
Shore-MT: A Scalable Storage Manager for the Multicore Era
Ryan Johnson,12 Ippokratis Pandis,1 Nikos Hardavellas,1 Anastasia Ailamaki,12 and Babak Falsafi2

1Carnegie Mellon University, USA 2École Polytechnique Fédérale de Lausanne, Switzerland
ABSTRACT
Database storage managers have long been able to efficiently
handle multiple concurrent requests. Until recently, however, a
computer contained only a few single-core CPUs, and therefore
only a few transactions could simultaneously access the storage
manager's internal structures. This allowed storage managers to
use non-scalable approaches without any penalty. With the arrival
of multicore chips, however, this situation is rapidly changing.
More and more threads can run in parallel, stressing the internal
scalability of the storage manager. Systems optimized for high
performance at a limited number of cores are not assured simi-
larly high performance at a higher core count, because unantici-
pated scalability obstacles arise.

We benchmark four popular open-source storage managers
(Shore, BerkeleyDB, MySQL, and PostgreSQL) on a modern
multicore machine, and find that they all suffer in terms of scal-
ability. We briefly examine the bottlenecks in the various storage
engines. We then present Shore-MT, a multithreaded and highly
scalable version of Shore which we developed by identifying and
successively removing internal bottlenecks. When compared to
other DBMS, Shore-MT exhibits superior scalability and 2-4
times higher absolute throughput than its peers. We also show
that designers should favor scalability to single-thread perfor-
mance, and highlight important principles for writing scalable
storage engines, illustrated with real examples from the develop-
ment of Shore-MT. 

1. INTRODUCTION
Most database storage manager designs date back to the 1980's,
when disk I/O was the predominant bottleneck. Machines typi-
cally featured 1-8 processors (up to 64 at the very high end) and
limited RAM. Single-thread speed, minimal RAM footprint, and
I/O subsystem efficiency determined overall performance of a
storage manager. Efficiently multiplexing concurrent transactions
to hide disk latency was the key to high throughput. Research
focused on efficient buffer pool management, fine-grain concur-
rency control, and sophisticated caching and logging schemes. 

Today's database systems face a different environment. Main
memories are in the order of several tens of gigabytes, and play
the role of disk for many applications whose working set fits in
memory [15]. Modern CPU designs all feature multiple proces-
sor cores per chip, often with each core providing some flavor of
hardware multithreading. For the forseeable future we can expect

single-thread performance to remain the same or increase slowly
while the number of available hardware contexts grows exponen-
tially. Though shared-nothing query processing is very effective,
distributed transactions do not scale well and have not seen wide-
spread adoption [18][11]. As a result, the storage manager for a
transaction engine must be able to utilize the dozens of hardware
contexts that will soon be available to it. However, the internal
scalability of storage managers has not been tested under such
rigorous demands before.

1.1 How do existing storage managers scale?
To determine how well existing storage managers scale, we
experiment with four popular open-source storage managers:
Shore [7], BerkeleyDB [1], MySQL [2], and PostgreSQL [30].
The latter three engines are all widely deployed in commercial
systems. We ran our experiments on a Sun T2000 (Niagara)
server, which features eight cores and four hardware thread con-
texts per core for a total of 32 OS-visible “processors.” 

Our first experiment consists of a microbenchmark where each
client in the system creates a private table and repeatedly inserts
records into it (see Section 3 for details). This setup ensures there
is no contention for database locks or latches, and that there is no
I/O on the critical path. Figure 1, shows the results of executing
this microbenchmark on each of the four storage managers. The
number of concurrent threads varies along the x-axis with the cor-
responding throughput for each engine on the y-axis. As the num-
ber of concurrent threads grows from 1 to 32, throughput in a
perfectly scalable system should increase linearly. However, none
of the four systems scales well, and their behavior varies from
arriving at a plateau (PostgreSQL and Shore) to a significant drop
in throughput (BerkeleyDB and MySQL). These results suggest
that, with core counts doubling every two years, none of these
systems is ready for the multicore era.

In retrospect these results are understandable because, when the
engines were developed, internal scalability was not a bottleneck

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT'09, March 24-26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00.

Figure 1.Scalability as a function of available hardware contexts
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and designers did not foresee the coming shift to multicore hard-
ware. It would have been difficult to justify spending consider-
able effort in this area. Today, however, internal scalability of
these engines is key to performance as core counts continue
increasing.

1.2 Creating a scalable storage manager
Because none of the existing storage managers provide the kind
of scalability required for modern multicore hardware, we set out
to create a scalable storage manager based on the Shore storage
manager. This exercise resulted in Shore-MT, which scales far
better than its open source peers while also achieving superior
single-thread performance (as shown in the experimental section).
We find that the remaining gap between Shore-MT’s scalability
and the ideal is due to hardware multithreading in the Niagara
processor — threads contend for hardware resources within the
processor itself, limiting the scalability software can achieve [29].

We use the lessons learned while creating Shore-MT to distill a
set of important principles for developing scalable storage manag-
ers, many of which also apply to parallel software in general: 

• Efficient synchronization primitives are critical. Poorly-
designed or -applied primitives destroy scalability.

• Every component must be explicitly designed for scalability
or it will become a bottleneck. Common operations must be
able to proceed in parallel unless they truly conflict.

• Hotspots must be eliminated, even when the hot data is read-
mostly. The serial overhead imposed by acquiring a shared-
mode latch can grow quickly into a bottleneck, for example.

• Abstraction and encapsulations do not mix well with critical
sections. We observed large gains by merging data structures
with the synchronization primitives that protect them.

We present these principles as both a corroboration of prior work
and an example of their practical application in a software system
as large and complex as a storage manager. In particular, we dem-
onstrate how systematically applying these principles can trans-
form an existing, poorly performing storage manager to a fully
competitive and scalable one. 

1.3 Contributions and Paper Organization
To the best of our knowledge, this is the first paper to study and
compare the internal scalability of open-source database storage
managers on a modern, many-core machine. The contributions of
this paper are: 

• We identify the bottlenecks which prevent all of the open-
source database storage managers we tested from scaling well
on a modern multi-core platform. Our experiments show that
performance flattens or even decreases after 4-12 hardware
contexts.

• We develop Shore-MT — a multithreaded and scalable ver-
sion of the Shore storage manager [7] — and make it available
to the research community.1

• Shore-MT achieves superior scalability and excellent single-
thread performance compared to its peers. It is twice as fast as

a commercial system and 2-4 times as fast as the fastest open-
source system, across all of our experiments.

• Using lessons learned from the development of Shore-MT we
show that designers must focus primarily on scalability rather
than on single-thread performance. This focus will allow stor-
age managers to exploit the parallelism future multicore chips
make available, and our experience with Shore-MT shows that
single-thread performance can actually improve as a side
effect as well.

This paper is organized into two main parts. The first (Sections 2-
4) details the trends and internal components that lead to bottle-
necks in current systems, and examines the bottlenecks in each of
the four storage managers. The second part (Sections 5-7) pre-
sents Shore-MT, measuring its performance and scalability and
detailing lessons and principles we learned that can be applied to
other engines. We conclude in Section 8.

2. BACKGROUND AND RELATED WORK
This section explains the recent architectural trends that make
parallelism and scalability the most critical aspects of modern
software design, as well as the main components in a database
storage manager that determine the system’s behavior.

2.1 DB Computing in the Multicore Era
Despite Moore’s law doubling transistor density every two years,
by the early 2000s it became clear to chip designers that power-
related issues[21][10] prohibit commensurate increases in unipro-
cessor speed. Instead, each new generation of processors incorpo-
rates an ever-increasing number of processors (cores) on the same
chip, leading the computing world into the so-called “multi-core
era.” Section 2 illustrates how core counts of all popular architec-
tures are growing exponentially; uniprocessor systems are
increasingly difficult to find due to stagnant single-thread perfor-
mance. As a result, all software must be able to exploit parallel-
ism for performance rather than depending on succeeding
processor generations to provide significant speedup to individ-
ual threads. Software designers should focus first on scalability,
rather than single-thread performance, to ensure maximum sys-
tem throughput as core counts grow exponentially. 

1. See http://www.cs.cmu.edu/~stageddb/systems/shoremt.html

Figure 2.Number of HW contexts per chip as a function of time.
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This shift in processor design has jump-started a wide effort to
extract parallelism from all types of existing software. While
most database applications are inherently parallel, current data-
base storage managers are designed under the assumption that
only a limited number of threads will access their internal data
structures during any given instant. Even when the application is
executing parallelizable tasks and even if disk I/O is off the criti-
cal path, serializing accesses to these internal data structures
impedes scalability.

An orthogonal way of scaling up a system to handle multiple
requests in parallel is to use a distributed database. In fact, most
of today’s large database installations run on clusters of machines
using either shared-nothing [13][12] or shared-disk [4] configura-
tions. Recent proliferation of virtualization technology [6] allows
system administrators to even go one step further and create vir-
tual nodes within a single multicore machine. This is a desirable
way of utilizing multicore systems in many applications, but
transactional workloads favor a DBMS deployment with a single
instance in the (multicore) node. Distributed transactions are
notoriously difficult to implement correctly and efficiently
[18][11], leading to severe performance degradation when multi-
ple storage managers must participate in a transaction. Given the
need for high performance inside a single multicore node, it is
important to understand which factors may hinder scalability and
discover ways to overcome them.

As we study in this paper, building a scalable database storage
engine is challenging. One reason for that is the wide range of
operations the storage engine is expected to support. However, if
the domain is specific, or the requirements are relaxed the goal
for scalability is feasible. For example, recent work proposes sys-
tems that provide relaxed consistency semantics, such as Ama-
zon's Dynamo [11], and systems that operate exclusively in main-
memory, such as H-Store [31]. These kinds of systems achieve
significant gains in performance and/or scalability by giving up
features traditionally provided by database storage engines. In
specialized domains these systems perform admirably, but gen-
eral-purpose database storage managers are still necessary for
many transactional workloads, and their scalability is crucial.

2.2 Inside a Storage Manager
To provide a base for the discussions in the rest of the paper, this
section briefly describes each component and briefly highlights
some of the potential scalability challenges it presents. Figure 3
illustrates the major components of a storage manager and how
they communicate. The storage manager forms the heart of a
database management system. It is responsible for maintaining
durability and consistency in the system by coordinating active
transactions and their access to data, both in memory and on disk. 

2.2.1  Buffer pool manager
The buffer pool manager fills two critical functions for the data-
base. First, it presents the rest of the system with the illusion that
the entire database resides in main memory, similar to an operat-
ing system’s virtual memory manager. The buffer pool is a set of
“frames,” each of which can hold one page of data from disk.
When an application requests a database page not currently in

memory the buffer pool manager must fetch it from disk (evicting
some other page) while the application waits. Applications “pin”
in-use pages in the buffer pool to prevent their being evicted too
soon, and unpin them when finished. Finally, the buffer pool
manager and log manager (below) are responsible for ensuring
that modified pages are flushed to disk (preferably in the back-
ground) so that changes to in-memory data become durable.

Buffer pools are typically implemented as large hash tables in
order to find quickly any page requested by an application. Oper-
ations within the hash table must be protected from concurrent
structural changes caused by evictions, usually with per-bucket
mutex locks. Hash collisions and hot pages can cause contention
among threads for the hash buckets; growing memory capacities
and hardware context counts increase the frequency of page
requests, and hence the pressure, which the buffer pool must deal
with. Finally, the buffer pool must flush dirty pages and identify
suitable candidates for eviction without impacting requests from
applications.

2.2.2  Page latches
Pinning a page in the buffer pool ensures that it will remain in
memory but does not protect its contents from concurrent modifi-
cation. To protect its integrity, each page has a reader-writer lock
called a latch associated with it; each operation acquires the latch
in either read or write mode before accessing the page.2 

Latches are a potential bottleneck for two reasons. First, very hot
data such as metadata and high-level index pages are accessed so
frequently that even compatible read operations can serialize
attempting to acquire the latch [20]. Second, latch operations are
typically very short, but when an transaction blocks on I/O it can
hold a latch for several milliseconds and serialize many transac-
tions behind it.

2.2.3  Lock manager
Database locks enforce logical consistency at the transaction
level, ensuring that transactions do not interfere with the correct-
ness of other concurrent transactions. One of the most intuitive
(and restrictive) consistency models is “two phase locking”

2. Multi-versioned buffer pools avoid latches entirely by providing
copy-on-write semantics for pages in memory. Transactional
workloads typically access only a few bytes per page per trans-
action and quickly fill the buffer pool with near-identical copies
of hot pages at the expense of other data.

Figure 3.Main components of a storage manager
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(2PL), which dictates that a transaction may not acquire any new
locks once it has released any. This scheme is sufficient to ensure
that all transactions appear to execute in some serial order, though
it can also restrict concurrency. In order to balance the overhead
of locking with concurrency, the database provides hierarchical
locks. In order to modify a row, for example, a transaction
acquires a database lock, table lock, and row lock; meanwhile
transactions which access a large fraction of a table may reduce
overhead by “escalating” to coarser-grained locking at the table
level. 

Because each row in the database has a logical lock associated
with it, the lock manager maintains a pool of locks and lock
requests similar to a buffer pool; however, as the number of
active locks can change drastically over time, the hash table is
likely to have longer chains than the buffer pool, leading to more
contention for buckets. Additionally, hierarchical locking results
in extremely hot locks which most or all transactions acquire;
again, this contention can serialize lock requests that will eventu-
ally turn out to be compatible.

2.2.4  Log manager
Database operations log all operations in order to ensure that they
are not lost if the system database fails before the buffer pool
flushes those changes to disk. The log also allows the database to
roll back modifications in the event of a transaction abort. Most
storage managers follow the ARIES scheme [25][26], which
combines the log, buffer pool manager, and concurrency control
schemes into a comprehensive recovery scheme.

The database log is a serial record of all modifications to the
database, and therefore forms a potential scalability bottleneck as
the number of concurrent operations increases.

2.2.5  Transaction management
The storage manager must maintain information about all active
transactions, especially the newest and oldest in the system, in
order to coordinate services such as checkpointing and recovery.
Checkpointing allows the log manager to discard old log entries,
saving space and shortening recovery time. However, no transac-
tions may begin or end during checkpoint generation, producing a
potential bottleneck unless checkpoints are very fast.

2.2.6  Free space and metadata management
The storage manager must manage disk space efficiently across
many insertions and deletions, in the same way that malloc() and
free() manage memory. It is especially important that pages which
are scanned regularly by transactions be allocated sequentially in
order to improve disk access times; table reorganizations are
occasionally necessary in order to improve data layout on disk. In
addition, databases store information about the data they store,
and applications make heavy use of this metadata.

The storage manager must ensure that changes to metadata and
free space do not corrupt running transactions, while also servic-
ing a high volume of requests, especially for metadata.

3. EXPERIMENTAL ENVIRONMENT
Because the basis of this work lies in evaluating the performance
of database engines, we begin by describing our experimental
environment. All experiments were conducted using a Sun T2000
(Niagara) server [21][10] running Solaris 10. The Niagara chip
has an aggressive multi-core architecture with 8 cores clocked at
1GHz; each core supports 4 thread contexts, for a total of 32 OS-
visible "processors." The 8 cores share a common 3MB L2 cache
and each of them is clocked at 1GHz. The machine is configured
with 16GB of RAM and its I/O subsystem consists of a RAID-0
disk array with 11 15kRPM disks.

We relied heavily on the Sun Studio development suite, which
integrates compiler, debugger, and performance analysis tools.
unless otherwise stated every system is compiled using version
5.9 of Sun’s CC. All profiler results were obtained using the ‘col-
lect’ utility, which performs sample-based profiling on unmodi-
fied executables and imposes very low overhead (<5%).

3.1 Storage Engines Tested
We evaluate four open-source storage managers: PostgreSQL
[30], MySQL [2], BerkeleyDB [1], and Shore [7]. For compari-
son and validation of the results, we also present measurements
from a commercial database manager (DBMS "X").3 All database
data resides on the RAID-0 array, with log files sent to an in-
memory file system. The goal of our experiments is to exercise
all the components of the database engine (including I/O, locking
and logging), but without imposing I/O bottlenecks. Unless other-
wise noted, all storage managers were configured with 4GB
buffer pools.

In order to extract the highest possible performance from each
storage manager, we customized our benchmarks to interface with
each storage manager directly through its respective C API. Cli-
ent code executed on the same machine as the database server,
but we found the overhead of clients to be negligible (<5%).

PostgreSQL v8.1.4: PostgreSQL is an open source database
management system providing a powerful optimizer and many
advanced features. We used a Sun distribution of PostgreSQL
optimized specifically for the T2000. We configured PostgreSQL
with a 3.5GB buffer pool, the largest allowed for a 32-bit binary.4
The client drivers make extensive use of SQL prepared state-
ments. 

MySQL v5.1.22-rc: MySQL is a very popular open-source data-
base server recently acquired by Sun. We configured and com-
piled MySQL from sources using InnoDB as the underlying
transactional storage engine. InnoDB is a full transactional stor-
age manager (unlike the default, MyISAM). Client drivers use
dynamic SQL syntax calling stored procedures because we found
they provided significantly better performance than prepared
statements.

BerkeleyDB v4.6.21: BerkeleyDB is an open source, embedded
database engine currently developed by Oracle and optimized for
C/C++ applications running known workloads. It provides full
storage manager capabilities but client drivers link against the

3. Licensing restrictions prevent us from disclosing the vendor.
4. The release notes mention subpar 64-bit performance



database library and make calls directly into it through the C++
API, avoiding the overhead of a SQL front end. BerkeleyDB is
fully reentrant but depends on the client application to provide
multithreaded execution. We note that BerkeleyDB is the only
storage engine without row-level locking; its page-level locks can
severely limit concurrency in transactional workloads.

Shore: Shore was developed at the University of Wisconsin in
the early 1990’s and provides features that all modern DBMS use:
full concurrency control and recovery with two-phase row-level
locking and write-ahead logging, along with a robust implementa-
tion of B+Tree indexes. The Shore storage manager is designed to
be either an embedded database or the back end for a "value-
added server" implementing more advanced operations. Client
driver code links directly to the storage manager and calls into it
using the API provided for value-added servers.The client code
must use the threading library that Shore provides.

3.2 Benchmarks
We evaluate storage managers using a small suite of microbench-
marks which each stresses the engine in different ways. We are
interested in two metrics: throughput (e.g. transactions per sec-
ond) and scalability (how throughput varies with the number of
active threads). Ideally an engine would be both fast and scalable,
but as we will see, storage managers tend to be either fast or scal-
able, but not both.

Record Insertion: The first microbenchmark repeatedly inserts
records into a database table backed by a B-Tree index. Each cli-
ent uses a private table; there is no logical contention and no I/O
on the critical path.5 Transactions commit every 1000 records,
with one exception. We observed a severe bottleneck in log
flushes for MySQL/InnoDB and modified its version of the
benchmark to commit every 10000 records in order to allow a
meaningful comparison against the other engines. Record inser-
tion stresses primarily the free space manager, buffer pool, and
log manager. We use this benchmark for the primary scalability
study in the next section because it is entirely free from logical
contention, unlike the other two.

TPC-C Payment: The TPC-C benchmark models a workload of
short transactions arriving at high frequency [33]. The Payment
transaction updates the customer's balance and corresponding dis-
trict and warehouse sales statistics. It is the smallest transaction
of the TPC-C transaction mix, reading 1-3 rows and updating 4
others. One of the updates made by Payment is to a contended
table, WAREHOUSE. Payment stresses the lock manager, log
manager, and B-Tree probes.

TPC-C New Order: The New Order is a medium-weight trans-
action which enters an order and its line items into the system, as
well as updating customer and stock information to reflect the
change. It inserts roughly a dozen records in addition to reading
and updating existing rows. This transaction stresses B-Tree
indexes (probes and insertions) and the lock manager.

Payment and New Order together comprise 88% of transactions
executed by the TPC-C benchmark. We use them to measure per-

formance of the storage managers for more realistic workloads; as
the following sections show, the overall scalability trends are the
same for all the benchmarks.

4. EVALUATION OF EXISTING ENGINES
We begin by benchmarking each database storage manager under
test and highlight the most significant factors that limit its scal-
ability. Figure 4 compares the scalability of the various engines
when we run the insert-only micro-benchmark. Due to lock con-
tention in the transactional benchmarks, the internals of the
engines do not face the kind of pressure they do on the insert-
only benchmark. Thus we use the latter to expose the scalability
bottlenecks at high core counts and to highlight the expected
behavior of the transactional benchmarks as the number of hard-
ware contexts per chip continues to increase.

To have a better insight on what is going on we profile the runs
with multiple concurrent clients (16 or 24) stressing up the stor-
age engine. Then we collect the results and interpret call stacks to
identify the operations where each system spends its time. 

PostgreSQL: PostgreSQL suffers a loss of parallelism due to
three main factors. First, contention for log inserts causes threads
to block (XLogInsert). Second, calls to malloc add more
serialization during transaction creation and deletion (Create-
ExecutorState and ExecutorEnd). Finally, transactions
block while trying to lock index metadata (ExecOpenIndi-
ces), even though no two transactions ever access the same
table. Together these bottlenecks only account for 10-15% of total
thread time, but that is enough to limit scalability. 

MySQL: MySQL/InnoDB is bottlenecked on two spots. The first
one is the interface to InnoDB; in a function called
srv_conc_enter_innodb threads remain blocked as long as
around the 39% of the total execution time. The second one are
the log flushes. In another function labeled log_-
preflush_pool_modified_pages the system again expe-
riences large blocking time equal to the 20% of the total execu-
tion time (even after increasing transaction length to 10K inserts). 

We also observe that mysql spends a non-trivial fraction of its
time on two malloc-related functions, take_deferred_-
signal and mutex_lock_internal. This suggests a
potential for improvement by avoiding excessive use of malloc
(trash stacks, object re-use, thread-local malloc libraries…)

5. All the engines use asynchronous page cleaning and generated
more than 40MB/sec of disk traffic during the tests.
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BerkeleyDB: BDB spends the majority of its time on either test-
ing for availability or trying to acquire a mutex — the system
spends over 80% of its processing time in two functions with
names _db_tas_lock and _lock_try. Presumably the
former is a spinning test-and-set lock while the former is the test
of the same lock. Together these likely form a test-and-test-and-
set mutex primitive, which is supposed to scale better than the
simple test-and-set. The excessive use of test-and-test-and-set
(TATAS) locking justifies the high performance of BDB on low
contended cases, since the TATAS locks impose very little over-
head on low contention, but fail miserably on high contention.

As we know BerkeleyDB employs page-level locking. The
coarse-grained locking by itself imposes scalability problems.
The two callers for lock acquisition have names _bam_search
and _bam_get_root. So, in high contention BDB spends most
of its time trying to acquire the latches for tree probes. Addition-
ally, we see that the system spends significant amount of time
blocked waiting on a pthread_mutex_lock and cond_-
wait, most probably because the pthread mutexen are used as a
fallback plan to acquire the highly contended locks.

This section highlights the bottlenecks we observed in existing
storage managers, and which developers cannot ignore if the goal
is a true scalable system in emerging many-core hardware. As the
PostgreSQL case illustrates, what appears to be a small bottle-
neck can still hamper scalability as the number of concurrent cli-
ents increases 

5. PERFORMANCE OF SHORE-MT
We originally set out to make Shore a scalable storage manager.
In the quest to achieve scalability in Shore we completely ignored
single-thread performance and focused only on removing bottle-
necks. This section presents the final outcome, Shore-MT, com-
paring it with the other storage managers. 

Figure 4 and those that follow display performance as the number
of transactions per second per thread, plotted on a log-y axis. We
use log-y scale on the graphs because it shows scalability clearly
without masking absolute performance. Linear y-axis is mislead-
ing because two systems with the same scalability will have dif-
ferently-sloped lines, making the faster one appear less scalable

than it really is. In contrast, a log-y graph gives the same slope to
curves with the same scalability.

Shore-MT scales commensurately with the hardware we make
available to it, setting the absolute example for other systems to
follow. Figure 4 shows the scalability achieved by the different
engines running the insert microbenchmark as the number of con-
current threads varies along the x-axis. While single-threaded
Shore did not scale at all, Shore-MT exhibits excellent scaling.
Moreover, at 32 clients it scales better than DBMS X, a popular
commercial DBMS. Therefore, the key ideas upon which a soft-
ware designer should rely to build scalable software (detailed in
Section 7) lead to very good scaling performance. While our orig-
inal goal was only to achieve high scalability, we also achieved
nearly 3x speedup in single-thread performance over the original
Shore, leading to a healthy performance lead over the other
engines.6 We attribute the performance improvement to the fact
that database engines spend so much time in critical sections. The
process of shortening and eliminating critical sections, and reduc-
ing synchronization overhead, had the side effect of also shorten-
ing the total code path for a single thread. 

As a further comparison, Figure 5 shows the performance of the
three fastest storage managers running the New Order (left) and
Payment (right) microbenchmarks. Again Shore-MT achieves the
highest performance7 while scaling as well as the commercial
system for New Order. All three systems encounter high conten-
tion in the STOCK and ITEM tables, causing a significant dip in
scalability for all three around 16 clients. Payment, in contrast,
imposes no application-level contention, allowing Shore-MT to
scale all the way to 32 threads. 

We note that, while both Shore-MT and DBMS “X” scale well up
to 32 threads, profiling indicates that both face looming bottle-
necks (both in log inserts, as it happens). Our experience tuning
Shore-MT suggests that synchronization bottlenecks are an ongo-
ing battle as the number of threads continues to increase. How-

6. BerkeleyDB outperforms the other systems at first, but its per-
formance drops precipitously for more than four clients.

7. Some of Shore’s performance advantage is likely due to its cli-
ents being directly embedded in the engine while the other two
engines communicate with clients using local socket connec-
tions. We would be surprised, however, if a local socket connec-
tion imposed 100% overhead per transaction!
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ever, Shore-MT proves that even the largest bottlenecks can be
addressed using the principles detailed in Section 6. Storage
engine designs can make use of them in the future to ensure scal-
ability and take full advantage of the available hardware.

6. ACHIEVING SCALABILITY
We chose the Shore storage manager as our target for optimiza-
tion for two reasons. First, Shore supports all the major features
of modern database engines: full transaction isolation, hierarchi-
cal locking, a CLOCK buffer pool with replacement and prefetch
hints, B-Tree indexes, and ARIES-style logging and recovery.
Additionally, Shore has previously shown to behave like commer-
cial engines at the instruction level [3], making it a good open-
source platform for comparing against closed-source engines. 

The optimization process from Shore to Shore-MT was straight-
forward. We began each step by profiling Shore in order to iden-
tify the dominant bottleneck(s). After addressing each bottleneck,
scalability would either increase, or a previously minor bottleneck
would take its place. We then repeated the profiling and optimiza-
tion steps until Shore became compute-bound for 32 threads. 

In the absence of external bottlenecks such as I/O or unscalable
database applications, virtually all bottlenecks centered on the
various critical sections in Shore’s code. Every major component
of the storage manager must communicate with multiple threads,
and key data structures must be protected from concurrent
accesses that would corrupt them.

6.1 Scalability or Performance First?
Traditionally, software optimization has focused on improving
single-thread performance, while addressing scalability almost as
an afterthought. Algorithms and data structures within the stor-
age manager are often designed for performance, then modified
after the fact to remove any scalability problems that might arise.
We find that the “performance first” approach quickly leads to
problems as the number of contexts in the system continues to
climb exponentially. Optimizations that improve performance sig-
nificantly for one or a few threads often have a limited impact on
performance — or even reduce it — as more threads enter the
system. H-Store [31] is an extreme example of this effect, achiev-
ing very high single-thread performance but with no possibility
for scalability within a single instance of the storage manager. 

Three factors lead to tension between speed and scalability. First,
optimizations which impact only single-thread performance have
the effect of allowing threads to reach bottleneck critical sections
faster, increasing contention. The critical sections will then limit
throughput or even reduce it if protected with unscalable synchro-
nization primitives. BerkeleyDB, with its TATAS locks, is a good
example of this effect (see Section 4). Second, the most scalable
synchronization primitives tend to also have the highest overhead.
As a result, single-thread performance can potentially drop when
the software is modified to be more scalable. Finally, improving
single-thread performance raises the bar for scalability. Even if
the throughput for many threads does not drop, the scalability
will have been reduced when the (now faster) single thread case
is used as a baseline. 

The graphs in Figure 6 give examples of the kinds of impact opti-
mizations can have on overall performance. Each line in the
graph depicts the performance and scalability of optimizations to
Shore-MT made between the “bpool 1” and “caching” versions
shown in Figure 7 (c.f. Section 7.3). The y-axis of Figure 6 plots
system throughput as the number of threads in the system varies
along the x-axis. At this stage in Shore’s development the profiler
identified a contended pthread mutex in the free space manager as
the primary bottleneck in the system. 

Our first optimization attempt replaced the pthread mutex with a
test-and-test-and-set (T&T&S) mutex having much lower over-
head, in hopes of quickly relieving pressure on the critical section
[20]. The reduced overhead improved single-thread performance
by 90% but did not improve scalability; in fact, scalability
dropped by 50% because single-thread performance doubled with
no change for 32 threads. The next optimization attempt replaced
the non-scalable T&T&S mutex with a scalable MCS mutex. This
time scalability improved noticeably but the critical section
remained contended. 

Having exhausted the “easy” approaches for eliminating the bot-
tleneck, we examined the code more closely and determined that
the free space manager acquired a page latch while holding the
mutex; the page latch acquire was the biggest part of the critical
section even in the best case; in the worst case the latch was
taken or the page was not in memory, leading to long delays
which serialized other threads. By refactoring the code we were
able to move the latch acquire outside the critical section, remov-
ing the pressure and vastly improving scalability. The overhead
we introduced reduced single-thread performance by about 30%,
but there was a net gain of about 200% for 32 threads.

This sequence of optimizations illustrate how focusing only on
performance for a few threads can be misleading. As we saw in
Section 4, several open-source storage managers fell into this
trap, performing well at first but failing to scale past 4-8 threads.
This observation supports our conclusion that one should focus
first on scalability, with performance as a secondary goal.
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6.2 Principles for Scalable Storage Managers
We next introduce four fundamental principles for achieving scal-
ability in a database storage manager. 

• Efficient synchronization primitives are critical. Poorly-
designed or -applied primitives destroy scalability.

• Every component must be explicitly designed for scalability
or it will become a bottleneck. Common operations must be
able to proceed in parallel unless they truly conflict.

• Hotspots must be eliminated, even when the hot data is read-
mostly. The serial overhead imposed by acquiring a shared-
mode latch can grow quickly into a bottleneck, for example.

• Abstraction and encapsulations do not mix well with critical
sections. We observed large gains by merging data structures
with the synchronization primitives that protect them.

As can be seen in Section 7, we applied each principle many
times to different parts of the code; the rest of this section gives
examples from the development of Shore-MT where each princi-
ple had a significant impact on scalability.

6.2.1  Use the right synchronization primitives
Problem: Conceptually, every page search that hits in the buffer
pool requires at least three critical sections - one to lock the hash
bucket (temporarily preventing other thread from moving the
page to other buckets during the search), one to pin it (preventing
evictions while the thread is using the page), and a final critical
section to request a latch on the page (preventing concurrent
modification of the page's data). For hot pages, especially, the
critical sections can become a bottleneck as many threads com-
pete for them — even if they all latch the page in read-mode. 

Observation: Pinned pages cannot be evicted.

Solution: When a buffer pool search finds a promising page it
applies an atomic "pin-if-pinned" operation to the page, which
increments the page's pin-count only if it is non-zero (easily
implemented using an atomic compare-and-swap). If the page is
not already pinned the thread must lock the bucket in order to pin
it, but if the conditional pin succeeds, the page cannot have been
evicted because the pin count was non-zero (though it may have
been moved to a different bucket). The thread then verifies that it
pinned the correct page and returns it. In the common case this
eliminates the critical section on the bucket.

6.2.2  Shorten or remove critical sections
Problem 1: Shore uses logical logging for many low-level opera-
tions such as page allocations. Because of this, Shore must verify
that a given page belongs to the correct database table before
inserting new records into it. The original page allocation code
entered a global critical section for every record insertion in order
to search page allocation tables.

Observation: Page allocations do not change often. Also, The
information immediately becomes stale upon exit from the critical
section. Once the page has been brought into the buffer pool,
Shore must check the page itself anyway.

Solution: We added a small thread-local cache to the record allo-
cation routine which remembers the result of the most recent
lookup. Because Shore allocates extents of 8 pages and tends to

fill one extent completely before moving on to the next, this opti-
mization cut the number of page checks by over 95%.

Problem 2: The Shore log manager originally used a non-circular
buffer and synchronous flushes. Log inserts would fill the buffer
until a thread requested a flush or it became full (triggering a
flush). The flush operation would drain the buffer to file before
allowing inserts to continue.

Observation: Log inserts have nothing to do with flushes as long
as the buffer is not full, and flushing should almost never inter-
fere with inserts. Further, using a circular buffer means the buffer
never fills as long as flushes can keep up with inserts (on aver-
age).

Solution: We converted Shore to use a circular buffer and pro-
tected each operation (insert, compensate, flush) with a different
mutex. Insert and compensate each use a light-weight queueing
mutex, while the slower flush operation uses a blocking mutex.
Inserts own the buffer head, flushes own the tail, and compensa-
tions own a marker somewhere in between (everything between
tail and marker is currently being flushed). Inserts also maintain a
cached copy of the tail pointer. If an insert would pass the cached
tail, the thread must update the tail to a more recent value and
potentially block until the buffer drains. Flush operations acquire
the compensation mutex (while holding the flush mutex) just long
enough to update the flush marker. Log compensations acquire
only the compensation mutex, knowing that anything between the
flush marker and the insertion point is safe from flushing. Distrib-
uting critical sections over the different operations allows unre-
lated operations to proceed in parallel and prevents fast inserts
and compensations from waiting on slow flushes.

6.2.3  Eliminate hotspots
Problem: Shore's buffer pool was implemented as a open chain-
ing hash table protected by a single global mutex. In-transit pages
(those being flushed to or read from disk) resided in a single
linked list. Virtually every database operation involves multiple
accesses to the buffer pool, and the global mutex became a crip-
pling bottleneck for more than about four threads.

Observation:
• Every thread pins one buffer pool page per critical section.
• Most buffer pool searches (80-90%) hit.
• Most in-transit pages are reads thanks to page cleaning.

Solution: We distributed locks in the buffer pool in three stages.
The first stage added per-bucket locks to protect the different
hash buckets, leaving the global lock to protect in-transit and free
lists and the clock hand. However, each page search had to lock a
bucket in order to traverse the linked list. This remained a serious
bottleneck for hot pages.

The second stage replaced the open chaining hash table with a 3-
ary cuckoo hash table [27][14][32]. Cuckoo hashes use N hash
functions to identify N locations a value may legally reside in. A
collision only occurs if all N locations for a value are full, and is
resolved by evicting some other entry from the table. Evicted
entries are then re-inserted into one of their other (N-1) slots,
potentially causing a cascade of evictions. Cuckoo hashes have
two extremely desirable properties. Like open chaining hash
tables, deletions are straight-forward. Like closed hash tables,



updates and searches only interfere with each other when they
actually touch the same value at the same time. Because the
buffer pool is merely a cache, we can also evict particularly trou-
blesome pages in order to end cascades. Cuckoo hashing does
face one major drawback, however: operations cost more because
they must evaluate multiple high-quality hashes.8 In our case, the
improvement in concurrency more than offsets the increased cost
of hashing by eliminating hot spots on bucket lists.

Unfortunately, increasing the number of threads still further also
increased the number of misses per unit time (though the rate
remained the same), leading to contention for in-transit lists. On
every miss the buffer pool must ensure that the desired page is
not currently in-transit. An in-transit-out page cannot be read
back in until the dirty data has been written out, and requests for
an in-transit-in page must block until the read completes. The
large number of transits in progress at any moment led to long
linked list traversals and slowed down miss handling. The third
stage broke the in-transit lists into several smaller ones (128 in
our case) to cut the length of each list. In addition, the buffer pool
immediately places in-transit-in pages in the hash table, making it
visible to searches and bypassing the transit lists. The thread per-
forming the page read simply holds the page latch in EX mode to
block other accesses until the I/O completes. As a result, only
true misses search the in-transit-list, which contains only dirty
pages currently being evicted. Because effective asynchronous
page cleaning makes dirty page evictions very rare, each "in-tran-
sit” list is currently a fixed-length array of only one element.

Finally, page misses release the clock hand before evicting the
selected replacement frame or attempting to read in the new data.
This allows the thread to release the clock hand mutex before
attempting expensive I/O. As a result, the buffer pool can service
many page misses simultaneously even though an individual page
miss is very slow.

6.2.4  Beware of over-abstraction and encapsulation
Problem: Log inserts remained a major bottleneck in Shore, even
after decoupling inserts from flushes. In Shore, log inserts occa-
sionally acquire a blocking mutex in order to wake checkpoint
and flush threads at regular intervals. In addition, the log manager
was highly encapsulated and abstracted in ways that cut through
critical sections. For example, the log buffer was embedded deep
in the file-handling portion of the log manager in a way that made
a circular log difficult to implement. Overall, the insert critical
section was far too long.

Observations:

• The log insert critical section only needs to determine where
in the buffer the write will (eventually) occur, with what log
sequence number (LSN), and whether the buffer currently has
space. Once the location of the write is settled, the thread is
free to insert the log record at its leisure, perhaps even after
waiting for a flush to complete.

• Notifications to daemon threads need not occur immediately -
the thread can safely release the insert mutex first, moving the
operation off the critical path of other threads.

• Encapsulation is a means, not an end.

Solution: We rewrote the log manager to make encapsulation
boundaries surround, rather than cut through, critical sections.
The refactoring moved the log buffer above the file handling to
finish decoupling inserts from log flushes. Threads perform only
the minimum work required to allow them to safely insert a log
record later, copying data and notifying daemon threads after
releasing the mutex. Finally, because log insert performance is so
critical, the we redesigned log buffer as an extended queuing
lock, combining the functionality of the critical section with the
mechanism for protecting it. As each thread enters the log buffer's
queue it computes which portion of the log buffer it will eventu-
ally write to. It then hands off this information to its successor in
the queue at the same time as it exits the critical section. Finally,
the log flush daemon follows behind, dequeuing all threads' left-
over nodes as it determines which regions of the log buffer to
flush. This scheme has three advantages: First, contended state of
the log buffer (insert offset) is passed from thread to thread in an
orderly fashion, with no contention at hand-off. By combining the
functionality of an MCS queuing lock [24] with the log buffer, we
also consolidate the code and eliminate overhead. Finally,
because a thread only needs to determine where it will eventually
insert (not when), it only serializes threads behind it for a short
time.

7. FROM SHORE TO SHORE-MT
This section details the process of converting Shore into Shore-
MT. We began with the version 5.01 release9 and methodically
removed scalability impediments identified by Sun’s sampling
profiler, collect. The improvements clustered into several stages;
many optimizations removed a bottleneck, only to have another
replace it with no change in scalability. Figure 7 shows the per-
formance of Shore-MT running the insert microbenchmark after8. Cuckoo hashing is extremely prone to clustering with weak hash

functions. Our implementation combines three universal hash
functions to make one high-quality hash [27]. 9. Available at http://ftp.cs.wisc.edu/paradise/sm5.0/
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each major stage of the optimization process. The rest of this sec-
tion describes the major changes for each phase.

7.1 Baseline
Shore implements a user-level thread library (smthreads) on top
of a single operating system thread; auxiliary “diskrw” processes
service blocking I/O requests and communicate with Shore
through shared memory regions. In order to begin making Shore
scalable we first had to replace the thread package with standard
POSIX threads (already partly supported) and modify the Shore
scheduler to allow them to run in parallel. We also removed the
external I/O engines as they were no longer necessary. Because
Shore was written for cooperative multithreading on a single OS
thread, there were many low-level data races in the code due to
unprotected critical sections. We identified these critical sections
using code inspection (many were identified by existing com-
ments) as well as Sun’s race detection tool. We then inserted
POSIX mutex locks to protect each critical section. Higher-level
critical sections were already properly protected because lock
contention and I/O could cause inconvenient context switches
even under cooperative multithreading. At this stage we also
fixed several portability bugs due to our sparc64/solaris environ-
ment (Shore only officially supports x86/linux).

The resulting system (“baseline” in Figure 7) was correct but
completely unscalable; throughput ranged from 2.4tps at one
thread to about 1.2tps for four or more threads. 

7.2 Bufferpool Manager
The bufferpool manager was the first major scalability challenge.
Shore protected it using a single, global mutex that very quickly
became contended. We replaced the global mutex with one mutex
per hash bucket. At this point we also applied the atomic pin
count update optimization described in Section 6.2.1. Finally, we
replaced several key pthread mutex instances with test-and-set
spinlocks that acquire a pthread mutex and cond var only under
contention. This reduced the overhead of the common (uncon-
tended) case significantly.

These changes (“bpool 1”) boosted scalability significantly, dou-
bling single-thread performance and increasing 32-thread
throughput by nearly 5x.

Principles applied: 
• shorten or remove critical sections
• eliminate hotspots
• use the right synchronization primitive

7.3 Free Space and Transaction Management
After tuning the buffer pool the next bottlenecks were in the free
space and transaction management components Shore. These bot-
tlenecks were all straightforward to address, however. An exami-
nation of the code in the free space manager showed that it held a
contended mutex while acquiring a page latch (which could be
contended or block on I/O). We refactored the operation so that it
was safe to release the mutex before acquiring the latch, reducing
significantly the pressure on the former. We also discovered a
bottleneck on the mutex protecting the transaction list: the most
common operations checked the head of the list to determine the

ID of the oldest transaction in the system. We added a local vari-
able to store this ID; callers could read it atomically because IDs
are 64-bit integers, and committing transactions would update the
ID when they removed themselves from the list. 

Finally, we made one more optimization to the buffer pool; we
already eliminated one of the three critical sections required to
latch a page (the pin operation), and here we added a small array
for especially hot pages; instead of protecting the array with a
mutex, we changed the search to pin the page, then check its ID
before acquiring the latch; if a page eviction occurs before the pin
completes the IDs would not match; once the pin succeeds the
caller is assured that the page will not move. 

The “caching” line in Figure 7 shows the resulting performance.
Single-thread speed did not change, but scalability nearly dou-
bled.

Principles applied:
• shorten or remove critical sections
• eliminate hotspots
• eliminate counterproductive abstraction

7.4 Log Manager
Shore’s log manager presents a single API to the rest of the sys-
tem, implemented as a virtual class backed by a fairly complex
hierarchy of subclasses. The entire component was protected by a
single mutex, even though there are four major log operations,
each with varying cost. In order to allow these (usually compati-
ble) operations to proceed in parallel, we split the log critical sec-
tion into four, as described in Section 6.2.2. We further optimized
the log insert operation, as described in Section 6.2.4, so that
insertions serialize just long enough to claim buffer space; the
transactions then copy log entries into the space in parallel,
blocking on a full buffer if necessary, then notify the log flush
daemon when they complete. As a result, the most common log
operation — insert — requires an extremely short critical section.

At this point the profiler identified a significant bottleneck in
calls to malloc() and free(). Fortunately, Solaris provides a thread-
local version of these functions which trades higher memory utili-
zation for zero contention between threads. 

The free space manager also became a problem again at this point
as well — this time in the metadata check to determine which
table a given page ID belongs to. We alleviated the bottleneck by
creating a small cache of most recently-used extent ids (an extent
is 8 consecutive pages), which allowed the hottest page accesses
to avoid accessing metadata pages at all. Last of all, we changed
the buffer pool from an open chained hash table to a cuckoo hash
at this point (see Section 6.2.3)

The impact of these optimizations is captured by the “log” line in
Figure 7. Again, scalability nearly doubled. 

Principles applied:
• shorten or remove critical sections
• eliminate hotspots

7.5 Lock Manager
Profiling pointed to the lock manager as the next bottleneck to
tackle. Like the bufferpool, the lock manager’s hash table was



protected by a single mutex. However, the lock manager code
included support for a mutex per bucket, statically disabled by a
single #define. In addition, we modified several critical sections
in order to shorten them and avoid acquiring nested locks. The
last optimization in the lock manager dealt with the lock request
pool. The lock manager maintains a pool of pre-allocated lock
requests, which it populates and inserts into lock lists as needed;
the pool’s mutex became a contention point, so we reimple-
mented it as a lock-free stack where threads can push or pop
requests using a single compare-and-swap operation.

Principles applied:
• use the right synchronization primitive
• shorten or remove critical sections
• eliminate hotspots

7.6 Bufferpool Manager Revisited
After fixing the log and lock managers, the bufferpool manager
again became a bottleneck. This time mutex protecting the clock
replacement algorithm, and the mutex protecting “in-transit”
pages became contended. On every page miss, the bufferpool
“clock” sweeps through the pages searching for suitable candi-
dates to evict. For efficiency, the clock hand does not pin or latch
pages unless they appear promising; we modified the algorithm
slightly so it could release the clock hand mutex before pinning
and latching the victim; if another thread pinned the page first
(making it non-evictable), the clock simply resumes its search. 

Once a page has been selected for eviction, it enters an in-transit
list while the old page is flushed to disk (if dirty) and the new one
read in. This list can become quite large, especially given the ran-
dom-accesses common to transaction processing. We applied the
optimization detailed in Section 6.2.3 in order to shorten the list
and distribute it into many smaller lists.

Finally, we added another cache in the free space manager to
bypass an O(n2) algorithm in page allocation routine: searching a
linked list of pages to find the last. These changes brought a sig-
nificant boost in scalability, as indicated by the “bpool 2” line of
the figure.

Principles applied:
• shorten or remove critical sections
• eliminate hotspots

7.7 Final Optimizations
The final optimizations to Shore-MT were spread throughout the
code base. We created several more caches inside the free space
manager to avoid expensive critical sections, including the one
described in Section 6.2.2. We also removed an unnecessary
search of the lock table initiated by B+Tree probes. The most
important optimization involved log checkpoint generation. The
soft checkpointing algorithm in Shore builds a list of active trans-
actions and dirty pages contained in the buffer pool at the time of
the checkpoint. Unfortunately, traversing a large bufferpool takes
a single thread several seconds due to page faults and cache
misses; during that time no transaction can begin or complete. We
observed that recovery rebuilds the list of dirty pages using infor-
mation from the log. The only important piece of information is
the oldest log sequence number found during the traversal, which

lets the system skip large portions of the log during recovery. We
modified the dirty page cleaner threads — which already traverse
whole bufferpool, but asynchronously — to track the newest LSN
they encounter during each sweep; because they write out the
dirty pages they encounter, at the end of a sweep the “newest”
LSN is now the oldest, perfect for inclusion in the log checkpoint.
We therefore modified the checkpoint thread to simply read this
value rather than computing it during the critical section. 

The “final” line in the graph shows the performance of the com-
pleted Shore-MT. The profiler reported no more significant bot-
tlenecks for this benchmark, which we verified by running
multiple copies of Shore-MT in parallel; scalability was the same
in both cases, indicating that it utilizes fully the hardware.

Principles applied:
• shorten or remove critical sections
• eliminate hotspots

7.8 Lessons Learned
This section and the previous one show clearly how a few funda-
mental principles, applied systematically, can transform a storage
engine from virtually single-threaded to fully scalable. As we
explained in the beginning of Section 6, we expect that designers
can apply these principles to any storage manager to improve its
scalability in similar fashion. Though we distilled these principles
and lessons from our experience with Shore-MT, these results
generalize to other storage engines for the following reasons:

1. Shore uses state of the art algorithms and behaves like a
commercial dbms at the microarchitectural level. This sug-
gests that Shore is a typical case does roughly the same
kinds of things as the commercial application.

2. Shore started out with the worst scalability of the open
source engines, indicating that other engines which scale
poorly can be improved using with a similar approach.

3. Shore ended up scaling as well as, or better than, the com-
mercial engine. This indicates that the implementation of the
different components, rather than a fundamental design flaw
that might be specific to Shore.

4. Our optimizations were guided by a small set of very generic
approaches for improving scalability. These approaches are
therefore likely to be effective in other storage managers as
well as other domains.

Finally, we note that achieving scalability is not a one-time event.
Fixing one bottleneck can expose others, and adding more hard-
ware contexts to the system will eventually cause contention for
some critical section. With the number of hardware contexts dou-
bling each processor generation it is never safe to assume a criti-
cal section or algorithm will not become a bottleneck. 

8. CONCLUSION
As we enter the multicore era, database storage managers must
provide scalability in order to achieve the high performance users
demand.Though modern open source storage managers are not
currently up to the task, our experience converting Shore to the
scalable Shore-MT suggests that much progress is possible. With
careful benchmarking and analysis, we identify bottlenecks that
inhibit scalability; repairing them creates Shore-MT, a multi-



threaded storage manager which exhibits excellent scalability and
superior performance when compared to both its peers as well as
to a popular commercial database system. Most importantly, the
lessons we identified provide a useful reference as new bottle-
necks appear in the future.
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