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Abstract

The image sequence in a video taken by a moving camera may suffer from irregular pertur-
bations because of irregularities in the motion of the person or vehicle carrying the camera. We
show how to use information in the image sequence to correct the effects of these irregularities
so that the sequence is smoothed, i.e. is approximately the same as the sequence that would
have been obtained if the motion of the camera had been smooth.
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1 The Problem

This paper deals with the following problem: A camera mounted on a moving platform (carried
by a ground vehicle or a person) collects a sequence of images. The platform is trying to move
along a smooth trajectory. In fact, however, the motion of the platform varies from the desired
smooth motion; for a ground vehicle, this would primarily be due to roughness of the terrain, and
for the person, it would primarily be due to the walking motion itself. Our goal is to correct the
image sequence so that it corresponds, as closely as possible, to the sequence that would have been
collected if the motion had actually been smooth, or at worst piecewise smooth (the vehicle might
hit an occasional pothole; the person might occasionally stumble).

There does not appear to have been much literature on this problem. In 1994 Burt et al.
described methods of stabilizing an image sequence by registering the images to a reference mo-
saic [5, 13]; stabilization was also used for motion recovery by Irani, Rousso, and Peleg [14]. Note
that in these papers the sequence was not merely smoothed, but completely stabilized. In 1996
the authors published a paper [9] which discussed the ground vehicle case in some detail, empha-
sizing real-time smoothing of the image sequence using normal flow. At about the same time, Yao
and Chellappa discussed methods for selective stabilization of image sequences acquired by ground
vehicles using a four-wheel vehicle model [26]. Giachetti, Campani, and Torre [12] showed how to
smooth, in the vicinity of the image center, the optical flow obtained by a camera carried by a
moving car. Srinivasan and Chellappa showed how to use fast structure-from-motion recovery from
dense optical flow for 3D image stabilization [20]. Zomet, Peleg, and Arora showed how to produce
rectified mosaics from image sequences obtained by a translating and rotating camera [28]. There
seems to be no discussion in the computer vision literature about smoothing of image sequences
obtained by a camera carried by a person.

In Section 2 we introduce a model for the motion of the platform (car or person) and discuss
the sources of non-smoothness in its motion as well as the relative sizes of the smooth and non-
smooth velocity components. In Section 3 we show that only the rotational components of the
non-smooth motion have significant perturbing effects on the image sequence. We show how to
identify image points at which rotational image flow is dominant, and how to use such points to
estimate the platform’s rotation. Finally, we describe two algorithms that fit piecewise smooth (in
fact, piecewise constant) rotational motions to these estimates; the residual rotational motion can
then be used to correct the images. We present results for an image sequence obtained from a
camera carried by a ground vehicle moving across bumpy terrain; videos of several such sequences,
before and after smoothing, demonstrate the effectiveness of our approach.

2 The Platform Motion Model

We have defined image sequence smoothing as eliminating (or at least greatly reducing) the
effects of impulsive motion, i.e. processing the image sequence to make it look like a sequence that
could have resulted from a smooth approximation to the motion. For a general motion model,
the unsmoothness could involve the three parameters of the translational velocity of the platform’s
center of mass and the three parameters defining the rotational velocities of its principal axes,
where each parameter is a function of time; thus in general, smoothing in a six-dimensional space
might be required.
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Figure 1: The Darboux frame moves along the path Γ which lies on the surface Σ.

The ideal motion of a platform (person or vehicle) moving on the ground does not have six
degrees of freedom. It can be described as motion along a smooth trajectory Γ lying on a smooth
surface Σ. The Darboux frame defined by Γ and Σ has axes defined by the tangent~t to Γ (and Σ),
the second tangent~v to Σ (orthogonal to~t), and the normal~s to Σ (see Figure 1). In Section 2.1 we
will present a mathematical description of motion that satisfies the Darboux frame assumption, and
we will also introduce the coordinate frames that will be used (in Section 3) to describe non-smooth
platform motion.

General non-smooth platform motion can involve impulsive changes in any of the translational
and/or rotational velocity functions. In the case of a platform moving on the ground, however,
some of these changes can be expected to have small amplitudes and hence to be unimportant for
smoothing. For example, as we shall see below (Section 2.2), impulsive translational changes and
rotational changes around the vertical axis should be quite small. Thus the smoothing problem
becomes simpler since the smoothing can be done in a space of dimensionality much lower than 6.

2.1 Smooth Motion on a Surface: The Darboux Frame

Consider a point O moving along a curve Γ which lies on a smooth surface Σ. There is a natural
coordinate system Otnb associated with Γ (even if it is a space curve), defined by the tangent ~t,
normal ~n, and binormal ~b of Γ. The triple (~t,~n,~b) is called the moving trihedron or Frenet-Serret
coordinate frame. We have the Frenet-Serret formulas [17]

~t
′
= κ~n, ~n′ = −κ~t + τ~b, ~b

′
= −τ~n (1)

where κ is the curvature and τ the torsion of Γ.

When the curve Γ lies on a smooth surface Σ, it is more appropriate to use the Darboux frame
(~t, ~v, ~s) [16, 17]. We take the first unit vector of the frame to be the tangent~t of Γ and the surface
normal ~s to be the third frame vector; finally we obtain the second frame vector as ~v =~s ×~t (see
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Figure 1). Note that~t and ~v lie in the tangent plane of Σ. Since the vector~t belongs to both the
Otnb and Otvs frames, they differ only by a rotation around~t, say through an angle ψ ≡ ψ(s). We
thus have

(

~v
~s

)

=

(

cosψ sinψ
− sinψ cosψ

)(

~n
~b

)

. (2)

The derivatives of~t,~v,~s with respect to arc length along Γ can be found from (1) and (2):

~t
′
= κg~v − κn~s, ~v′ = −κg~t + τg~s, ~s′ = κn~t − τg~v (3)

where

κg ≡ κ cosψ, κn ≡ κ sinψ, τg ≡ τ +
dψ

ds
;

κg is called the geodesic curvature, κn is called the normal curvature, and τg is called the (geodesic)
twist.

It is well known that the instantaneous motion of a moving frame is determined by its rotational
velocity ~ω and the translational velocity ~T of the reference point of the frame. The translational
velocity ~T of O is just~t and the rotational velocity of the Otvs frame is given by the vector

~ωd = τg~t + κn~v + κg~s.

Hence the derivative of any vector in the Otvs frame is given by the vector product of ~ωd and that
vector. It can be seen that the rate of rotation around~t is just τg, the rate of rotation around ~v is
just κn, and the rate of rotation around ~s is just κg.

If, instead of using the arc length s as a parameter, the time t is used, the rotational velocity
~ωd and translational velocity ~T are scaled by the speed v(t) = ds/dt of O along Γ. This speed and
the three components of the rotational velocity of the Darboux frame define a rigid motion model
which we call smooth surface motion.

In Section 3 we will use two coordinate frames to describe platform motion. The “real” platform
frame Cξηζ (which moves non-smoothly, in general) is defined by its origin C, which is at the center
of mass of the platform, and its axes: Cξ (fore/aft), Cη (crosswise), and Cζ (up/down); and the
ideal platform frame Otvs (the Darboux frame) corresponds to the smooth motion of the platform.

The motion of the platform can be decomposed into the motion of the Otvs frame and the
motion of the Cξηζ frame relative to the Otvs frame. As we have just seen, the rotational velocity
of the Otvs (Darboux) frame is v~ωd = v(τg~t + κn~v + κg~s) and its translational velocity is v~t. We

denote the rotational velocity of the Cξηζ frame by ~ωv and its translational velocity by ~Tv.

The position of the Cξηζ frame relative to the Otvs frame is given by the displacement vector
~dv/d between C and O, and the relative orientation of the frames is given by an orthogonal rotational
matrix (matrix of direction cosines) which we denote by Rv/d. The translational velocity of the
platform (the velocity of C) is the sum of three terms: (i) the translational velocity of the Darboux

frame v~t, (ii) the translational velocity ~Tv/d ≡ ~̇dv/d, and (iii) the displacement v~ωd × ~dv/d due to
rotation of C in the Otvs frame. The translational velocity of the platform expressed in the Otvs

frame is thus v~ωd × ~dv/d + v~t + ~̇dv/d; its translational velocity in the Cξηζ frame is

~Tv = RT
v/d(v~ωd × ~dv/d + v~t + ~̇dv/d). (4)
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Similarly, the rotational velocity of Cξηζ is the sum of two terms: (i) the rotational velocity
vRT

v/d~ωd of the Otvs frame, and (ii) the rotational velocity ~ωv/d, which corresponds to the skew

matrix Ωv/d = RT
v/dṘv/d. The rotational velocity of the Cξηζ frame expressed in the Otvs frame

is thus v~ωd +Rv/d~ωv/d; the corresponding expression in the Cξηζ frame is

~ωv = vRT
v/d~ωd + ~ωv/d. (5)

The rotational axis ~cv/d which corresponds to the rotational matrix Rv/d is specified by its three
direction cosines cx, cy, cz. The rotation around this axis through an angle δ is then given by the
matrix

Rv/d = cos δ I + (1 − cos δ)







c2x cxcy cxcz
cycx c2y cycz
czcx czcy c2z






+ sin δ







0 −cz cy
cz 0 −cx
−cy cx 0






(6)

where I is the identity matrix. When δ is small (in [8] it is shown that δ = O(0.05)rad) we have
cos δ ≈ 1, sin δ ≈ δ, and

RT
v/d = I − δCv/d + O(δ2) (7)

where the skew matrix Cv/d is the matrix factor in the last term on the r.h.s. of (6). From (5) we
thus have

~ωv = vRT
v/d~ωd + ~ωv/d = v~ωd − δCv/d~ωd + vO(δ2)~ωd + ~ωv/d

= v~ωd + ~ωv/d − δv~cv/d × ~ωd + O(vδ2‖~ωd‖). (8)

The significant terms on the r.h.s. of (8) are v~ωd, which is the smooth velocity of the platform;
~ωv/d, which is the non-smooth velocity of the platform; and the cross-product term δv~cv/d × ~ωd,
which is also non-smooth. Since δ is small and ‖~cv/d‖ = 1, the cross product term is small compared
to v~ωd; indeed, it is O(vδ‖~ωd‖). Hence

~ωv = v~ωd + ~ωv/d + O(vδ‖~ωd‖). (9)

Rotations around the fore/aft, sideways, and up/down axes of a platform are called roll, pitch,
and yaw, respectively. In terms of our choice of the platform coordinate system, these are rotations
around the ξ, η, and ζ axes.

2.2 Departures of Platform Motion from Smoothness

The motion of a platform (vehicle or person) depends on many factors: the type of intended
motion, its speed, and the nature of the surface on which the platform is moving. These factors
tend to remain constant; they undergo abrupt changes only occasionally, e.g. the person stumbles
or the vehicle hits an obstacle. Such events may produce impulsive changes in the motion, but these
changes have only short-term effects. In addition to these occasional events, there is “steady-state”
non-smoothness of the motion because of the irregularities in the walking motion or the roughness
of the surface.
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A walking or running person moves forward by not more than a few meters at every step. The
sides of the person’s body alternate in moving upward and downward by at most a few centimeters
at each step; this gives rise to an impulsive rolling motion. Since the person’s torso does not remain
equally upright at all times, there will also be some impulsive pitching motion. On the other hand,
the body’s translational motion along the up/down and sideways axes will be negligible, and so
will its rotational motion around the yaw axis. To a good approximation, we can assume that the
body’s forward translational motion is its smooth motion, and its rolling and pitching motions are
its undesired impulsive motion. For example, the forward velocity might be 1m/sec (not a fast
walk), and the rolling and pitching motions might correspond to angular velocities of on the order
of 0.1 rad/sec. This discussion is consistent with the analysis in [27], Ch. 3, and with the arguments
used in [6], Chs. 10-13.

The analysis of the motion of a ground vehicle moving on a rough surface (e.g., on off-road
terrain) is analogous, because the bumpiness of the terrain also produces both rolling and pitching
motions. It is still the case that the translational motions along the up/down and sideways axes
are negligible (any bouncing of the vehicle has a small amplitude), and its rotational yaw motion
is also negligible. A more detailed discussion of ground vehicle motion is given in the Appendix.
Similar analyses can be given for other types of vehicles; for example, a very interesting analysis of
the stability of the motion of a unicycle can be found in [19].

3 Image Motion: Smoothing of Image Sequences

In this section we analyze the properties of images and image motion fields obtained by a camera
mounted on a platform moving across the ground. Based on our analysis, we design a smoothing
algorithm which we use to smooth several image sequences obtained by a camera mounted on a
real ground vehicle moving on rough terrain.

In Section 3.1 we derive the relative motion equations for the camera and show that in realistic
situations we only need to smooth the rotational components of the motion. In Section 3.2 we
review properties of the image motion fields in sequences of images obtained by the camera; in
particular, we discuss conditions under which the rotational component of the field is dominant at
a given point of the image, based on the distance of the corresponding scene point. In Section 3.3 we
discuss methods of classifying image points with respect to their distance. In Section 3.4 we give an
algorithm for estimating the rotational motion of the camera based on such a classification of image
points, and give examples of such estimates for several real image sequences; these examples confirm
our analysis in Section 2. Finally, in Section 3.5 we describe two algorithms for the smoothing of
image sequences, one of which uses only the preceding and current images (so that it can operate
in real time), and we present the results of applying these algorithms to a real image sequence.

3.1 Camera Motion

Let ~dc be the position vector of the nodal point of the camera relative to the mass center of the
platform. The orientation of the camera relative to the platform coordinate system Cξηζ is given
by an orthogonal rotational matrix (a matrix of direction cosines) which we denote by Rc. The
columns of Rc are the unit vectors of the camera coordinate system expressed in the platform
coordinate system. We will assume that the position and orientation of the camera relative to the
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platform coordinate system do not change as the platform moves. (The cases of a camera that is
non-rigidly mounted or that can move relative to the platform — for example, a hand-held camera
— are left for future work.) Thus we will assume that Rc and ~dc are constant and known.

Given the position ~re of a static scene point E in the camera coordinate system, its position ~pe

in the platform coordinate system Cξηζ is given by

~pe = Rc~re + ~dc

Since Rc and ~dc are constant we have ~̇pe = Rc~̇re, so that ~̇re = RT
c ~̇pe. The velocity of E is given by

~̇re = −~ω × ~re − ~T . (10)

In this expression, the rotational velocity is ~ω = RT
c ~ωv, and the translational velocity is ~T =

RT
c (~Tv + ~ωv × ~dc), where ~ωv and ~Tv are the rotational and translational velocities of the platform

coordinate system. At the end of Section 2.1 we saw (4,9) that these velocities can be expressed in
terms of the (smooth) rotational and translational velocities v~ωd and v~t of the Darboux frame and

the (impulsive) rotational and translational velocities ~ωv/d and ~̇dv/d of the platform frame relative
to the Darboux frame. Using these expressions, we have

~ω = RT
c (v~ωd + ~ωv/d + O(vδ‖~ωd‖)), (11)

~T = RT
c R

T
v/d(v~ωd × ~dv/d + v~t + ~̇dv/d) + ~ω × (RT

c
~dc) (12)

We saw in Section 2.2 and in the Appendix that both ‖v~ωd‖ and ‖~ωv/d‖ are O(0.1)rad/sec and

that the third term on the r.h.s. of (9) is small compared to the first two terms. The factors RT
c

and RT
v/d do not affect the magnitude of either ~ω or ~T . Thus the first two terms on the r.h.s. of (11)

have comparable magnitudes, so that it is clearly important to smooth the effects of the rotational
components on the image sequence.

As regards the translational components, for normal speeds of a vehicle we have (see the Ap-

pendix) ‖~dv/d‖ = O(0.025)m/sec, ‖ ~̇dv/d‖ = O(0.1)m/sec, and ‖~dc‖ = O(1)m/sec. The magni-

tudes of the terms on the r.h.s of (12) are thus ‖v~ωd × ~dv/d‖ ≤ v‖~ωd‖ ‖~dv/d‖ = O(0.0025)m/sec;

‖v~t‖ = v = O(10)m/sec; and ‖~ω × (Rc
~dc)‖ ≤ ‖~ω‖ |~dc‖ = O(0.1)m/sec. Therefore, the dominant

term in the expression for ~T is v~t since it is two orders of magnitude larger then any of the other
three terms of ~T . A similar conclusion evidently applies as regards the translational components
of a walking person’s motion. Smoothing the effects of the translational components on the image
sequence is thus unimportant, since v~t is already smooth. Furthermore, after estimating ~ωv/d and

Rv/d we will use the matrices RT
c Rv/dRc to smooth the images. This, in turn, will smooth the

effects of rotations on the translational velocity ~T .

3.2 The Image Motion Field

We first briefly describe the image motion field when the camera is moving in a static environment.

Let (X,Y,Z) denote the Cartesian coordinates of a scene point with respect to the camera
frame (see Figure 2), and let (x, y, f) denote the corresponding coordinates in the image plane. f
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Figure 2: The plane perspective projection image of (X,Y,Z) is (fX/Z, fY/Z, f).

is the focal length of the camera. The projection equations for the plane perspective projection are
given by

x =
X

Z
f, y =

Y

Z
f. (13)

The instantaneous velocity of the image point (x, y, f) resulting from the velocity of the cor-
responding scene point relative to the camera frame can be obtained by taking derivatives of (13)
with respect to time and using (10):

ẋ =
−txf + xtz

Z
+ ωx

xy

f
− ωy

(

x2

f
+ f

)

+ ωzy, (14)

ẏ =
−tyf + ytz

Z
+ ωx

(

y2

f
+ f

)

− ωy
xy

f
− ωzx. (15)

Let ~ı, ~, and ~k be the unit vectors in the x, y, and z directions, respectively; ~̇r = ẋ~ı + ẏ~ is the
projected motion field at the point ~r = x~ı+ y~+ f~k. For any image point ~r we can split the image
motion field ~̇r into the translational image motion field ~̇rt and the rotational image motion field ~̇rω.

We say that translation (rotation) is dominant at an image point ~r if ‖~̇rt‖ > (<) ‖~̇rω‖. Similarly,
we say that translation (rotation) is strongly dominant at ~r if ‖~̇rt‖ is an order of magnitude larger
(smaller) than ‖~̇rω‖.

In [8] we derive bounds on the ratio of the rotational and the translational image velocities at
a given image point ~r:

Z
‖~ω‖
‖~T‖

· | sin
6 (~ω,~r)|

| sin 6 (~T ,~r)|
≤ ‖~̇rω‖

‖~̇rt‖
≤ ‖~r‖2

f2
· Z ‖~ω‖

‖~T ‖
· | sin

6 (~ω,~r)|
| sin 6 (~T ,~r)|

. (16)

In order for rotation to be (strongly) dominant at ~r, we must have ‖~̇rω‖/‖~̇rt‖ > 1 (10). Consider the
three factors on the l.h.s. of (16). The first factor depends on Z; the more distant the scene point
the greater its value. As regards the second factor, if the camera orientation Rc is known the angle
6 (~T ,~r) is known too. [We have seen in Section 3.1 that the translational velocity of the platform
(and camera) is approximately parallel to the platform’s fore/aft axis.] However, the angle 6 (~ω,~r)
is not readily available. [We have seen in Section 3.1 that the rotational velocity of the platform
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consists of two parts: (i) smooth rotational velocity of the Darboux frame, which changes slowly
over time, and (ii) non-smooth (impulsive) rotational velocity of the platform frame relative to the
Darboux frame. We have also seen that the impulsive components of the roll and pitch rotational
velocities are of comparable or higher magnitude than the respective smooth components, whereas
the impulsive component of the yaw rotational velocity is small. This means that unless the platform
is turning, ~ω lies approximately in the plane spanned by the platform’s fore/aft and crosswise axes;
but it could be pointing in any direction in that plane.]

Except at the point ~r at which 6 (~ω,~r) = 0◦, dominance of rotation can be guaranteed provided
that

Z ≥ Zr =
‖~T‖
‖~ω‖ · | sin

6 (~T ,~r)|
| sin 6 (~ω,~r)| . (17)

(or Z ≥ 10Zr for strong dominance). Typically, for a vehicle we have ‖~T‖ = O(10)m/sec and
‖~ω‖ = O(0.1)rad/sec; hence if we ignore the sines we have Zr ≈ 100m (1km for strong dominance).
Similarly, for a person we have ‖~T ‖ = O(1)m/sec, so that Zr ≈ 10m (100m for strong domin!la
ance). If the rotational motion of the platform is pure roll, ~T and ~ω are parallel and the angles
are equal, so that the ratio of their sines is 1 and the sines can indeed be ignored. In all other
cases, the ratio of sines depends on ~r. If the ratio of sines in (17) is smaller than 1, rotation will
be (strongly) dominant even for smaller Z ′s; if it is greater than 1, larger Z ′s will be needed.

If 6 (~ω,~r) is bounded away from zero, say > α, the ratio of sines in (17) is smaller than 1/ sinα,
and rotation will be (strongly) dominant provided Z ≥ ‖~T‖(‖~ω‖ sinα)−1 (×10). If the field of view
of the camera is greater than 2α, 6 (~ω,~r) > α is guaranteed to be true in at least part of the image.
For example, if in the vehicle example in the previous paragraph α = 10◦ (sinα ≈ 0.17), then
in most of the image, Z ≥ 600m will be sufficient for dominance of rotation. In fact, for typical
camera orientations and typical terrain (see Section 3.3), the horizon will be distant and visible in
the image, and 6 (~ω,~r) > α is guaranteed to be true along most of the horizon, so that rotation will
be dominant along most of the horizon.

3.3 Identification of Distant Image Points

Typical images obtained by a camera mounted on a platform (person or vehicle) moving along the
ground are not arbitrary. In general, the camera can be pointing in any direction, but its orientation
relative to that of the platform (the matrix Rc) will be known. It is reasonable to assume that
the camera axis is approximately parallel to the plane spanned by the fore/aft and crosswise axes
of the platform. Thus if the platform is on level ground, the camera is pointing approximately
horizontally. Thus, unless the platform is at the bottom of a deep hollow, or is screened by natural
or artificial objects, the camera can see objects that are very close to the platform as well as objects
that are very distant, as shown in Figures 3 and 4. When only nearby objects can be seen, and
6 (~T ,~r) is significantly different from zero, translation dominates and thus (see Section 3.1) the
image sequence does not need smoothing. In general, however, we expect that this will not be
the case, and distant parts of the scene will be visible; for these parts, as indicated in Section 3.2,
rotation will usually dominate. If distant points can be identified, their motions in the image can
be used to estimate rotation. In the remainder of this section we will discuss methods of classifying
image points based on their distances from the camera.

If range information is available, image points can be classified based on their ranges. A stereo
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Figure 3: Frames 20, 60, 100, 140, and 180 and corresponding normal flow results from two image
sequences of 200 frames each.

rig can be used for range estimation; to do the estimation in real time, a fast multiple-camera
dynamic programming based stereo algorithm can be used [15]. The task here is much simpler
than in general stereo since it is necessary to identify only distant points. This can be easily done
since such points have near-zero disparities if the cameras are parallel. When only a single camera
is available, motion stereo might be used to identify distant points. However, motion stereo works
best when the motion is mostly translational, in which case the image sequence should not need to
be smoothed.

When the focus of expansion (FOE) is inside the image (which is certainly true if the camera
axis is approximately parallel to the fore/aft platform axis), the rates of approach (ROA — the
inverse of time to contact) to objects in the scene can be estimated using line integrals of normal
flow along closed image contours [2, 10]. The ROA has large (small) values for image patches which
correspond to close (distant) objects, and can be used to classify the patches regardless of rotation.
Unfortunately, ROA estimation is computationally expensive, and when the FOE is not inside the
image (as in the case of a sideways-pointing camera), it is not practical to compute the ROA.

Horizon detection provides a potentially more useful method of identifying distant points. Typ-
ically, the horizon is the most distant part of the scene (except for the sky), and unless the terrain
is very steep (or the platform is moving alongside a wall), it is usually visible in the image and
usually quite distant. At points where the horizon is very close (e.g., there are tall objects directly
in front of the camera) translation is dominant and the image sequence should be smooth. We
therefore need only be concerned with points such that the horizon is at least at a medium distance
and rotation is significant. In general, the horizon bounds the brightest part of the image, which
is almost always the sky, and the gradient along the horizon is usually high in magnitude. Thus
the horizon can be detected by finding the bright part(s) of the image (at its top, since the camera
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Figure 4: Frames 0, 200, 400, 600, and 800 from two image sequences of 900 frames each.

axis is approximately horizontal), and estimating the boundaries of these parts. The orientations,
positions, and strengths of the edges along the horizon should change slowly with time, and the
flow along the horizon should be smooth; these observations can be used to track the horizon from
image to image.

Horizon detection need not be repeated in every frame; it should be easy to track distant
horizon points from frame to frame. More generally, if the set of distant points is known at time
t0, the task of identifying distant points in the next frame (at time t0 + ∆t) is greatly simplified.
Since ∆t is small, the distant points remain distant. [When the speed v < 10m/sec and frame time
∆t = O(1/30)sec the change in distance is O(0.3)m for a forward-looking camera and less for a
side-looking camera.] Thus, the image motions of the distant points in ∆t (between the frames)
are mostly due to rotation and are thus small. [When ‖~ω‖ = O(0.1)rad/sec and ∆t = O(1/30)sec
we have from (15) that an upper bound on the rotational image velocity is O(f/300) pixels/frame,
where f is measured in pixels. Note that f/300 < 1 (the motion is subpixel) unless the angular
field of view of the camera is relatively small, corresponding to a long focal length, in which case
the resolution of the image can be reduced.] Also, the magnitudes and orientations of the image
gradients at those points do not change much. Thus the images of distant points at time t0 and
time t0 + ∆t are similar in position and appearance and can be easily tracked from frame to frame.

3.4 Estimation of Rotation

We now describe our algorithm for using distant points to estimate rotation. We shall use the
following notation: Let I be the image intensity at ~r, let ~nr = nx~ı + ny~ = ∇I/‖∇I‖ be the

10



direction of the image intensity gradient at ~r, and let

~a1 =







f
0
−x






, ~a2 =







0
f
−y






, ~b1 =







−xy/f
x2/f + f

−y






, ~b2 =







−y2/f − f
xy/f
x






.

The normal motion field at ~r is the projection of the image motion field onto the gradient direction
~nr and is given by ~̇rn = (~̇r · ~nr)~nr. From (14-15) we have

~̇rn · ~nr = nxẋ+ nyẏ = −(nx~a1 + ny~a2) ·
~T

Z
− (nx

~b1 + ny
~b2) · ~ω. (18)

The terms on the r.h.s. of (18) are the translational normal motion and the rotational normal
motion at ~r, respectively.

Consider a set of image points on the horizon (or more generally, a set of image points which
seem to be at large distances); these points are in fact usually distant and rotation is (strongly)
dominant. For such points, it will usually be the case that the rotational normal motion (strongly)
dominates the translational normal motion. Indeed, in order for the translational normal motion
to be dominant it must be the case that |~̇rt · ~nr| > |~̇rω · ~nr|, which can happen only when ~̇rt and
~̇rω are almost orthogonal and ~nr and ~̇rt are in almost the same direction; we will see later in this
section that this can occur consistently only in certain very artificial scenes. We can thus write

~̇rn · ~nr = ǫt − (nx
~b1 + ny

~b2) · ~ω (19)

where ǫt represents the translational normal motion and is usually small relative to the rotational
normal motion.

The normal flow at ~r is defined as −It/‖∇I‖. From [22] we know that the magnitude of the
difference between the normal flow field and the normal motion field is inversely proportional to
the gradient magnitude; we can thus write

~̇rn · ~nr = − It
‖∇I‖ + O(‖∇I‖−1). (20)

From (19) and (20) we can write

(nx
~b1 + ny

~b2) · ~ω − It
‖∇I‖ = ǫ (21)

where ǫ = ǫt −O(‖∇I‖−1), which is small if the gradient magnitude is large.

For each horizon point ~ri we have one equation (21). Let the number of horizon points be
N ≥ 3. We then have a system

A~ω − y = E

where y is an N -element array with elements It(~ri)/‖∇I(~ri)‖, A is an N × 3 matrix with rows
nx
~b1 + ny

~b2, and E is an N -element array with elements ǫi. We seek ~ω that minimizes ‖E‖ =
‖y −A~ω‖; the solution satisfies the system [21]

ATA~ω = ATy = d. (22)

11



We solve this system using the Cholesky decomposition [21]. (Since the matrix ATA is a positive
definite 3× 3 matrix there exists a lower triangular matrix L such that LLT = ATA. We solve two
triangular systems Le = d and LT ~ω = e for ~ω = (ωx ωy ωz)

T in the camera coordinate system.)

The computed ~ω may be inaccurate due to various geometrical and numerical factors, to be
discussed below. However, it is possible to iteratively improve on the computed solution of the
system (22). Given the estimate ~ω for a given frame, based on the flow between the frame and its
predecessor(s) we create the skew rotational velocity matrix Ω that corresponds to ~ω, and using (7)
we define the rotational matrix R = I + ∆tΩ (where ∆t is the time interval between frames); here
we have used the fact that the angle of rotation around the axis ~ω in time ∆t is ∆t~ω. We then
apply the rotation R to the frame (derotation/warping); as the result the rotational velocity of
the image sequence at that frame will be reduced by ~ω. After derotating the frame we compute a
residual rotational velocity ∆~ω from the derotated frame and the (uncorrected) predecessor frame.
We then replace ~ω by ~ω+∆~ω and proceed to again create Ω and R and use R to again derotate the
original frame. We repeat this process until ‖∆~ω‖ < ε. At each step we do the derotation using the
new ~ω + ∆~ω, and we apply it to the original image (rather than using the new ∆~ω on the already
derotated image), to avoid accumulation of errors. This method converges rapidly when the image
motion is small, which is usually the case. (Typically, the magnitude of the error in ~ω is ≈ 0.1‖~ω‖
— i.e., the error is reduced by an order of magnitude after each iteration.)

[Rotation by R transforms a scene point (X,Y,Z) into (X ′, Y ′, Z ′) such that
(X ′ Y ′ Z ′)T = R(X Y Z)T . Let (x, y) and (x′, y′) be the images of (X,Y,Z) and (X ′, Y ′, Z ′),
respectively. Let rij be the elements of R. Then using (13) we have

x′ = f
X ′

Z ′
= f

r11X + r12Y + r13Z

r31X + r32Y + r33Z
· f/Z
f/Z

= f
r11x+ r12y + r13f

r31x+ r32y + r33f
(23)

and similarly

y′ = f
Y ′

Z ′
= f

r21x+ r22y + r23f

r31x+ r32y + r33f
. (24)

The direct application of the formulas for (x′, y′) yields non-integer pixel positions. To compute the
transformed image, we apply the inverse transformation to (x′, y′) and determine the gray levels
for the pixels of the transformed image by interpolating the gray levels of the original image.]

As regards the reliability of the method two questions must be answered. The first question is
geometrical and can be formulated as follows: Given the spatial distribution and the orientations of
the feature points in the image, which components of ~ω can be computed? It is well known that the
rotational image motion field (optical flow) can be zero only at the point where the direction of the
axis of rotation (AOR) pierces the image plane [1, 7]. The rotational normal motion field (normal
flow), however, can be zero when the normal (gradient) direction is orthogonal to the direction of
the motion field, i.e. ~n · ~̇rω = 0. However, this can cause problems only if the normal flow is (near)
zero consistently at all (or the great majority of) the feature points. This can happen only if all
normal (gradient) directions are orthogonal to the conic sections which are the intersections of the
image plane with the circular cones centered at the focal point of the camera and having ~ω as their
axis. More generally, if all the normal directions are orthogonal to such a family of conic sections
for which the unit vector ~rc is the cone axis, the rotational velocity component (~rc · ~ω)~rc cannot
be detected. We say in this situation that the normal flow resulting from the rotational velocity
(~rc · ~ω)~rc belongs to the null space of the feature matrix A [21]. Fortunately, if such ~ω’s exist,
the positive definite (semidefinite) matrix ATA must have a large condition number (the ratio of
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(a) (b) (c)

Figure 5: (a) Computed normal flow in the 100th frame of the first sequence. (b) Estimated
rotational flow for the same frame. (c) Residual (translational) flow for the frame after subtracting
the rotational flow.

its largest to its smallest eigenvalue); thus the existence of such situations is easy to detect by
examining the eigenvalues of ATA.

The second question is numerical and can be formulated as follows: Given the spatial distri-
bution and the orientations of the feature points in the image, and the accuracy with which the
normal flow can be computed, how accurately can ~ω be computed and what can be done to increase
the numerical accuracy of the method? This question is also related to the condition number of
ATA since the errors in the computed ~ω are proportional to the errors in the normal flow, where the
condition number of ATA is the approximate proportionality coefficient. If the condition number
is small we expect that the solution of (22) is reliable and that a few iterations of our algorithm
will be enough to obtain a reliable estimate of ~ω. In all the examples shown in Figures 3 and 4 the
condition numbers are smaller than 50.

As an example of the performance of our algorithm we show the results of applying it to the
100th frame of the first sequence in Figure 3. Figure 5a shows the normal flow and Figures 5b and 5c
respectively show the estimated rotational and residual translational flow after two iterations. The
condition number for the feature matrix ATA was ≈ 15; it remained close to this value through the
entire sequence. The rotational velocity was estimated in two iterations. After the first iteration
the estimated ~ω = (ωx ωy ωz)

T (in camera coordinates) was (0.000784 0.000203 −0.000512)T

rad/frame, and after two iterations it was (0.000775 0.000204 −0.000528)T rad/frame, so that
‖∆~ω‖ < 0.000011 rad/frame.

3.5 Smoothing Algorithms

We saw in Section 3.1 that we need only smooth the effects (on the image sequence) of the rotational
part of the motion. In Section 3.4 we showed how the rotational velocity ~ω of the camera can be
estimated in each frame. We cannot simply “smooth” the image sequence by using these estimates
to derotate the frames; if we did this, we would eliminate the effects of all the rotational motion,
including the smooth motion. But since the camera is not always pointing in the same direction
(e.g., the platform may make turns, go over hills, etc.), this would cause large parts of the images
to be lost.

We saw in Appendix that the non-smooth part of the rotational velocity of a ground vehicle
has larger magnitude than the smooth part. However, we saw in Section 2.2 that the cumulative
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effects of the non-smooth part on the orientation of the platform (the angles between the platform
frame and the Darboux frame) remain relatively small. It follows that eliminating the effects of
the non-smooth part (only) will not cause loss of large parts of the images.

To smooth the image sequence, we will first estimate the smooth part ~ωf of ~ω. We will then use
the residual rotational velocity ~ω−~ωf , which corresponds to the non-smooth part of ~ω, to construct
a sequence of rotation matrices; we can then use these matrices to correct the corresponding frames
as in (23-24). The matrices can be constructed as follows: When the integral of the residual
velocity ~wr =

∫ t
0
~ω − ~ωf dt is small its components W1, W2, and W3 (in any coordinate frame) are

approximately equal to the angles between the axes of that frame and the directions that the axes
would have had if the rotational velocity of the camera were ~ωf . The first order approximation of
the rotation matrix R (see (7)) defined by ~wr is then

R =







1 −W3 W2

W3 1 −W1

−W2 W1 1






+ O(‖~wr‖2). (25)

To use this matrix to correct the images as in (23-24), we need only transform it to a rotation
matrix in the camera frame. For example, if the given frame is the platform frame, the matrix in
the camera frame is RT

c RRc. We will in fact use the components in the platform frame (whose
axes are the roll, pitch, and yaw axes) in this section.

We saw in the Appendix that a vehicle driven on a well-designed road (or a well-driven vehicle
on any terrain) may undergo smooth rotations when it turns or goes over a hill. A smooth turn
involves a transition from a straight part of the road to a circular arc part, so that a zero yaw
velocity is followed by a constant, non-zero yaw velocity. (The transition is not abrupt, but the
transition period is quite brief.) If the turn is banked, the transition between the unbanked and
banked parts of the road results in a brief period of nonzero roll velocity. Finally, when the vehicle
crests a hill (or passes through the bottom of a depression) there is a period of approximately
constant, non-zero pitch velocity. Thus piecewise constant fits are reasonable approximations to
the smooth rotational components of a vehicle’s velocity around its roll, pitch, and yaw axes. Since
our camera is fixed relative to the vehicle, the same is true about the components of the camera’s
rotational motion around these axes. We can therefore estimate the smooth part of ~ω by “fitting”
piecewise constant functions to these components. At the same time, the rotational velocities about
these axes are always small; hence in doing the fitting, we should also try to keep the magnitudes
of the components as small as possible.

Figure 6 shows the (unsmoothed) roll, pitch, and yaw components of ~ω that were estimated
from the first image sequence in Figure 4. We see that all three components fluctuate strongly, with
major periods of oscillation on the order of 20-30 frames (i.e., one second or less). The components
also remain relatively small in amplitude, usually less than 4×10−3 rad/frame; the fluctuations in
the roll and pitch components have the highest amplitudes, as predicted at the end of the Appendix.

When we “fit” piecewise constant functions ωf of small magnitude to the rotational velocity
components ω, it is important that we (try to) keep the integrals of the residual velocities Wr =
∫ t
0
ω−ωf dt small, so that our method of correcting the frames, described earlier in this section, can

be used. In the remainder of this section we will describe two algorithms for doing the “fitting”.
One algorithm is able to fit piecewise constant functions to the rotational velocities because it
allows unlimited time delays before computing the fits. The algorithm actually fits a piecewise
linear function to the integral of each component, rather than a piecewise constant function to
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Figure 6: Raw velocity components for the third sequence (the two top rows in Figure 5). Left to
right: pitch, yaw, roll.

the component itself. This has two advantages: (1) It allows the algorithm to incorporate explicit
bounds on the magnitude of Wr. (2) Fitting to an integral is easier than fitting to the original
component, since the integrals are much less noisy, as we see in the top row of Figure 7.

The algorithm takesW =
∫ t
0
ω dt as input and produces a polygonal approximationWf =

∫ t
0
ωfdt

such that |Wr| = |W −Wf | is smaller than a preassigned bound h. [Typical values of h are 0.05
(≈ 3◦), 0.025, and 0.0125 radians for the roll, pitch, and yaw components, respectively.] For some
initial time interval, there exist rays ρ through the origin (in fact, an angular sector of such rays)
such that |W −ρ| ≤ h. If beyond some time t0 this is no longer true, then just prior to t0 there will
usually be exactly one ray ρ0 (shown as a dashed line in Figure 8) for which it is true; we take this
ρ0, up to the last point at which it crosses W (say at time t∗0), as the first segment in our polygonal
approximation. We now take the crossing point as our new origin and repeat the process. After we
have constructed Wf in this way, we can now obtain ωf as the derivative of Wf .

The bottom row of Figure 7 shows the results of applying this algorithm to the sequence.
The thin jagged lines correspond to actual estimated velocities; note that they differ by a small
amount from the desired (thick line) velocities. These estimates are all quite small, confirming that,
as already observed, during the 30-second period shown in the figures, relatively large unsmooth
velocities can be effectively replaced by small smooth velocities.

We now describe the limited time-delay algorithm1. This algorithm assumes that the smoothed
component ωf is zero at t = 0, and repeatedly “corrects” its estimate of ωf , based on the behavior
of Wr, in such a way as to keep it (almost always) bounded. Thus for this algorithm too, the Wrs
remain small, and so can be used to correct the frames.

Let the time delay be d frames; we will show examples with d = 5, 15, and 30 frames (note
that 30 frames corresponds to a one-second delay). Initially we set ωf = 0. We use the values of ω
computed for frames 1 through d to estimate the value of the residual Wr(d); we use this estimate
to compute a correction δ of ωf ; we then replace ωf by δ and proceed with estimating ωf for frames
2, 3, and so on.

Let the index of the current frame be i. Using the values of ω for frames i+ 1, i + 2, . . . , i+ d

1This algorithm can be adapted for real-time operation by making the time delay zero.
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Figure 7: Results of the unlimited time-delay algorithm for the same sequence. First row: integrals
of velocity components; thin lines correspond to integrals of raw velocity components and thick lines
correspond to polygonal approximations of these integrals. Second row: thick lines correspond to
desired smooth velocities and thin lines correspond to estimated velocities computed from the
corrected image sequence.

we compute the predicted value of Wr(i+ d) as

Wr(i+ d) = Wr(i) +
d
∑

i=1

ω(i) − dωf (i).

Next, we compute
δ = K1d

−1Wr(i+ d);

if |Wr(i+ d)| > 0.75h we replace δ by

δ +K2d
−1(Wr(i+ d) − 0.75h) for Wr(i+ d) > 0

and by
δ +K2d

−1(Wr(i+ d) + 0.75h) for Wr(i+ d) < 0.

When ωf and Wr(i + d) have opposite signs we replace δ by 5δ. Finally, we compute ωf (i + 1) =
ωf (i) + δ. We have used K1 = 0.0005 and K2 = 0.01 in our experiments. Larger values of K1 and
(especially) K2 can lead to oscillatory behavior of ωf .

The results of applying the limited time-delay algorithm to the sequence using d = 5, 15,
and 30 are shown in Figure 9. The first row shows velocity integrals and the second row shows
corresponding smooth velocities. We see that the smooth velocity components are relatively small
compared to the unsmooth velocity components of Figure 6. We also see that one obtains slightly
better estimates using larger ds, but the difference between the estimates for different ds are not
large. Finally, Figure 10 shows several frames of the sequence, smoothed using d = 30.
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Figure 8: Polygonal approximation of W by Wf using the algorithm that allows unlimited time
delays.

4 Conclusions

We have analyzed the smooth and non-smooth motions of a platform (person or vehicle) moving
along the ground and have shown that only the rotational components of the non-smooth motion
have significant perturbing effects on the images. We have analyzed the relationship between the
shape of the terrain along which the platform travels and the parameters of the smooth motion of
the platform. We have also used this analysis, together with the highway design recommendations
in [3], to estimate the relative sizes of the smooth and non-smooth components of the motion. We
have shown how to identify image points at which rotational image flow is dominant, and how to
use such points to estimate the platform’s rotation. Finally, we have described two algorithms that
fit piecewise smooth rotational motions to these estimates and we have shown how the residual
rotational motion (the difference between the estimated actual motion and the fitted motion) can
be used to correct the images. We have presented results for an image sequence obtained from a
camera carried by a ground vehicle moving across bumpy terrain; videos of several such sequences,
before and after stabilization, demonstrate the effectiveness of our approach. These can be seen at
www.cs.gmu.edu/∼zduric/ImageSmoothing/.

5 Appendix: The Motion of a Ground Vehicle on a Rough Surface

A ground vehicle drives over roads or surfaces (for brevity: RSs) that have varying degrees of
roughness [4]. An RS may be a paved, gravel, or dirt road; grassy, muddy, sandy, or gravel-strewn
ground; and so forth. The degree of roughness of an RS will be considered as piecewise stationary,
i.e. static in a statistical sense with parameters that remain constant over a finite time period. The
roughness consists primarily of small irregularities in the RS (stones, litter, holes, etc.). The RS
may also contain occasional roughness outliers such as rocks, bushes, potholes, speed bumps, etc.,
but we will ignore them in the discussion below.

In discussing the effects of the roughness of the RS on the motion of a ground vehicle we will
assume, for simplicity, an ordinary, well-balanced four-wheeled vehicle moving on a planar surface
that is smooth except for occasional small bumps (protrusions). The bumps are assumed to be small
relative to the size of the wheels, so that the effect of a wheel passing over a bump is impulsive. (We
could also allow the surface to have small depressions, but a large wheel cannot deeply penetrate a
small depression, so the depressions have much smaller effects than the bumps.)
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Figure 9: Results of the limited time-delay algorithm for the same sequence. First row: integrals of
velocity components; thin lines correspond to integrals of raw velocity and thick lines correspond
to smooth approximations of these integrals (full line, d = 5; dashed line, d = 15; dash-dot line,
d = 30). Second row: desired and computed smooth velocities (full line, d = 5; dashed line, d = 15;
dash-dot line, d = 30).

As the vehicle moves over rough terrain, each wheel hits bumps repeatedly. We assume that
the vehicle has a suspension mechanism which integrates and damps the impulsive effects of the
bumps. Each suspension element is modeled by a spring with damping; its characteristic function
is a sine function multiplied by an exponential damping function (see [18, 24]). We assume that the
suspension elements associated with the four wheels are independent of each other and are parallel
to the up/down axis of the vehicle. (A discussion of the dynamics of the suspension of a ground
vehicle on rough terrain can be found in [25, 26].)

On bumpy terrain the vehicle will usually hit new bumps while the effects of the previous
bumps are still being felt. Each hit forces the suspension and adds to the accumulated energy in
the spring; thus we can assume that the suspension is constantly oscillating, which has the effect of
moving the corners of the vehicle up and down. The period of oscillation is typically on the order
of 0.5 sec (see [18, 24]). In general, it takes several periods to damp out the spring; for example,
the damping ratio provided by shock absorbers of passenger cars is in the range 0.2 − 0.4. The
maximum velocity of the oscillation is typically on the order of 0.1m/sec.

Consider the coordinate system Cxyz with origin at the center of mass C of the vehicle (see
Figure 11). Let vi be the velocity of corner Ci of the vehicle, and let the length and width of the
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Figure 10: Frames 0, 200, 400, 600, and 800 of the smoothed image sequence.
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Figure 11: A possible motion of the base of the vehicle as the vehicle hits a bump.

vehicle be L and W . From the vis we can compute the angular velocity matrix

Ω̃ ≡







0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0






=







0 0 (v3 − v4)/L
0 0 (v2 − v3)/W

(v4 − v3)/L (v3 − v2)/W 0






. (26)

Note that any of the vis can be positive or negative. Multiplication by Ω̃ can be replaced by the
vector product with the angular velocity vector ~ω =~ı(v3 − v2)/W +~(v3 − v4)/L where the rate of
rotation around the x axis (the roll velocity) is ωx = (v3−v2)/W and the rate of rotation around the
y axis (the pitch velocity) is ωy = (v3−v4)/L. As noted above, we typically have |vi| < 0.1m/sec. If
we assume that W > 1m and L > 2m we have |ωx| < 0.2 rad/sec and |ωy| < 0.1 rad/sec. The yaw
velocity component is |ωz| = O(v2

i /
√
W 2 + L2) which is |ωz| = O(0.01) rad/sec. (For a complete

derivation see [8].)

The translational velocity vector of the center C of the vehicle is obtained by using the velocities
v1 − v3, v2 − v3, 0, and v4 − v3 for the corners and adding v3 to the velocity in the direction of the
z-axis. We thus have

~T =







tx
ty
tz






=







−(v4 − v3)H/L
(v2 − v3)H/W

(v2 + v4)/2






. (27)

19



If we assume that H < 0.5m (< W/2) we have |tx| < 0.05m/sec, |ty| < 0.1m/sec, and |tz| <
0.1m/sec.

We can draw several conclusions from this discussion: (i) The effects of small bumps are of
short duration, i.e. they can be considered to be impulsive. The suspension elements integrate and
damp these effects, resulting in a set of out-of-phase oscillatory motions. (ii) The yaw component
of rotation due to the effect of a bump is very small compared to the roll and pitch components.
(iii) The translational effects of a bump are proportional to the velocities (or displacements) of the
suspension elements and the dimensions of the vehicle and are quite small.

We can now compare the sizes of the velocity components which are due to the ideal motion of
the vehicle — i.e., the velocity components of the Darboux frame (Section 2.1) — to the sizes of
the velocity components which are due to departures of the vehicle frame from the Darboux frame
(Section 2.2).

The translational velocity of the Darboux frame is just v~t; thus the magnitude of the transla-
tional velocity is just v. If v = 10m/sec (= 36 km/hr≈ 22mi/hr) this velocity is much larger than
the velocities which are due to departures of the vehicle from the Darboux frame, which, as we
have just seen, are on the order of 0.1m/sec or less.

The rotational velocity of the Darboux frame is v~ωd = v(τg~t + κn~v + κg~s); thus the magnitude

of the rotational velocity is v
√

τ2
g + κ2

n + κ2
g. In the following paragraphs we will estimate bounds

on τg, κn, and κg. Our analysis is based on the analyses in [4, 11, 24] and on the highway design
recommendations published by the American Association of State Highway Officials [3]. Note that
for safety reasons, a driver is likely to drive more slowly on terrain than on a highway, so bounds
derived from our highway analysis should also hold for cross-country driving.

Good highway design allows a driver to make turns at constant angular velocities, and to follow
spiral arcs in transitioning in and out of turns, in order to reduce undesirable acceleration effects on
the vehicle. A well-designed highway turn also has a transverse slope, with the outside higher than
the inside, to counterbalance the centrifugal force on the turning vehicle. Thus the ideal (smooth)
motion of a vehicle has piecewise constant translational and rotational velocity components, with
smooth transitions between them. Note that the translational components are constant in the
vehicle coordinate frame even when the vehicle is turning, unless it slows down to make the turn.

To illustrate the typical sizes of these components, consider a ground vehicle moving with
velocity v along a plane curve Γ on the surface Σ. If Σ is a plane and Γ is a circular arc with
radius of curvature ρg = |κg|−1 (i.e., the vehicle is turning with a constant steering angle), the
angular velocity of the vehicle is v~ωd = vκg~s and there is a centripetal acceleration ~ac = v2κg~v at
the vehicle’s center [23]. As a result there is a centrifugal force on the vehicle proportional to ‖~ac‖
and the mass of the vehicle. If skidding is to be avoided the limit on ‖~ac‖ (see [4]) is given by

‖~ac‖ = v2κg ≤ g(tanα+ µa) (28)

where g is the gravitational acceleration, α is the transverse slope, and µa is the coefficient of
adhesion between the wheels and the surface. [Typical values of µa range from 0.8 − 0.9 for dry
asphalt and concrete to 0.1 for ice (see [24], page 26).] From (28) we have either a lower bound on
ρg for a given v or an upper bound on v for a given ρg. For example, if v = 30m/sec (≈ 108 km/hr),
α = 0.05 rad, and µa = 0.2 from v2/ρg < 0.25g we have ρg > 367m. This yields an upper bound
on the yaw angular velocity of < v|κg | = v/ρg ≈ 0.08 rad/sec, which is somewhat larger than the
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yaw angular velocity arising from the departures from Darboux motion.

Other dynamic constraints on a vehicle such as limits on torques and forces can be used to
obtain constraints on τg and κn. (These and other considerations such as safety and comfort were
used in [3] to make recommendations for highway design; for a summary of these recommendations
see [8].) For both vertical curves (crossing a hill) and turning curves the (recommended lower
bound on the) radius of curvature ρmin grows with the square of the design velocity vd. However,
the resulting (design) yaw and pitch angular velocities are limited by vd/ρmin. Thus for smaller
velocities v the vehicle can negotiate tighter vertical and turning curves and thus have even larger
values of the yaw and pitch angular velocities. Typical values of the roll and pitch angular velocities
are given in [8].

For realistic vehicle speeds we can conclude the following about the impulsive and smooth
translational and rotational velocity components of the vehicle [8]. The impulsive effects on the
translational velocity are approximately two orders of magnitude smaller than the smooth velocity
components themselves. Impulsive effects on the yaw angular velocity are somewhat smaller than
the smooth yaw component arising from worst-case turns of the RS; for moderate turns the impul-
sive effects are comparable in size to the smooth yaw velocity. Impulsive effects on the roll angular
velocity are approximately an order of magnitude larger than the smooth roll component arising
from worst-case twists (and turns) of the RS; for gentler twists the smooth roll velocity is even
smaller. Similarly, impulsive effects on the pitch angular velocity are approximately an order of
magnitude larger than the smooth pitch velocity arising from worst-case changes of vertical slope
(i.e., vertical curves) of the RS; for gentler vertical curves the smooth pitch angular is even smaller.
(The impulsive effects are not significantly affected by turns, twists, or vertical slope.) We can thus
conclude that impulsive effects on the roll and pitch angular velocities are significant and larger
than the corresponding smooth velocities, and that impulsive effects on the yaw angular velocity
are on the order of the smooth yaw velocity.
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