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Short- and long-read metagenomics expand
individualized structural variations in gut
microbiomes
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Wenhui Zhang1, Xiangyu Guan 1, Xiaotong Yu3, Zhipeng Liu4, Yanqun Fan4, Yang Wang5, Fan Liang 5,

Depeng Wang5, Linhua Zhao3, Moshi Song 2,6,7,8✉ & Jun Wang 1,2✉

In-depth profiling of genetic variations in the gut microbiome is highly desired for under-

standing its functionality and impacts on host health and disease. Here, by harnessing the

long read advantage provided by Oxford Nanopore Technology (ONT), we characterize fine-

scale genetic variations of structural variations (SVs) in hundreds of gut microbiomes from

healthy humans. ONT long reads dramatically improve the quality of metagenomic assem-

blies, enable reliable detection of a large, expanded set of structural variation types (notably

including large insertions and inversions). We find SVs are highly distinct between individuals

and stable within an individual, representing gut microbiome fingerprints that shape strain-

level differentiations in function within species, complicating the associations to metabolites

and host phenotypes such as blood glucose. In summary, our study strongly emphasizes that

incorporating ONT reads into metagenomic analyses expands the detection scope of genetic

variations, enables profiling strain-level variations in gut microbiome, and their intricate

correlations with metabolome.
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The human gut microbiome contributes to host metabolic
and immune homeostasis1, and microbial dysbiosis has
been shown to underly a wide range of diseases including

metabolic and immune disorders, central nervous system
pathologies, and cancer2. Methodologically, most compositional
and functional insights about the microbiome have been obtained
based on shot-gun metagenomic sequencing data3, which has
supported dedicated profiling of microbiomes in terms of single-
nucleotide polymorphisms (SNPs)4 and structural variations
(SVs)5,6 for various populations. Such profiling has revealed
highly distinct yet temporally stable genetic variations at the
individual level, which have been conceptualized as “microbiome
fingerprints”. Importantly, beyond straightforward comparisons
based on sole taxonomical abundances, the additional layers of
genetic variations in an individual’s microbiome fingerprint have
been linked to microbial metabolism and consequently to host
health.

Recent advances in sequencing technologies such as Oxford
Nanopore Technology (ONT) provide unique opportunities for
investigating gut microbiome variations and functionality. The
relatively longer read length with ONT has already been widely
utilized for assembling complex eukaryotic genomes7 and for
resolving difficult regions including tandem repeats and large
structural variations;8 in microbiome studies ONT data support
both improved metagenomic assemblies and functional
annotations9, and have facilitated the studies of the transmission
of antibiotic-resistant genes in various settings10. Incorporating
ONT long reads perceptibly increases confidence in microbiome
fingerprinting, as improved metagenomic assemblies result in
more complete bacterial and viral genomes11. Notably, suffi-
ciently long reads are also capable of covering a large range of
genomic regions including diverse structural variations, thus
enabling direct read-level validations of fingerprints12.

Here, we present the assembly of hundreds of gut microbiomes
from healthy humans using an approach that combines ONT and
Illumina (short) read data (Fig. 1a). At the population level, we
expanded the personalized signatures of gut microbiome to
include a wider range of SVs (insertions and inversions, besides
deletions), in which we demonstrated the personalized microbial
fingerprints confering strain-level differentiations with respect to
metabolic functions and host blood glucose.

Results
Hybrid sequencing improves the quality of human gut meta-
genome assembly. We first established a hybrid pipeline that
incorporated both ONT and Illumina reads, and enabled both
metagenome assembly and consequent data analysis. Using ONT
and Illumina reads generated from ZymoBIOMICS™ Microbial
Community containing eight strains of bacterial DNAs with equal
molars, the pipeline achieved high completeness (94.54–99.75%),
a low contamination rate (0–6.97%), and >97.6% average
nucleotide identity (ANI) for re-constructed bacterial genomes
(Methods, Supplementary Fig. 1a–e). By contrast, using only
Illumina reads led to much shorter contigs, with no detectable
changes in the numbers of binned genomes and their complete-
ness; analyzing ONT reads with methods aimed at generating
circularized genomes, the genome completeness was overall
below 93%, combined with a reduced number of binned genomes
(Supplementary Fig. 1b and Supplementary Data 1). We further
examined whether ONT reads introduced more errors into
contigs and reduced open-reading-frames (ORFs) numbers in a
genome (i.e., coding density), and found that hybrid assemblies
had no detectable reduction in coding density compared to that
Illumina-only assemblies, while using only ONT reads led to a
significant decrease in coding density (Supplementary Fig. 1c).

We then applied our hybrid assembly strategy to two cohorts of
human gut microbiome data: a cross-sectional cohort of 100
healthy individuals (Supplementary Data 2) and a time-series
cohort comprising ten healthy individuals (Supplementary
Data 3), each with ten fecal samples collected continually. The
results showed that our hybrid assembly approach greatly
improved the quality of the metagenomic contigs for the 200
fecal samples from the two cohorts. Using on average 1.4 × 106

ONT reads (mean length of 5683 bp) and 5.6 × 107 Illumina 150-
bp pair-end reads per sample, our pipeline assembled on average
7.1 × 107 contigs totaling 7.6 × 1010 bp (Supplementary Fig. 1f
and Table 1). Overall, hybrid assemblies had 17.3% fewer contigs
and 5.1% more total assembled sequences as compared to the
assemblies obtained using Illumina reads alone (8.5 × 107 contigs
and 7.2 × 1010 bp, respectively, Table 1). Of note, the average
N50 value more than tripled for the hybrid assemblies (9283 bp)
compared to the short read alone assemblies (2962 bp).

We then binned the contigs obtained from the hybrid assembly
into metagenome-assembled genomes (MAGs) representing
individual bacterial species, resulting in a total of 9612 MAGs
(20–83 MAGs per sample) with an average N50 of 117 kb; there
remained 692 MAGs after the removal of redundant MAGs (i.e.,
belonging to the same bacterial species, Fig. 1b, c and Table 1).
Among those, 623 corresponded to the available genomic bins in
Unified Human Gastrointestinal Genome (UHGG) database, and
208 among them had higher quality in our hybrid assembled
results; the rest of a total of 67 genomic bins were novel genomes.
There were two MAGs fewer after dereplication, as a few
relatively close MAGs in our cohorts and UHGG collection that
were previously not clustered together (with dRep13 v2.2.4) are
now clustered with a higher version of dRep (we used v2.6.2).
Regarding comprehensiveness, 159 (22.97%) of the non-
redundant MAGs included all three types of rRNA sequences
(23S, 16S, and 5S), and 448 (64.74%) of the MAGs had at least
one type of rRNA. By contrast, Illumina-only assembly produced
11% fewer non-redundant MAGs (616) with roughly half the
average N50 value (65 kb), among which only 9 (1.46%) MAGs
had all three types of rRNA sequences and only 258 (41.88%)
MAGs had at least one type. Across all the samples, the most
commonly occurring MAG was for Fusicatenibacter saccharivor-
ans (present in 172 samples) followed by Anaerostipes hadrus
(150) and Agathobacter rectalis (148), and there were 189 species
present as MAGs in >10 samples (Supplementary Data 4 and
Supplementary Fig. 2).

Expanding the scope of detected structural variations in gut
microbiome. The improved metagenomic assemblies with
N50 > 110 kb provided an opportunity to expand the investigative
scope for genetic variations in human gut microbiome. In particular,
considering that deletions remain the major type of structural var-
iations studied in gut microbiomes based on mapping against
reference genomes5,6, while insertions and inversions— and espe-
cially the large ones that cannot be covered with short reads—remain
elusive (both discovery and validation). The longer length of the
ONT reads improved the metagenomic assemblies and enabled the
discovery of expanded SVs including insertions/inversions, while
simultaneously providing the opportunity to conduct direct valida-
tions for large SVs at the read level across the cohort.

In our cross-sectional cohort, we reliably detected multiple
types of structural variations by comparing MAGs. For each of
the 189 bacterial species present in >10 individuals, we used the
MAG with highest scores evaluated by dRep v2.6.213 as the
reference for comparing the same-species MAGs from other
samples. This identified a total of 317,558 insertions, 342,129
deletions, and 1373 inversions (Fig. 1d). Notably, SVs larger than
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Fig. 1 ONT reads improved metagenomic assembly, empowered structural variations (SVs) detection and validations. a Schematic representation of
workflow of this study. Top, utilizing the long reads from ONT we improved metagenomic assemblies in hundreds of gut microbiome, enabled detection of
large SVs and notably including insertions and inversions, which are highly personalized gut microbial signatures and complicate the correlations to
metabolites or host health indicators. b Distribution of contig lengths for Illumina-only approach (NGS) and hybrid assembly (Hybrid), the full distribution
is shown in log-scale in the main graph; and part of the detailed distribution is shown in upper right panel including dash lines showing the mean N50
values for binned metagenome-assembled genomes (MAGs) in Illumina-only approach (NGS) and hybrid (Hybrid) assembly. c Phylogenetic distribution of
692 MAGs binned from 200 gut microbiome samples using hybrid assembly. Colors denote major phyla of gut microbiome and the lines in the outer circle
indicate number of occurrences for that MAGs (species) in the 200 samples. d Total number of insertions, deletions, and inversions discovered for the 189
MAGs (species) with >10 occurrences in our cohort, with one representative MAGs for each MAGs (species) and rest of MAGs compared to that
representative (see Methods and Results). e–g show the length distribution of discovered insertions, deletions, and inversions, in particular, large SVs
(> 500 bp) accounting for ca. 50% of insertions and deletions, and all inversions.

Table 1 Summary of key parameters for hybrid assembly and Illumina-only assembly per sample.

Hybrid assembly Illumina-only

Raw reads 1.47E6 (3.97E5−9.23E6)a 5.64E7 (3.41E7−1.07E8)
Total nucleotide of raw reads 6.08E9 (1.72E9−2.08E10)a 8.46E9 (5.12E9−1.61E10)
Contigs 3.55E5 (1.12E5−7.77E5) 4.29E5 (1.35E5−8.63E5)
Total nucleotide of contigs 3.82E8 (1.69E8−7.05E8) 3.64E8 (1.60E8−6.63E8)
Contig N50 9283 (2002-31,606) 2962 (745-11,932)
MAGs numbers 50 (21-196) 44 (14-74)

For each parameter, the average value and range are shown.
aDenotes the number for ONT reads used in hybrid assembly.
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>500 bp comprised a large proportion for each SV type, including
170,329 (53.63%) insertions, 184,037 (53.80%) deletions, and all
of the 1373 inversions (Fig. 1e–g). Interestingly, we observed two
peaks in the distributions of insertion and deletion, for which we
hypothesized that the two peaks of SVs were results of different
biological processes in prokaryotic genome, especially with regard
to transposon/prophage and other mobile elements’ activities.
Thus, we analyzed randomly selected SVs within two peaks
(within 140–160 bp and 1050–1150 bp, respectively), and pre-
dicted the prophage and extrachromosomal mobile genetic
elements (eMGEs) using blastn based on the mMGE database14.
Results indicated significant differences between SVs within of the
two peaks and mobile elements are significantly higher in short
SVs: prohages in short vs long SVs: deletion (p= 2.82e-06),
insertion (p= 2.93e-05); and eMGEs in short SVs vs long SVs:
deletion (p= 4.385e-07), insertion (p= 0.0005129, all with
Wilcox test). We thus infer the short SV are more likely results
of phage integration and other mobile elements compared to
longer ones. Yet, as not all SVs have detectable mobile elements,
this offers only a partial and plausible explanation; we presume
that the other SVs are results of replication error or recombina-
tion events but mechanistic validations are not available from
limited studies focusing on SVs in bacteria.

We evaluated the reliability of detected SVs by identifying
ONT reads that could directly cover a SV and its flanking regions,
based on re-mapping to either the reference MAG or to the MAG
containing the SV. Manual inspections ultimately confirmed that
>97% of a randomly selected set of SVs were supported by
multiple ONT reads, thus confidently validating the existence of
specific SVs with single-molecule reads covering the correspond-
ing genomic regions (Fig. 2a and Supplementary Fig. 3); and the
mapping results simultaneously indicated low heterogeneity in
terms of SVs of same-specie bacterial genome within the same
individual.

A clear trend in our SV dataset was that the frequencies of SVs
in bacterial genomes were uneven among taxonomical groups. At
the species (MAGs) level, our data showed that the total number
of SVs discovered was proportional to the number of MAGs but
also to genome size across all the samples. Accordingly, to
account for uneven SV distributions, our findings emphasized
that any comparison between different taxonomical groups
should include averaging based on pair-wise comparisons and
should correct for genome size (Supplementary Fig. 4). Such
analysis of average SV numbers between a given MAG and
reference MAG (standardized to per 1Mb genome across
taxonomical groups) revealed that at the phylum level, directly
following the highly-diverse Firmicutes with median SVs of 20.4,
the Akkermensia-containing bacterial phylum Verrucomicrobia
had the second highest number of SVs (median 19.5, Fig. 2b, c),
while the Desulfobacteroita and Proteobacteria phyla had the
lowest numbers of SVs (median 8.6 and 11.5, respectively,
Fig. 2b). Verrucomicrobia contains only one established species,
Akkermensia muciniphila, and it is currently being widely studied
for metabolism-modulating effects15,16. Here, their high inter-
individual genetic diversity and consequently larger pan-genome
called for special attention in resolving strain-level differences in
translational studies17.

SVs as highly personalized signatures of gut microbiome are
function-informative. Analysis of our ONT-read-informed SV
dataset strongly supported the idea that SVs can define infor-
mative, personalized gut microbiome signatures. We simulta-
neously detected high inter-personal variabilities in our cross-
sectional cohort data yet low intra-personal and temporal vari-
abilities in our time-series data. Analysis of the 189 MAGs used in

our SV discovery effort revealed that a median of 16.7 SVs per
Mb genome were found between MAGs from different indivi-
duals, in contrast to a median of 0 SVs per MAG within a single
individual along ten consecutive time points (Wilcox test p < 2.2e-
16, Fig. 2d). Thus, SVs reliably distinguished bacterial species and
collectively the gut microbiome between different individuals. It
bears emphasis that our findings here mirrored the recent dis-
covery from the LifeLines cohort that structural variations com-
prise “fingerprints” that can distinguish person-specific bacterial
species. Furthermore, beyond the SV fingerprints reported from
previous studies which have focused on deletions5,6 (owing to the
limits in short read-based assemblies), our dataset revealed that a
nearly equal number of insertions were present alongside such
deletions. The time-resolved samples of our dataset also enabled
us to complement these findings about person-specific gut
microbiome signatures: within ca. 10 days (Fig. 2d and Supple-
mentary Fig. 5), the genome structure of the same species
remained stable indicating that the strain differentiation/repla-
cement observed over three years in the LifeLines cohort6 could
be results of gradual SV accumulations.

As SVs in genome cause breaking points in genome and
consequently might affect the functionality of genes18, we
investigated the functional distribution of genes in reference
MAGs that contain such breaking points. As we observed
relatively high inter-individual variations in terms of number and
types of SVs compared to the reference MAGs, addressing each
individual and bacterial genomes in terms of SV function is
difficult; also the relatively low number of SVs in each individual
and per MAG (16.7 per Mb) prevented informative enrichment
analysis, thus we carried out functional enrichment analysis of
SV-related gene functions at a population scale. Using KEGG
pathway and against the baseline for all the genes predicted in the
reference MAGs, enrichment analysis revealed a total of 267
enriched pathways for the insertions and the deletions (Fig. 3a
and Supplementary Data 5); no pathways were significantly
enriched for the inversions, likely owing to their smaller number
than insertions/deletions. There were 19 metabolism-related
pathways among the top 30 most affected pathways (ranked
based on the extent of enrichment), including for example
“glycan degradation”, “sphingolipid metabolism”, and those for
the metabolism of diverse carbohydrates (Fig. 3a and Supple-
mentary Data 5). There was also enrichment for pathways
associated with processing of environmental information, includ-
ing the phosphotransferase system (PTS), ABC transporters, and
two-system transporting systems, genes of which have been
implicated in bacterial toxin production and in conferring
antibiotic resistance (Fig. 3a and Supplementary Data 5).
Interestingly, the enrichment results agreed with the findings in
a previous report studying SV-affected genes in Israeli and Dutch
populations5,6, indicating potentially the universal characteristics
in terms of human gut microbial SV-affected genes.

SVs complicate bacterial associations to metabolites and host
phenotypes. To investigate the functional consequences of SVs,
in particular to the metabolism of microbiome, we carried out
metabolome analysis in the fecal, serum and urine samples in the
cross-sectional cohort. Analysis based on the metabolome of
different samples in the cross-sectional cohort showed that SVs
complicated the correlations between bacterial species and
metabolites, leading to strain-level functional differences within
the same species of bacteria significantly correlated with meta-
bolites. Namely, SVs led to potential disruption of gene function
and in the subgroup containing SVs abolished significant corre-
lations between bacterial abundance and metabolites; by contrast,
the subgroup without SVs maintained significant correlations. In

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30857-9

4 NATURE COMMUNICATIONS |         (2022) 13:3175 | https://doi.org/10.1038/s41467-022-30857-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


this finer-scale analysis we found among 11 bacterial species with
significant correlations (FDR < 0.1) to metabolites in the fecal,
serum, or urine metabolome, a total of 889 SV-affected genes
complicated bacterial-metabolite correlations (Fig. 3b, c, Supple-
mentary Fig. 6, and Supplementary Data 6).

We discovered that in detail, 753 pairs involved 70 SVs that
correlated with 74 fecal metabolites (out of 458), 134 pairs

involved 31 SVs that correlated with 66 urine metabolites (out of
396), and 2 pairs involving 2 SVs with 2 serum metabolites.
Among these results, our discovery and inclusion of insertions
revealed that the expansion of SVs increased the power of
discovering SVs that could complicate bacterial-metabolite
correlations. For instance, the previous discovery in Israeli
population found that the correlation between inositol
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concentrations and A. hadrus was confounded by a deletion in
bacterial genome. By contrast, our study found that both
insertions and deletions occurring at a gene locus (annotated to
be K02014, iron complex outer-membrane receptor protein) in
Bacteroides uniformis genome led to the loss of significant
correlations between relative abundance of this bacteria species
and inositol concentrations in urine (Supplementary Fig. 7).

Among the SV-confounded associations between bacterial
species and metabolites, we found that A rectalis was significantly
associated with fecal fructose-1-phosphate (F1P) when ignoring
SVs (Spearman’s ρ= 0.28, p= 0.0053, FDR= 0.035, Fig. 3e),
among other bacteria. Further analysis accounting for the status
of 12 SV-affected genes complicated the correlations between F.
saccharivorans and the concentrations of neotrehalose in fecal
samples (Fig. 3d, and Supplementary Data 6). Similarly, 33 SV-
affected genes showed that the subgroup (strain) of bacteria
containing SVs no longer had significant correlations with F1P
(eg. K01193 in A. rectalis, ρ= 0.18, p= 0.2, FDR= 0.56, Fig. 3e).
Among the metabolites and SV-affected genes, we found four
metabolites affected by SVs and a total of 11 genes affected by SVs
were mapped to four KEGG pathways, in which the SV-affected
genes and metabolites were both involved, strongly suggesting the
roles of SVs in shaping bacterial-metabolite correlations by
affecting the function of relevant genes (Supplementary Data 7
and Supplementary Data 8). For instance, SV-affected genes
confounding bacterial associations to neotrehalose included
K01208 (cyclomaltodextrinase) and K05349 (beta-glucosidase),
both belonging to the KEGG pathway “Starch and sucrose
metabolism” (map 00500) (Supplementary Fig. 8 and Supple-
mentary Data 7). Altogether, our data suggest that SVs are
capable of introducing strain-level differences in metabolic
functionalities in gut microbial species, and complicate the
correlations between bacterial abundances and metabolites.

The complicated effects of SVs extended to that of the
correlations between bacterial and host phenotypes. The two
aforementioned fecal metabolites, F1P and neotrehalose, had
significant negative correlations with the fasting blood glucose
levels for the individuals in the cross-sectional cohort (Fig. 3f, g).
The abundance of F. saccharivorans was significantly correlated
with blood glucose (Spearman’s ρ= -0.38, p= 1e-4, FDR= 2e-4),
and among the individuals, the presence of SV at the locus
(annotated to be K03655, putatively encoding an ATP-dependent
DNA helicase RecG) defined a subgroup/strain of F. saccharivor-
ans that was not significantly associated with blood glucose
(Fig. 3h); and SVs at K01193 in A. rectalis also lead to decreased
coefficients of association between bacterial abundance and
glucose, although in the SV0 group the association was weaker
(p= 0.05), potentially a result of lower sample size in subgroups
(Fig. 3i). It has been reported that F1P can competitively inhibit
the liver phosphorylase, which metabolizes glycogen to glucose,
and thus fecal F1P potentially contributes to lowering blood

glucose;19,20 for trehalose however, it is not yet clear the relevance
to blood glucose. Our findings thus demonstrate that incorporat-
ing SVs increase the detection power in correlational analysis of
bacterial and host health phenotypes, by controlling the effects of
SVs that complicate the correlations between bacterial abun-
dances and metabolite concentrations.

Highly correlated prophage and CRISPR structures at the
community level. Incorporation of phages into bacterial genomes
(forming prophages) and excision of existing prophages may both
introduce SVs, and our improved metagenome from hybrid
assembly facilitated the identification of prophages. Using the
machine-learning-based tool ProphageHunter21 with the 9612
MAGs (before redundancy removal) as the input, we identified a
total of 2247 prophages, with genome sizes ranging between 1236
and 91,792 bp (Fig. 4a). Phylogenetic assignment based on con-
catenated capsid protein and terminase large subunits divided the
prophages into two main viral families: Siphoviridae and Myo-
viridae. Furthermore, relying on long ONT reads we confirmed
the direct linkage between prophage elements and flanking host
bacterial genomes and established the associations between phage
families and bacterial genera to include 1077 phage-host pairs
(Fig. 4b). Among those, only 72 (6.69 %) were included in the
current database of microbial-phage interactions, MVP22. By
contrast, short read-based metagenomic profiling only discovered
1815 prophages, accounting for 80.77% in the hybrid assembly,
thus showing that the ONT-improved metagenome facilitated
prophage discovery.

Beyond prophages, microbial genomes also contained CRISPR-
Cas systems for defense against re-infection by phages. It is now
understood that the loci for these systems have spacers that
record marker sequences for certain phages23, thus leading to
insertion/deletion variation within the same species. Among the
same set of MAGs used in the aforementioned prophage analysis,
we additionally discovered 150,058 CRISPR spacers with an
average of 1665 ± 560 (mean ± SD) spacers per metagenomic
sample, and average length of these spacers was 34 ± 4.8 nt
(Supplementary Fig. 9). And the majority of spacers are not
currently in reported databases, as only 17,600 or 11.73% were
found in CRISPROpenDB24 and 22,962 or 15.30% overlapped
with spacers found in western populations gut microbiome25

(Supplementary Fig. 10). Here, the improved metagenomic
assembly again demonstrated the increased power of discovering
particular genomic elements such as CRISPR spacers, whereas the
same analysis in short read-based metagenomic assemblies
revealed only 9542 spacers (6.36%, 15-fold lower), potentially
due to the fact that short reads have difficulties in resolving highly
identical repeat sequences between spacers.

The extensive diversity of prophages and CRISPR spacers
helped define the informative, personalized SV fingerprints of

Fig. 2 Validation and characterization of structural variations (SVs) in human gut microbiome. a Schematic representation of direct validations of
structural variations (SVs) using long ONT reads. Using the upper metagenome-assembled genome (MAG) as reference, deletions (left) and insertions
(right) were identified in the lower MAG (belonging to the same bacterial species, from a different sample), and mapping long reads from different sample
against representative sequences resulted in reads directly covering deletion (left) or insertion (right) and flanking regions, thus validating the presence of
these SVs at read-level. b, c Phylum-level and family-level distributions in the number of major types of SVs (insertions and deletions) across different
taxonomical groups, corrected for corresponding genome size (SVs per 1M genome). High variability of SV numbers can be found among different phyla
and bacterial families (see Results). d Comparison of average number of SVs per 1Mb genome between all of 189 MAGs used for SV detections, as well as
individual MAGs from the three most common same species, between different individuals in the cross-sectional cohort (left of each boxplot) and from
different samples within the same individual in the time-series data (right of each boxplot). In all four cases, inter-individual SVs numbers are significantly
higher than that of intra-individuals (two-sided Wilcoxon test, n= 4093, 83, 91, 63 separately, all P < 2e-10), suggesting SVs can be used as fingerprints in
human gut microbiome to distinguish different individuals. Data are presented as box plots with whiskers at the 5th and 95th percentiles, the central line at
the 50th percentile, and the ends of the box at the 25th and 75th percentiles.
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human gut microbiome. Indeed, we found that the inter-personal
differences in our cross-sectional cohort were significantly higher
than those within same individuals (in our time-series cohort), as
measured by beta-distances based on prophage/CRISPR spacers
(Jaccard distance calculated using prophage: Wilcoxon-test
p < 2e-16; using CRISPR spacers: Wilcoxon-test p < 2e-16)
(Supplementary Fig. 11). Further comparisons between the

compositions of prohages and CRISPR spacers with respect to
their community-level compositions revealed intriguing co-
variations. Firstly, Procrustes analysis, which examines the
correlations between different types of community differences,
discovered significant correlations between their compositions
across different individuals (Procrustes r= 0.994, p < 0.001, Fig. 4c)
in the cross-sectional cohort. Secondly, further analysis identifying
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active phages from metagenomic reads revealed that only 47 out of
2247 identified prophages were potentially active (free-living),
indicating a large reservoir of relatively inactive prophages
incorporated in bacterial genome and constituted stable SVs.

Discussion
Recent studies utilizing the developments in sequencing tech-
nology and analytical methods emphasize the ubiquity and
functional importance of structural variations across humans and
other animals, various plants, and more recently bacteria3–6.
Structural variations are lower in occurrences in the genome than
single-nucleotide polymorphisms (SNPs) but have higher chances
of affecting gene functions as revealed in eukaryotic organisms4–6.
However, profiling of SVs in microbes is still challenging, espe-
cially that short read- and mapping-based discovery of SVs is
highly dependent on high-quality references and faces difficulties
in identifying large insertions and inversions5,6. Incorporating
long reads from ONT increases assembly quality and enables
read-level validation of structural variations. For instance, in our
large-scale sequencing of human gut microbiome we achieved
metagenomic assemblies with more than tripled N50 values in
contigs, and almost doubled, >100 kb of N50 values in genomic
bins than those by only using short reads. With several studies
have applied ONT sequencing to microbiome research, the major
focus has been on improving assembly and required >200 Gb of
reads per sample, an amount not yet feasible for population
studies;9 a cohort study with a focus on structural variations as
well as associations with metabolic implications is first to be
reported by our study. Compared to previous studies in human
gut microbiome that mainly focus on deletions5,6, our analysis
additionally identified a large amount of insertions (nearly equal
to the amount of deletions) and thousands of inversions, which
greatly expanded the scope of detectable SVs. Furthermore, we
demonstrated that large SVs could be more easily validated by
ONT reads at the read level, increasing the confidence for future
SV discovery and analysis in gut microbiome.

Our results revealed the heterogeneity in genome structural
diversity among bacterial taxa groups, and re-emphasized the
high diversity between individuals versus the high stability within
the same individual, further supporting the notion that SVs could
be used as “fingerprints” to distinguish the gut microbiome of
different individuals5. Among the three studies available on gut
microbiome structural variations, two were cross-sectional6,26

and one study5 compared samples collected three years apart,
where they demonstrated that the SVs had significant changes
within the same individual. In our study, the genome structure of
the same species remained stable, but we acknowledge that our

study was unable to determine an appropriate time window to
separate “short” (10 days) vs “long” (3 years) term to observe the
occurrence of structural variations. In terms of potential func-
tions, SVs in our study affected the integrity of the genes enriched
in metabolic pathways for differentiated nutrient utilization,
systems for transporting and environmental sensing, thus likely
affecting or diversifying the metabolic capacities and subsequently
enabling their occupation and competition of ecological niches in
the same bacterial species. Combined with metabolome data
collected in our study, we further established that SVs, acting as
another layer of gut microbiome variations besides bacterial
abundances that underlie the metabolic activities and metabo-
lome, affected ca. 15% of the fecal and urine metabolites in our
screen. It is thus likely that via modulating the associations
between bacteria and metabolites such as neotrehalose and F1P,
SVs confound the correlations of bacteria to metabolites and
eventually to important host phenotypes (such as blood glucose),
adding a layer of complexity in association between gut micro-
biome and host health. Yet, further functional experiments are
warranted to establish the findings as our analysis are still limited
to correlation inference. Our results add to the observed effects of
microbiome SVs on metabolites and host phenotypes, consistent
with the findings in the Israeli population and the Dutch LifeLines-
DEEP cohort5,6, all indicating the utility and importance of con-
sidering SVs in linking the microbiome to associated metabolomes
from feces/serum, and eventually host health indicators.

Among the SVs, prophages and highly variable CRISPR ele-
ments comprised a significant proportion and our hybrid
assembly strategy significantly improved the diversity of pro-
phages and CRISPR spacers than short read-only approach did.
The presence of prophages provided important information on
the host range and specificity of phages, while CRISPR spacers
recorded previous interactions with phages and novel CRISPR-
Cas systems in gut microbiome could provide bases for new gene
editing systems in the future27. We expanded the current
knowledge of phage-bacterial host pairs by identifying >1000 new
pairs of phage-host correlations. At the same time, nearly six-fold
more of new CRISPR spacers were found in our data, indicating
the still underappreciated diversity of CRISPR spacers, plus the
high divergence between human gut microbiome from well-
studied western populations and less frequently examined Asian
populations28.

To conclude, our population-scale microbiome analysis
incorporating ONT reads simultaneously profiled multi-type,
large structural variations in the human gut microbiome. SVs
modulate bacterial functionality that impact host metabolome
and health, calling for more finer-scale investigations of bacterial
contribution to health and disease in humans, beyond a sole focus

Fig. 3 Functional relevance of structural variations (SVs) in human gut microbiome. a The top 30 categories in functional enrichment of SV-affected
genes based on KEGG, metabolism-related pathways account for 19; p-values were from Fisher’s test. b SVs influencing the gut bacteria-fecal metabolite
correlations, upper panel indicates significant correlations (Spearman correlation, FDR < 0.1), the presence of SVs abolished significant correlations (lower
panel, all p-values > 0.05) and the subgroup without SVs maintained significance (middle panel, all p-values < 0.05). Colors denote different bacterial
species. c Overview of SV-affected bacteria-metabolite correlation pairs (Spearman). Colors and bars denote different bacteria and metabolites.
d Fusicatenibacter saccharivorans was significantly correlated with neotrahlose (NSV, n= 100), SVs within gene K03655 lead to insignificant correlations
(SV1, n= 52; ρ (rho)= 0.032, p= 0.82), and different from the other subgroup/strain (SV0, n= 48; ρ= 0.45, p= 0.0015, FDR= 0.099). e Similar case for
correlation between A. rectalis and Fructose-1-phosphate (F1P), SVs at K01193 leads to strain-level differences. f, g Fecal neotrahlose and F1P
concentrations were significantly correlated with blood glucose (n= 100). h For F. saccharivorans, SVs within K03655 gene cause insignificant associations
with blood glucose (SV1, n= 52; ρ=−0.20, p= 0.15), and the subgroup without SVs was significantly correlated with blood glucose (SV0, n= 48;
ρ=−0.54, p= 8.6e-5, FDR= 0.001). i Similarily, for A. rectalis, SV within gene K01193 also leads to strain-level differences in correlation with blood
glucose (SV0, p= 0.05, n= 46; SV1 group n= 54). The ρ (rho) indicates the coefficient of spearman correlation, and p-values were adjusted with
Benjamini-Hochberg procedures for FDR control. The shadings in (d–i) indicate the 95% confifence intervals (CI) and colors in d–i indicate different
groups. NSV: all sample; SV0: subgroup without SV in bacterial gene; SV1: subgroup with presence of SV in bacterial gene. The details of subgroups are
available in the Supplementary Data 6.
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on bacterial abundance. Further incorporating ONT reads in gut
microbiome research will enable in-depth dissection of time-
specific gut microbiome functionality and deepen our under-
standing of various gut-disease axes in humans.

Methods
Establishing the hybrid assembly pipeline. We used genomic DNA from
ZymoBIOMICS™ Microbial Community Standard (Zymo Research Corporation,
United States) for establishing the hybrid assembly pipeline using Illumina and
ONT sequence. This mock community contains a mixture of eight bacterial strains
(each contributing 12% of the total DNA) and two fungi (each accounts for 2% of
total DNA). The nanopore data of Zymo-GridION-EVEN-BB-SN were down-
loaded from https://github.com/LomanLab/mockcommunity. Illumina raw
sequencing reads were prepared using Rapid DNA Library Prep Kit and sequenced
using NovaSeq (PE150).

Illumina raw sequences were quality-controlled using ‘read_qc’ module of
MetaWRAP 1.229. Nanopore raw sequences were base-called from fats5 files and
quality-controlled using Guppy v.3.3.0 (ONT). For sequences from both platforms,
human host reads were identified and removed by mapping against the human
genome (hg19) with minimap2 v2.17-r94130. We compared five pipelines for
metagenomic assemblies, including Canu 1.731, Flye 2.8.1-b167632, OPERA-MS9,
which only uses ONT reads; and hybrid assembly using Spades v3.13.0;33 and only
Illumina reads assembly of MetaSPAdes v3.13.033, to assemble from sequences of
the mock community. The total length, contig numbers, largest contig length, N50,
L50, average nucleotide identity (ANI) and run time were calculated to evaluate the
assembly efficiency with Quast v.5.0.034 (Supplementary Fig. 1a). In addition, the
abundance of eight bacterial species was assessed by Salmon 0.13.135 or using
nanopore reads by minimap230. The obtained contigs were then binned using
MetaWRAP 1.229 to form MAGs. The MAGs with completeness >70% and
contamination <10% were kept after refinement and reassemble. No MAG was
obtained from the assembly of OPERA-MS. Although Flye predicted 14 contigs
were circular, only two contigs were near the corresponding species in genome
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Fig. 4 ONT-improved metagenome contained highly diverse prophages and CRISPR spacers in human gut microbiome. a Phylogenetic distribution of
228 prophages with both complete major capsid protein (MCP) and terminase large subunit (TLS) proteins (see Methods and Results section) discovered
from 200 samples, with length distribution from 2.9 to 86 kb (scaled in barplot). For each sequence, the assigned viral family was indicated in color and the
length of each prophage was shown as bar length in the outer circle. b Prophage-host pairs determined by analyzing prophage sequences and flanking
regions. Prophages were grouped at the family level and bacteria at the genus level, with each side showing the percentage of family/genus among all the
sequences. c Procrustes analysis of prophage/CRISPR spacer structures in the cross-sectional cohort (left) and time-series cohort (right), showing
significant correlations between their overall compositions and indicating the highly stable prophage/CRISPR spacers structures within the same individual
across time points. The statistical significance of the procrustes results were assessed using function protest with 999 permutations. The p value for both
statistical tests was 0.001.
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length (92.68% and 86.65% respectively, Supplementary Data 1). At last, open-
reading-frames (ORFs) were predicted using Prokka 1.1336 and coding density was
calculated (sum of length of ORFs divided by total length of MAG) for examining
whether ONT reads introduced more errors into contigs and reduced ORFs
numbers in a genome.

Subject recruitment. We recruited a total of 110 volunteers, including 100 healthy
individuals without apparent diseases or infections, to form the cross-section
cohort and each individual provided one fecal, one serum, and one urine sample on
the same day; and 10 healthy individuals form the time-series cohort with 10
consecutive fecal and urine sampling. Additional information including age, body
height and weight, blood pressure and fasting blood sugar level were recorded
simultaneously with fecal samples (Supplementary Data 2 and 3). This study is
approved by the ethic committee of Institute of Microbiology, Chinese Academy of
Science with approval number APIMCAS2021003; all individuals were fully
informed and have provided written consent, and compensated for traveling.

Stool sample processing and sequencing. Fecal samples were aliquoted into 2-ml
cryovial tubes and placed at 4 °C immediately on collection, and transferred to
storage at −80 °C within the same day. Fecal DNA was extracted with the Qiagen
AllPrep PowerFecal DNA/RNA Kit (QIAGEN, Germany) using standard bead-
beating mechanical lysis. The fecal DNA were separated to two parts for Illumina
and ONT sequencing respectively. Illumina short-read libraries were prepared
using NEXTflex™ Rapid DNA Library Prep Kit (Bioo Scientific, United States) and
sequenced using Illumina NovaSeq (PE150). For ONT long-read libraries, fecal
DNA was size-selected to remove DNA fragments < 5 kbp with BluePippin (Sage
Science, United States), and libraries were prepared using Oxford Nanopore
Technologies (ONT) Ligation library preparation kit (SQK-LSK109, EXP-NBD104,
and EXP-NBD114) following manufacturer’s instructions and sequenced with the
ONT PromethION sequencer using FLO-PRO002 flow cells. ONT sequencing runs
were scheduled for 48–60 h, and allowed to run until fewer than ten pores
remained functional.

Metabolome in fecal, serum, and urine samples. The metabolites in all samples
were identified and quantified by referring to the published studies as follows (with
detailed information on metabolites provided in Supplementary Data 9):

(1) Sample processing and extraction of metabolites: All samples were collected
and immediately refrigerated at −80 °C until preprocessed, and sample processing
and metabolite extraction were referred to the study by dunn et al. and Gratton
et al.37,38. The procedure was as follows:

(a) For fecal samples, 50 mg were transferred to an EP tube, and after adding
1000 μL extract solution (acetonitrile: methanol: water= 2: 2: 1, with 500 nM
internal standard L-Leucine-5,5,5-d3 (Formula: C6H10D3NO2, MW:134.19, CAS:
87828-86-2)), samples were vortexed for 30 s and the samples were then
homogenized at 35 Hz for 4 min and sonicated for 5 min in ice-water bath, a
process repeated for 3 times Then the samples were incubated for 1 h at −40 °C
and centrifuged at 10,800 g for 15 min at 4 °C and the extract was transferred to a
fresh glass vial for further analysis.

(b) for serum samples, 100 μL were extracted with 400 μL extract solution
(acetonitrile: methanol= 1:1, with 500 nM internal standard L-Leucine-5,5,5-d3),
and vortexed for 30 s, then sonicated for 10 min in ice-water bath and incubated for
1 h at −40 °C to precipitate proteins. Then samples were centrifuged at 10,800 g for
15 min at 4 °C, and the extract was then transferred to a fresh glass vial for further
analysis.

(c) For urine samples volume, urine was first normalized according to
creatinine concentration, and 100 μL corrected urine were mixed with 400 μL of
extract solution (acetonitrile: methanol= 1: 1, containing isotopically-labeled
internal standard of 500 nM internal standard L-Leucine-5,5,5-d3), the mixture
were vortexed for 30 s, sonicated for 10 min in ice-water bath, and incubated for 1 h
at −40 °C to precipitate proteins. Then the samples were centrifuged at 10,800 g for
15 min at 4 °C. The quality control (QC) sample was prepared by mixing an equal
aliquot of the supernatants from all of the samples.

(2) LC-MS/MS Analysis. LC-MS/MS analyses were performed using an UHPLC
system (Thermo Fisher Scientific, SanJose, CA) with a UPLC BEH Amide column
(2.1 mm × 100 mm, 1.7 μm, Waters, Manchester, UK) coupled to Q Exactive HFX
mass spectrometer (Orbitrap MS, Thermo Fisher Scientific). Extracts were
gradient-eluted with water (containing 25 mmol/L ammonium acetate and
25 mmol/L ammonia hydroxide, pH= 9.75) and acetonitrile. The mass
spectrometry was used to acquire MS/MS spectra on information-dependent
acquisition (IDA) mode in the control of the acquisition software (Xcalibur 4.0.27,
Thermo Fisher Scientific). The ESI source conditions were set as following: sheath
gas flow rate as 50 Arb, Aux gas flow rate as 10Arb, capillary temperature 320 °C,
full MS resolution as 60,000, MS/MS resolution as 7500, collision energy as 10/30/
60 in NCE mode, spray Voltage as 3.5 kV (positive), or −3.2 kV (negative),
respectively.

(3) Data preprocessing and annotation. The acquired MS data pretreatments
included peak selection and grouping, retention time correction, second peak
grouping, and isotopes and adducts annotation, were performed as previously
described39. LC-MS raw data files were converted into mzXML format and then

analyzed by the XCMS and CAMERA toolbox with R statistical language (v3.6.2).
By using retention time and the m/z data pairs as the identifiers for each ion, we
obtained ion intensities of each peak and generated a three-dimensional matrix
containing arbitrarily assigned peak indices (retention time-m/z pairs), ion
intensities (variables) and sample names (observations). Exacted molecular mass
data (m/z) of peaks were searched through online HMDB database and KEGG
database for metabolite identification. Exact molecular mass data (m/z) of peaks
were searched through online HMDB database and KEGG database for metabolite
identification. If a mass difference between observed and theoretical mass was < 10
ppm, the metabolite was annotated and the molecular formulas of the matched
metabolites were further identified and validated by isotopic distribution
measurements. Commercial reference standards were used to validate and confirm
metabolites by comparing their MS/ MS spectra and retention time. The matrix
was further reduced by removing peaks with missing values (ion intensity = 0) in
more than 50% samples and those with isotope ions from each group to obtain
consistent variables. Each retained peak was then normalized to the QC sample
using Robust Loess Signal Correction (R-LSC) on the basis of the periodic analysis
of the QC sample and the true samples to ensure the data of high quality within an
analytical run, which is accepted as a quality assurance strategy in metabolic
profiling. The relative s.d. (RSD) value of metabolites in the QC samples was set at
a threshold of 30%, as a standard in the assessment of repeatability in
metabolomics data sets.

Hybrid assembly of human gut microbiome. Quality control of raw sequences for
Illumina and ONT reads from our human gut microbiome was carried out as
described above and quality-filtered reads from each sample were assembled using
MetaSpades v3.13.033 with -meta and -nanopore in parameters. Our choice of
metaSpades for hybrid sequencing analysis was a result of balancing several
parameters; compared to only using Illumina, hybrid assembly did indeed have a
higher level of contamination, yet using Illumina alone could not achieve long
contigs (as indicated by N50), which was especially important for the following up
SVs analysis. The obtained contigs of each sample were then binned using Meta-
WRAP 1.229 to form MAGs. The MAGs with completeness >70% and con-
tamination < 10% were kept after refinement and reassemble; all MAGs were then
combined and dereplicated using dRep v2.6.213 with the following options: ‘-pa 0.9
-sa 0.95 -nc 0.30 -cm larger’. The representative MAGs was picked based on a
score, which was calculated for each genome using following formula:

Score ¼ 1 � Completeness� 5 � Containminationþ 0:5 � logðN50Þ ð1Þ

From there, rRNA presence in each MAG was determined with RNammer −1.240,
the taxonomy information of dereplicated MAGs then were classified by gtdbtk
1.3.041. For comparison of previous published Unified Human Gastrointestinal
Genome (UHGG) collection, we downloaded their 4,644 nonredundant genomes.
Then our hybrid MAGs and their 4,644 nonredundant genomes were pooled and
were dereplicated using dRep v2.6.213 with the with the same options above. Then
the numbers of shared genomes and novel genomes were calculated from this
result. The MAGs that were assigned to high score and determined as repre-
sentative MAGs were labeled as better genomes. The MAGs that were not found in
UHGG dataset were labeled as novel genomes.

SV analysis in assembled MAGs. The SV events (insertion, deletion, and
inversion) of each MAG (species) present in >10 samples were detected using
representative MAGs (with highest completeness among all MAGs of the same
species across samples) as reference using modified MUM&Co v2.4.242. To further
reduce the potential false positive discovery of SVs, the SV events with 10 bp of the
start/end point of contigs in MAGs were not considered. The total SV events
number between a query MAG and representative were then normalized by the
genome size of MAG and compared in different bacterial phyla/families, as well as
in cross-section and time-series cohort. Minimap2 v2.17-r94130 was used to re-
map ONT reads to reference MAG sequences and query MAGs, which we then
visualized the mapping results using IGV 2.6.243 to establish the identity of SVs; a
random set of 53 large SVs (> 500 bp) were selected for manual validation (Sup-
plementary Fig. 2). Genes containing breaking points of predicted SVs were
annotated by Prokka 1.1336 and KEGG Orthology (KO) profiles were annotated by
emapper.py 1.0.344,45. KEGG enrichment analyses were performed using genes of
predicted SVs as the foreground genes and all genes of all MAGs as the back-
ground. We only consider the SV in gene body region, because locating tran-
scription start sites (TSSs) has been a bioinformatically challenging job46, with best
tools developed only for limited number of organisms such as E. coli (and limited
types of transcription factors)47,48, and even in this model organism the complexity
of TSSs were overlooked until high-throughput screening techniques revealed
many more non-classical TSSs49. In addition, our analytical focus on large SVs
(>500 bp) means that even if we analyze TSS regions, gene bodies would almost
surely be covered by the same SV.

Correlation analysis of SVs and metabolome. For each of the 189 MAGs
(species) with >10 occurrences in our cross-sectional cohort, we first removed
species with <50% occurrences in the cohort and then generated presence/absence
matrix of SV-affected genes (grouped by KO) in the rest; then we pre-screened the
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SVs to ensure that sufficient numbers of each group (SV and non-SV groups), and
filtered either SVs or non-SVs with occurences below 20% of the total number. We
also kept metabolites that are present in > 90% of fecal, serum, or urine samples.
Spearman correlations were calculated between bacteria-metabolite pairs. Within
significantly correlated bacteria-metabolite pairs (FDR < 0.1), we further tested
spearman correlations considering SVs-affected genes (KOs) to discover subgroups
(strains) of bacteria containing SVs (SV1 group) on such KO and with abolished
correlations (p > 0.05) to the corresponding metabolite, while the subgroup without
SVs (SV0 group) remain significantly correlated (p < 0.05) with the metabolite. The
details of subgroups are available in the Supplementary Data 6. Among the bac-
terial species and metabolites, we examined also the potential confounding effects
of anthropometric parameters, including age, gender, and BMI; for those sig-
nificant association pairs involving metabolites correlated to one or more
anthropometric parameters, we performed post-hoc analysis to determine the
significance of bacteria-metabolite associations after controlling age/gender/BMI
(Supplementary Data 8). Here we are cautious to remove the effects of anthro-
pometric parameters in bacterial-metabolite associations due to the possibility that
bacteria abundances might be driven by anthropometry and significant associations
could be neglected after controlling for age/gender/BMI in metabolites and/or
bacterial abundances.

Prophage identification. We used ProphageHunter (https://pro-hunter.genomics.
cn/index.php/Home/hunter/hunter.html)21, a novel integrative tool that employs
both sequence similarity-based searches and prophage genetic features-based
machine learning classification, to identify potentially active prophages in the
contigs. Only those categories defined as active phages in the ProphageHunter
results were selected as candidate prophages, and prophages found duplicated on
the same contigs were removed. All remaining prophage candidates were pooled
and further deduplicated using CD-hit v4.750 with 95% identity, with 9,805 non-
redundant prophages in total as result. The prophages were further screened
against at least one of the encoded major capsid proteins or terminase large subunit
proteins, resulting in 2,247 prophages. Additionally, the active prophages were
determined using by PropagAtE (Prophage Activity Estimator)51, which uses
genomic coordinates of integrated prophage sequences and short sequencing reads
to estimate whether a given prophage is in the lysogenic (dormant) or lysogenic
(active) infection phase.

Phylogenetic and host analyses of prophages. The phylogenetic trees of pro-
phages were constructed based on the concatenated terminase large subunit (TLS)
and major capsid protein (MCP), whose amino acid sequences of the coding
protein annotated as terminase large subunits and major capsid proteins were
extracted separately and simultaneously aligned using MAFFT v7.45052 (-localpair
-maxiterate 1,000), and the sequences that were poorly aligned were pruned. The
phylogenetic tree was constructed using the IQTREE253 automatic selection model
and 1000 bootstrap replicates, and visualized using iTOL v554. In addition to
prophages, the annotation of bacterial host from the flanking region was performed
use CAT software55.

CRISPR array detection. We used CRSPRDetect v2.456 to predict direct repeat
sequences and spacer sequences with a cutoff value of 3 for the CRISPR likelihood
score. To summarize, we identified the CRISPR arrays in our MAGs by using
CRISPRDetect and the officially recommended parameter “-array_quality_scor-
e_cutoff = 3” (https://github.com/ambarishbiswas/CRISPRDetect_2.2). To further
remove false positives, CRISPRDetect searched for CRISPR arrays with greater
than 2 repeats, and putative CRISPRs with repeat lengths less than 20 were rejected.
Using this criterion, we limited the false positive rate to ca. 0.79%, as calculated
from the repeats shorter than the shortest repeats (23 nt) validated experimentally.
CRISPRDetect Parser (https://github.com/hwalinga/crisprdetect-parser) was used
to parse the output of CRISPRDetect to extract spacer sequences, resulting in 7446
repeat sequences and 150,058 spacer sequences. Additionally, we used blast v2.6.057

with a threshold of identity ≥80% and e-value ≥ 1e-5 to compare with
CRISPROpenDB24 and other spacers from western population25. To investigate the
correlation between prophages and spacers, we aligned spacers with prophage
sequences using blast v2.6.057 and allowed for mismatches of 2–3 bases.

Statistics. For testing the relationship between numbers of SV events and refer-
ence genome frequency, query genome size, query genome contamination and
query genome completeness, we used linear regression model. For comparision of
average number of SVs per 1Mb genome between MAGs from different indivi-
duals in the cross-sectional cohort and from different samples within the same
individual in the time-series cohort, we used two-sided Wilcoxon test. KEEG
functional enrichment analysis was conducted based on the result of Fisher test of
each SV-affected gene. For correlation analysis of SVs and metabolome, spearman
correlations were calculated using corAndPvalue function from WGCNA v1.6958

package and p-values were adjusted according to Benjamini-Hochberg method
(FDR threshold 0.1) using mt.rawp2adjp function from multtest v2.38.059 package.
For examing the potential confounding effects from anthropometric parameters,
including age, gender, and BMI, post-hoc analysis was used to determine the

significance of bacteria-metabolite associations after controlling age/gender/BMI.
All above statistics were carried out in R v3.5.260

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
ONT and Illumina sequencing data generated from this study is deposited in NCBI SRA
database with Project ID: PRJNA820119. Source data are provided with this paper.

Code availability
The scripts used for the analysis reported in this study are publicly available at https://
github.com/chen318liang/Gut-Metagenome-Pipeline-Based-on-Nanopore-Sequencing.git.
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