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Abstract. A technique for the analysis of low-low intersatellite range-rate data in a gravity mapping

mission is explored. The technique is based on standard tracking data analysis for orbit determination

but uses a spherical coordinate representation of the 12 epoch state parameters describing the baseline

between the two satellites. This representation of the state parameters is exploited to allow the

intersatelIite range-rate analysis to benefit from information provided by other tracking data types

without large simultaneous multiple data type solutions. The technique appears especially valuable

for estimating gravity from short arcs (e.g. less than 15 minutes) of data. Gravity recovery simulations

which use short arcs are compared with those using arcs a day in length. For a high-inclination orbit,

the short-arc analysis recovers low-order gravity coefficients remarkably well, although higher order

terms, especially sectorial terms, are less accurate. Simulations suggest that either long or short arcs

of GRACE data are likely to improve parts of the geopotential spectrum by orders of magnitude.

Key words: Geopotential determination -- Satellite geodesy -- Satellite-to-satellite tracking --

GRACE.

1. Introduction

For more than three decades the geodetic community has realized that satellite-to-satellite tracking

(hereinafter SST) provides extremely strong observational constraints for determining the geopotential

(e.g. Wolff, 1969; Vonbun, 1972). High-low satellite configurations have proven,valuable in the past

(e.g., Kahn et al., 1982), and they continue to do so today (Lemoine et al., 1998b; Schwintzer et

al., 2000). Low-low satellite configurations are expected to yield orders of magnitude improvements

in geopotential definition (National Research Council, 1997), and such a system may finally come to

fruition in the near future with the Gravity Recovery and Climate Experiment (GRACE) mission
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(TapleyandReigber,2000).

Methodsfor deducingthegeopotentialfromlow-lowSSTdatahavebeendevelopedby manygroups

overthepasttwodecades(e.g.,Douglasetal., 1980;Kaula,1983;Wagner,1983,1987;Colombo,1984;

JekeliandUpadhyay,1990).Manyof thesemethodswerebasedonsemi-analytictheoriesthat made

varioussimplifyingassumptionsto overcomecomputationallimitations. For example,both Kaula's

andColombo'smethodsassumedperfectlypolarorbits--a "tail-biting orbit" wasColombo'scolorful

phrase--whichallow, amongotheradvantages,fast Fouriertechniques.Computationallimitations

arestill an importantconsiderationtoday,but not nearlysomuchaswhentheseearlierworkswere

written.

This paperexploresa directapproachto estimatinggravity from SSTdata, relyingmoreheavily

on numericalintegrationmethodsthan onanalyticor semi-analyticmethods.Wepresentextensive

simulationswith the followingSSTscenario:near-polarlow-lowsatellites,separatedby a couple

hundredkilometers,eachsatellitetrackedcontinuouslybyGPSandeachdeployedwith accelerometers

to correctfor non-conservativeforces.Thefundamentalmeasurementis thesatellite-to-satelliterange

rate,measuredwith a precisionof order10-6 ms-1.

In additionto establishinga viabletechniquefor the handlingSSTdata,this paperaddressestwo

keyquestionsfor anypracticaldataanalysis:

1. To whatextent is the SSTgravityinversioninsensitiveto ephemerisaccuracy?Specifically,is it

sufficientlyinsensitivethat the orbit determinationand thegravity inversioncanbeperformed

in separate,independentsteps?

2. To what extentis the SSTgravity inversiondependenton arc length? In particular, if the ac-

celerometersare incapableof removingall non-conservativeforces,includingthrusting events,

thesatellitedatamightnecessarilybebrokeninto veryshortarcs.Howwill thegravityestima-

tion beaffected?
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Concerning(1), our simulationsdescribedbelowshowthat, indeed,the SSTdata canbe handled

(within limitations) independentlyof the GPS data. We validate a two-step method. The first step

concentrates only on achieving orbit accuracy (no gravity estimation). The second step uses only

the SST data to refine certain components of the orbit while estimating gravity coefficients. A great

advantage of this is that the orbit determination task in an SST mission can concentrate on ephemeris

accuracy, using techniques such as empirical accelerations that are normally prohibited in standard

satellite gravity estimation. A second practical advantage is, of course, that the gravity inversion task

can be performed without the considerable simultaneous data processing chores associated with GPS

orbit determination.

The next section compares the role of arc length in conventional orbit determination based gravity

estimation with the role it may play in a GRACE-like SST mission. Section 3 describes a transforma-

tion that we apply to the standard orbit parameters to enable our decoupled analysis of the SST data.

Section 4 gives the rationale behind our data simulation procedures as well as a detailed description

of those procedures. Sections 5 and 6 present results of parameter estimations using simulated data.

Section 5 concentrates on the estimation strategy for orbit parameters, while Section 6 presents the

results of gravity field recoveries with orbit parameters adjusting simultaneously.

2. Arc Length in Gravity Estimation

When satellite tracking data are analyzed for geophysical parameter recovery, the analysis is often

part of a simultaneous solution for orbit parameters. In such settings it is usually necessary to group

the tracking data into "arcs" of data which span multiple revolutions of the satellite. This is because

most tracking data types do not provide enough geometric strength to provide a unique solution for the

orbit until a substantial portion of the trajectory is examined. Furthermore, force model parameters

like gravity coefficients build up sensitivity with arc length, because gravity signal is usually detected

through its effect on the trajectory of a satellite. If two trajectories for a satellite are computed,
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eachstarting from the sameinitial conditionsbut usingdifferentgravity models,it usuallytakes

someperiodof timefrom the initial epochbeforedifferencesin the trajectoriesare largeenoughthat

differencesin the gravity signalcanbe inferred. The trajectoriesareusedto compute"theoretical"

valuesof thetrackingdataobservationsto whichtheactualobservationsarecompared.Thedifference

in the trajectoriesdue to gravity needsto affectthe computationof the theoreticaltrackingdata

valuesabovethe levelof the precisionof the actual trackingdata. Furthermore,the differencesin

trajectoriescomputedwith differentgravity modelsareoften diminishedbecausethe initial state

estimationprocessat somelevelaccommodatesgravityerrors.Gravityis reallyan "indirecteffect"in

conventionaltrackingdataanalysis.Arc lengthisrequiredfor the indirecteffectto makeits presence

felt.

In general,longarcsaredesirable.Ontheotherhand,asthearc lengthgrows,sodoestheeffectof

unmodeledforces.Therefore,the lengthof anarcin anorbit solutioncannotbeextendedindefinitely

without degradingthesolution.Choiceof arclength isakeydecisionin the analysisof trackingdata.

It dependson thegeometricstrengthof thetrackingdata,themagnitudeofunmodeledforces,andthe

sensitivityof thedatato thegeophysicalparametersof interest.Gravity modelslikeEGM96(Lemoine

et al., 1998a)havetypicallyusedtrackingdataanalyzedin arcsof data from 1 to 30days.With very

fewexceptionsthe trackingdatausedin EGM96wouldnot supportthe extractionof gravity signal

from anarcof datasignificantlyshorterthana day.

In a gravitymappingmissionwherethereis veryprecisetrackingof thechangein rangebetween

twosatellitesin thesameorbit plane,manyoftheconditionsthat havealwaysbeenafactorindeciding

arclengthfor conventionaltrackingdatawill bemuchdifferent.Themostobviousdifferenceisthehigh

precisionof the data. Smalltrajectorychangesaredetectablewith moreprecisedata. Furthermore,

the intersatelliteobservationis, in somesense,a directmeasurementof the differencein forceswhich

thesatellitesexperienceat eachinstant,andhencealmosta directmeasurementof gravity (Colombo,



1984).The extractionof gravity signalfrom sucha measurementis unlikely to requirethe typeof

trajectory analysisthat conventionaltracking data requires.A preciserangechangemeasurement

betweentwosatellitesin the sameorbit planeimmediatelysensesthe directeffectof gravityaswell

as the morelatent indirecteffect(effecton trajectory) that conventionaltrackingdata reliesupon

exclusively.

Theorbit determinationaspectsof agravitymappingmissionplacesdifferentrequirementsonarc

lengthaswell. Preciserangechangemeasurementsbetweentwo satellitesdo not providesufficient

informationto determineindependentlytheorbitsof thetwosatellites.Aswill bedemonstratedbelow,

thesemeasurementsareextremelysensitiveto somecomponentsof theorbitsof thetwo satellitesand

almostcompletelyinsensitiveto others(relativeto howwelltheycanbedeterminedfromothertracking

data types).If the initial epochstatevectorsof thetwo satellitesaredeterminedwith othertracking

data types,it shouldbepossibleto usetherangechangemeasurementsby themselvesto refineonly

certaincomponentsof the orbits. Thishasthepotentialto allowshorterarcs.Orbit refinementdoes

not placethesameconstraintsonarc lengthasorbit determination.

Evenif the useof short arcsin a gravitymissionis possible,the questionremainsif their useis

desirable.As mentionedabove,the effectof unmodeledforcesplacesanupper limit on the lengthof

arcs.In a missionwhichreliesonhighprecisiontracking,the tolerancefor unmodeledforcesisespe-

cially low. Accelerometrycanreducethelevelof unmodeledforces,but it remainsto beseenhowwell

accelerometrywill mix with veryprecisetrackingdata. For example,small thrustingeventsmaybe

inadequatelysampledbyaccelerometersor theremaybesmalldatagapsor noise.Thesesituationsare

moststraightforwardlyhandledby analyzingshortarcsthat avoidperiodsof anomalousaccelerations.

Furthermore,it ispossiblethat for someapplications,shortarcsaredesirable.Forexample,shortarcs

mayfacilitatethe independentanalysisof regionaldatain theform of gravityanomalyblocksor some

otherlocalgravityparameterization.It isbeyondthescopeof this investigationto answermanyof the



questionssurroundingthe desirabilityof shortarcanalysis.Weintendto demonstratethe possibility

of shortare (under15minutein length)analysis.Wealsoexplorethe tradeoffbetweenusingshort

arcsandarcsof moreconventionallength (1 day)assumingthat the longerarcsarepossiblewithin

the constraintspresentedby a realgravitymappingmission.

3. Spherical Coordinates for Initial Epoch State Parameters

Orbit solutions often solve for the six cartesian components of a satellite's state vector at an initial

epoch. After each iteration of an orbit solution, the updated initial cartesian state vector is used to

compute the trajectory at later epochs, which is accomplished by numerical integration of the cartesian

components of the state vector. Even though the initial epoch state vector is required in cartesian form,

it is sometimes usefifl to solve for an alternative representation of the initial state vector--for example,

osculating Kepler elements. Often it is easier to apply useful constraint equations that are applicable

to a particular data type when a non-cartesian representation is used. After the alternative form of

the state vector is updated, it is transformed to cartesian coordinates and the numerical integration

proceeds. It is straightforward to convert an orbit solution from a cartesian state vector solution to

some other representation. All that is required is the six by six matrix of the partial derivatives of the

six initial cartesian state vector parameters with respect to the six alternative parameters.

In the case of the two satellites of a gravity SST mission, the twelve parameters describing the

two initial cartesian state vectors can be converted to the cartesian state vector of the baseline (the

difference vector) between the two satellites and the cartesian state vector of the baseline midpoint (the

average of the two satellite state vectors). These two vectors can be further transformed. In the case of

the midpoint state vector, it is useful to convert the three position components to spherical coordinates:

the latitude of the midpoint, the longitude of the midpoint and the radius of the midpoint. For the

baseline vector, it is useful to imagine a local cartesian coordinate system centered at the midpoint

of the baseline. The XY plane of tim system is perpendicular to the position vector of the system
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midpoint. The X axis is the local East vector of the local coordinate system. It is further useful to

describe both the position and velocity components of the baseline state vector in spherical coordinates

which are based in this local coordinate system. In each case, the vector is converted to magnitude,

pitch (angle the vector makes with XY plane) and yaw (angle that the projection onto the XY plane

makes with the X axis). The twelve new epoch state parameters are:

Rm

q_m

Am

J(,n

2m

Rbp

Pv

Rbv

Yb,,

Distance of baseline midpoint from Earth center of mass

Geocentric latitude of baseline midpoint

Longitude of baseline midpoint

Inertial X component of baseline midpoint velocity vector

Inertial Y component of baseline midpoint velocity vector

Inertial Z component of baseline midpoint velocity vector

Baseline length

Baseline position pitch

Baseline position yaw

Baseline velocity vector magnitude

Baseline velocity vector pitch

Baseline velocity vector yaw

We have implemented the ability to solve for the above twelve parameters in our orbit determination

and geodetic parameter estimation software, GEODYN (Pavlis et al., 2001). This required only a new

subroutine which transforms back and forth between a pair of cartesian state vectors and the above

twelve parameters and which also computes the twelve by twelve matrix of the partial derivatives of the

twelve initial cartesian state parameters with respect to the twelve spherical coordinate parameters.

In the next sections we demonstrate that the above twelve parameters are promising for use in the
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analysisof the intersatelliterangechangemeasurementswhenthey aredecoupledfrom othertracking

data types that might be available. Onereasonablyexpectsthat the intersatelliterangechange

measurementis moresensitiveto the baselineparametersthan to the midpoint parameters.One

alsoexpectsthat the intersatelliterangechangemeasurementis fairly insensitiveto thebaselineyaw

parameters.If the rangechangemeasurementsare to beanalyzedindependentlyfrom othertracking

data types,thenit is importantto study thesensitivityof therangechangemeasurementto eachof

the abovetwelveparameters.The sensitivityof the measurementto eachof the twelveparameters

shouldbecomparedwith howwelleachparameteris likely to bedeterminedindependentlyfromother

trackingdata typesavailablein themission.That subjectis exploredin Section5.

4. Data Simulation and Assumptions for Data Reduction

All of the studies in this paper are based on using simulated one-way intersatellite range-rate

data with a counting interval of I second. The data were generated using the orbits of two co-orbiting

satellites with characteristics shown in Table 1. The key points are that the satellites are at an altitude

very close to 500 kilometers, have a very low eccentricity, are very nearly polar and are separated by

about 200 kilometers. The second satellite's initial elements are an exact copy of the first satellite's

initial elements 30 seconds later. The satellite orbits were generated with the EGM96 gravity field

using all terms up through degree 120. Drag and solar radiation were not modeled in our simulations;

it is assumed that accelerometry will sufficiently account for these forces. Accelerometry should also

compensate for small thrusting events, but it is possible that thrusting can cause occasional problems,

so our simulations do include thrusting. Each satellite was given a thrust every 30 minutes (a AV

of about 0.5 mms -1) but in a staggered manner so that the satellite-satellite system received a AV

every 15 minutes. (This, in fact, is roughly comparable to the thrusting frequency currently occurring

on the CHAMP satellite [Schwintzer, 2000].) Although it would be hoped that an accelerometer

would accurately model thrusts, we wish to determine if problematic thrusts can be removed from



theanalysisprocessaltogether(assumingtheyoccurnomorefrequentlythanevery15minutes).We

thereforeinvestigatewhethergravity signalcanbe recoveredwhileanalyzingrange-ratedata in arcs

of slightly lessthan 15minutes(betweenthrusts). Baselines.arerefinedevery15minutesusingarcs

that begin40secondsafter a thrust and20secondsbeforea thrust (14minutearcs).

A datapoint wascreatedevery5secondsfor 30days.Twoversionsof the datawerecreated,one

with nonoiseandthe otherwith noiseof 1#ms-1. Thenoiselessversionwasusefulin theverification

of themodificationsmadeto the GEODYNsoftwarefor the newepochstateparameterization.The

noiselessversionwasalsousedin preliminarystudiesto determinerange-ratedatasensitivityto epoch

stateparametersin orbit refinementsolutions.The lackof noisemakesresidualanalysiseasier.All

gravity recoverysimulationsusedthe datawith noise.

Mostof thestudiesin thispaperinvolvereducingthesimulateddatausinganapriori gravity field

which is different from EGM96. A crucial question is to determine whether the intersatellite range-

rate data can be used by themselves (after orbits have been precomputed with a variety of tracking

types and then refined in certain components with the intersatellite measurements) to recover the

coefficients of EGM96, starting from a different gravity field. The a priori gravity field is a "clone"

of EGM96 through degree 70 and is zero above that. At degree 70 and below, the coefficients of the

a priori clone field differ from EGM96 by about the standard errors of EGM96. While considerable

evidence suggests that the EGM96 errors are realistic (Lemoine et al., 1998a), the EGM96 model

itself does differ from some other recent models by amounts exceeding these errors. Our a priori clone

gravity model should therefore be considered as fairly "close" to EGM96, so if we are able to recover

a field that is closer to EGM96 than the clone, then we will have shown that our technique is useful

for recovery of small gravity signal below degree 70. Basing the test on an a priori field that is already

close to EGM96 is a stringent test of sensitivity. Above degree 70, our test will be less severe since

we are starting from zero (which is farther away from EGM96 than the standard errors). Even so, we



will beableto determineif signalabovedegree70canbe recoveredwith ourmethodof reduction.

Theclonefieldwasalsousedto generatethestarting trajectorythat is usedto obtaintheapriori

elements to begin the orbit refinement process. Tile intersatellite range-rate data are used in the

refinement step to adjust only three or four of the twelve initial state parameters (as discussed below).

We accept the other eight or nine elements from the starting trajectory without alteration. So, in

some sense, the starting trajectory contains the bulk of the the information about the orbits that will

be used to extract gravity signal.

In practice, the starting trajectories will have to be generated with whatever a priori gravity field

is available. Our starting trajectory was determined in a manner somewhat approaching "reduced

dynamic" methods (e.g., Bertiger et al., 1994; Rowlands et al., 1997). The solution had the following

characteristics:

1. The clone gravity field was used.

2. AV's were solved for at the appropriate times.

3. Empirical, periodic once per revolution accelerations (phase and amplitude parameters) were

solved for in both the along- and cross-track components. Phase and amplitude were estimated

every 30 minutes.

4. The simulated intersatellite range-rate measurements were used as a tracking data type.

5. To simulate the strong geometrical constraints that GPS tracking would provide, the "truth"

ephemeris was used as a tracking data type.

6. Solutions used thirty hours of data, from 0 hours of one day to 6 hours of the next.

The starting ephemeris produced from the above solution differs from the "truth position" in an RMS

sense by 3 centimeters (total position). That is probably optimistic for what will actually be attainable
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for the position components of a reduced dynamic trajectory, but the velocity components are probably

more important for this study (Jekeli, 2000). The starting trajectory fits the intersatellite range-rate

data at 12 #ms -1, but that is a bit misleading. Although the starting trajectory was produced by

reduced dynamic techniques, it will be used to generate a priori initial state elements for the gravity

analysis. That analysis cannot make use of the empirical accelerations from the reduced dynamic

trajectory (they contain gravity information). The a priori elements for the gravity analysis are

gleaned from the starting trajectory and produce fits of over 200 #ms -1 (RMS) in a 14 minute arc

when they are used without the benefit of the empirical accelerations that were part of the starting

trajectory. Our intersatellite range-rate gravity analysis starts with input elements which need to be

refined along with the gravity.

Note that empirical accelerations solved for wl_ile determining the reduced-dynamic starting trajec-

tory do not alias into the gravity analysis, since the accelerations are used only to determine accurate

intial conditions for the second (gravity estimation) step. The jump from 12 to 200 #m s -1 mentioned

above is a result of removing empirical accelerations in the second step. The 200 #ms -1 contains

signal from initial state error as well as from gravity errors that had been soaked up by the empirical

accelerations.

5. Baseline Refinement

Before attempting any large simulations to demonstrate the ability of our technique to recover

gravity information, we performed some smaller simulations with the goal of understanding baseline

refinement from intersatellite measurements. In particular, we wish to determine which parameters

need be refined and which parameters can be taken from the reduced dynamic trajectory without

alteration.

Our first set of tests used the truth force model (EGM96 through degree 120) and the noiseless

intersatellite range-rate data. These tests were performed on short arcs (14 minutes) between the

11



AV thrusting eventsdescribedin the previoussection. The goalof thesetests is to find the best

minimumset of initial stateparametersto estimatesothat the a posteriori range rate residuals are

well below the 1 #ms -1 level (if all of the elements are set to truth values, then the noiseless data

should fit perfectly when EGM96 is used). Although the data used in these tests were noiseless, they

were weighted in the least squares solution as if they had a standard deviation of 1 micron per second.

This is noted so that the formal standard deviations of the adjusted parameters can be interpreted.

The first runs adjusted a single parameter. As noted in the previous section, elements taken from

the reduced dynamic trajectories produce residuals with an RMS of over 200 #ms -1. When only a

single parameter is adjusted, the only parameter that could reduce the RMS residual to under 100

#ms -1 was the velocity pitch parameter. In fact, the velocity pitch parameter adjustment produced

an RMS residual of under 10 #ms -1.

The second set of runs adjusted two parameters with velocity pitch always being one of the pair.

While examining the choice of a second parameter it became clear that over short arcs, two param-

eters are very correlated: Rbv (baseline velocity magnitude) and Rm (the distance of the baseline

midpoint from the center of mass of the earth). The choice of either of these parameters as the second

parameter to accompany velocity pitch produces almost identical residual patterns. When these two

parameters (Rbv and Rm) are allowed to adjust simultaneously along with velocity pitch, the inverted

normal matrix shows a correlation between R,n and Rbv of very nearly one. When either of these two

parameters accompanies velocity pitch, the solution produces an RMS residual of less than 1 ttm s -1.

We chose to use velocity magnitude because the adjustments in this component were always less the

100/tms -1 and usually less than 20 #ms -1. This seemed more reasonable than the adjustments in

the Rm parameter (sometimes more than 30 centimeters), since our reduced dynamic trajectories were

better than 10 centimeters radially. In general the Rm parameter should almost always be determined

from a reduced dynamic trajectory to better than 10 centimeters, so over short arcs this parameter is
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not likely to needadjustment.

Eventhoughthe adjustmentof velocitypitchandvelocitymagnitudebring theRMSresidualsto

undera micronpersecond,therearenoticeabletrendsin theresiduals,sometimesnearthemicronper

secondlevel. Becauseof this wemadeonemoresetof runsto searchfor a third parameter.Wefind

that baselinepositionpitch worksbest. With positionpitch, velocitymagnitudeand velocitypitch

adjusting,theRMSresidualswerewellunder0.1#ms-1. Therefore,in ourshort-arcgravity recovery

experiments(nextsection)weadjustedthesethreeparameters.It maybepossibleto avoidadjusting

positionpitch,especiallyif arcsof 10minutesor lessareattempted.

Our finalsetof runsdealwith longerarcs.In thenextsectionwemaketwogravity fielddetermina-

tions.Onedeterminationuses30daysof 14minutearcs(2878arcs).Theotheruses30arcs,eachone

dayin length.Wewantto find the propersetof adjustingparametersfor one-dayarcs.In extending

to 2-hourarcswefoundthat our "14minuteparametrization"(positionpitch, velocitymagnitudeand

velocitypitch) heldup quite well,producingfits of lessthan0.2#ms-I. Wealsofoundthat for arc

lengthsof2 hours,theRm parameter is still highly correlated with baseline velocity magnitude. At an

arc length of 12 hours the "14 minute parameterization" produces RMS residuals of close to 1 #m s -1.

Also, at this arc length, the Rm parameter is less correlated (still 0.999) with the velocity magnitude

parameter. At 12 hours and above, 4 parameters (including Rm) can be sensibly adjusted. In these

adjustments the formal standard deviation of R,,_ is less than a centimeter. When Rm is adjusted as

the fourth parameter in a 12 hour arc, the RMS residual is reduced to below a 0.1 #ms -1. In a 24

hour arc, the correlation between Rm and velocity magnitude is reduced to 0.995. Our "long arc"

gravity analysis described in the next section simultaneously adjusts four arc parameters along with

gravity coefficients.

As noted above, the noiseless version of the data was used in these baseline refinement studies

and the force model was set to "truth" values. So if enough initial state parameters are allowed to
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adjust, the data will be fit perfectly. The gravity analysis described in the next section uses the initial

state parameterizations that have just been described, but the clone gravity field is used to compute

the trajectories (refine the trajectories before normal equations are generated) and the "noise added"

version of the data is used. In this mode, when the three short-arc parameters are allowed to adjust,

the arcs fit the the data between 7 and 25 #m s-1. The day-long arcs, with 4 parameters adjusting,

have fits between 20 and 60 #ms -1.

6. Gravity Solutions

The gravity solutions presented in this section are, like most simulations, somewhat optimistic.

The simulations include no unmodeled effects other than random measurement noise and some initial

satellite state error (which is left over from those initial satellite state elements that we leave unaltered

from the reduced dynamic trajectory). In the long-arc analysis we modeled (without adjustment) the

"truth" values of the AV thrust events, which implies perfectly performing accelerometers. Futher-

more, in addition to some initial satellite state refinement, only gravity parameters are estimated

from the simulated data; no attempt is made to estimate, for example, tidal and gravity parameters

simultaneously. In fact, tides and other high-frequency atmospheric and oceanic mass motions pose

serious aliasing problems for an SST mission because of the difficulty in modeling and removing the

associated gravity effects at required accuracies (Zlotnicki et al., 2000; Verhagen et al., 2000). Such

problems are here ignored.

The two solutions presented below, one comprising short arcs and tile other comprising long arcs,

are intended to be taken qualitatively. The differences between the short-arc solution and the long-arc

solution are of particular interest, since they reveal how much information is potentially lost when

short arcs are used and what can be gained by extending arc length (assuming the level of unmodeled

forces does not preclude the use of long arcs). But the fact that it is possible to obtain sensible gravity

solutions from arcs shorter than 15 minutes is significant in itself.
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Weestimatedtwogravity fieldsusingthe 30daysof simulateddatadescribedin Section4. Each

gravityfieldwasestimatedto degree120without anyconstraints.Themethodusedinestimatingthe

fieldsdifferedin the choiceof arc length. The "shortarc" field used2878arcs14minutesin length

while the "long arc" field consistedof 30arcs,eacha day in length. The short-arcfield estimated

2878x 3 = 8634 arc (orbit) parameters simultaneously with the 14337 gravity coefficients while the

long-arc field estimated 30 × 4 = 120 arc parameters. The short-arc field discarded 1 minute of data

around each AV (12 points) every 15 minutes, so the short-arc field uses approximately 7% fewer

observations.

The estimated gravity fields should be compared with EGM96, which was used to simulate the

data and is therefore the 'true' field, and the EGM96 clone, which was used as the a priori field from

which gravity normal equations and initial ephemerides were produced. The figures in this section

which pertain to coefficient values show differences from EGM96. If our estimates were perfect, the

estimated coefficient differences from EGM96 would be zero. Of course the differences are not zero,

but they are much smaller than the differences between EGM96 and the EGM96 clone (see Figure 2

below).

The formal errors of our estimated coefficients cannot be directly compared to EGM96 errors.

The standard errors of EGM96 are the result of a complex calibration of weights of the many data

types used in its solution (Lerch, 1991). The formal errors of our two estimated fields are simply

the diagonals of an inverted normal matrix having a single data type which had been assigned a

standard deviation of 1 micron per second. The formal errors of our estimated gravity coefficients

should therefore be interpreted only in a relative sense. Internally, they should be reliable for seeing

which portions of the estimated gravity fields are more strongly or weakly determined. Externally,

they should provide a good basis to compare two gravity fields that were estimated in a largely similar

fashion.
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Figure1showstheRMSdifferencesof the prior field andthetwo estimatedfieldswith respectto

the 'true' EGM96.It showsimmediately(andreassuringly)that bothestimatedfieldsareconsiderable

improvementsover the a priori field. Neither field appears to be impacted by the truncation of the

prior field at degree 70; both show relatively smooth differences with respect to EGM96 through all

degrees. More interestingly, Figure 1 emphasizes that an accurate gravity field can be estimated from

short arcs. The short-arc gravity field is significantly better than the a priori field at every degree

from degree 5 through degree 100. It is not surprising that a field that is sewn together only from

suborbital arcs is weaker at the very lowest degrees. The comparison of the performance (by degree)

of the short-arc field with the long-arc field is not unfavorable to the short-arc field from degree 30

upwards. However, at about degree 100, the short-arc field stops outperforming the clone gravity

field. This does not happen until about degree 110 for the long-arc field. When judging the relative

performance of the two estimated fields, it should be remembered that our simulations assume that

the accelerometer is working perfectly (no unmodeled forces), which is much more beneficial to the

outcome of the long-arc field than the short-arc field.

More detailed comparisons of the three fields are shown in Figure 2, while the estimated formal

errors are shown in Figure 3. Over a wide region of degrees and orders both estimated fields show

remarkable improvements relative to the EGM96 clone. Many coefficients are improved by two orders

of magnitude. This is generally consistent with figures quoted in the 1997 National Research Council

report (see their Figure 2.6), but it is more definitive since the NRC calculations were based on

an analytic theory of Jekeli and Rapp (1980) which assumes isotropic data (including data at all

inclinations) and ignores possible required arc parameters.

In general, Figures 2 and 3 agree well and show where the solutions are strong and where they

are weakened when arcs are shortened. For a given degree, both the short-arc and long-arc fields

determine lower order coefficients more accurately than higher order coefficients. That trend is much
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morepronouncedin theshort-arcfield,especiallyfor sectorials,whichfor somelowdegreesareactually

slightly inferiorto theclonefield.Again,this is notsurprising--onecannot expect an extremely short

arc (roughly 1/6 of a revolution) in a high inclination orbit to be sensitive to long-wavelength sectorial

terms.

Most remarkably, the long-arc and short-arc fields are very comparable at low orders, especially

so for zonal coefficients. The RMS discrepancy over all degrees (2 through 120) between EGM96

and the short-arc field for zonal coefficients is 1.9 x 10-1°. For the long arc field that discrepancy

is 1.8 x 10 -1°. Figure 4 shows that this striking similarity holds for all zonal terms, save the few

between degrees 2 and about 8. For degrees 10 through 40 both long-arc and short-arc zonals are

two orders of magnitude (or more) more accurate than the clone model. They are nearly one order of

magnitude more accurate at degrees 40 through about 100. The improvement ceases at degree 112.

Determining zonal gravity coefficients has historically been problematic in satellite geodesy. Clearly,

an SST mission--even one which for one reason or another is restricted to using very short arcs of

data--is likely to yield significant advances.

7. Summary

We have demonstrated a promising technique for the analysis of low-low intersatellite range-rate

data from a gravity mapping mission. The technique largely (but not completely) decouples the task

of orbit determination from the task of extracting gravity information. This has several advantages:

1. In the first step of the procedure orbits can be determined using all available tracking types and

reduced dynamic techniques. Extraction of gravity information in the second step benefits from

the use of empirical accelerations used in the first step without aliasing problems.

2. In the second step of the procedure, only intersatellite data are used. Gravity information can

be extracted without complex solutions involving multiple data types.
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3. Becauseorbitsareonly refined(not fully determined)in the secondstep,shortarc analysisis

facilitated.

Thetechniquetransformsthestandard12initial epochstatevectorparametersof thetwosatellites

into sphericalcoordinatesdescribingthe baselinebetweenthe two satellites.We haveperformedan

analysisto showwhich of these12 parametersneedto be estimatedsimultaneouslywith gravity

coefficients.

We haveusedthis techniqueto estimategravity fieldsfrom simulateddata. Our study neglects

manyeffects,but unlikemanystudiesof gravity missionsin the literature, weconsiderthe needto

estimateorbit parameterssimultaneouslywithgravitycoefficients.Wehaveinvestigatedthepossibility

of estimatinga gravity fieldentirely fromshortarcs(14minutes)of intersatelliterangeratedataand

foundthat this indeedshouldbe possible.Wehavealsoshownthe differencesbetweena short-arc

gravityfield anda field estimatedfromlongarcs.Theuseof longarcs(if possible)addsinformation

primarily at thehigherordersof everydegreeof thegravity field.
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Table 1: Initial Keplerian Elements for Both Satellites

Semimajor axis a 6878050 m

Eccentricity e 0.001

Inclination i 89.1 °

Node f_ 0°

Perigee argument w 0°

Mean anomaly m 0°

Period T 94.6 min

Note: Initial epoch satellite 2 = initial epoch satellite 1 + 30 seconds.
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FIGURE CAPTIONS

Figure 1. RMS gravity coefficient differences with respect to a "true" gravity field of (solid line)

the a priori field, (dashed line) a solution employing short arcs, and (dotted line) a solution employing

long arcs. The discontinuity in the a priori model arises because it is truncated to zero above degree 70.

Figure 2. Results of gravity inversion simulations showing log s/(AC_m + ASn2m), for fully normal-

ized Stokes coefficients Cnm, Snm differenced with tile "true" gravity field, for (a) the a priori gravity

field, (b) the short-arc gravity inversion, and (c) the long-arc gravity inversion. The discontinuity

in the a priori model arises because it is truncated to zero above degree 70. Below degree 70 (a) is

indicative of present-day uncertainties in the geopotential, as represented by the standard errors of

EGM96.

Figure 3. Formal errors for gravity simulations employing (a) short arcs and (b) long arcs. Colors

show the logarithm of errors for fully normalized coefficients.

Figure 4. Differences with respect to a "true" gravity field of zonal coefficients Jn of degree n,

for (solid line) the a priori field, (dashed line) the short-arc gravity solution, and (dotted line) the

long-arc gravity solution. All three lines have been smoothed to remove minor statistical variability.

The long-arc and short-arc solutions are similar except for the lowest degrees where the short-arc

solution is less accurate.
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