2∗
ν (U) (A.13)

= −ie
πν/2Γ(1 + iν)

2π
√
ν

∫ +∞

0
dp p−iν−1/2ψp(U)

+ i
e−πν/2Γ(1 + iν)

2π
√
ν

∫ 0

−∞
dp |p|−iν−1/2 ψp(U),

with Kruskal mode ψp(U) = eipU√
4πp

.14 From this, we indeed identify the Kruskal content of

the Unruh modes as p−iν−1/2θ(p) and |p|−iν−1/2 θ(−p) as in (2.2):

h1
ν(U) =

1√
2π

∫ +∞

0
dp p−iν−1/2ψp(U), h2

ν(U) =
1√
2π

∫ +∞

0
dp piν−1/2ψp(U). (A.14)

12One indeed quickly checks that[
c1(ν), c1†(ν′)

]
=
[
c2(ν), c2†(ν′)

]
= δ(ν − ν′), all others vanish, (A.8)

m[
aR(ν), a†

R
(ν′)

]
=
[
aL(ν), a†

L
(ν′)

]
= δ(ν − ν′), all others vanish. (A.9)

13Useful formula: ∫ +∞

0

dze±ixzzs−1 = e±i
π
2
sx−sΓ(s). (A.12)

14U = X − T so this mode has indeed positive Kruskal frequency when p > 0.
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Inspecting the modes (A.6), (A.7), one can write the Unruh modes more economically by

defining:

hν(U) ≡

h
1
ν(U), ν > 0

h2
ν(U) = h1

−ν(U), ν < 0
, c(ν) ≡

c
1(ν), ν > 0

c2(ν) = c1(−ν), ν < 0
. (A.15)

Then the Unruh creation operator can be expanded into the Kruskal creation operators as

Mellin transforms:

c†(ν) =
1√
2π

∫ +∞

0
dp p−iν−1/2a†p, a†p =

1√
2π

∫ +∞

−∞
dν piν−1/2c†(ν), (A.16)

consistent with the Minkowski commutation relations:[
ap, a

†
p′

]
= δ(p− p′), all others vanish. (A.17)

The TFD state is, by definition, annihilated by all positive Kruskal frequency modes:

c1(ν) |TFD〉 = c2(ν) |TFD〉 = 0. (A.18)

To link the first and second quantized formalism, we should identify states through

a†
R

(ν) |0〉 =
1√
2πν
|ν〉 , (A.19)

leading to √
2πν a†

R
(ν) |TFD〉 ∼ eπν/2Γ(1 + iν) c1†(ν) |TFD〉 , (A.20)

where the resulting states can finally be expanded into Kruskal eigenstates using (A.16) as:

c1†(ν) |TFD〉 =
1√
2π

∫ +∞

0
dp p−iν−1/2 |p〉 . (A.21)

At this point, one can make contact with the ’t Hooft-Dray shockwave S-matrix compu-

tation done in (2.7). The result (A.20) means there is an extra factor of eπν/2Γ(1 + iν)

when going from modes that are localized within either the L- or R-wedge, to a mode with

positive Kruskal momentum.

An interesting example correlator to compute using the above formulas, is:

〈TFD| aL(−ν1)a†
R

(ν2) |TFD〉 =
1

2 sinh(πν1)
δ(ν1 − ν2), (A.22)

which is non-zero.

B Semiclassical limit of the R-matrix

In this appendix we will collect some properties of the R-matrix that is involved in the

out-of-time ordered correlators, needed to take the semiclassical limit of the Schwarzian
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u

Figure 3. Contour followed in the integral. Deforming to the right gives two 4F3 functions or the

Wilson function. Deforming to the left is more suitable to deduce that as M → ∞ only 2 poles

dominate (colored in red).

theory. The R-matrix Rkskt

[
k4
k1
`2
`1

]
is equal to a 6j-symbol of SU(1, 1). It is given by the

following expression

Rkskt

[
k4
k2
`2
`1

]
=

√
Γ(`1 + ik2 ± iks)Γ(`2 − ik2 ± ikt)Γ(`1 − ik4 ± ikt)Γ(`2 + ik4 ± iks)
Γ(`1 − ik2 ± iks)Γ(`2 + ik2 ± ikt)Γ(`1 + ik4 ± ikt)Γ(`2 − ik4 ± iks)

×
i∞∫
−i∞

du

2πi
Γ(u)Γ(u−2iks)Γ(u+ik2+4−s+t)Γ(u−iks+t−2−4)Γ(`1+iks−2−u)Γ(`2+iks−4−u)

Γ(u+`1−iks−2)Γ(u+`2−iks−4)
,

(B.1)

where ki+j is shorthand for ki+kj . The integral over u can be done by contour deformation

to the right, yielding the Wilson function introduced by Groenevelt [48, 49], which in turn

can be expressed in terms of 4F3 hypergeometric functions.

To deduce the semi-classical regime however, it is more useful to deform the contour

to the left instead. Consider the general integral∫ +i∞

−i∞

du

2πi

Γ(a1 + u)Γ(a2 + u)Γ(a3 + u)Γ(a4 + u)

Γ(b1 + u)Γ(b2 + u)
Γ(A− u)Γ(B − u), (B.2)

for a1 → i∞ and a3 → −i∞ in the same way.15 Deforming the contour to the left, we

pick up poles from the first four Γ’s in the numerator. The poles are 4 series u = −ai − n
starting at the imaginary axis and moving to the left (figure 3). Two of these pole series

are at =(u) = ±i∞. As Γ(c± i∞) → 0, these disappear in the limit, e.g. at s = −a1, the

residue equals

Γ(a2 − a1)Γ(a3 − a1)Γ(a4 − a1)

Γ(b1 − a1)Γ(b2 − a1)
Γ(A+ a1)Γ(B + a1) → 0, (B.4)

15In detail:

a1 = ikt−s+1+4, a2 = −ikt+s−1−4,

a3 = −2iks, a4 = 0,

b1 = j1 − iks−1, b2 = j2 − iks−4,

A = j1 + iks−1, B = j2 + iks−4. (B.3)
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due to more Γ’s in the numerator than in the denominator: it is suppressed by 3 Γ’s, one

of which is doubly suppressed.

For the two remaining series of poles, all poles with n 6= 0 are also subdominant due

to Γ(a1 − 1) = Γ(a1)
a1−1 and again more Γ’s in the numerator than in the denominator. E.g.

at u = −1 the residue becomes:

Γ(a1)Γ(a2 − 1)Γ(a3)

(a1 − 1)(a3 − 1)Γ(b1 − 1)Γ(b2 − 1)
Γ(A+ 1)Γ(B + 1) → 0, (B.5)

which due to the additional 1/(a1a3) goes to zero much faster than the residue at s = 0.

Two residues remain, at u = 0 and at u = −a2, each with half weight. These are sup-

pressed by only 2 Γ’s, making them the dominant contribution. This proves the simplifying

ansatz we made in [1] to evaluate the u-integral in the semiclassical regime.

The residues of both poles turn out to be related by

Resu=0 = Resu=−a2 |s↔−t,1↔−4 . (B.6)

Focusing on the second pole, the relevant Gamma-functions in the amplitude are written as

Γ(`1+ik1−iks)Γ(`1+ik4−ikt)Γ(`2+ik1−ikt)Γ(`2+ik4−iks)Γ(iks+ikt−ik1−ik4). (B.7)

So all Γ’s just have a sign-flip in their dependence on all k’s compared to the u = 0 pole.

So upon defining the ω’s with opposite sign as

k2
1 − k2

s = ω1, k2
4 − k2

s = ω4, k2
1 − k2

t = ω3, k2
4 − k2

t = ω2, k2
s = M, (B.8)

one obtains in the end, comparing to the other pole, the time-reversed amplitude where

every ti → −ti.

C Higher-point functions and multiple shockwaves

In this appendix we will show that the results from the previous sections directly gener-

alize to arbitrary 2n-point correlators. This serves both as an illustration of the general

diagrammatic rules in section 3.2 in more complicated situations, and as a check on the

semi-classical physics contained within the higher-point OTO correlators. Higher-order

OTO correlation functions have been studied recently in [58, 59].

We will prove that in the large C regime, the Schwarzian correlation functions fac-

torize into consecutive and independent 2-to-2 shockwave scattering processes. More-

over, the topology of the (real-time) shockwave graph is identical to the (Euclidean)

Schwarzian diagram.

A simple generalization from earlier sections is that all time-ordered correlation func-

tions (those without any crossing lines in the graph) factorize into separate two point

functions G`(τij), generalizing this statement from time-ordered two- and four-point func-

tions. This will also hold for pieces within OTO correlation functions, whose lines do not

cross the remainder of the graph.
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V2(e)

V1(0)

W(t)

Figure 4. Shockwave interaction between two infalling modes and one outgoing mode.

As examples of more complicated OTO correlation functions, we will analyze the fol-

lowing two diagrams and their semi-classical shockwave content:

(C.1)

C.1 Example: double crossed diagram

As the first non-trivial example, we will analyze a double crossed diagram. This will

correspond to a double shockwave process as represented by the semi-classical limit of the

following OTO six-point function:

〈W (t)V1(0)V2(ε)W (t)V2(ε)V1(0)〉 , (C.2)

which can be represented as an S-matrix overlap between in- and out-states:

|in〉 = W (t)V2(ε)V1(0) |0〉 , |out〉 = V †2 (ε)V †1 (0)W †(t) |0〉 . (C.3)

To interpret such a correlator in the Schwarzian theory, identical operators are connected

into bilocal operators. This process is represented graphically in AdS2 as shockwave scat-

tering, as shown in figure 4.

The slightly more general situation of n transverse lines (here n = 2) is relevant

when addressing wormhole traversability and was explored in [35] in the large C regime.

Introducing again Kruskal momenta for each line, the relevant shockwave Dray-’t Hooft

S-matrix interaction is described by

S = exp

(
κp+

n∑
j=1

pj−

)
. (C.4)

with κ = iβ
4πC . This interaction is described in Schwarzschild energies νi by the following

expression (where j1, j2 are the two labels associated to all the crossing lines):

S(νi) =

∫ ∞
0

dp+

p+
p
i(ν1−ν2)
+

∏
j

∫ ∞
0

dpj−
pj−

p
−i(νj1−νj2 )

j− e
iβ

4πC
pj−p+ (C.5)

= 2πδ

(
ν1 − ν2 +

∑
j

(νj1 − νj2)

)
e
π
2

∑
j(νj1−νj2 )κi

∑
j(νj1−νj2 )

∏
j

Γ(−iνj1 + iνj2).
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We will reproduce this structure from the semi-classical limit of Schwarzian OTO

correlators.

Within the Schwarzian theory, the double crossed diagram we want to analyze is

AOTO
6 (ki, `i, τi) =

τ2

τ3

τ5

τ1

τ6τ4

`1
`2

`3

k2

k5

k6

k1k3

k4

(C.6)

This diagram corresponds to the amplitude (using the Feynman rules given in section 3.2):

AOTO
6 (ki, `i, ti) = e−i

t31
2C

k22−i
t43
2C

k23−i
t24
2C

k24−i
t52
2C

k25−i
t65
2C

k26+i
t61
2C

k21−
β
2C
k21 (C.7)

× γ`1(k1, k2)γ`1(k4, k5)γ`2(k2, k3)γ`2(k1, k6)γ`3(k3, k4)γ`3(k5, k6)

×Rk1k3
[
k6
k2
`2
`1

]
Rk6k4

[
k5
k3
`3
`1

]
Proceeding as in section 5 by taking the residue of the R-matrix integrals, we can interpret

the above expression as describing a six-point shockwave scattering diagram:

k2

k5

k6

k1
k3

k4

(C.8)

The arrows depict the choice of sign of the ω’s, so we define new redundant variables:

k2
2 − k2

1 = ω1, k2
6 − k2

1 = ω4, k2
5 − k2

6 = ω6,

k2
4 − k2

5 = ω2, k2
4 − k2

3 = ω5, k2
3 − k2

2 = ω3, k2
1 = M, (C.9)

satisfying energy conservation ω1 + ω3 + ω5 = ω2 + ω4 + ω6, with as usual M � ωi as

C � tij . Defining again νi = ωi
2
√
M

, we find two final Gamma’s associated to the two

shockwave processes, written as

Γ (−iν3 + iν4) Γ (−iν5 + iν6) , (C.10)

whereas the remainder gives precisely the required Schwarzschild wavefunctions (4.4):

∼ eiν1t1
Γ(`1 − iν1)√

Γ(2`1)
× e−iν2t2 Γ(`1 + iν2)√

Γ(2`1)
× eiν3t3 Γ(`2 + iν3)√

Γ(2`2)

× e−iν4t6 Γ(`2 − iν4)√
Γ(2`2)

× eiν5t4 Γ(`3 + iν5)√
Γ(2`3)

× e−iν6t5 Γ(`3 − iν6)√
Γ(2`3)

. (C.11)

Finally, the M -integral, readily generalized to such an n-point OTO function, can be

done as usual by saddle point methods, giving for any correlator the same saddle M0 =

2π2C/β2 as found before.

As alluded to already several times, the structure of this computation is immediately

generalized to arbitrary n-point OTO crossed diagrams of this specific graph topology.
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C.2 Example: quadruple crossed diagram

A second non-trivial example of these rules is the quadruple crossed diagram

depicted below:

`1

`2

`3

`4

k1

k2

k3
k4

k5

k6
k7

k8

k9 = Rk2k4

[
k9
k3
`3
`1

]
Rk1k9

[
k8
k2
`3
`2

]
Rk8k6

[
k7
k9
`4
`2

]
Rk9k5

[
k6
k4
`4
`1

]
(C.12)

×γ`1(k2, k3)γ`1(k5, k6)γ`2(k1, k2)γ`2(k6, k7)γ`3(k3, k4)

×γ`3(k1, k8)γ`4(k4, k5)γ`4(k7, k8)

It contains four R-matrices as it is obtained by four swaps of lines from the striped di-

agram with four rungs, as in (3.17). The full amplitude is thus a nine-fold integral over

dµ(ki), i = 1 . . . 9 weighted with these four R-matrices, eight vertex functions, and with

eight propagators (not written here). Note that the k9-integral does not contain a propa-

gator piece, and appears only within the four R-matrices.

The diagram is associated to the real-time OTO correlator:

〈W2(t+ ε)W1(t)V1(0)V2(ε)W1(t)W2(t+ ε)V2(ε)V1(0)〉 , (C.13)

which has an in-out S-matrix interpretation of four 2-to-2 shockwave interactions, and

indeed requires four swaps to bring the W -operators in-time ordering and untangle

the correlator.

Understanding the semi-classical regime of this correlator requires all of the techniques

as presented above for other (easier) diagrams. The additional novelty in this case is the k9-

integral over the four R-matrices, which in the semi-classical regime boils down to Barnes’

first lemma and results in the semiclassical S-matrix analogous to (2.7), in agreement with

the eikonal shockwave computation:

S(νi) ∼ 2πδ
(
−ν1 + ν2 − ν3 + ν4 − ν5 + ν6 − ν7 + ν8

)
e−

π
2

(ν1−ν2+ν3−ν4)κ−i(ν1−ν2+ν3−ν4)

× Γ(iν1 − iν2)Γ(iν3 − iν4)Γ(−iν5 + iν6)Γ(−iν7 + iν8)

Γ(iν1 − iν2 + iν3 − iν4)

=

∫ +∞

0

dp1+dp2+

p1+p2+
p
i(ν1−ν2)
1+ p

i(ν3−ν4)
2+

∫ +∞

0

dp1−dp2−
p1−p2−

p
−i(ν5−ν6)
1− p

−i(ν7−ν8)
2−

× eiκ(q1p1+q1p2+q2p1+q2p2). (C.14)

D Heavy two-point function from the Schwarzian saddle

We complement the semiclassical limit of heavy two-point correlators of section 6, by

comparing these results to an explicit solution of the Schwarzian equations of motion

following from (6.1). In the semi-classical limit, the path integral (6.1) is dominated by the
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classical solution to the action. Using that δ {F, τ} = −{F,τ}
′

F ′ δF , the equation of motion

of f gives

C
{F, τ}′

F ′
+ `

[
δ′(τ − τ1)

F ′1
+
δ′(τ − τ2)

F ′2
+

2

F1 − F2
[δ(τ − τ1)− δ(τ − τ2)]

]
= 0. (D.1)

After integrating the equation once, we find that the energy E = C{F, τ} is piecewise

constant

C{F, τ} = E2, τ < τ1,

C{F, τ} = E2 + 2`
F ′1

F2 − F1
+ `

F ′′1
F ′1

= E1, τ1 < τ < τ2, (D.2)

C{F, τ} = E2 + 2`
F ′1 − F ′2
F2 − F1

+ `
F ′′1
F ′1

+ `
F ′′2
F ′2

= E2, τ2 < τ.

The quantities written here are averaged, e.g. F ′′1 ≡
F ′′<1 +F ′′>1

2 . The boundary conditions at

τ1 and τ2 are read off from (D.1). Using the notation T (u) = − `
F ′1
δ′(u−τ1)− 2

F1−F2
δ(u−τ1),

we can integrate (D.1) into:

F ′′

F ′
=

∫ t

du (F (τ)− F (u))T (u), F ′ =

∫ t

du
(F (τ)− F (u))2

2
T (u). (D.3)

A δ-function insertion in T (u) requires a jump for F ′′′, whereas δ′-insertions require a jump

already for F ′′. In this case, the gluing conditions at τ = τ1, τ2 are

F, F ′ continuous, ∆F ′′ = − `

C
F ′. (D.4)

We set τ1 = 0 without loss of generality. For the combined solution, we make the follow-

ing Ansatz

F (τ) =
2C

k2
tan
(k2 τ

2C

)
, τ < 0,

k2 =
√

2E2C,

=
tan
(
k1 τ
2C

)
`

2C tan
(
k1 τ
2C

)
+ k1

2C

, 0 < τ < τ2, (D.5)

k1 =
√

2E1C,

=
a tan

(
k2
2C (τ − τ2)

)
+ b k2

2C

c tan
(
k2
2C (τ − τ2)

)
+ d k2

2C

, τ2 < τ.

Setting d = 1 and imposing the continuity conditions gives that

b = F2, c = −1

2

F ′′2
F2

= −1

2

F ′′<2

F ′2
+

`

2C
, a = F ′2 + F2c. (D.6)

From this point onwards, it is a straightforward calculation to show that the continuity

conditions and the requirement that the distance between the asymptotes of f(τ) are fixed
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Figure 5. Full solution with non-zero temperature, with τ1 = 0, ` = 2C, k2 = 1, k1 = 3, with

saddle values τ2 ≈ 0.236, τf ≈ 1.588 and β ≈ 3.159.

-2 -1 1 2 3

-2

-1

1

2

3

Figure 6. Full solution at zero temperature with t1 = 0, t2 = π
2 , ` = 2C,

√
E
2C = 1.

by the inverse temperature β are precisely equivalent to the conditions (6.2). An example

of a classical solution is depicted in figure 5.

The finite temperature on-shell action is

S0 = −τk
2
1

2C
− (β − τ)k2

2

2C
− ` ln

F ′2
F 2

2

, (D.7)

where
F ′2
F 2

2

=
1

(4C`)2
((k1 + k2)2 + `2)((k1 − k2)2 + `2) (D.8)

agreeing with (6.4).

These equations contain interesting bulk gravitational physics that is most easily seen

in the zero-temperature limit (figure 6). The solution f(τ) is linear before and after the

bilocal insertion, and is thermal in between. The net effect of the bilocal operator on the

solution is a Shapiro time delay, corresponding to a mass ∼ ` being injected and extracted

in an otherwise vacuum space. The clock f(τ) is then delayed as it passes through this

massive region. If ` < 0, a time advance would be found.
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