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Abstract
Epidemiological studies show a higher prevalence of obesity

in children from smoking mothers and smoking may affect

human thyroid function. To evaluate the mechanism of

smoking as an imprinting factor for these dysfunctions, we

evaluated the programing effects of maternal nicotine (NIC)

exposure during lactation. Two days after birth, osmotic

minipumps were implanted in lactating rats, divided into:

NIC (6 mg/kg per day s.c.) for 14 days; Control – saline. All

the significant data were P!0.05 or less. Body weight was

increased from 165 days old onwards in NIC offspring.

Both during exposure (at 15 days old) and in adulthood

(180 days old), NIC group showed higher total fat (27 and

33%). In addition, NIC offspring presented increased

visceral fat and total body protein. Lipid profile was not
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changed in adulthood. Leptinemia was higher at 15 and

180 days old (36 and 113%), with no changes in food intake.

Concerning the thyroid status, the 15-days-old NIC

offspring showed lower serum-free tri-iodothyronine (FT3)

and thyroxine (FT4) with higher TSH. The 180-days-old

NIC offspring exhibited lower TSH, FT3, and FT4). In both

periods, liver type 1 deiodinase was lower (26 and 55%).

We evidenced that NIC imprints a neonatal thyroid

dysfunction and programs for a higher adiposity, hyper-

leptinemia, and secondary hypothyroidism in adulthood.

Our study identifies lactation as a critical period to NIC

programing for obesity, with hypothyroidism being a

possible contributing factor.
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Introduction

Several epidemiological and animal studies have shown that

malnutrition, hormones, and other stressful events during

critical periods of early life permanently alter the function of

the body’s systems of the progeny. This association has been

named programing, which is defined as the phenomenon

that putatively underlies relationships among nutritional

experiences of early life and adult diseases (Lucas 1994,

Barker 2003, Moura & Passos 2005, de Moura et al. 2008).

Some environmental and dietary chemicals that can mimic

or interfere with the normal action of hormones are referred to

as ‘endocrine disruptors’. Additional studies predict the

existence of chemical ‘obesogens’, molecules that inappropri-

ately regulate lipid metabolism and adipogenesis to promote

obesity (Grun & Blumberg 2006, Tabb & Blumberg 2006).

During pregnancy, cigarette smoking causes low birth

weight (Butler & Goldstein 1973, Navarro et al. 1989,

DiFranza & Lew 1995), and epidemiological studies suggest

that maternal smoking during pregnancy might be a risk
factor for childhood obesity (Morley et al. 1995, Vik et al.

1996, Blake et al. 2000, von Kries et al. 2002, Toschke et al.

2002, Bergmann et al. 2003, Wideroe et al. 2003, Goldani

et al. 2007); however, the mechanisms to explain the

development of obesity are still unclear.

Newman et al. (1999) observed that rats exposed to nicotine

(NIC), the main addictive compound of tobacco smoke,

in utero, are heavier at 9 weeks old when compared with

controls. Williams & Kanagasabai (1984) reported that fetal

NIC exposure in rats increases body fat in the fetus on the 20th

day of gestation (term on the 21st day), suggesting that fetal

NIC exposure results in increased adiposity in the offspring.

Only few studies suggest that the first postnatal week is

critical for NIC programing of body weight (BW) and body

fat distribution. NIC exposure in rats, extending from the

gestational period to the 10th day of lactation, increases BW

in offspring at 35 days old. In male offspring, this effect is

transient, but in females the higher BW persists until 90 days

of age (Chen & Kelly 2005). Additionally, rats whose mothers

were treated with NIC for 14 days before mating and during
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pregnancy until weaning become heavier at 70 days old when

compared with the control group. At 6 months of age, NIC

exposure results in increased BW, fat pad weight, and

perivascular adipose tissue in the offspring (Gao et al. 2005).

Increased body fat/weight is associated with enhanced

levels of the adipocyte hormone, leptin (Friedman & Halaas

1998). However, the association between smoking and leptin

levels is controversial. In tobacco smokers, both hyperlepti-

nemia (Hodge et al. 1997, Eliasson & Smith 1999, Nicklas

et al. 1999) and hypoleptinemia (Wei et al. 1997, Donahue

et al. 1999) have been described.

Smoking can also affect the thyroid gland (Christensen et al.

1984, Ericsson & Lindgrade 1991, Fisher et al. 1997, Utiger

1998). Although there is less data on the effect of tobacco

compounds upon the thyroid, thiocyanate, but not NIC, is

associated with hypothyroidism (Muller et al. 1995, Fukata

et al. 1996). In addition, maternal smoking influences the

thyroid function in infants (Meberg & Marstein 1986,

Karakaya et al. 1987, Chanoine et al. 1991). Passive smoking

from both parents affects thyroid function. Thyroglobulin and

thiocyanate concentrations at birth and at 1 year of age in

infants whose parents are smokers are greater than in infants

with nonsmoking parents (Gasparoni et al. 1998). According

to Lauberg et al. (2004), smoking mothers have lower iodide

content in breast milk and their offspring have lower urinary

iodide. This study suggests that NIC decreases maternal milk

iodide transfer.

Our group has been working with several imprinting

factors during lactation that are capable of programing the

hormonal regulation and body composition (Passos et al. 2002,

2004, Dutra et al. 2003, Vicente et al. 2004, Toste et al. 2006a,b,

Fagundes et al. 2007, de Moura et al. 2007). Particularly,

maternal nutritional and hormonal changes during the

lactation period in rats were shown to program the

thyroid function in adult life (Passos et al. 2002, 2007, Dutra

et al. 2003, Lins et al. 2005, Bonomo et al. 2008, Lisboa et al.

2008). Since thyroid dysfunction is associated with marked

changes on both energy expenditure and BW (Pontikides &

Krassas 2007), it is interesting to evaluate the thyroid status

in the model of programing by maternal NIC exposure

during lactation. In addition, it seems likely that thyroid

hormones and leptin play mutual roles (Ahima et al. 1996,

Escobar-Morreale et al. 1997, Ortiga-Carvalho et al. 2002,

Rosenbaum et al. 2002, Oliveira et al. 2007, De Oliveira

et al. 2007).

Despite experimental evidence of NIC programing during

gestation and also when the exposure extends from pregnancy

to lactation, to our knowledge, there are no studies focusing on

the effects of NIC exposure exclusively during the early

postnatal period. This may be of particular relevance since

there is a high rate of smoking relapse among women who stop

smoking during pregnancy (McBride & Pirie 1990). Thus, our

aim was to evaluate the short- and long-term consequences of

maternal NIC exposure, solely during lactation, on BW, body

composition, serum leptin, and thyroid function of rat

offspring at different ages. Since there is an association between
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higher visceral fat mass (VFM) and other components of the

metabolic syndrome, such as dyslipidemia, we also studied the

lipid profile of the NIC-treated animals.

Materials and Methods

Wistar rats were kept in a temperature-controlled room

(25G1 8C) with artificial darkness–light cycles (lights on

at 0700 h and lights off at 1900 h). Virgin female rats 3 months

of age were caged with male rats in the proportion of 3:1.

After mating, each female was placed in an individual cage

with free access to water and food until delivery. The use of

the animals according to our experimental design was

approved by the Animal Care and Use Committee of the

Biology Institute of the State University of Rio de Janeiro

(CEA/189/2007), which based its analysis on the principles

described in the Guide for the Care and Use of Laboratory

Animals (Bayne 1996).
Experimental model of maternal NIC exposure during lactation

Two days after birth, 12 lactating rats were randomly assigned

to one of the following groups:

NIC (nZ6) – dams were lightly anesthetized with

thiopental, a 3!6 cm area on the back was shaved, and

an incision made to permit s.c. insertion of osmotic

minipumps (Alzet, 2ML2, Los Angeles, CA, USA).

Pumps were prepared with NIC-free base diluted in a

saline solution (NaCl 0.9%) to deliver an initial dose rate of

6 mg/kg of NIC per day (during 14 days of lactation), as

previously described (Abreu-Villaca et al. 2004a,b). At this

dose rate, this paradigm produces plasma NIC levels

similar to those in typical smokers – w25 ng/ml

(Lichtensteiger et al. 1988). The incision was closed and

the mothers were permitted to recover in their home cages.

Control (C, nZ6) – dams were implanted with osmotic

minipumps containing only saline solution, released for the

same period as that of minipumps with NIC.

Generally, pregnant rats produced 10–12 pups and, to avoid

the influence of the litter size in the programing effect, we

only used mothers whose litter size was 10 offspring. At birth,

litter adjustment was performed and six male pups were kept

per NIC or C mother to maximize the lactation performance.

During lactation, BW (mothers and pups) and relative food

intake (g/100 g BW) of the mothers were daily monitored.

From weaning (21 days of lactation) until 180 days, BWof the

offspring was monitored every 4 days and relative food intake

was monitored every 15 days.

We used two offspring from each mother at each age point

(12 rats per group). The experiment was performed twice: at

the first, offspring were killed at 15, 21, and 180 days old; and

at the second, offspring were killed at 15, 90, and 180 days

old. The killing occurred by decapitation to collect blood,

VFM, and carcass.
www.endocrinology-journals.org
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Body composition

After the killing, VFM was quickly excised and weighed for

evaluation of the central adiposity – mesenteric, epidydimal,

and retroperitoneal (Toste et al. 2006a, Fagundes et al. 2007),

and data were expressed as g/100 g BW.

Body composition (total fat and protein mass) was

determined by carcass analysis (Toste et al. 2006a, Fagundes

et al. 2007). NIC and C offspring were eviscerated; the

carcasses were weighed, autoclaved for 1 h, and homogenized

in distilled water (1:1). The homogenates were stored at 4 8C

for analysis.

Homogenates (3 g) were used to determine fat content

gravimetrically. Samples were hydrolyzed in a shaking water

bath at 70 8C for 2 h with 30% KOH and ethanol. The total

fatty acids and nonesterified cholesterol were removed with

three successive washings with petroleum ether. After drying

overnight in vacuum, all tubes were weighed and data were

expressed as g fat/100 g carcass.

Protein content was determined in 1 g homogenates.

Tubes were centrifuged at 2000 g for 10 min. The total

protein concentrations were determined by the Lowry

method (Lowry et al. 1951). Data were expressed as g

protein/100 g carcass.
Lipid profile

Serum levels of total cholesterol (TC), triglycerides (TG),

high-density lipoprotein (HDL), low-density lipoprotein

(LDL), and very-low-density lipoprotein (VLDL) were

analyzed in the adult offspring using Biosystem commercial

test kits (Simões et al. 2007).

LDL-C and VLDL-C were obtained using Friedewald

calculations:

1) LDL-C (mg/dl)ZTCK(TG/5)KHDL-C.

2) VLDL-C (mg/dl)ZTG/5.
Figure 1 Body weight during lactation (A), after weaning (B), and
food intake (C) of offspring whose mothers were nicotine (gray) or
saline (black) exposed during lactation. Values represent mean
GS.E.M. of 12 rats per group. *P!0.05 versus C.
Hormones determination by RIA

Blood samples were centrifuged (1500 g/20 min/4 8C) to

obtain serum and were individually kept at K20 8C until

assay. All measurements for each hormone were performed

in one assay.

Leptin was measured by specific RIA kit (Linco Research,

Inc., St. Charles, MO, USA), which measures both rat and

mouse leptin with a range of detection from 0.5 to 50 ng/ml;

the intra-assay variation was 2.9%.

Free thyroid hormones (free tri-iodothyronine (FT3) and

thyroxine (FT4)) were determined by commercial RIA kit

(ICN Pharmaceuticals, Inc., Costa Mesa, CA, USA) with

an assay sensitivity of 0.045 ng/dl (T4) and 0.06 pg/ml (T3).

The intra-assay variation was 2.8% (T4) and 3.6% (T3).

TSH was measured by specific RIA, using a rat TSH kit

supplied by the National Institute of Health (NIH, USA) and
www.endocrinology-journals.org
expressed in terms of the reference preparation provided

(RP-3). The intra-assay variation was 2.3%, with 0.18 ng/ml

as the lower limit of detection.
Liver D1 activity determination

In order to confirm the thyroid status, liver D1 activity of 15

and 180 days old offspring was measured in the microsomes by

the release of 125I from 125I-reverse T3 (rT3), as previously

reported (Lisboa et al. 2003). Assay was performed in

phosphate buffer containing 1 mM EDTA (pH 6.9) in the
Journal of Endocrinology (2009) 202, 397–405
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Figure 2 Body total fat mass (A), visceral fat mass (B), and body total
protein mass (C) at 15, 21, 90, and 180-days-old offspring whose
mothers were nicotine or saline exposed during lactation. Values
represent meanGS.E.M. of 6–12 rats per group. *P!0.05 versus C.
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presence of 1.5 mM rT3 and 10 mM dithiothreitol. Free 125I

of enzymatic deiodination was eluted from Dowex 50 W-X2

columns (Bio-Rad, EUA) with 10% acetic acid. Deiodination

percentual in the presence of the enzyme was around

10–20%. Amount of free 125I in blank was !1–2% of the

total radioactivity in the reaction mixture. Specific enzyme

activity was expressed by nanomoles of rT3 deiodinated/

h!mg of protein.

Statistical analysis

Results were reported as meanGS.E.M. The GraphPad Prism 4

and Statview 5.0 programs were used for statistical analyses and

graphics. Initially, two-way ANOVA on each variable (BW

and food intake evolutions, total body fat, protein content,

leptin, FT3, FT4, TSH, and D1) were carried out. Treatment

and age were used as between-subjects factors. Whenever this

initial test indicated treatment effects that differed among the

different ages, data were then re-examined separately using

one-way ANOVAs; however, where treatment effects did not

interact with age, only the main effect was recorded without

testing of individual differences. TC, TG, HDL, LDL, and

VLDL data were analyzed by Student unpaired t-test.

Differences were considered significant at P!0.05.

Results

During NIC exposure, NIC mothers had no BW and food

intake change compared with the C group. Maternal NIC

exposure did not change BW gain of the offspring during

lactation (Fig. 1A). However, after weaning, NIC offspring

presented higher BW compared with C offspring (treatment:

F1,1475Z111.4, P!0.0001), an effect that was dependent on

the age (treatment!age: F39,1475Z2.4, P!0.0001). Accor-

dingly, data were subdivided into separate ages for further

analysis. After subdivision, we found higher BW for NIC

offspring between 75 and 100 days of life (around 10%,

P!0.05) as well as after 165 days old, reaching 10% (P!0.05)

at 180 days old (Fig. 1B). We did not observe food intake

alterations during the entire experimental period, as depicted

in Fig. 1C.

Body composition of the offspring is shown in Fig. 2. NIC

treatment affected body fat mass (treatment: F1,56Z9.6,

P!0.004) and the effects were age dependent (treatment

!age: F3,56Z3.4, P!0.03): NIC offspring showed higher

total fat mass on the 15th day of lactation (C27%: Fig. 2A,

P!0.003), at 90 (C25%: Fig. 2A, P!0.02), and at 180 days

old (C33%: Fig. 2A, P!0.05) days old. VFM (Fig. 2B) and

total protein content (Fig. 2C) also differed between

treatment groups (treatment: F1,68Z7.8, P!0.006 and

treatment: F1,56Z4.6, P!0.04 respectively); however, there

were no treatment!age interactions. Accordingly, across the

four analyzed ages, NIC elicited increased values for VFM

and total protein content when compared with C offspring.

Treatment caused hyperleptinemia (treatment: F1,58Z7.6,

P!0.008) and the effects were age dependent (treatment
Journal of Endocrinology (2009) 202, 397–405
!age: F3,58Z3.1, P!0.04). Separate analyses for each age

demonstrated a trend towards significance at 15 days (C36%

– treatment: F1,11Z4.4, P!0.06) and a significant increase

at 180 (C113% – treatment: F1,18Z9.3, P!0.007) days in

offspring whose mothers were NIC exposed during lactation,

as shown in Fig. 3. NIC offspring presented no change in lipid

profile when they were 180 days old (Table 1).

Figure 4 shows the thyroid function of animals whose

mothers were NIC or saline exposed. NIC treatment affected

FT3 (treatment: F1,51Z9.7, P!0.004), so that NIC offspring
www.endocrinology-journals.org
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Figure 3 Serum leptin at 15, 21, 90, and 180-days-old offspring
whose mothers were nicotine or saline exposed during lactation.
Values represent meanGS.E.M. of 6–12 rats per group; cs, close to
significance.*P!0.05 versus C.
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presented lower serum FT3 when compared with C rats, an

effect that was largely determined by differences between

NIC and C offspring at 15, 21, and 180 days (Fig. 4A). As for

FT4 (treatment: F1,62Z8.2, P!0.006; treatment!age:

F3,62Z3.1, P!0.0001), decreased values for NIC offspring

reached significance in 15 days (K31% – treatment: F1,18

Z53.3, P!0.0001) and 180 (K15% – treatment: F1,14Z7.7,

P!0.02) days old offspring (Fig. 4B). NIC treatment also

affected TSH (treatment: F1,53Z7.7, P!0.008; treatment

!age: F3,53Z6.5, P!0.0008). The 15-days-old NIC pups

presented higher TSH (F1,12Z5.3, P!0.04). In contrast,

at 21 (F1,11Z5.7, P!0.04), 90 (F1,14Z9.4, P!0.009),

and 180 (F1,16Z6.2, P!0.02) days, lower TSH in NIC

offspring reached significance (Fig. 4C). NIC offspring

presented lower liver D1 activity (treatment: F1,29Z31.4,

P!0.0001; treatment!age: F1,29Z7.1, P!0.02) on 15

days (K26% – treatment: F1,13Z4.8, P!0.05) and 180 days

(K55% – treatment: F1,29Z33.0, P!0.0001; Fig. 4D).
Table 1 Lipid profile of adult rats whose mothers received nicotine
during lactation. Values represent meanGS.E.M. of 6–12 rats per
group.

180 days-old offspring

Control Nicotine

TC (mg/dl) 59.1G1.9 53.3G3.1
HDL-C (mg/dl) 12.7G0.8 13.8G1.1
LDL-C (mg/dl) 33.6G1.9 32.5G3.4
VLDL-C (mg/dl) 12.8G1.1 14.8G4.8
TG (mg/dl) 64.1G5.6 50.6G2.9

TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C,
low-density lipoprotein cholesterol; VLDL-C, very low-density lipoproteins;
TG, triglycerides.

www.endocrinology-journals.org
Discussion

Previous studies have demonstrated that there is a high

prevalence of women who do not ever quit smoking during

pregnancy or lactation (O’Campo et al. 1992). However,

there is a high rate of smoking relapse among women who

stopped smoking during pregnancy (McBride & Pirie 1990).

Despite this fact, the majority of epidemiological studies on

maternal smoking and experimental data on NIC exposure

were observed during pregnancy or pregnancy and lactation.

In our study, for the first time, it was evidenced that in

rats maternal NIC exposure, only during lactation, causes

neonatal thyroid hypofunction and programs for overweight,

hyperleptinemia, and lower function of the pituitary–thyroid

axis later in the offspring life. In fact, lactation is a critical

period of life, as in this phase important cognitive and

neurological development occurs, which suggests that adverse

environmental changes can cause physiological modifications

that predispose the development of some diseases in

adulthood (Mott et al. 1991, Symonds 2007).

In rodents, NIC exposure during pregnancy does not alter

the BW gain of the mothers (Chen & Kelly 2005). However,

experimental studies have documented an inverse relationship

between cigarette smoking and BW, showing that cessation of

NIC exposure is usually accompanied by weight gain (Levine

et al. 1987). According to Li et al. (2000), adult rats exposed to

NIC reduce BW and are hypophagic. Despite these previous

data, in the present study, NIC exposure from the 2nd to the

14th day of lactation did not affect the mother’s BW gain or

food intake. Since during lactation many mechanisms are

activated in order to supply the high energy requirement,

including hyperphagia, basal metabolic rate reduction, and

preferential nutrient flux for lactogenesis (Dewey 1998), it is

possible that during this particular phase, these mentioned

events are more important and counterbalance the well-

known effects of NIC in nonlactating animals.

In previous experimental studies, pre- and postnatal NIC

exposure failed to cause changes in BW during the exposure

period (Chen & Kelly 2005, Gao et al. 2005). Interestingly, in

our study, despite the fact that NIC exposure did not affect

BW gain of NIC offspring during lactation, these rats showed

greater total and VFM when they were 15 days old, when

they were still being exposed to NIC.

Some studies have shown that there is an increased risk of

obesity in children whose mothers smoked during pregnancy

(Vik et al. 1996, von Kries et al. 2002). Our data showed

maternal NIC exposure during lactation programs for higher

VFM, total body fat, and protein content in adulthood. These

alterations in body composition may be responsible for the

higher BW of NIC offspring. These programed rats did not

show food intake changes, which suggest the development of

a hypometabolic status. Chen & Kelly (2005) showed that

NIC treatment during pregnancy and for the first 10 days of

life affected BW with sex-dependent changes. BW was

significantly higher on 35, 63, and 90 days old, in female rats.
Journal of Endocrinology (2009) 202, 397–405
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However, in male rats, BW was transiently higher only when

they were 35 days old. Another study showed that values for

BW, left ventricular weight, epididymal, mesenteric, and

perirenal fat weight were significantly higher in 6-months-

old offspring from NIC-treated mothers before mating,

during pregnancy and lactation (Gao et al. 2005). However,

there was no report of total fat mass due to NIC exposure

only during pregnancy or lactation.

It was already reported that NIC treatment causes change

in the lipid pattern in adult female rats (Abd el Mohsen et al.

1997). However, there is no data regarding the long-term

effect of maternal NIC exposure during lactation on serum

lipid profile. In our study, for the first time, we observed

no change in TG, TC, LDL-C, HDL-C, and VLDL-C levels

in adult NIC offspring, despite its overweight and higher

adiposity.

We observed that NIC offspring did not present changes in

BW until they were 75 days old. We detected a transient

increase in BW gain between 75 and 100 days of life. After

165 days of life, again we observed overweight in NIC

group, which persisted until they were 180 days old. This

could be associated with critical phases in which rats complete

their sexual maturation (75–100 days old) and thereafter

start the ageing process (O150 days). Chen & Kelly (2005)

injected lower NIC doses from pregnancy until lactation and

perhaps this explains the transient effect in BW gain compared

with our study that shows a more prolonged effect. Also, they

did not evaluate older rats.

At 15 days of age, NIC rats showed a trend to higher serum

leptin levels (C36%, P!0.06), which actually were

significantly higher at 180 days old. This effect may be caused

by higher adiposity since this hormone is mainly produced by

adipose tissue (Ahima 2005). As already discussed, we did not

detect any food intake change; therefore, it is possible that

these animals presented hypothalamic leptin resistance to its

anorexigenic effect. These data corroborate previous studies

carried out by our group concerning other programing

models (Passos et al. 2004, Bonomo et al. 2007), in which BW

changes were not accompanied by food intake alterations.

Leptin and leptin receptors are both found in skeletal

muscle (Wang et al. 1998, Steinberg & Dyck 2000, Maroni

et al. 2003). Some studies have shown a direct effect of leptin

on muscle, increasing glucose, and fatty acid metabolism

(Wang et al. 1998, Steinberg & Dyck 2000, Ceddia et al. 2001,

Maroni et al. 2003). Leptin stimulates GH release by the

stimulation of GH-releasing hormone (Tannenbaum et al.

1998). It is known that GH increases amino acid uptake into

muscles, increases protein synthesis, and decreases protein

catabolism (Casanueva & Dieguez 1998). Thus, it is possible

that, in the present study, the high leptin levels of NIC
Figure 4 Serum FT3 (A), FT4 (B), and TSH (C) at 15, 21, 90, and 180-
days-old offspring whose mothers were nicotine or saline exposed
during lactation. Liver D1 activity (D) at 15 and 180-days-old
offspring. Values represent meanGS.E.M. of 6–12 rats per group.
*P!0.05 versus C.
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offspring stimulate muscle protein synthesis through GH

action, resulting in the higher amount of total body

protein content.

Concerning thyroid status, as previously mentioned, we

have detected that maternal NIC exposure only during

lactation leads to lower thyroid hormone serum concen-

tration in young and adult offspring. This lower serum

hormone concentration seems to cause a hypofunction that

was confirmed by the lower liver D1 activity on NIC

offspring at 15 and 180 days old, since this enzyme activity

and/or expression is considered a marker of thyroid status that

is decreased in hypothyroidism and increased in hyperthy-

roidism (Bianco & Kim 2006). In rats, NIC exposure

extending from the gestational period to the 10th day of

lactation did not change serum thyroid hormones at 10-days-

old offspring (Chen & Kelly 2005). However, these authors

did not study the thyroid hormones profile in other periods of

life. The higher total and central body fat mass of young and

adult NIC offspring may be due, at least in part, to their

possible hypothyroidism. An earlier adiposity has been

reported in children with congenital hypothyroidism,

suggesting that thyroid dysfunction during fetal and neonatal

life affects body mass index during the first years of life

(Livadas et al. 2007).

Some studies have shown changes in thyroglobulin, thyroid

hormones, TSH, and goiter caused by tobacco (Christensen

et al. 1984, Ericsson & Lindgrade 1991, Muller et al. 1995,

Fisher et al. 1997, Utiger 1998). There are several mechanisms

by which smoking can affect thyroid hormone levels. Tobacco

smoke contains thiocyanate that has been shown to be a

potential anti-thyroid factor (Meberg & Marstein 1986, Dai

et al. 1996, Lauberg et al. 2004). Our findings showed that early

NIC exposure causes a transient thyroid dysfunction during

lactation. NIC pups presented lower thyroid hormones and

higher TSH at 15 days old, suggesting a primary thyroid

hypofunction in neonatal life. After NIC withdrawal, weaned

pups presented normal serum T4; however, TSH and T3 levels

were lower. In a similar way to the thiocyanate (Perron et al.

2001, Lauberg et al. 2004), it is possible that NIC inhibits the

mammary sodium iodide symporter, reducing the supply of

iodine to pups during lactation causing hypothyroidism, which

was partially corrected by the absence of NIC, at weaning.

Neonatal NIC treatment programs for lower serum TSH in

90-days-old offspring. At 180-days-old, we found lower

serum TSH and thyroid hormones concentrations. Both FT3

and FT4 are in the lower normal ranges, when we compared

with a large sample of FT3 and FT4 of rat controls at the same

age from different experiments of our laboratory (data not

shown). However, for TSH, all of the NIC values were

lower than the 10% lowest control values, suggesting a truly

thyrotroph hypofunction. These findings suggest the

development of extra-thyroidal dysfunction of adult NIC

offspring confirmed by lower TSH levels since weaning.

The mechanism for this event is still unclear, but it is possible

that maternal NIC exposure caused a central hypothy-

roidism, induced by a hypothalamic–pituitary dysfunction,
www.endocrinology-journals.org
with reduced thyrotropin-releasing hormone (TRH)–TSH

production and/or release or TRH action on the pituitary.

In the present study, we can not explain whether the effect

of programing by maternal NIC exposure is caused by a

direct or indirect NIC action. There are, at least, three

hypotheses to explain the NIC effects in our experimental

model. First, NIC transfer through maternal milk (Dahlstrom

et al. 1990, Narayanan et al. 2002) may change some factor(s)

in offspring. Second, maternal alterations caused by NIC

treatment, for example, hormonal changes, may be trans-

ferred through the milk to the pups. And finally, the

programing by NIC exposure can result from both mothers

and pups functional changes.

In conclusion, we have demonstrated that maternal NIC

exposure, exclusively during lactation, programs for a higher

BW gain and adiposity in adult life of the offspring as well as

for hyperleptinemia. In addition, early NIC exposure possibly

leads to a neonatal thyroid hypofunction and programs

for central hypothyroidism, which may partially explain

the overweight at adulthood. Then, NIC can be one of the

tobacco compounds responsible for the thyroid dysfunctions,

and maternal smoking may be considered an important risk

factor for the development of thyroid diseases in offspring.

Altogether, our present data evidence how the events caused

by early NIC exposure only during the critical period of

lactation are complex and capable of changing the future

development of the offspring, possibly acting as an endocrine

disruptor and an obesogen factor. Furthermore, the higher

adiposity detected in our model may help to explain the

prevalence of obesity in children exposed to cigarette smoke

during the perinatal period.
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